
A Family of Data-Parallel Derivations ?

M Clint1, Stephen Fitzpatrick1, T J Harmer1, P L Kilpatrick1 and J M Boyle2

1 The Queen’s University of Belfast, Department of Computer Science,
Belfast BT7 1NN, Northern Ireland

2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne IL 60439, USA.

1 Introduction

A good programmer attempts to minimize architecture-specific detail when writ-
ing a sequential implementation of an algorithm. Such good programming prac-
tice makes it possible to transport the implementation to other hardware archi-
tectures and thus minimize programmer effort. Indeed, high-level programming
languages attempt to hide the detail required by particular machine architectures
and thus make it easier to construct programs and transport them.

When using traditional methods to implement an algorithm for an advanced
parallel architecture, the programmer faces the dilemma of

– writing the algorithm implementation in an architecture-independent way
and thereby, inevitably, achieving disappointing execution performance (when
compared to the architecture’s theoretical execution performance); or

– writing the algorithm implementation in an architecture-dependent way and
thereby achieving good execution performance, but in the process producing
an implementation dedicated to a particular parallel architecture.

With the scientific community’s insatiable desire for increased performance, a
programmer will generally choose the latter course. However, the increasing va-
riety of parallel computer architectures and the speed of technological change
make this course an expensive one, since it requires a new implementation to be
prepared when a new parallel architecture is considered.

The problem that we address in this paper is how to enable a programmer
to obtain high performance from an implementation without having to write a
low-level, machine-specific implementation. The approach that we use is to write
high-level, machine independent specifications of algorithms in a pure, functional
programming language (a subset of the SML programming language[8]).

Such functional specifications can be executed, and indeed often are executed
in the initial stages of development to give confidence that an algorithm has been
correctly described. However, we intend our functional specifications to be a
clear statement of the algorithm that captures its essence without consideration

? This work is supported by SERC Grant GR/G 57970, by a research studentship from
the Department of Education for Northern Ireland and by the Office of Scientific
Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38



for execution efficiency. Such a specification executes prohibitively slowly using
available functional language compilers (if such a compiler is available for the
architecture at all), much more slowly than could be expected of a hand-crafted,
imperative implementation of the algorithm.

So, rather than compile a functional specification, we derive imperative im-
plementations, normally expressed in some dialect of Fortran, from the specifi-
cation. Many imperative implementations can be derived from a single specifica-
tion; each implementation is tailored for the hardware to be used and the data
to be manipulated.

The derivation of an implementation from a specification is performed by
automatically applying program transformations. A transformation is a simple
rewrite rule that produces a change in a program; normally, a single applica-
tion of a transformation produces a minor, local change. A derivation effects
the implementation of a functional specification by applying many transforma-
tions, each transformation being applied many times. We have demonstrated
that it is possible to derive highly efficient implementations from our functional
specifications; indeed, these implementations are comparable in performance to
implementations written by a programmer using a conventional approach [6].

2 A Family of Transformational Derivations

The implementation of a functional specification is a complex task; its complex-
ity may be reduced by identifying intermediate forms between the specification
language and the final implementation language. For example, rather than make
the transition directly from SML to Fortran, a specification is first converted
into the λ-calculus, then into Fortran:

SML - λ-calculus - Fortran.

Each of these transitions may also be sub-divided into further intermediate
forms, to whatever degree is convenient. A derivation to implement a specifi-
cation is correspondingly divided into sub-derivations; one sub-derivation being
used to create each intermediate form.

There are advantages to such division beyond simplifying the task of imple-
mentation: the sub-derivation that creates the λ-calculus form is independent of
the final implementation language, and so may be combined with another sub-
derivation to create, say, an array processor implementation (for example, for
the AMT DAP). Similarly, the λ-calculus–to–Fortran sub-derivation is indepen-
dent of how the λ-calculus form was created, and may be combined with another
sub-derivation that converts another specification language into the λ-calculus.

