
Soft, Real-Time, Distributed Graph Coloring using
Decentralized, Synchronous, Stochastic,

Iterative-Repair, Anytime Algorithms
A Framework

Kestrel Institute Technical Report KES.U.01.05
May 2001*

Stephen Fitzpatrick & Lambert Meertens
fitzpatrick@kestrel.edu, meertens@kestrel.edu

Kestrel Institute, 3260 Hillview Avenue,
Palo Alto, CA 94304, USA

Project: e-Merge-ANT
http://ants.kestrel.edu/

Abstract

Soft, real-time distributed graph coloring is presented as a simplification of the
problem of distributed resource management in an environment where communica-
tion is expensive and subject to relatively high latency. The resources are subject to
dynamic task sets that may produce critical or super-critical loading – the objective
is to quickly compute reasonable schedules for the resources that accomplish a
satisfactory fraction of the task set. A class of simple, decentralized, anytime,
approximate colorers is presented, together with a framework for assessing
performance, and representative results from performance experiments using a
simulator.

This work is sponsored in part by DARPA through the "Autonomous Negotiating Teams"
program under contract #F30602-00-C-0014, monitored by the Air Force Research
Laboratory. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

* The "Related Work" section was added in June 2001.



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

1 Introduction
Large, distributed resource networks are expected to become commonplace as technology
matures for cheap, low-power, software-controlled sensors, effectors, and computational
and communication devices. For example, tens of thousands of simple sensor devices may
be scattered over geographical regions of interest and the devices networked using low-
power, peer-to-peer radio communication.

In some application domains the task load on such resource networks is expected to vary
dramatically; for example, a sensor network may transition from a low-load regime in
which no targets are being tracked and the sensors merely perform background scans to
detect targets, to a high-load regime in which many targets are being tracked. It is
expected that the load may become critical (i.e., the task load is such that the resource net-
work must operate with near optimal performance in order to successfully accomplish all
of the tasks) or even super-critical (i.e., the task load is too high for all of the tasks to be
accomplished).

The performance of the resource network may be gauged differently in the various task
load regimes. For example:

• when the task load is light, the network may be required to accomplish every task with
a high degree of success and to minimize costs; e.g., battery consumption or radio
emissions;

• when the task load is moderate, the network may be required to accomplish every task
with a high degree of success, but cost minimization may be sacrificed;

• when the task load is critical or super-critical, the network may only be required to
achieve some “reasonable” fraction of its tasks, but it is not acceptable for the network
to simply cease to operate.

Note that the tasks which the resource network is to accomplish may be time-sensitive and
may require collaboration between multiple resources (for example, a target may need to
be observed by multiple sensors simultaneously for accurate tracking; moreover, the par-
ticular sensors used to track a given target may vary as the target moves).

1.1 Resource Allocation Algorithms
The function of a resource allocation algorithm is to manage a resource network to try to
achieve some reasonable subset of the specified performance goals, such as those listed
above. The requirements on the resource allocation algorithm may be summarized as fol-
lows:

Scalable
The resource network may be arbitrarily large, so the resource allocation algorithm
must be scalable.

2/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

Real-time
Resource allocation and task accomplishment are concurrent: the resources are accom-
plishing tasks even while the allocation algorithm continues to improve their allocation
or adapts it to a changing task set. The resource allocation algorithm must be sensitive
to the temporal requirements of the tasks.

Adaptive
The resource allocation algorithm must be able to function satisfactorily under dynami-
cally varying task loads.

Robust
Resources may fail and recover, and the resource allocation algorithm must be able to
continue to function.

These requirements strongly suggest that decentralized, local, anytime algorithms be used
for resource allocation:

Decentralized
The algorithm consists of multiple, interacting components, each of which is responsi-
ble for some subset of the resource network. In order to achieve scalability, the number
of such components is proportional to the size of the network.

Local
Each component of the decentralized algorithm interacts with a limited number of other
components. One consequence is that no component has complete knowledge of the
network.

Anytime
The algorithm makes use of whatever time it has available, respecting the temporal
requirements of the tasks and the latency of the network, to compute the best allocation
of the resources that it can. Moreover, it continues to recompute the allocation as tasks
are being accomplished.

It may be expected that under low, stable task loads, the algorithm will, in time, compute a
high-quality allocation (although the local nature of the algorithm may prevent it from
computing a truly optimal allocation). Under high, dynamic task loads, the allocation may
be only a “best effort”, but an allocation will still be produced soon enough to accomplish
some of the tasks; this outcome is considered preferable to the algorithm computing an
optimal allocation, but doing so too late for any of the tasks to be accomplished.

