
Unfolding Recursive Function Definitions
Using the Paradoxical Combinator�

Stephen Fitzpatrick, M. Clint, P. Kilpatrick

1 April 1996

Department of Computer Science, The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland.

fS.Fitzpatrick, M.Clint, P.Kilpatrickg@cs.qub.ac.uk

Abstract

Function unfolding is a well-known program transformation technique: it is often used to reduce
execution overheads incurred by an implementation’s function-calling mechanism and to localise in-
formation available in global definitions (localization simplifies further optimizations such as constant
propagation and the static evaluation of expressions).

Unfolding function definitions that exhibit either self- or mutual-recursion presents a problem for
automated transformation systems: sophisticated control mechanisms may need to be incorporated into
the unfolding process to ensure termination. Consequently, many automated transformation systems
do not attempt to unfold recursive function definitions. Many of the optimizations that follow from
unfolding non-recursive functions can still be performed using techniques such as function cloning and
specialization but, because of the separation of function definitions and function uses, these techniques
are more complex for an automated system to perform than are the corresponding techniques used for
non-recursive functions.

In this paper, the use of the paradoxical combinator, Y, to unfold all function definitions, including
recursive definitions, is discussed. Full unfolding with the Y combinator is simple for an automated
system to perform (requiring only an exhaustive application of a straightforward substitution process). In
particular, termination is assured without necessitating a separate control mechanism. After unfolding has
been performed, many optimizations can be applied in the same manner as they are applied to unfolded,
non-recursive definitions.

1 Introduction

Function unfolding is the process of replacing uses of a function with the function’s definition [1]. The
potential benefits of function unfolding are well known:

� By reducing the number of function invocations, unfolding can reduce the overheads incurred by an
implementation’s function invocation mechanism.

� Unfolding can enhance ‘locality’. The expressions which occur within a function definition are
isolated from the contexts in which the function is used. This isolation is desirable for developing
and understanding programs but it can hinder program optimization in at least two ways. First, each
of the different contexts in which a function is applied may give rise to a distinct set of optimizations
but a single function definition cannot be tailored simultaneously to each of the contexts; function
unfolding, however, creates separate instances of the function’s definition which can be independently
tailored to context.

�Presented at the Durham Transformation Workshop, University of Durham, England,1-2 April 1996.

1

1 INTRODUCTION 2

Second, when optimizing an expression which involves a use of a function, it may be necessary to
transfer information from the function’s definition to the point at which the function is used (for
example, it may be possible to determine from a function’s definition that the function is strict in
some of its arguments — this information may be useful in preparing an expression that uses the
function for parallel evaluation). For an automated transformation system, transferring information,
though possible, may be cumbersome. Function unfolding textually unites a function’s definition
and the expressions which use the function, thus increasing the amount of manipulation that can be
performed locally.

Other program transformation techniques can be employed to obtain at least some of the benefits that
derive from function unfolding. For example, the tailoring of a function definition to each of its uses
can be achieved through function cloning [2], where a single, original function definition is duplicated to
give a set of definitions, each of which can be independently tailored. However, cloning does not improve
locality. In general, function unfolding often provides the simplest framework for performing other program
transformations.

However, unfolding recursive functions obviously presents a problem for automated transformation sys-
tems — many automated systems unfold functions only if they do not exhibit direct (self) recursion [3],
utilize a control mechanism that ensures that the number of times that unfolding is performed is finite [4]
or unfold only when it can be determined in advance that unfolding will terminate [5]. In each case, the
continued presence of global definitions after transformation can inhibit further manipulation.

This paper discusses a method, based on the paradoxical combinator Y , for unfolding all functions in a
program, regardless of the pattern of recursion existing within the functions’ definitions. Unfolding is
complete in that no global definitions are required after transformation: all function definitions are made
local to the expressions in which they are used, thus facilitating further manipulation.

1.1 The Paradoxical Combinator, Y

The paradoxical combinator is defined by the identity Y f�f�Y f�, where f is a function expression. To
illustrate how Y can be used to express recursion, consider a standard definition of the factorial function:

fac=�n�if (n=0) then 1 else n*fac(n-1) .

Informally, the instance of fac on the right of the definition can be considered to be a reference to the name
introduced on the left of the definition: that is, it is a use of a globally defined name. If the expression
fac(n-1) is evaluated, the name fac is replaced by the right side of the definition (�n�if � � �). Thus, a set of
globally defined names is central to this method of expressing recursion.

To remove the need for globally defined names, the function definition can be rewritten in the form

fac=Y�fac��n�if (n=0) then 1 else n*fac(n-1) .

Now the instance of fac in the expression fac(n-1) refers to the identifier bound by the abstraction �fac�� � � ,
and not to the globally defined name. As with all �-abstractions, the identifier is arbitrary and can be
systematically replaced. For example, the above definition could be rewritten as

fac=Y�f��n�if (n=0) then 1 else n*f(n-1)

in which fac has been replaced with f. If the expression on the right side is applied to 5, say, it can be
evaluated as shown in figure 1. Note that evaluation of the expression never uses the global function name
fac.

The function definitions that remain after each definition has been rewritten using Y still define a set
of global names corresponding to functions: one function definition may make use of another global
function. Thus, the rewritten definitions are not fully ‘self-contained’ — to achieve full self-containment
the definitions must be unfolded, as discussed in Section 2.1.

