Deriving Efficient Parallel
Implementations of Algorithms Operating
on General Sparse Matrices
using Program Transformation
Stephen Fitzpatrick
Terence J. Harmer
Department of Computer Science
The Queen’s University of Belfast
Belfast, Northern Ireland, UK

James M. Boyle
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, USA

This work is supported by SERC Grant GR/G 57970, by a research
studentship from the Department of Education for Northern Ireland
and by the Office of Scientific Computing, U.S. Department of

Energy, under Contract W-31-109-Eng-38

Clarity V Efficiency

High-level, architecture-independent programs
e Easier to construct

e Easier to understand
e Portable

Efficient programs
e Tailored to particular machine;:
non-portable
e Awash with details
e Difficult to construct
e Difficult to understand

Example: Transpose of a Matrix
Definition: transpose AL of mxn matrix A

IS an nxm matrix such that

Vi, i AT, 51 =AL4, 4]

High-level implementation

function transpose(A,m,n)
= generate([n,m] ,fn(i,j)=>A[j,i])

Efficient sequential implementation for
square matrix (m=n)

SUBROUTINE transpose(A,n)
DO i=1,n
DO j=i+1,n
t := A[i,j]
Ali,jl := A[j,1i]
ALj,i] := t
END
END

Our resolution

Programmer constructs specification;
implementation automatically derived.

Specification language
Functional programming language
e Mathematically based
e Simple semantics: easily understood
e Useful mathematical properties
e EXxecutable prototypes

Implementation language
Whatever required by implementation environ-
ment; usually version of Fortran or C.

e Efficient

e Good vendor support

e More convenient than machine language

Derivation by program transformation

Program Transformations
Program rewrite rules:

pattern—replacement

All occurrences of pattern in program changed
to replacement.
e Achieves a small, local change
e Based on formal properties
Clearly preserves meaning of program
e Formally defined in wide spectrum gram-
mar
e Formal proof possible

Derivations
Sequences of transformations

e Complete metamorphosis through many ap-
plications of many transformations
e Automatically applied by TAMPR system

Family of Derivations
Derivation performed in steps
e Sub-derivations

e Intermediate forms between specification
and implementation languages

For example:
SML — M\-calculus — Fortran77

Same intermediate form for:
e Other specification languages

e other architectures/implementation languages

Combinations have included:

Fortran
?_?QL ——)\-Ccalculus — CRAY Fortran
L1SP DAP Fortran
Miranda C

Other sub-derivations/intermediate forms for:
e Optimization e.g.
function unfolding
common subexpression elimination
e [ailoring for particular forms of data
e.g. sparse matrices

SML] [Llsp] [eranda

A-calculus

 Statically Evaluated J<—>
[Application Specific]«—»

O
CRAY m
rocesses

[Common J Array
Subexpression
%p \ Sh Communlcanon]
Common Mem ory
[Fortran??] [C] Subexpron

Dlstrlbuted
Memory

Fortran90

ngh
Performance
Fortran

DAP
Fortran

Sparse Matrices
We consider a matrix which has a fixed number

of non-zero elements per row:

Sparse matrix Primary Secondary
(01 00 2] (1 2] [2 5
3 0000 3 0 1 2
04500]| |45 2 3
O OO0 67 6 7 4 5
8 09 00 8 9 1 3

Apli, "1 =ALi, [Asli, 51]

e T his form of sparsity is efficient in storage if the
number of non-zeros averaged over the rows is not
much less than the maximum number of non-zeros.

e This is an example of a particular form of sparsity.

— An illustration where tailoring for a compressed
data representation and a parallel computer is
performed.

— Other representations are possible by substitut-
ing the mapping phase of the transformations
(later).

Example

Matrix-vector multiplication

1 2 3 4 la + 2b+ 3¢+ 4d

U O O Q

4 N
fun times(U:vector,V:vector) :vector

= generate(size(U),fn(i:int)=>U@[i]*Ve[i])

fun sum(U:vector) :real
= reduce(U,+,0.0)
fun innerproduct(U:vector,V:vector) :real

= sum(times(U,V))

fun mvmult(A:matrix,V:vector) :vector
= generate(size(A,0),

fn(i:int)=>innerproduct (row(A,i),V))

\SI\/I L specification

Data parallel functions

e generate defines vector/matrix

e reduce COMbines elements of vector/matrix into
single value

Derivation Stages
1. Abstract Functional Specification

()
_—

fun times:real vector X real vector — real vector
= \.U,V.generate(size(U),
A.i.real.times(element(U,i),element(V,i)))

fun sum:real vector — real
= \.V.reduce(+,0.0,size(V),A.i.element(V,1i))

fun innerproduct:real vector X real vector — real
= \.U,V.sum(times (U,V))

fun mvmult:real matrix X real vector — real vector
= A.M,V.generate(size(M,0),

A.i.innerproduct(row(M,i),V))
_ J

2. Unfolding and Static Evaluation

()
_—

fun mvmult = generate(n,

A.i.reduce(+,0.0,n,
A.j.times(element(A,[i,j]),element(V,[j]))))J

.

where we assume that the sizes of A and V have been defined in

terms of some parameter n

Derivation Stages - Continued
3. Sparse Specialization

Phase 1:annotation

Explicitly distinguish non-zero elements from
zero elements.

4 N
fun mvmult = generate(n,
A.i.reduce(+,0.0,n,
A.j.times(
if ([i,j] € fixed_row_number([n,n],w))
then element (A, [i,j])
else 0.0

element(V,[j]))))
\ J

fixed_row_number is the set of significant indices of the matrix.

