A Family of
Data Parallel Derivations

Maurice Clint
Stephen Fitzpatrick
Terence J. Harmer
Peter L. Kilpatrick
Department of Computer Science
The Queen’s University of Belfast
Belfast, Northern Ireland, UK

James M. Boyle
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, USA

This work is supported by SERC Grant GR/G 57970, by a research
studentship from the Department of Education for Northern Ireland
and by the Office of Scientific Computing, U.S. Department of

Energy, under Contract W-31-109-Eng-38

Clarity V Efficiency

High-level, architecture-independent programs
e Easier to construct

e Easier to understand
e Portable

Efficient programs
e Tailored to particular machine;:
non-portable
e Awash with details
e Difficult to construct
e Difficult to understand

Example: Transpose of a Matrix
Definition: transpose AL of mxn matrix A

IS an nxm matrix such that

Vi,j : AL, j1=A[j, 4]

High-level implementation

function transpose(A,m,n)
= generate([n,m],fn(i,j)=>A[j,il)

Efficient sequential implementation for
square matrix (m = n)

SUBROUTINE transpose(A,n)

DO i=1,n
DO j=i+1,n
t := A[i,]]
Ali,j] := AL[j,1i]
AL§,i] := t
END

END

Our resolution
Programmer constructs specification and
implementation automatically derived.

Specification language
Functional programming language
e Mathematically based
e Simple semantics: easily understood
e Useful mathematical properties
e EXxecutable prototypes

Implementation language
Whatever required by implementation environ-
ment; usually version of Fortran or C.

e Efficient

e Good vendor support

e More convenient than machine language

Derivation by program transformation

Program Transformations
Program rewrite rules:

pattern—replacement

All occurrences of pattern in program changed
to replacement.
e Achieves a small, local change
e Based on formal properties
Clearly preserves meaning of program
e Formally defined in wide spectrum gram-
mar
e Formal proof possible

Derivations
Sequences of transformations

e Complete metamorphosis through many ap-
plications of many transformations
e Automatically applied by TAMPR system

Family of Derivations
Derivation performed in steps
e Sub-derivations

e Intermediate forms between specification
and implementation languages

For example:
SML — M\-calculus — Fortran77

Same intermediate form for:
e Other specification languages

e other architectures/implementation languages

Combinations have included:

Fortran
?_?QL ——)\-Ccalculus — CRAY Fortran
L1SP DAP Fortran
Miranda C

Other sub-derivations/intermediate forms for:
e Optimization e.g.
function unfolding

common subexpression elimination

e [ailoring for particular forms of data

e.g. sparse matrices

((sme) (usp |

Sectioned

Common
Subexpression

{ Fortran90 } {DAP Fortran}

Subexpression

A-calculus

Unfolded

Common

Processes

Shared
Memory

Processes &
Communication

]

Distributed
Memory

Example
Matrix-vector multiplication

1 2 3 4 la + 2b 4 3c + 4d

QO oL

fun times(U:vector,V:vector) :vector
= generate(size(U),fn(i:int)=>U@[i]*V@[i])

fun sum(U:vector) :real
= reduce(U,+,0.0)
fun innerproduct(U:vector,V:vector) :real

= sum(times (U,V))

fun mvmult (A:matrix,V:vector) :vector
= generate(size(A,0),

fn(i:int)=>innerproduct(row(A,i),V))

\SI\/I L specification

~

Data parallel functions
e generate defines vector/matrix

e reduce combines elements of vector/matrix
into single value

Optimize:

(generate([n],Ai- A

reduce([n],\j-real.times(
element (A, [i,]j]),
element (V, [j])),

real.plus,0.0)

)

. J

Sequential/CRAY implementation:
generate and reduce implemented as loops

DO i=1,n,1 A
AV(i)=0.0
DO j=1,n,1
AV(i)=AV(i)+A(i,j)*V(j)
ENDDO

| ENDDO)

DAP implementation: whole-array operations

[AV=sumc(A*matr(V,n))]

Assessment
Techniques have been applied to more com-

plex algorithms for sequential,vector, array and
shared-memory architectures.

Comparing with independent, manually con-
structed implementations:

e Derived implementations similar.

e Execution performance equal or better.

Techniques are being extended for yet more
complex algorithms, for distributed and shared
memory parallel architectures and for further
special data structures.

With derivational approach, programmer
e develops implementation techniques

e encodes techniques as derivations

Reusability
Multiple specifications
Multiple implementations of each
Algorithm modified: modify specification
and re-apply derivation

EXxtensibility
New optimization technique
or new architecture
or new data representation:
‘slot in’ new sub-derivation

Transferability
Sub-derivation requires no expertise to use
One programmer may use another’s work

correctness
Correctness of transformations

implies correctness of implementation
10

