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Outline:
• Motivation: real-time coordination of sensors in a high-latency network
• Modeling coordination as graph colouring
• Soft graph colouring for real-time responsiveness
• A class of distributed anytime algorithms (synchronous)
• Convergence
• Tightness of constraints: conservative variant
• Scalability and robustness
• Asynchronous execution
• Very high communication latencies
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2Motivation: Large Networks of ShortMotivation: Large Networks of Short--Range SensorsRange Sensors
• Short-range, directional radars

– each can scan 1 of its 3 sectors at a time
– each scan acquires range & radial velocity
– battery-operated – conservation important

• Collaboration needed for tracking
– 3 approximately-simultaneous scans

needed for trilateralization
• Low-power radio communication

– low bandwidth, high latency
– reveals positions of radars – minimize

conflict

• Coordination mechanism organizes collaboration
– optimizes simultaneous scanning, minimizes costs

• Must be:
– scalable (e.g., to 105 sensors)
– real-time adaptive (e.g., new targets are detected, existing targets disappear)
– robust (e.g., hardware may fail)



3InterInter--Sensor CollaborationSensor Collaboration
• Main requirement: scan each target simultaneously with 3 radars

– define virtual resources: trackers
– each tracker is comprised of 3 sectors on nearby radars

• Ti ≡ {Ri1:Si1, Ri2:Si2, Ri3:Si3}
– each tracker can track a single target over some contiguous region

• Main constraint: each radar can scan only 1 sector at a time
– if two trackers use different sectors on the same radar, they are mutually 

exclusive
• mutually_exclusive(T1, T2) ⇔ ∃ j,k ∈ {1, 2, 3}: R1j=R2k ∧ S1j≠S2k

• Compute a cyclic schedule of tracker usage
– worst-case assumption: all trackers need to be used
– mutually exclusive trackers cannot be used in the same time slot
– number of time slots determined by target speed, scan time & revisit period

T1

T2
T4

T3

T6

T5

 

timeslot 
# 

scan start 
time (seconds) 

scan end 
time (seconds) T1 T2 T3 T4 T5 T6 

1 0.0 2.0 X    X  
2 2.0 4.0  X    X 
3 4.0 6.0   X    
4 6.0 8.0    X   



4Modeling Coordination as Graph ColouringModeling Coordination as Graph Colouring
• Each tracker can be mapped to a node in an undirected graph
• Each mutual exclusion constraint then maps to an edge

– nodes that are adjacent in the graph are mutually exclusive/cannot be used 
simultaneously

– two nodes are said to be neighbors iff they are adjacent
• A proper k-colouring of the graph’s nodes maps to a feasible schedule

– time slot ⇔ integer in Zk ⇔ colour 

T1

T2

T5

T4
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timeslot 
# 

scan start 
time (seconds) 

scan end 
time (seconds) T1 T2 T3 T4 T5 T6 

1 0.0 2.0       
2 2.0 4.0       
3 4.0 6.0       
4 6.0 8.0       



5Soft Graph ColouringSoft Graph Colouring

• Normalize: Γ ≡ kγ
– random k-colouring has an expected Γ of 1

• Assessment of coordination mechanism is based on how quickly it 
reduces Γ after random initialization
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1/k = random
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• An edge connecting nodes of the same colour represents a conflict
– some radar has been scheduled to scan two sectors simultaneously

• For real-time adaptation, the number of conflicts must be quickly reduced
– fast reduction to acceptable levels is more important than total elimination

• Define the degree of conflict as the fraction of edges that are conflicts
– let E be the set of edges and Cv the colour of node v



6A Class of Distributed Anytime AlgorithmsA Class of Distributed Anytime Algorithms
(synchronous)(synchronous)

• Main idea: each node repeatedly chooses its own colour
to minimize its conflicts with neighbouring nodes

• Fixed Probability algorithm FP(p) …
– Initialization:

• each node chooses a random colour and informs its neighbours
– Synchronized infinite loop:

• probabilistic activation
–a node activates if a randomly generated number falls below some fixed 
activation level p

• if a node activates, it non-deterministically chooses its next colour
–it computes a histogram of colour usage among its neighbours, based on 
what they last told it

–it then chooses any colour that is least used in the histogram
–if the chosen colour differs from its current colour, it tells its neighbours

• Convergence?
– under the right conditions, the total number of conflicts reduces over time 

and may converge to 0 …



7Effect of Activation Level on Convergence of FPEffect of Activation Level on Convergence of FP
• Measure (normalized) degree of 

conflict after each synchronous step
– experiment performed in simulator

• When activation level is too high, 
thrashing occurs
– too many neighbours are 

simultaneously updating colours
– because of out-of-date information, 

they make mutually harmful decisions
• When activation level is too low, 

adaptivity is hindered
– extreme case is sequential execution

• Need compromise between speed 
and coherence
– an activation level of 0.3 seems to be 

reasonable for sparse graphs
– this level was used for experiments 

reported in following slides

• experimental results 
shown for 2D grids

– number of colours
= chromatic number
= 4

– 500-5000 nodes
• experiments also 

performed with random 
graphs having higher, 
known chromatic 
numbers



8Animation: Activation ThresholdAnimation: Activation Threshold



9Effect of Tightness of ConstraintsEffect of Tightness of Constraints
• Performance of FP is good

on over-constrained problems
– where #colours<chromatic number
– for 2D & 3D grids, observed 

convergence value of degree of 
conflict is close to theoretical 
minimum

• Performance of FP is poor
on loosely constrained problems
– where #colours>>chromatic number
– intuitively, these are easy problems