10

Derivation Stages - Continued
3. Sparse Specialization

Phase 2: optimization

()

fun mvmult = generate(n,
A.i.reduce(+,0.0,n,
A.j.if ([i,j] € fixed_row_number([n,n],w))
then times(element(A,[i,j]),element(V,[j]))

. else 0.0)))
4)

fun mvmult = generate(n,

A.i.reduce(+,0.0,
row(fixed_row_number([n,n],w),i),
A.j.times(element (A, [i,j]) ,element(V,[j]1))))

J

.

Function row returns the set of indices of non-zero elements in a

specified row.

11

Derivation - Continued
3. Sparse Specialization

Phase 3: mapping

Provide a compact realization for sparse ma-
trices.

[z, 7] — [, locate (shape, [1, 5])]

and the inverse

[, '] — i, secondary ([i,5'1)]

()

fun mvmult = generate(n,
A.1.reduce(+,0.0,w,
A.j’ . times(
element (A: [i,j']),
element(V,[secondary(A,[i,jﬂ)])))))

12

4.

Derivation - Continued

Imperative Implementation

101
100

integer n,w
parameter (n=77,w=777)
real Ap(n,w),U(),V(n)

integer As(n,w)
integer 1i,j

do 100 i=1,n

U(i)=0.0

do 101 j=1,w
U(i)=U(i)+Ap(i, i) *V(As(i,]))
continue

continue

end

13

Conjugate Gradient Definition

To solve Ax=b, where A is a positive definite symmetric
nxn matri x:

Set an initial approximation vector zg,
calculate the initial residual rg=b — Az,
set the initial search direction pg=ro;

then, for :=0,1, ...,

(a) calculate the coefficient a;=plr;/pl Ap;,

(b) set the new estimate x;41=x; + o;p;,

(c) evaluate the new residual r;41=7r; — o; Ap;,
(d) calculate the coefficient 8;=—r;+1 Ap;/pl Ap;,

(e) determine the new direction p;y1=r;+1 + b;p;,

continue until either r; or p; is zero.

from Modi,pl152

14

Conjugate Gradient Specification

-
val epsilon:real = 1.0E-14;
type cgstate

= real vector*real vector*real vector*real vector*int;

fun cg_construct(A:real matrix,b:real vector):cgstate
= let
val x0:real vector
val rO:real vector
val pO:real vector
val g0:real vector

constant (shape(b),0.0);
b;

r0;

AxpO;

fun is_accurate_solution((x,r,p,q,cnt):cgstate) :bool
= innerproduct(r,r)<epsilon;

fun cg_iteration((x,r,p,q,cnt):cgstate):cgstate
= let
val rr:real = innerproduct(r,r);

val cnt’:int = cnt+1;
val alpha:real = rr/innerproduct(q,q);

val x':real vector = x+p*alpha;

val r’:real vector = r-transpose (A) *g*alpha;

val beta:real = innerproduct(r’,r’)/rr;
val p’:real vector = IJ+p*beta;

~val q :real vector = Axr'+g*beta

in
cgstate(x’,r’,p’,q_’, cnt’)

end

in
iterate(cg_iteration,
cgstate(x0,r0,p0,q0,0),
is_accurate_solution)
end

\.

15

Conjugate Gradient - Derived

integer n,w
parameter (n=SIZE,w=2%*n/100)
real x(n), q(n), p), b
integer cnt, k, As(n,w), i, j
real Ap(n,w), r(n), ri(n), alpha, atq(n), beta, g63, rr
200 continue
rr = 0.0
do 210 j = 1,n,1
rr = rr+r(j)*r(j)
210 continue
if (sqrt (rr) .1t.1E-14) then
goto 500
else
alpha = 0.0
do 220 i = 1,n,1
alpha = alpha+q(i)*q(i)
220 continue
alpha = rr/alpha
do 230 i = 1,n,1
atq(i) = 0.
230 continue
do 240 i
do 240 k
atq(As(i,k)
240 continue
do 260 j=1,n
r1(j) = r(j)-atq(j)*alpha
260 continue
beta = 0.0
do 270 j = 1,n,1
beta = betat+rl1(j)*ri(j)
270 continue
beta = beta/rr
cnt = cnt+l
do 280 j = 1,n,1
x(j) = x(j)+p(j)*alpha
280 continue
do 290 j = 1,n,1
p(j) = r1(j)+p(j)+*beta
290 continue
do 300 i=1,n,1
r(i) = r1(1)
300 continue
do 340 j = 1,n,1
g63 = 0.0
do 330 k = 1,w,1
g63 = g63+Ap(j,k)*r1(As(j,k))
330 continue
q(j) = g63+q(j)*beta
340 continue
goto 200
endif
500 continue
end

tq(As(i,k))+Ap(i,k)*q(i)

Time per iteration

Time per iteration

Results

100
101 F
107 | Sequential
oDense
0 Sparse (98% zeros)
200 400 600
Size

CRAY

oDense
-2
107 ¢ o Sparse (98% zeros)
| | | |
2000 4000 6000 8000
Size

Conjugate Gradient

17

Assessment
Techniques have been applied to significant al-
gorithms for sequential,vector, array and shared-
memory architectures.

Comparing with independent, manually con-
structed implementations:

e Derived implementations similar.

e Execution performance equal or better.

Techniques are being extended for yet more
complex algorithms, for distributed and shared
memory parallel architectures and for further
special data structures.

18

Conclusion-Summary

With derivational approach, programmer

e develops implementation techniques
e encodes techniques as derivations

Reusability
Multiple specifications
Multiple implementations of each
Algorithm modified: modify specification

and re-apply derivation

e it is possible to experiment with different imple-
mentations easily.

Extensibility
New optimization technique
or new architecture
or new data representation:
‘slot in” new sub-derivation

Transferability
Sub-derivation requires no expertise to use

One programmer may use another’'s work

Correctness
Correctness of transformations

implies correctness of implementation

19

