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Clarity V Efficiency

High-level, architecture-independent programs
e Easier to construct

e Easier to understand
e Portable

Efficient programs
e Tailored to particular machine;:
non-portable
e Awash with details
e Difficult to construct
e Difficult to understand



Example: Transpose of a Matrix
Definition: transpose AL of mxn matrix A

IS an nxm matrix such that

Vi, i AT, 51 =AL4, 4]

High-level implementation

function transpose(A,m,n)
= generate([n,m] ,fn(i,j)=>A[j,i])

Efficient sequential implementation for
square matrix (m=n)

SUBROUTINE transpose(A,n)
DO i=1,n
DO j=i+1,n
t := A[i,j]
Ali,jl := A[j,1i]
ALj,i] := t
END
END



Our resolution

Programmer constructs specification;
implementation automatically derived.

Specification language
Functional programming language
e Mathematically based
e Simple semantics: easily understood
e Useful mathematical properties
e EXxecutable prototypes

Implementation language
Whatever required by implementation environ-
ment; usually version of Fortran or C.

e Efficient

e Good vendor support

e More convenient than machine language

Derivation by program transformation



Program Transformations
Program rewrite rules:

pattern—replacement

All occurrences of pattern in program changed
to replacement.
e Achieves a small, local change
e Based on formal properties
Clearly preserves meaning of program
e Formally defined in wide spectrum gram-
mar
e Formal proof possible

Derivations
Sequences of transformations

e Complete metamorphosis through many ap-
plications of many transformations
e Automatically applied by TAMPR system



Family of Derivations
Derivation performed in steps
e Sub-derivations

e Intermediate forms between specification
and implementation languages

For example:
SML — M\-calculus — Fortran77

Same intermediate form for:
e Other specification languages

e other architectures/implementation languages

Combinations have included:

Fortran
?_?QL —— )\-Ccalculus — CRAY Fortran
L1SP DAP Fortran
Miranda C



Other sub-derivations/intermediate forms for:
e Optimization e.g.
function unfolding
common subexpression elimination
e [ailoring for particular forms of data
e.g. sparse matrices
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Sparse Matrices
We consider a matrix which has a fixed number

of non-zero elements per row:

Sparse matrix Primary Secondary
(01 00 2] (1 2] [2 5
3 0000 3 0 1 2
04500]| |45 2 3
O OO0 67 6 7 4 5
8 09 00 8 9 1 3

Apli, "1 =ALi, [Asli, 51 ]

e T his form of sparsity is efficient in storage if the
number of non-zeros averaged over the rows is not
much less than the maximum number of non-zeros.

e This is an example of a particular form of sparsity.

— An illustration where tailoring for a compressed
data representation and a parallel computer is
performed.

— Other representations are possible by substitut-
ing the mapping phase of the transformations
(later).



Example

Matrix-vector multiplication

1 2 3 4 la + 2b+ 3¢+ 4d

U O O Q

4 N
fun times(U:vector,V:vector) :vector

= generate(size(U),fn(i:int)=>U@[i]*Ve[i])

fun sum(U:vector) :real
= reduce(U,+,0.0)
fun innerproduct(U:vector,V:vector) :real

= sum(times(U,V))

fun mvmult(A:matrix,V:vector) :vector
= generate(size(A,0),

fn(i:int)=>innerproduct (row(A,i),V))

\SI\/I L specification

Data parallel functions

e generate defines vector/matrix

e reduce COMbines elements of vector/matrix into
single value



Derivation Stages
1. Abstract Functional Specification

( )
_—

fun times:real vector X real vector — real vector
= \.U,V.generate(size(U),
A.i.real.times(element(U,i),element(V,i)))

fun sum:real vector — real
= \.V.reduce(+,0.0,size(V),A.i.element(V,1i))

fun innerproduct:real vector X real vector — real
= \.U,V.sum(times (U,V))

fun mvmult:real matrix X real vector — real vector
= A.M,V.generate(size(M,0),

A.i.innerproduct(row(M,i),V))
\_ J

2. Unfolding and Static Evaluation

( )
_—

fun mvmult = generate(n,

A.i.reduce(+,0.0,n,
A.j.times(element(A,[i,j]),element(V,[j]))))J

.

where we assume that the sizes of A and V have been defined in

terms of some parameter n




Derivation Stages - Continued
3. Sparse Specialization

Phase 1:annotation

Explicitly distinguish non-zero elements from
zero elements.

4 N
fun mvmult = generate(n,
A.i.reduce(+,0.0,n,
A.j.times(
if ([i,j] € fixed_row_number([n,n],w))
then element (A, [i,j])
else 0.0

element(V,[j]))))
\ J

fixed_row_number is the set of significant indices of the matrix.

10



Derivation Stages - Continued
3. Sparse Specialization

Phase 2: optimization

( )

fun mvmult = generate(n,
A.i.reduce(+,0.0,n,
A.j.if ([i,j] € fixed_row_number([n,n],w))
then times(element(A,[i,j]),element(V,[j]))

. else 0.0)) )
4 )

fun mvmult = generate(n,

A.i.reduce(+,0.0,
row(fixed_row_number([n,n],w),i),
A.j.times(element (A, [i,j]) ,element(V,[j]1))))

J

.