• When loosely constrained, each 
colour choice is essentially random
– for each given node, most colours are 

not used by any neighbour
– FP chooses randomly from among 

the unused colours
– asymptotic value predicted as
α/(2-α) where α is the activation level

• experimental results 
shown for 2D grids

• chromatic number = 4

this is not
a time axis



10Animation: Tightness of ConstraintsAnimation: Tightness of Constraints



11CFP: Conservative VariantCFP: Conservative Variant
• Colour choice is non-deterministic
• But activation is restricted

– in addition to passing the test for 
random number<activation level,
a node may activate only if it has a 
conflict with any neighbour

• Conservative variant has good 
performance overall
– communication costs are also better 

than FP’s for loosely constrained 
problems

• under FP, node activity continues 
unabated forever

• under CFP, node activity decreases 
with the degree of conflict

• experimental results 
shown for 2D grids

• chromatic number = 4

conflicts

communication rate



12Animation: FP vs. CFPAnimation: FP vs. CFP



13ScalabilityScalability
• The algorithm is scalable in cost

– per node, per step costs depend on 
(mean) degree of the graph

– they do not depend on the number 
of nodes

• to the extent that the mean degree is 
independent of the number of nodes

• The algorithm is scalable in 
performance
– for large graphs, the reduction in 

normalized degree of conflict over 
steps shows little variation for 
graphs of different sizes 

• results shown are for CFP(0.3)
• 6 graphs of different sizes (500-5000 nodes)

– each graph has chromatic number 4
– each was coloured using 2, 3, 4 & 5 colours



14Robust against Communication NoiseRobust against Communication Noise
• Each colour-change message 

subjected to random process:
– probability r, colour randomized
– probability d, message lost
– otherwise, message unchanged

• For small amounts of noise, 
incremental increases in degree of 
conflict are observed
– no catastrophic failure

• results shown are for CFP(0.3) on 2D grids 
with 4 colours subject to various amounts of 
message randomization

• similar results were obtained for small 
amounts of message loss



15Asynchronous ExecutionAsynchronous Execution

• The synchronous FP algorithm requires synchronization, which may:
– require overhead (e.g. communication cost)
– slow down the process (wait for the slowest message and node)
– slow down convergence — or not

• For asynchronous FP the essential idea is the same as for synchronous 
version, except that execution is asynchronous:
– Non-synchronized infinite loop (but same rate for all nodes):

• probabilistic activation
–a node activates if a randomly generated number falls below some fixed 
activation level p

• if a node activates, it non-deterministically chooses its next colour
–it computes a histogram of colour usage among its neighbours, based on 
what it last heard from them

–it then chooses any colour that is least used in the histogram
–if the chosen colour differs from its current colour, it tells its neighbours

• Asynchrony may help in symmetry breaking, but communication latency 
may cause  ill-advised changes



16Effect of Communication LatencyEffect of Communication Latency

• Performance of 
asynchronous FP is 
reasonable for moderate 
latencies
– short-term performance 

degrades (as expected)
– long-term result quite good

• Performance is even better 
than synchronous FP when 
latency < 0.5 time units

• Performance sharply 
becomes very poor for 
higher latencies
– divergence
– latency = 7 not better than 

random colouring

• experimental results averaged for 
20 random graphs

• p = 0.3
• mean degree = 10
• chromatic number = 3



17Communication Latency and Activation ProbabilityCommunication Latency and Activation Probability

• Sharp performance drop 
for higher latencies:        
the threshold latency 
decreases as activation 
probability increases

• This is due to higher 
probability of “collision” : a
colour-change message 
still travelling along an 
edge when decision is 
taken

• degree of conflict averaged over 
10,000 steps

• mean degree = 10
• chromatic number = 3



18Effect of Collision ProbabilityEffect of Collision Probability

• For activation probability p 
and latency L,(an upper 
bound on) the probability 
of collision is about

1 – (1 – p)L

• Performance drop indeed 
depends on collision 
probability: fine up to about 
0.8; bad at 0.9 and higher

• So given latency L, a safe 
activation probability is:

p ≤ 1 – 0.21/L

L = 1   → p ≤ 0.80
L = 2   → p ≤ 0.55
L = 4   → p ≤ 0.42
L = 8   → p ≤ 0.18

• degree of conflict averaged over 
10,000 steps

• mean degree = 10
• chromatic number = 3



19Very High LatenciesVery High Latencies

• Surprise: for very high 
latencies, the normalized 
degree of conflict Γ tends 
to a mean value of 
approximately 2

• For very high latencies, the 
control mechanism gets 
caught in an out-of-phase, 
oscillating trajectory, with 
period > 2L

• p = 0.3
• L = 15

• p = 0.3
• L = 10



20ConclusionConclusion
• The FP algorithm is simple but effective for distributed, real-time, 

approximate colouring of sparse graphs
– scalable, low-cost, robust

• Basic framework of stochastic activation & local optimization seems 
appropriate for other distributed constraint problems
– graph colouring serves as a clean, archetypal problem

• The algorithm has also been tested with dense, random graphs
– interesting, but different, results
– proper k-colourings quickly obtained for very dense k-colourable graphs

• local constraints guide colouring to a unique, proper colouring

• Asynchronous execution and communication latency are handled well
– provided that the activation probability does not exceed a critical level

• Further work on algorithm
– non-uniform activation levels, perhaps determined dynamically from local 

metrics
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