Deriving Efficient Parallel
Implementations of Algorithms Operating
on General Sparse Matrices
using Program Transformation

Stephen Fitzpatrick Terence J. Harmer

Department of Computer Science
The Queen's University of Belfast
Belfast, Northern Ireland, UK

James M. Boyle

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, USA

This work is supported by SERC Grant GR/G 57970, by a research studentship from the Department of Education for Northern Ireland and by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38

Clarity V Efficiency

High-level, architecture-independent programs

- Easier to construct
- Easier to understand
- Portable

Efficient programs

- Tailored to particular machine: non-portable
- Awash with details
- Difficult to construct
- Difficult to understand

Example: Transpose of a Matrix

Definition: transpose A^T of $m \times n$ matrix A is an $n \times m$ matrix such that

$$\forall i, j : A^T[i, j] \equiv A[j, i]$$

High-level implementation

Efficient sequential implementation for square matrix (m=n)

```
SUBROUTINE transpose(A,n)
DO i=1,n
    DO j=i+1,n
    t := A[i,j]
    A[i,j] := A[j,i]
    A[j,i] := t
    END
END
```

Our resolution

Programmer constructs specification; implementation *automatically* derived.

Specification language

Functional programming language

- Mathematically based
- Simple semantics: easily understood
- Useful mathematical properties
- Executable prototypes

Implementation language

Whatever required by implementation environment; usually version of Fortran or C.

- Efficient
- Good vendor support
- More convenient than machine language

Derivation by program transformation

Program Transformations

Program rewrite rules:

 $pattern \rightarrow replacement$

All occurrences of pattern in program changed to replacement.

- Achieves a small, local change
- Based on formal properties
 Clearly preserves meaning of program
- Formally defined in wide spectrum grammar
- Formal proof possible

Derivations

Sequences of transformations

- Complete metamorphosis through many applications of many transformations
- Automatically applied by TAMPR system

Family of Derivations

Derivation performed in steps

- Sub-derivations
- Intermediate forms between specification and implementation languages

For example:

SML
$$\longrightarrow \lambda$$
-calculus \longrightarrow Fortran77

Same intermediate form for:

- other specification languages
- other architectures/implementation languages

Combinations have included:

$$\left. \begin{array}{c} \mathsf{SML} \\ \mathsf{Lisp} \\ \mathsf{Miranda} \end{array} \right\} \longrightarrow \lambda\text{-calculus} \longrightarrow \left\{ \begin{array}{c} \mathsf{Fortran} \\ \mathsf{CRAY} \ \mathsf{Fortran} \\ \mathsf{DAP} \ \mathsf{Fortran} \\ \mathsf{C} \end{array} \right.$$

Other sub-derivations/intermediate forms for:

- Optimization e.g. function unfolding common subexpression elimination
- Tailoring for particular forms of data e.g. sparse matrices

Sparse Matrices

We consider a matrix which has a fixed number of non-zero elements per row:

$$A_p[i,j'] \equiv A[i, [A_s[i,j']]$$
.

- This form of sparsity is efficient in storage if the number of non-zeros averaged over the rows is not much less than the maximum number of non-zeros.
- This is an example of a particular form of sparsity.
 - An illustration where tailoring for a compressed data representation and a parallel computer is performed.
 - Other representations are possible by substituting the mapping phase of the transformations (later).

Example

Matrix-vector multiplication

$$\begin{bmatrix} & \dots & & \\ & \ddots & & \\ \hline 1 & 2 & 3 & 4 \\ & \dots & \\ & \dots & \\ & \dots & \\ & \dots & \end{bmatrix} \times \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} & \dots & \\ \hline 1a + 2b + 3c + 4d \\ & \dots & \end{bmatrix}$$

Data parallel functions

- generate defines vector/matrix
- reduce combines elements of vector/matrix into single value

Derivation Stages

1. Abstract Functional Specification

```
fun times:real vector \times real vector \rightarrow real vector = \lambda.U, V. generate(size(U), \lambda.i. real.times(element(U,i),element(V,i)))

fun sum:real vector \rightarrow real = \lambda.V. reduce(+,0.0,size(V),\lambda.i. element(V,i))

fun innerproduct:real vector \times real vector \rightarrow real = \lambda.U, V. sum(times(U,V))

fun mvmult:real matrix \times real vector \rightarrow real vector = \lambda.M, V. generate(size(M,0), \lambda.i. innerproduct(row(M,i),V))
```

2. Unfolding and Static Evaluation

```
fun mvmult = generate(n,
    λ.i.reduce(+,0.0,n,
    λ.j.times(element(A,[i,j]),element(V,[j]))))
```

where we assume that the sizes of A and V have been defined in terms of some parameter ${\bf n}$.

Derivation Stages - Continued

3. Sparse Specialization

Phase 1:annotation

Explicitly distinguish non-zero elements from zero elements.

```
fun mvmult = generate(n, \lambda.i.reduce(+,0.0,n, \lambda.j.times(
    if ([i,j] \in fixed_row_number([n,n],w))
    then element(A,[i,j])
    else 0.0,
    element(V,[j]))))
```

fixed_row_number is the set of significant indices of the matrix.

Derivation Stages - Continued

3. Sparse Specialization

Phase 2: optimization

```
fun mvmult = generate(n,

\lambda.i.reduce(+,0.0,n,

\lambda.j.if ([i,j] \in fixed_row_number([n,n],w))

then times(element(A,[i,j]),element(V,[j]))

else 0.0))
```

```
fun mvmult = generate(n,

\lambda.i.reduce(+,0.0,

row(fixed_row_number([n,n],w),i),

\lambda.j.times(element(A,[i,j]),element(V,[j]))))
```

Function **row** returns the set of indices of non-zero elements in a specified row.

