Correctness Issues in Transformational Refinement

Peter Kilpatrick, M Clint, T J Harmer and S Fitzpatrick

Department of Computer Science, The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland

Transformational refinement in the context of this talk refers to the automatic transformation
of a specification expressed in a functional programming language (typically SML, LISP or
Miranda) to an efficient implementation expressed in an imperative programming language
(typically FORTRAN or one of its parallel derivitives). In particular, our work focuses on
the derivation of efficient numerical mathematical algorithms for execution on a range of
parallel machines.

A transformational derivation proceeds not as a monolithic translation process (c.f. compi-
lation) but rather as a sequence of sub-derivations which convert a program via a number
of intermediate forms which lie between its specification expressed in a specification lan-
guage and its implementation expressed in the target language. For example, rather than
being translated directly from SML to Fortran, a specification may first be converted to the
A-notation, then into Fortran:

SML — A-notation — Fortran.

Each of these transitions may be sub-divided into further intermediate forms. Thus a deriva-
tion is divided into sub-derivations, with one sub-derivation being used to create one inter-
mediate form. For example, one sub-derivation may be responsible for function unfolding;
another for common sub-expression elimination, etc.

A (sub-)derivation consists of a sequence of transformation rules. A transformation rule is a
rewrite rule consisting of a pattern and a replacement, both defined using a wide spectrum
grammar. For example,

<ident>"1" + <ident>"1" ==> 2*<ident>"1"

is a simple transformation rule. The <ident>s are non-terminals (corresponding to ‘identi-
fiers’) in the grammar. The same label (717) requires the non-terminals to match the same
identifier; in the replacement <ident>"1" refers to whatever identifier was matched in the
pattern. Thus this transformation rule will convert the expression x+x to 2 * x.

A transformational refinement is applied to a specification by a transformation engine,
TAMPR, which operates by constructing a syntax tree representation of the specification
and applying the sequence of transformations comprising the derivation using an exhaustive
post-order application strategy. That is, each transformation rule (or set of related rules) is
repeatedly applied to the tree until no further application is possible.

In this talk we consider issues relating to the correctness of this transformation system. We
first establish what we mean by correctness in this context and then describe a framework
in which correctness proofs may be undertaken.

A transformational derivation is correct provided:

e application of each transformation rule in the derivation preserves the meaning of the
tree;

e application of a transformation rule (or set of rules) terminates; and

o the result of applying the derivation is a valid program segment in the target language.

The wide spectrum grammar is defined using VDM-SL notation and the transformation rules

are described as VDM-SL functions.