1 INTRODUCTION 3

fac(5) = (Y�f��n�if (n=0) then 1 else n*f(n-1)) (5)
= by definition of Y
(�n�if (n=0) then 1

else n*((Y�f��n�if (n=0) then 1 else n*f(n-1))(n-1))
)(5)
= �-reduce for n
if (5=0) then 1

else 5*((Y�f��n�if (n=0) then 1 else n*f(n-1))(5-1))
= since 5 �� 0
5*((Y�f��n�if (n=0) then 1 else n*f(n-1))(4))

Note that the application (Y�f�� � �)(4) is fac(4). Evaluation of this expression is
performed in the same manner as above, producing an expression equivalent to
4*fac(3), and so on.

Figure 1: Evaluation of fac applied to 5

1.2 Example Optimizations

The need for unfolding recursive functions arose in work on the derivation of efficient Fortran imple-
mentations of numerical algorithms from abstract functional specifications [6] and, in particular, from a
specification of a multigrid algorithm which computes a solution, over a discrete grid, of the equation
Lu � f whereL is a second order differential operator, u is the grid over which the equation is to be solved
and f is an initial grid.

The solution is computed by applying the function solve:

fun solve(size:int)(L:(grid*int*int->real), Jc:jacobi, f:grid, bv:(int*int->real), epsilon:real):grid
= ... iterate(size)(L, Jc, u0, hsqf, epsilon0) ...

where size is the grid size, Jc is the Jacobian of L, bv specifies the conditions that hold at the boundary of
the grid and epsilon specifies the required accuracy of the solution.

The function solve is not recursive, but it invokes a second function iterate which is recursive:

fun iterate(size:int)(L:(grid*int*int->real), Jc:jacobi, ui:grid, f:grid, epsilon:real):grid
= ... iterate(size)(L, Jc, mg(size)(L, Jc, ui, f), f, epsilon) ...

An operation is repeated by iterate until a sufficiently accurate approximation to the solution is obtained.
The iterate function itself makes use of another recursive function mg which is the kernel of the multigrid
method.

fun mg(size:int)(L:(grid*int*int->real), Jc:jacobi, u:grid, f:grid):grid
= ... mg(half_size(size))(L, Jc, constant(half_size(size), 0.0), restrict(grid)) ...

The full details of the above functions are not important. What is important is that the shown interfaces
seemed to be natural and adhere to the tenets of good programming (e.g. specifying the differential operator
and boundary values as parameters permits the main functions to be used for any appropriate second-order
differential equation). However, all three of the shown functions are higher-order and may not be efficiently
implementable in Fortran.

Now the functions are such that their functional arguments (L, jc and bv) are never changed: they are only
passed (unchanged) to other functions and to recursive applications — see Figure 2. Thus, for example,
the parameter L in the mg and iterate functions refers to the same function as the parameter L in the solve
function.

If mg and iterate could refer directly to the parameters of solve, then passing L as an argument would
not be necessary. However, the only names that are visible to all of the functions are global names. Thus,
eliminating the parameter L is possible only if the function that calls solve passes a global function as the
actual argument for L — see Figure 3.

1 INTRODUCTION 4

f3 = λL⋅…

f4(L)

f1 = λx⋅…

f2(L)

f2 = λL⋅…

f3(L) …
fN = λL⋅…

L(…)

L = λ…

Figure 2: Passing a function parameter unchanged

f3 = λ…

f4

f1 = λx⋅…

f2

f2 = λ…

f3 …
fN = λ…

L(…)

L = λ…

Figure 3: Function parameter eliminated

If the calling function passes, say, a �-expression as the actual argument, then the expression would need to
be, say, �-lifted into a global function before elimination could proceed. Furthermore, before elimination
can be attempted, it must be ensured that each of the functions from which the parameter is to be eliminated
is called by only one function (other than itself) since otherwise L may refer to distinct global functions in
different invocations; this condition could either be checked directly, or could be ensured by cloning the
functions.

If, however, the functions are unfolded then the called functions have access to the parameters of the calling
functions1 and each function use can be independently tailored. Thus, unchanging parameters such as L
can be eliminated directly by a simple transformation operating only on local expressions.

Example 1.2-a: N-fold function application.

Consider the function nfold, where nfold(n) maps a function f onto fn.

fun compose(f:� � �, g:�� �):� � �
= �x�f(g(x))

fun nfold(n:int):(� � �) � (�� �)
= if (n=0) then �f��x�x else �f�compose(f,nfold(n-1)(f))

If nfold is fully applied, as in the expression nfold(N)(F)(X), then the application can be converted into a
first-order function as follows.

� Unfold nfold and compose, and simplify:

(Y�nfold��n�
if (n=0)
then �f��x�x
else �f��x�f(nfold(n-1)(f)(x))

) (N)(F)(X)

1It may be necessary to perform �-conversion.

1 INTRODUCTION 5

� The function expression (�n�� � �) binds only one formal argument (n) but is applied to three actual
arguments, so introduce two new formal arguments, say a and b; the body of the function expression
(if � � �) is applied to the new arguments.

(Y�nfold��n��a��b�
(if (n=0)

then �f��x�x
else �f��x�f(nfold(n-1)(f)(x))

)(a)(b)
) (N)(F)(X)

Simplify by propagating the application through the conditional expression and evaluating bindings:

(Y�nfold��n��a��b�
(if (n=0)
then b
else a(nfold(n-1)

)(a)(b))
) (N)(F)(X)

� The arguments a and b are passed unchanged to the one recursive application of nfold and so can
be eliminated; instances of these arguments, other than those that are arguments to the recursive
application, are replaced with the values to which the arguments are initially bound, viz. F and X.
The resulting expression is first-order.