Derivation - Continued

3. Sparse Specialization

Phase 3: mapping

Provide a compact realization for sparse matrices.

$$[i,j] \rightarrow [i,locate(shape,[i,j])]$$

and the inverse

$$[i, j'] \rightarrow [i, secondary([i, j'])]$$
.

```
fun mvmult = generate(n,

\lambda.i.reduce(+,0.0,w,

\lambda.j'.times(

element(A:[i,j']),

element(V,[secondary(A,[i,j'])]))))
```

Derivation - Continued

4. Imperative Implementation

```
integer n,w
parameter(n=??,w=???)
real Ap(n,w),U(n),V(n)
integer As(n,w)
integer i,j

do 100 i=1,n
U(i)=0.0
do 101 j=1,w
U(i)=U(i)+Ap(i,j)*V(As(i,j))
101 continue
100 continue
end
```

Conjugate Gradient Definition

To solve Ax=b, where A is a positive definite symmetric $n\times n$ matri x:

Set an initial approximation vector x_0 , calculate the initial residual r_0 = $b-Ax_0$, set the initial search direction p_0 = r_0 ;

then, for $i=0,1,\ldots$,

- (a) calculate the coefficient $\alpha_i = p_i^T r_i / p_i^T A p_i$,
- (b) set the new estimate $x_{i+1}=x_i+\alpha_i p_i$,
- (c) evaluate the new residual $r_{i+1} = r_i \alpha_i A p_i$,
- (d) calculate the coefficient $\beta_i = -r_{i+1}Ap_i/p_i^TAp_i$,
- (e) determine the new direction $p_{i+1}=r_{i+1}+b_ip_i$, continue until either r_i or p_i is zero.

from Modi,p152

Conjugate Gradient Specification

```
val epsilon:real = 1.0E-14;
type cgstate
 = real vector*real vector*real vector*real vector*int;
fun cg_construct(A:real matrix,b:real vector):cgstate
  val x0:real vector = constant(shape(b),0.0);
  val r0:real vector = b;
  val p0:real vector = r0;
  val q0:real vector = A*p0;
  fun is_accurate_solution((x,r,p,q,cnt):cgstate):bool
   = innerproduct(r,r)<epsilon;</pre>
  fun cg_iteration((x,r,p,q,cnt):cgstate):cgstate
    val rr:real = innerproduct(r,r);
    val cnt':int = cnt+1;
    val alpha:real = rr/innerproduct(q,q);
    val x':real vector = x+p*alpha;
    val r':real vector = r-transpose(A)*q*alpha;
    val beta:real = innerproduct(r',r')/rr;
    val p':real vector = r'+p*beta;
    val q':real vector = A*r'+q*beta
    cgstate(x',r',p',q',cnt')
  end
in
  iterate(cg_iteration,
    cgstate(x0,r0,p0,q0,0),
    is_accurate_solution)
end
```

Conjugate Gradient - Derived

```
integer n,w
     parameter(n=SIZE,w=2*n/100)
     real x(n), q(n), p(n), b(n)
     integer cnt, k, As(n,w), i, j
     real Ap(n,w), r(n), r1(n), alpha, atq(n), beta, g63, rr
200 continue
     rr = 0.0
     do 210 j = 1,n,1
     rr = rr+r(j)*r(j)
210 continue
if (sqrt (rr) .lt.1E-14) then
goto 500
     ĕlse
     alpha = 0.0
do 220 i = 1,n,1
alpha = alpha+q(i)*q(i)
220 continue
     alpha = rr/alpha
do 230 i = 1,n,1
atq(i) = 0.0
230 continue
     do 240 i = 1,n,1
do 240 k = 1,w,1
atq(As(i,k)) = atq(As(i,k))+Ap(i,k)*q(i)
240 continue
     do 260 j=1,n
r1(j) = r(j)-atq(j)*alpha
260 continue
beta = 0.0
     do 270 \text{ j} = 1, n, 1
    beta = beta+r1(j)*r1(j)
270 continue
     beta = beta/rr
     cnt = cnt+1
do 280 j = 1,n,1
     x(j) = x(j) + p(j) *alpha
280 continue
do 290 j = 1,n,1
     p(j) = r1(j)+p(j)*beta
290 continue
     do 300 i=1,n,1
     r(i) = r1(i)
300 continue
     do 340 j = 1,n,1
g63 = 0.0
do 330 k = 1,w,1
g63 = g63+Ap(j,k)*r1(As(j,k))
330 continue
q(j) = g63+q(j)*beta
340 continue
     goto 200
endif
500 continue
     end
```


Conjugate Gradient

Assessment

Techniques have been applied to significant algorithms for sequential, vector, array and shared-memory architectures.

Comparing with independent, manually constructed implementations:

- Derived implementations similar.
- Execution performance equal or better.

Techniques are being extended for yet more complex algorithms, for distributed and shared memory parallel architectures and for further special data structures.

Conclusion-Summary

With derivational approach, programmer

- develops implementation techniques
- encodes techniques as derivations

Reusability

Multiple specifications
Multiple implementations of each
Algorithm modified: modify specification
and re-apply derivation

• it is possible to experiment with different implementations easily.

Extensibility

New optimization technique or new architecture or new data representation: 'slot in' new sub-derivation

Transferability

Sub-derivation requires no expertise to use One programmer may use another's work

Correctness

Correctness of transformations implies correctness of implementation