SML
Lisp

Miranda

 - λ-calculus -


Fortran

Cray Fortran
DAP Fortran

C



Further, sub-derivations can be added to optimize implementations in various
ways by performing, for example, function unfolding or common sub-expression
elimination. Other sub-derivations can be added to tailor an implementation
when data sets are known to have particular properties, such as a matrix being
sparse. Figure 1 is a (somewhat simplified) illustration of the relationships among
various intermediate forms created by such sub-derivations.

SML Lisp

λ-calculus

Evaluated

Unfolded

Processes

Shared
Memory

Processes &
Communication

Distributed
Memory

Sectioned

Array Form

Common
Subexpression

DAP FortranFortran90
Fortran77

Common
Subexpression

CRAY

Sparse

Fig. 1. A family of derivations

3 Example

The following figures illustrate some of the forms that may be derived from a
specification during the implementation process. We use matrix-vector multipli-
cation as an example.

– The Unfolded form is a simple, function form obtained by removing the
‘syntactic sugar’ from the SML form and by unfolding definitions.

– Details of the implementation of the Unfolded form in sequential Fortran
are given in [2]. For this example, the sequential Fortran requires no further
modification for vectorization by the CRAY compiler.

– See [6] for the derivation of the DAP Fortran form.
– The Sparse forms (for a tridiagonal matrix) are produced by first applying

a sub-derivation that optimizes calculations involving a sparse matrix, and
then applying the sequential, CRAY or DAP sub-derivations.



fun times(U:real vector, V:real vector):real vector
= generate(size(U), fn(i:int) => U@[i]*V@[i])

fun sum(U:real vector):real
= reduce(U, +, 0.0)

fun innerproduct(U:real vector, V:real vector):real
= sum(times(U,V))

fun mvmult(A:real matrix, V:real vector):real vector
= generate(size(A,0), fn(i:int) => innerproduct(row(A,i), V))

SML specification of matrix-vector multiplication

-

generate ([n]) (λi·reduce ([n])
(λj·real.times (element (A) ([i,j])) (element (V) ([j])))
(real.plus) (0.0)

)

Unfolded form

-

DO i=1,n,1
AV(i)=0.0
DO j=1,n,1
AV(i)=AV(i)+A(i,j)*V(j)
ENDDO
ENDDO

Sequential/CRAY implementation

AV=sumc(A*matr(V,n))

DAP implementation

or as sparse implemention -

AV(1)=A(1,2)*V(1)+A(1,3)*V(2)
DO i=2,n-1
AV(i)=A(i,1)*V(i-1)

+A(i,2)*V(i)+A(i,3)*V(i+1)
ENDDO
AV(n)=A(n,1)*V(n-1)+A(n,2)*V(n)

Sparse sequential/CRAY
implementation

AV=A1*shrp(V)+A2*V+A3*shlp(V)

Sparse DAP implementation

4 Results

The technique of deriving imperative implementations from functional specifi-
cations has proven surprisingly effective in practice. In [5] we discuss a variation
on the basic derivation that targets the CRAY vector architecture; the imple-
mentation derived from a functional specification for a hyperbolic PDE solver
runs slightly faster than its handwritten counterpart. Similarly, in [9] the imple-
mentation of an eigenvector algorithm derived from the functional specification



achieves parity with a hand-crafted version for the AMT DAP 510. While achiev-
ing high performance in the derived code for one example might be an accident,
we have now done so on enough examples in widely varying problem areas to
demonstrate that our approach has general validity.

5 Conclusion

We have outlined a family of data-parallel derivations that produce highly ef-
ficient implementations from a single clear, implementation-independent algo-
rithm specification. These implementations are tailored for the particular hard-
ware architecture that will execute the algorithm and can be tailored further for
the particular data being manipulated. The tailoring of the implementation for
the architecture ensures that the best performance is extracted from the parallel
architecture being used. When an implementation for another architecture is
required a new derivation specialization is developed and a new implementation
derived from the same initial specification.