(Y�nfold��n�
if (n=0)
then X
else F(nfold(n-1))

) (N)

Example 1.2-b: Tree reduction

Suppose that a Tree is defined to be either (i) a Leaf or (ii) a Node together with a List of Trees:

� Tree ::= � Leaf | � Node � (� Tree) List

and assume the following basic constants and functions:

� isLeaf(T:� Tree):boolean — returns true if T is a leaf;

� value(T:� Tree):� — returns the value stored in a Tree that is a Leaf, or the value of the Node of a
non-Leaf Tree;

� subtrees(T:� Tree):(� Tree) List — returns a List of the immediate children of T (the children are
themselves Trees);

� isNull(L:� List):boolean — returns true if List L is empty;

� hd(L:� List):� and tl(L:� List):� — return the head and tail, respectively, of a (non-empty) List;

� (A:�)::(L:� List) — appends A onto the head of L;

� [] — the empty List.

A reduction operation combines all of the components of a composite object to produce a single value; for
example, summing numbers in a List or numbers stored in a Tree. Tree reduction can be defined as follows:

1 INTRODUCTION 6

Tree_reduce(r:� � �� �, r0:�)(T:� Tree):�
= if isLeaf(T) then value(T)

else r(value(T), List_reduce(r, r0)(List_map(Tree_reduce(r, r0))(subtrees(T))))
List_reduce(r:� � �� �, r0:�)(L:� List):�

= if isNull(L) then r0 else r(hd(L), List_reduce(r, r0)(tl(L)))
List_map(f:� � �)(L:� List):� List

= if isNull(L) then [] else f(hd(L))::List_map(f)(tl(L))

Each of the higher-order functions Tree_reduce, List_reduce and List_map is self-recursive. Execution
of the functions gives rise to mutual recursion, since Tree_reduce calls the List_map function which in
turn calls the Tree_reduce function (which is bound to the argument f).

Assume that Tree_reduce is used to sum the elements of a tree T: that is, it is required to evaluate the
expression Tree_reduce(+,0)(T). Unfolding gives:2

(Y�Tree_reduce��r, r0��T�
if isLeaf(T)
then value(T)
else r(value(T),

(Y�List_reduce��r, r0��L�
if isNull(L) then r0 else r(hd(L), List_reduce(r, r0)(tl(L)))

)
(r, r0)
((Y�List_map��f��L�if isNull(L) then [] else f(hd(L))::List_map(f)(tl(L)))

(Tree_reduce(r, r0))
(subtrees(T))

)
)

)(+,0)(T)

Now the arguments r and r0 to Tree_reduce are passed unchanged to each recursive application of
Tree_reduce, so they may be eliminated as arguments and instances of them may be replaced with the
expressions to which they were initially bound (+ and 0).3 A similar optimization applies for the arguments
r and r0 to List_reduce and argument f to List_map.

(Y�Tree_reduce��T�
if isLeaf(T)
then value(T)
else value(T)+

(Y�List_reduce��L�
if isNull(L) then 0 else hd(L)+List_reduce(tl(L))

)(
(Y�List_map��L�if isNull(L) then [] else Tree_reduce(hd(L))::List_map(tl(L)))
(subtrees(T))

)
)(T)

The resulting expression exhibits the same recursive nature as the original function definitions, but
now all functions are first-order functions. The resulting expression could, if required, be rewritten as
Tree_reduce�(T) where

2The basic List and Tree functions are not unfolded in this example.
3The application of the function argument f is converted into infix form when instantiated as +.

2 THE UNFOLDING PROCESS 7

Tree_reduce�(T)
= if isLeaf(T) then value(T)

else value(T)+List_reduce�(List_map�(subtrees(T)))
List_reduce�(L)=if isNull(L) then 0 else hd(L)+List_reduce�(tl(L))
List_map�(L)

= if isNull(L) then []
else Tree_reduce�(hd(L))::List_map�(tl(L))

Each of the original higher-order functions has been specialized to specific function parameters (viz., + and
Tree_reduce).

2 The Unfolding Process

Before discussing the unfolding transformation, some basic notation and terminology is presented below.
A function definition is written in the form name � expression, where expression is constructed from
the standard functions and operators on the basic data types (e.g. integers, reals and booleans) and from
‘program-defined’ functions. In some contexts, expression (rather than name � expression) is said to
be the definition of name.

The symbol
�
� denotes syntactic identity of two expressions: E1

�
� E2 is true iff E1 andE2 are exactly the

same expression.

The symbol� denotes semantic equivalence of two expressions: E1 � E2 is true iff E1 and E2 evaluate
(reduce) to the same value.

The substitution of all free occurrences of an identifier x by an expression y in an expression E is denoted
by E�x�y�. Note that this is a ‘once-through’ substitution: only instances of x contained in E before
substitution begins are replaced — any new instances of x introduced by the substitution process (i.e. that
are contained in y) are not affected. The simultaneous application of multiple substitutions to an expression
is denoted by

E�x1�y1� x2�y2� � � ��

where each xi is assumed to be unique. (This uniqueness, combined with the stricture that substitution
affects only instances of xi present in an expression before substitution begins, means that the substitution
is deterministic.) Multiple, simultaneous substitutions may also be denoted by ‘E�xi�yi�� i � 1� 2� � � �’.