Function row returns the set of indices of non-zero elements in a

specified row.
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Derivation - Continued
3. Sparse Specialization

Phase 3: mapping

Provide a compact realization for sparse ma-
trices.

[z, 7] — [, locate (shape, [1, 5] ) ]

and the inverse

[, '] — i, secondary ([i,5'1) ]

( )

fun mvmult = generate(n,
A.1.reduce(+,0.0,w,
A.j’ . times(
element (A: [i,j']),
element(V,[secondary(A,[i,jﬂ)])))))

12



4.

Derivation - Continued

Imperative Implementation

101
100

integer n,w
parameter (n=77,w=777)
real Ap(n,w),U(),V(n)

integer As(n,w)
integer 1i,j

do 100 i=1,n

U(i)=0.0

do 101 j=1,w
U(i)=U(i)+Ap(i, i) *V(As(i,]))
continue

continue

end
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Conjugate Gradient Definition

To solve Ax=b, where A is a positive definite symmetric
nxn matri x:

Set an initial approximation vector zg,
calculate the initial residual rg=b — Az,
set the initial search direction pg=ro;

then, for :=0,1, ...,

(a) calculate the coefficient a;=plr;/pl Ap;,

(b) set the new estimate x;41=x; + o;p;,

(c) evaluate the new residual r;41=7r; — o; Ap;,
(d) calculate the coefficient 8;=—r;+1 Ap;/pl Ap;,

(e) determine the new direction p;y1=r;+1 + b;p;,

continue until either r; or p; is zero.

from Modi,pl152
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Conjugate Gradient Specification

-
val epsilon:real = 1.0E-14;
type cgstate

= real vector*real vector*real vector*real vector*int;

fun cg_construct(A:real matrix,b:real vector):cgstate
= let
val x0:real vector
val rO:real vector
val pO:real vector
val g0:real vector

constant (shape(b),0.0);
b;

r0;

AxpO;

fun is_accurate_solution((x,r,p,q,cnt):cgstate) :bool
= innerproduct(r,r)<epsilon;

fun cg_iteration((x,r,p,q,cnt):cgstate):cgstate
= let
val rr:real = innerproduct(r,r);

val cnt’:int = cnt+1;
val alpha:real = rr/innerproduct(q,q);

val x':real vector = x+p*alpha;

val r’:real vector = r-transpose (A) *g*alpha;

val beta:real = innerproduct(r’,r’)/rr;
val p’:real vector = IJ+p*beta;

~val q :real vector = Axr'+g*beta

in
cgstate(x’,r’,p’,q_’, cnt’)

end

in
iterate(cg_iteration,
cgstate(x0,r0,p0,q0,0),
is_accurate_solution)
end

\.
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Conjugate Gradient - Derived

integer n,w
parameter (n=SIZE,w=2%*n/100)
real x(n), q(n), p), b
integer cnt, k, As(n,w), i, j
real Ap(n,w), r(n), ri(n), alpha, atq(n), beta, g63, rr
200 continue
rr = 0.0
do 210 j = 1,n,1
rr = rr+r(j)*r(j)
210 continue
if (sqrt (rr) .1t.1E-14) then
goto 500
else
alpha = 0.0
do 220 i = 1,n,1
alpha = alpha+q(i)*q(i)
220 continue
alpha = rr/alpha
do 230 i = 1,n,1
atq(i) = 0.
230 continue
do 240 i
do 240 k
atq(As(i,k)
240 continue
do 260 j=1,n
r1(j) = r(j)-atq(j)*alpha
260 continue
beta = 0.0
do 270 j = 1,n,1
beta = betat+rl1(j)*ri(j)
270 continue
beta = beta/rr
cnt = cnt+l
do 280 j = 1,n,1
x(j) = x(j)+p(j)*alpha
280 continue
do 290 j = 1,n,1
p(j) = r1(j)+p(j)+*beta
290 continue
do 300 i=1,n,1
r(i) = r1(1)
300 continue
do 340 j = 1,n,1
g63 = 0.0
do 330 k = 1,w,1
g63 = g63+Ap(j,k)*r1(As(j,k))
330 continue
q(j) = g63+q(j)*beta
340 continue
goto 200
endif
500 continue
end

tq(As(i,k))+Ap(i,k)*q(i)




Time per iteration

Time per iteration

Results
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Assessment
Techniques have been applied to significant al-
gorithms for sequential,vector, array and shared-
memory architectures.

Comparing with independent, manually con-
structed implementations:

e Derived implementations similar.

e Execution performance equal or better.

Techniques are being extended for yet more
complex algorithms, for distributed and shared
memory parallel architectures and for further
special data structures.
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Conclusion-Summary

With derivational approach, programmer

e develops implementation techniques
e encodes techniques as derivations

Reusability
Multiple specifications
Multiple implementations of each
Algorithm modified: modify specification

and re-apply derivation

e it is possible to experiment with different imple-
mentations easily.

Extensibility
New optimization technique
or new architecture
or new data representation:
‘slot in” new sub-derivation

Transferability
Sub-derivation requires no expertise to use

One programmer may use another’'s work

Correctness
Correctness of transformations

implies correctness of implementation
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