The use of this approach does not require significant effort from the user. In
our experience a competent mathematician can write functional specifications in
a few hours. An existing derivation can be used in the same way a conventional
compiler is used, without knowledge (or understanding) of the internal transfor-
mation process—the programmer provides a functional specification and receives
as output a Fortran or C program which can be compiled and executed.

Developing a specialized derivation for a new architecture requires special-
ized skills. However, existing derivations and transformations form a backbone
to which further sub-derivations may be added with minimal programmer ef-
fort. The development of a derivation for a particular architecture requires, in
practice, a few weeks. For example, the development of the CRAY derivation
specialization took approximately two weeks and much of this effort was in un-
derstanding the programming forms that execute well on the CRAY. Of course
once this effort has been expended, the derivation may be used with many spec-
ifications and without the user needing to understanding the transformations
that have been written. In contrast, using a conventional approach, a program-
mer must reapply his skills for each new algorithm implementation and must
validate the implementation produced.

The transformational approach is comparable in purpose to that of develop-
ing a programming language compiler, yet fundamentally different in method.
In constructing a derivation we attempt to identify the many distinct language
models that exist between an abstract functional specification and some imple-
mentation model. These models are subsequently encoded as transformations.
The identification of intermediate models simplifies development of a derivation,
but, more importantly, it produces models that are shared by related derivations.

For example, most of the transformations used by the sub-derivations that
create implementations for the CRAY and AMT DAP architectures – which
have distinctly different implementation models – are common to the two sub-
derivations. Indeed, the transformations are also shared with the derivation for



a shared-memory multiprocessor (see Figure 1).
The transformational approach is still in its infancy. Additional work is re-

quired in analysing additional algorithm specifications and understanding and
encoding programmer optimizations. Our work is concentrated on the consid-
eration of example algorithms and the many possible implementations of these
algorithms.

References

1. A Transformational Component for Programming Language Grammar, J. M. Boyle,
ANL-7690 Argonne National Laboratory, July 1970, Argonne, Illinois.

2. Abstract programming and program transformations - An approach to reusing pro-
grams, James M. Boyle, Editors Ted J. Biggerstaff and Alan J. Perlis in Software
Reusability, Volume I, Pages 361-413, ACM Press (Addison-Wesley Publishing Com-
pany), New York, NY, 1989.

3. Program reusability through program transformation, James M. Boyle and M. N.
Muralidharan, 1984, IEEE Trans. Software Eng., 10 (5): 574-88 (Sept.).

4. Functional specifications for mathematical computations, James M. Boyle, T. J.
Harmer, Editor B. Moeller in Proc. IFIP TC2/WG2.1 Working Conf. on Construction
Programs from Specifications, pp 761–767.

5. A Practical Functional Program for the Cray X-MP, Journal of Functional Pro-
gramming, 2(1), Pages 81-126, January 1992.

6. Deriving efficient programs for the AMT DAP 510 using Program transformation,
J.M. Boyle, M. Clint, Stephen Fitzpatrick and T.J. Harmer, QUB Techical Report,
June 1992.

7. Program adaption and program transformation, In R. Ebert, J. Lueger and L.
Goecke (editors), Practice in Software Adaption and Maintenance, pp. 3–20, North-
Holland Publishing Co., Amsterdam, 1980.

8. Functional Programming using Standard ML, Wilstöm, A, Prentice Hall, London
1987.

9. The Construction of Numerical Mathematical Software for the AMT DAP by Pro-
gram Transformation, J.M. Boyle, M. Clint, Stephen Fitzpatrick and T.J. Harmer,
Proceedings of CONPAR 92-VAPP V, L Bouge, M. Cosnard, Y. Robert, D. Trystram
(editors), Springer-Verlag, 1992.

10. The Calculi of Lambda-Conversion, A. Church, Annals of Mathematics Studies,
No. 6, Princeton University Press.

11. American National Standard Fortran, X3.9 — 1978 (FORTRAN 77) American
National Standards Institute, 1430 Broadway, New York, NY 10018, U.S.A.

12. DAP Series: FORTRAN-PLUS enhanced, man102.01.

This article was processed using the LATEX macro package with LLNCS style