The application of a transformation T to an expression E is denoted by T �E�. The exhaustive application
of a transformation T to an expression E is denoted by T ��E� — T is repeatedly applied, initially to E,
until application brings about no further change. Thus the sequence of expressionsE, T �E�, T �T �E��, � � �
is generated until successive expressions are identical. Exhaustive application can be formally defined by:

T ��E�� if T �E�
�
� E then E else T ��T �E�� .

If a transformation preserves the meaning of an expression, then so does the exhaustive application of the
transformation (provided exhaustive application terminates).

2.1 The Transformations: Inline and Construct

Assume a set of function definitions
fi � Fi

where i � 1� 2� � � � � N and where each fi is unique.

Let Inline be the transformation

Inline�E��E�fj�Y �fj �Fj �� j � 1� � � � � N .

2 THE UNFOLDING PROCESS 8

Thus, Inline replaces each free occurrence of an identifier corresponding to one of the program-defined
functions with the function’s definition enclosed in an application of Y. Note that any occurrences of fj
that are free in Fj are bound in Y �fj �Fj . The Inline transformation preserves the meaning of the set of
function definitions [7, 8].

Form a new set of function definitions

gi � Inline��fi� (Construct)

where i � 1� 2� � � � � N and where each gi is a ‘new’ identifier (that is, distinct from all the other gj ��i and
from all fj).

The following properties hold:

Equivalence: For each i, gi � fi.

Each gi is initially set equal to fi and is subject only to a meaning-preserving transformation.

Self-containment: Each gi is ‘self-contained’ — that is, no gi uses any global function.

A use of a global function would occur (on the right side of a definition) as a free instance of one of
the gi or one of the fi. None of the gi occur on the right side of any of the constructed definitions
before Inline is applied (since the right side of the definition of gi is initially the single identifier fi);
furthermore, the Inline transformation does not introduce any uses of any of the gi. Thus, no gi can
occur in the the final forms of the definitions.

Neither can the final forms contain any free occurrences of any of the fi. If an expression contains
a free occurrence of any of the fi then application of Inline generates a different expression. But
Construct repeatedly applies Inline until no further change occurs. Thus, termination ofConstruct
implies that the transformed expressions contain no free occurrences of any of the fi.

Termination: The application of Construct to any finite set of functions is guaranteed to terminate.

Consider one of the functions in its initial form: gi � fi. Application of Inline to this function causes
fi to be replaced with Y �fi�Fi. Since Fi may be an arbitrarily complex expression, this substitution
can clearly cause the definition of gi to grow (according to some simple syntactic measure). Since Fi

may contain further occurrences of the fj , further application of Inline may cause further growth.
Thus, there is a prima facie case against termination. However, as discussed below, the number of
applications of Inline is bounded by N (the number of the functions fi).

2.2 Termination

Recall that Inline causes substitution only at free occurrences of the fi, and that there can be no free
occurrences of fi in Y �fi�E. Thus, once an instance of fi has been replaced with Y �fi�Fi, no further
substitutions for fi can occur within the replacement.

...f1...

Expansion possible for all identifiers

Figure 4: Initial expression

Yλf1

f2

f3

Expansion not possible for f1

Figure 5: Inline applied once

For example, consider Figure 4. In the expression shown, any of the N fi are candidates for expansion by
Inline, since none of them is bound (though it so happens that this particular expression contains only f1).

2 THE UNFOLDING PROCESS 9

In Figure 5, Inline has been applied to replace the free occurrence of f1 with Y �f1�F1, which contains
an instance of f2 and f3. These instances are free and so will be expanded when Inline is next applied.
What is more important though, is that f1 is bound in the replacement and can never occur free in the
replacement, even after further applications of Inline. Thus, only �N � 1� identifiers are now candidates
for further expansion by Inline.

Yλf1

Yλf2

Yλf3

f2

f4

f5

f3

Expansion not possible for f1or f2

Expansion not possible for f1or f3

Figure 6: Inline applied twice

In Figure 6, Inline has been applied a second time to replace the instances of f2 and f3 with Y �f2�F2 and
Y �f3�F3 respectively. F2 contains an instance of f2 which is bound and an instance of f3 which is free. F3

contains a free instance of f4 and of f5.

As before, what is important is that within the expression Y �f2�F2, both f1 and f2 are bound (f1 being
bound by the outer �). Thus, within this expression, the number of identifiers which are candidates for
further expansion by Inline has been further reduced to �N�2�. Similarly, within the expressionY �f3�F3,
both f1 and f3 are bound (note though that f2 is not bound) so the number of candidates for expansion here
is also �N � 2�.

Expansion not possible for f1, f3 or f5

f6

f1

f3

f2

Yλf5

Yλf4

Yλf3

f2

Yλf3

Yλf2

Yλf1

Expansion not possible for f1, f2 or f3

Expansion not possible for f1, f3 or f4

f7

Figure 7: Inline applied three times

In Figure 7, expansion is taken one stage further by applying Inline again. In the expressions introduced
at this stage, the number of candidates for further expansion is �N � 3� since three identifiers are bound in
each expression.

In general, each time Inline is applied, a number of replacements occur. Further expansion can occur
only within the replacement expressions. However, the number of candidates for further expansion within

3 UNFOLDING NON-RECURSIVE FUNCTIONS 10

each replacement expression is reduced each time Inline is applied because each application increases the
number of identifiers that are bound within the replacements. If the number of functions (N) is finite, then
eventually no candidates remain and expansion stops; that is, applying Inline to the expression produces
no change, so exhaustive application terminates. More precisely, the number of applications of Inline is
bounded by N .

A more thorough treatment of termination is given in the appendix.

In summary, Construct applied to a set of possibly mutually-recursive function definitions produces an
equivalent set of function definitions in which all recursion is expressed using Y . No function in the
constructed set uses any global function.

3 Unfolding Non-recursive Functions

The Construct transformation can be applied regardless of the pattern of recursion existing within a set of
function definitions. For unfolding truly non-recursive functions, however, the paradoxical combinator is
not needed. For example, the compose function, defined by

compose(f:� � �, g:�� �):� � � = �x�f(g(x))

would be unfolded as

compose(A, B)
�

(Y�compose��f, g��x�f(g(x)))(A, B)

Y is not needed because the function’s body does not contain any instances of compose.

The following transformation can be applied after Construct to eliminate unnecessary instances of Y :

Y �f �E�E� where E does not contain f .

This rule follows from the property of Y that Y �f �E � �f �E �Y �f �E�: if there are no (free) instances of
f in E, then the result of �-reducing the application is E (that is �f �E �x��E if E does not contain f).

This transformation also has the effect of converting some forms of mutual-recursion into self-recursion.
Consider the mutually-recursive functions

f(x) = F(g(x))
g(x) = G(f(x))

where F and G indicate computations that do not involve instances of f or g other than those shown. Although
these functions are mutually recursive, they can be rewritten so that each exhibits only self-recursion: a
single application of classical unfolding is sufficient to produce the self-recursive form [9]:

f(x) = F(G(f(x))
g(x) = G(F(g(x)))

If the functions have been unfolded by Construct

f = Y�f��x�F((Y�g��x�G(f(x)))(x))
g = Y�g��x�G((Y�f��x�F(g(x)))(x))

then a once-through application of the transformation to eliminate unnecessary instances of Y also produces
the self-recursive form

f = Y�f��x�F((�x�G(f(x)))(x))
g = Y�g��x�G((�x�F(g(x)))(x))

which can be further simplified by �-reducing �-bindings in which the bound value is the same as the bound
identifier (�x�E (x) � E):

4 POTENTIAL DISADVANTAGES OF UNFOLDING 11

f = Y�f��x�F(G(f(x)))
g = Y�g��x�G(F(g(x)))

4 Potential Disadvantages of Unfolding

As with all unfolding techniques, there is the potential for the textual size of a program to grow enormously,
which may cause a transformation system to fail due to memory constraints or result in the application time
of subsequent transformations becoming prohibitively long.

However, in some cases an algorithm is specified in the form of a set of function definitions together with a
single expression which is to be evaluated, in the context of the definitions, to compute the required result.
In such circumstances, unfolding can be performed only within this expression, thus reducing the growth
of the text of the program. Furthermore, the function definitions can be discarded after unfolding, thereby
reducing the size of the final text.

Localising all expressions may increase the execution time of an implementation becauseof the requirement
to repeat evaluation of an expression — for example, an expression may be moved from outside a loop
to within its body. Often such deficiencies can be remedied by loop invariant extraction or common
sub-expression elimination.

Consider, however, the following ‘localization’.

(Y�p��n��x�if (n=0) then 1 else x*p(n-1)(x)) (N)(X)
�

(Y�p��n�if (n=0) then 1 else X*p(n-1))(N)

The function computes xn. In the localized form, X (an arbitrary expression) occurs within the function
itself and may be evaluated in each (recursive) invocation; this is undesirable if X is computationally
expensive.

Moreover, assuming an eager evaluation scheme, X cannot simply be abstracted from the function in the
localized form since there is no way to determine solely from the localized form whether or not X will be
evaluated (it will not be evaluated if N is zero). If X is to be abstracted, it must at least be established
that computational errors cannot arise. There are of course ways to avoid this problem (such as leaving a
marker outside the function to indicate the original position of X, to which it can be restored if desired [4]),
but it is a problem nonetheless.

5 Conclusions

This paper presents a straightforward transformation, amenable to automated application, for unfolding
all functions (including recursive functions) using the paradoxical combinator. Unfolding often enables
optimizations and simplifies their implementation as automated transformations.

A Proof of Termination

In this appendix, it is shown that Construct terminates (when applied to a finite set of functions). The
proof is organized as follows:

� A grammar is defined for expressions, which provides a basis for proofs by structural induction.

� A condition is stated, which, if satisfied by a transformation T , guarantees that exhaustive application
of T terminates.

A PROOF OF TERMINATION 12

� It is established, by means of a sequence of lemmas, that Inline satisfies this termination condition
and thus that Construct terminates.

A.1 Grammar

Assume the following simple grammar E for expressions:

E ::= C Constants
| fi Identifiers for program-defined functions
| V Identifiers (distinct from fi)
| �v�E1 Abstraction
| Y �fi�E1 Fixed point
| E1�E2� Application
| if E1 then E2 else E3 Conditional

where E1, E2, E3 are expressions and v is an identifier. Note that identifiers for program-defined functions
are distinct from other identifiers (only the former can be combined with Y).

In this discussion, it is convenient to use variable subscripts to enumerate all program-defined functions
(e.g. in propositions such as 	i
f1� 2� � � � � Ng�fi � � �). However, it is assumed that a program uses only
literal constants for subscripts; for example, a program cannot contain an expression such as fi�1. The
use of non-literal subscripts would prevent unfolding, since an arbitrary expression may be dependent upon
data extraneous to a program (say, data input during evaluation/execution of a program).

The grammar E establishes a partial order �E on expressions: composite expressions (viz. abstractions,
fixed points, applications and conditionals) are larger than their component expressions; for example,
E1�E2� �E E1 and E1�E2� �E E2. This partial order is the basis of proofs by structural induction — to
establish that a property P holds for all E:

� it is shown that P holds for the base cases of E (viz. constants and identifiers);

� it is shown that if P holds for all E� �E E then P holds for E.

A.2 Exhaustive Application

Definition 1 T ��E�� if T �E�
�
� E then E else T ��T �E��

�

The following theorem is assumed without proof.

Theorem 1 Termination of T �.

For a transformation T , if there exists a measurem such that

	E�m�E� � 0
	E�m�E� � 0 � T �E�

�
� E

	E�m�E� �� 0 � m�T �E�� � m�E�

then 	E�T ��E� terminates.
�

That is, if there is a non-negative measure on expressions which is forced strictly towards zero by a
single application of the transformation, and if an expression that has a zero measure is unchanged by the
transformation, then exhaustive application of the transformation is guaranteed to terminate.

A PROOF OF TERMINATION 13

A.3 Measure on E

To show that exhaustive application of Inline terminates, a measure is required that satisfies the termination
conditions of Theorem 1. In this section, a measure is proposed and informally justified; in the following
section, it is shown that the measure, in conjunction with Inline, satisfies the termination conditions.

As discussed in Section 2.2, Inline terminates because of the reduction in the number of candidates for
further expansion resulting from the binding of the identifiers fi. Thus, the appropriate measure should be
related to the number of free identifiers.

Consider the grammar E , on which the measure will be defined by cases. The important components of the
grammar, as regards expansion, are:

� The identifiers for program-defined functions, fi, since expansion occurs only at these identifiers. As
discussed previously, the number of times Inline can be applied to an instance of an identifier and its
replacements is bounded by the number of identifiers that are free at the point at which the instance
occurs. Thus, if b identifiers are bound, the measure associated with a free instance f i is �N � b�,
where N is the number of program-defined functions. If fi is already bound, then its measure is zero
since it cannot give rise to expansion.

� Fixed-points (Y �fi�E1), since fixed-points bind the fi thus preventing them from being expanded.
Note that the binding point itself (Y �fi) does not give rise to expansion; expansion can occur only
within the body expression (E1). The binding point does, however, ensure that any measure arising
from the body expression is strictly less that it would be if the binding point were not present. Thus,
computing the measure for a fixed-point is essentially the same as computing the measure for the
body expression, but with the additional binding being taken into account.

Now consider an application: E�E1�E2�. Assume that the measures of E1 and E2 are m1 and m2

respectively; these measures mean that Inline can be applied at most m1 times to E1 (before application
ceases to cause change), and at most m2 times to E2. Thus, since Inline operates independently on each
sub-expression, the maximum number of times it can be applied to the full expression E is the larger of
m1 and m2, which is consequently the measure of the application. Similar reasoning applies in the case
of conditional expressions: the measure of a conditional expression is the maximum of the measures of its
component expressions.

Constants and identifiers (other than identifiers corresponding to program-defined functions) do not give
rise to expansion, and so their measures are zero. For an abstraction (E��v�E1) the binding point itself
does not gives rise to expansion, so the measure is the same as that of the body expression (E 1). Note that,
unlike fixed-points, the binding of the identifier v is not significant in the computation of the measure since
it is assumed that the identifiers for the program-defined functions are distinct from all other identifiers (i.e.
v cannot be one of the fi).

Thus, the required measure on E , M , may be defined as follows.

Definition 2 M�E����E�
�
where
 denotes the empty set and

��E�S� ::� case E of
C : 0
fi : if fi
S then 0 else N � jSj
V : 0
�v�E1 : ��E1� S�
Y �fi�E1 : ��E1� S�ffig�
E1�E2� : maxi�f1�2g ��Ei� S�
if E1 then E2 else E3 : maxi�f1�2�3g ��Ei� S�

where S is a set of identifiers and jSj is the cardinality of S.

A PROOF OF TERMINATION 14

Note that the only possible elements of the ‘auxiliary’ set S are the fi; that is, S is always a sub-set of
ffij1 � i � Ng. S is used to keep track of which identifiers are bound in each sub-expression of an
expression, thus enabling the number of free identifiers to be computed.

Lemma 1 0 � jSj � N . During the computation of M�E�, the size of the auxiliary argument S for the
function � never exceedsN (the number of program-defined functions).

Since S is always a sub-set of ffij1 � i � Ng, the size of S is bounded by 0 and N .
�

Lemma 2 ��E�S� � 0.

Consider the following cases of E: abstraction, fixed-point, application and conditional. In each case, the
measure of E is the same as the measure of one of its component expressions.

For the other possible cases, the measure is non-negative: for the cases of constant (C) and identifier (V),
the measure is 0; for the case of fi, the measure is either 0 or N � jSj, both of which are non-negative since
jSj � N .

Thus, the measure of any expression is non-negative. (Formal proof by structural induction is straightfor-
ward.)

�

Lemma 3 ��E�S� � N � jSj.

Proof is by structural induction on E , where the inductive hypothesis is ��E�S� � N � jSj.

Base steps:
For E�C� V : ��E�S� � 0 � N � jSj, since 0 � jSj � N (Lemma 1).

E�fi
� ��E�S� � if fi
S then 0 else N � jSj by definition of �

� N � jSj since 0 � jSj � N

Inductive steps:
E��v�E1
� ��E�S� � ��E1� S� by definition of �

� N � jSj by hypothesis, since E1 �E E

E�Y �fi�E1

� ��E�S� � ��E1� S�ffig� by definition of �
� N � jS�ffigj by hypothesis, since E1 �E E
� N � jSj

E�E1�E2�
� ��E�S� � maxi�f1�2g ��Ei� S� by definition of �

� N � jSj since, for i
f1� 2g, Ei �E E
and so ��Ei� S� � N � jSj by hypothesis

E� if E1 then E2 else E3
� ��E�S� � maxi�f1�2�3g ��Ei� S� by definition of �

� N � jSj since, for i
f1� 2g, Ei �E E
and so ��Ei� S� � N � jSj by hypothesis

The lemma follows by structural induction.
�

A PROOF OF TERMINATION 15

A.4 Unfolding Transformation

To facilitate a demonstration that M and Inline together satisfy the termination conditions, Inline is
defined as a function on E .

Definition 3 Inline�E��	�E�
�
where 	 is defined by cases on E :4

	�E�S� ::� case E of
C : C
fi : if fi
S then fi else Y �fi�Fi

V : V
�v�E1 : �v�	�E1� S�
Y �fi�E1 : Y �fi�	�E1� S�ffig�
E1�E2� : 	�E1� S��	�E2� S��
if E1 then E2 else E3 : if 	�E1� S� then 	�E2� S� else 	�E3� S�

�

Note that, as with �, S is always a subset of ffij1 � i � Ng.

Lemma 4 ��E�S� � 0 � 	�E�S�
�
� E

Proof is by structural induction over E , where the inductive hypothesis is

�E����E�S� � 0 � 	�E�S�
�
� E .

Base steps:
��C�S� � 0� 	�C�S� �

� C, and lemma holds for E�C.

��V� S� � 0� 	�V� S� �
� V , and lemma holds for E�V .

E�fi
� ��E�S� � if fi
S then 0 else N � jSj by definition of �
� 	�E�S�

�
� if fi
S then fi else Y �fi�Fi by definition of 	

� Case (i): fi
S.

�E����E�S� � 0 � 	�E�S�

�
� E

�0 � 0 � fi
�
� fi

�true

� Case (ii): fi �
 S.
The possible elements of set S are the identifiers fj � j � 1� � � � � N . Since fi �
 S, jSj � N .
Thus,

�E��N � jSj � 0 � Y �fi�Fi

�
� fi

�false� Y �fi�Fi
�
� fi

�true

Inductive steps:
E��v�E1
�
�E����E1� S� � 0 � �v�	�E1� S�

�
� �v�E1 by definition of � and 	

���E1� S� � 0 � 	�E1� S�
�
� E1 by matching components of expressions

�true by hypothesis, since E1 �E E

4The conditional expression in the replacement for fi is evaluated during transformation; the replacement is one or other of the
limbs of the conditional expression.

A PROOF OF TERMINATION 16

E�Y �fi�E1

�
�E����E1� S�ffig� � 0 � Y �fi�	�E1� S�ffig�
�
� Y �fi�E1

by definition of � and 	
���E1� S�ffig� � 0 � 	�E1� S�ffig�

�
� E1

by matching components
�true by hypothesis, since E1 �E E

E�E1�E2�
The argument here is the same as for conditional expressions below, except that only two component
expressions are involved.

E� if E1 then E2 else E3
�
�E��maxi�f1�2�3g ��Ei� S� � 0

� � if 	�E1� S� then 	�E2� S� else 	�E3� S��
�
�� if E1 then E2 else E3�

by definition of � and 	
��	i
f1� 2� 3g���Ei� S� � 0�� �	j
f1� 2� 3g�	�Ej � S�

�
� Ej

since � is non-negative and by matching components
�	j
f1� 2� 3g��	i
f1� 2� 3g���Ei� S� � 0�� 	�Ej � S�

�
� Ej

But, by hypothesis, 	j
f1� 2� 3g���Ej � S� � 0 � 	�Ej � S�
�
� Ej .

Therefore
�E��true.

The lemma follows by structural induction.
�

Lemma 5 ��E�S� �� 0 � ��	�E�S�� S� � ��E�S�

Proof is by structural induction over E , where the inductive hypothesis is

�E����E�S� �� 0 � ��	�E�S�� S� � ��E�S� .

Base steps:
For E�C� V : ��E�S� � 0, so the lemma is trivially true.

E�fi
� ��E�S� � if fi
S then 0 else N � jSj by definition of �
� 	�E�S�

�
� if fi
S then fi else Y �fi�Fi by definition of 	

� Case (i): fi
S � ��E�S� � 0 so
�E� is trivially true.

� Case (ii): fi �
 S.
The possible elements of set S are the identifiers fj � j � 1� � � � � N . Since fi �
 S, jSj � N .
Thus,

�E��N � jSj �� 0 � ��Y �fi�Fi� S� � N � jSj

���Fi� S�ffig� � N � jSj since jSj � N and by definition of �
But, by Lemma 3, ��Fi� S�ffig� � N � jS�ffigj.
Since fi �
 S, jS�ffigj � jSj � 1.
Thus, ��Fi� S�ffig� � N � jSj � 1 � N � jSj.
Therefore
�E��true.

Inductive steps
E��v�E1
�
�E����E1� S� �� 0 � ���v�	�E1� S�� S� � ��E1� S� by definition of � and 	

���E1� S� �� 0 � ��	�E1� S�� S� � ��E1� S� by definition of �
�true by hypothesis, since E1 �E E

A PROOF OF TERMINATION 17

E�Y �fi�E1

�
�E����E1� S�ffig� �� 0 � ��Y �fi�	�E1� S�ffig�� S� � ��E1� S�ffig�
by definition of � and 	

���E1� S�ffig� �� 0 � ��	�E1� S�ffig�� S�ffig� � ��E1� S�ffig�
by definition of �

�true by hypothesis, since E1 �E E

E�E1�E2�
The argument here is the same as for conditional expressions below, except that only two component
expressions are involved.

E� if E1 then E2 else E3
� ��E�S� � maxi�f1�2�3g ��Ei� S� by definition of �
� 	�E�S�

�
� if 	�E1� S� then 	�E2� S� else 	�E3� S� by definition of 	

� ��	�E�S�� S� � maxi�f1�2�3g ��	�Ei� S�� S� by definition of �

There are two cases to be considered: ��E�S� � 0 and ��E�S� �� 0.

� Case (i): 	i
f1� 2� 3g���Ei� S� � 0. Then, ��E�S� � 0 and
(E) is trivially true.

� Case (ii): for at least one value of i
f1� 2� 3g, ��Ei� S� �� 0 and thus ��E�S� �� 0.

Let R�fij1 � i � 3���Ei� S� �� 0g.
Then ��E�S� � maxi�R ��Ei� S�.

Now, by Lemma 4, ��Ei� S� � 0 � 	�Ei� S�
�
� Ei.

So ��Ei� S� � 0 � ��	�Ei� S�� S� � ��Ei� S� � 0.
Thus, 	i �
 R���	�Ei� S�� S� � 0,
and so ��	�E�S�� S� � maxi�f1�2�3g ��	�Ei� S�� S� � maxi�R ��	�Ei� S�� S�.

Now, 	i
R�Ei �E E,
so by hypothesis, 	i
R���	�Ei� S�� S� � ��Ei� S�.
Therefore, ��	�E�S�� S� � maxi�R ��	�Ei� S�� S� � maxi�R ��Ei� S� � ��E�S�.
Thus,
�E����E�S� �� 0 � ��	�E�S�� S� � ��E�S��true.

The lemma follows by structural induction.
�

A.5 Conclusion

The following properties hold of measure M and transformation Inline (where M�E����E�
�, Defini-
tion 2):

	E�M�E�� 0
	E�M�E� � 0� Inline�E�

�
� E

	E�M�E� �� 0�M�Inline�E�� � M�E�

Proof:
M�E� � ��E�
�

� 0 by Lemma 2

M�E� � 0� Inline�E�
�
� E

� ��E�
� � 0� 	�E�
�
�
� E

� true by Lemma 4

M�E� �� 0�M�Inline�E�� � M�E�
� ��E�
� �� 0� ��	�E�
��
� � ��E�
�
� true by Lemma 5

REFERENCES 18

Therefore, Inline satisfies the conditions for exhaustive application to terminate (Theorem 1), where the
required measure is M . Since transformation Construct is the application of Inline to a finite number of
expressions,Construct is also guaranteed to terminate.

References

[1] R. M. Burstall and John Darlington. A transformation system for developing recursive programs.
Journal of the Association for Computing Machinery, 24(1):44–67, January 1977.

[2] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning. Computer Languages,
19(2):105–117, April 1993.

[3] James M. Boyle and Terence J. Harmer. A practical functional program for the CRAY X-MP. Journal
of Functional Programming, 2(1):81–126, 1992.

[4] James M. Boyle. Automatic, self-adaptive control of unfold-fold transformations. In E.-R. Olderog,
editor, Proceedings of the IFIP WG2.1-3 Working Conference on Programming Concepts, Methods
and Calculi, San Miniato, Italy, June 94. Elsevier Science B.V.
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P416.ps.Z.

[5] Björn Lisper. Total unfolding: Theory and applications. Journal of Functional Programming,
4(4):479–498, October 1994.

[6] M Clint, Stephen Fitzpatrick, T J Harmer, P L Kilpatrick, and J M Boyle. A family of data-parallel
derivations. In Wolfgang Gentzsch and Uwe Harms, editors, Proceedings of High Performance
Computing and Networking, Volume II, volume 797 of Lecture Notes in Computer Science, pages
457–462. Springer-Verlag, April 1994.

[7] J. Vuillemin. Proof Techniques for Recursive Programs. PhD thesis, Computer Science Department,
Stanford University, Stanford, Calif., 1973.

[8] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974. ISBN 0-07-039910-7.

[9] Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. On the conversion of indirect to direct
recursion. ACM Letters on Programming Languages and Systems, 2:151–164, 1993.