1.2 An Abstraction: Distributed, Anytime Graph Coloring
The preceding sections discussed distributed resource allocation in general terms. A spe-
cific application would presumably define concrete characteristics and metrics (for such
terms as the temporal requirements of a task, network latency, and quality of task accom-
plishment) that would provide a concrete framework in which a resource allocation
algorithm could optimize its performance.

3/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

However, this report will not delve into the specifics of any particular application. Rather,
it introduces an abstraction/simplification in the form of distributed, anytime graph color-
ing:

• The vertices of the graph that is being colored correspond to the resources that are
being allocated.

• The edges of the graph correspond to the constraints between resources. In this
abstraction, the constraints can only be mutual exclusion constraints; that is, two verti-
ces connected by an edge correspond to two resources that cannot be activated
simultaneously.

• The vertices of the graph are assigned “colors” which correspond to time slots in a
cyclic schedule for resource activation.

• The number of colors corresponds to the length of the schedule's cycle. In this report,
the number of colors is predetermined; this corresponds to the length of a schedule
being limited by, for example, the need to scan every region sufficiently frequently to
ensure that targets are detected sufficiently quickly.

• The graph coloring algorithm corresponds to the resource allocation algorithm. Its
objective is to try to assign every vertex a color in such a way that if an edge exists
between two vertices, then they have different colors (since the colors correspond to
activation times and the edges correspond to mutual exclusion constraints).

The coloring is distributed in that knowledge of the vertices’ colors and responsibility for
assigning colors is distributed among numerous “agents”. The agents interact to try to
produce a high-quality coloring; that is, one in which most edges satisfy the constraint that
the vertices they connect have different colors.

In this abstraction, as presented in this report, tasks are not explicit. Rather, it is assumed
that every vertex must be colored; this corresponds to every resource being activated in a
resource network. The difficulty of a coloring is determined by the number of colors used
versus the graph’s chromatic number (the smallest number of colors which can be used to
produce a coloring in which no edge connects vertices of the same color). This roughly
corresponds to the task load versus the resource work rate in a resource allocation appli-
cation.

The graph coloring algorithm is subject to the same requirements as the resource alloca-
tion algorithm: it must be scalable, real-time, adaptive and robust. Details of how the
satisfaction of these requirements can be formally assessed are presented below; for now,
it is sufficient to note that this report considers only anytime graph coloring algorithms,
which incrementally improve colorings over time.

1.3 Summary of Report
The objective of this report is to introduce the concepts and notation of soft graph color-
ing and a class of decentralized, iterative-repair, anytime graph colorers, together with a

4/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

framework in which the colorers can be assessed. This report includes specific results for
particular colorers and graphs, but these are intended only as examples: a comprehensive
assessment of various colorers over a wide range of graphs will be presented in subse-
quent reports.

The following sections formally define the concept of soft graph coloring, including a met-
ric on the quality of colorings; then a general algorithm scheme is defined for local,
decentralized iterative repair coloring; a communication cost metric on coloring is defined;
and the results of performance experiments on a simulator are presented.

2 Soft Graph Coloring
In standard graph coloring, the objective is to produce a proper vertex coloring; i.e., an
assignment of a color to each vertex of an undirected graph such that no edge in the graph
connects vertices of the same color:

���u,v��EG : cu�cv (proper vertex coloring of G)

where {u,v} denotes an undirected edge between vertices u and v, EG denotes the set of
edges of graph G, and cv denotes the color of vertex v.

In many problems, it is also required that the number of colors be minimized. The fewest
colors needed to properly color a given graph is called the graph’s chromatic number and
is denoted by χG.

2.1 Degree of Conflict: γ
An edge is said to be a conflict if it connects two vertices that have the same color: a
proper coloring contains zero conflicts. For the types of problems outlined in the introduc-
tion, it is more important to quickly and efficiently reduce the conflicts to an acceptable
level, than to achieve a proper coloring. To this end, define the unnormalized degree of
conflict as the total weight of edges that are conflicts divided by the total weight of all
edges:

�G�
�

�u,v��EG

w�u, v�where cu�cv

�
�u,v��EG

w�u,v�
(unnormalized degree of conflict)

where w{u,v} is the weight (a non-negative real number) of edge {u,v}.1

The unnormalized degree of conflict has range [0,1]. It may be taken to define the quality
of a coloring as follows: a proper coloring has degree of conflict 0; a single-color coloring,
in which every vertex has the same color, has degree of conflict 1. Thus, a low value of γ

1 For unweighted graphs, each edge weight may be taken to be 1 so that the degree of conflict
corresponds to the number of conflicts divided by the number of edges.

5/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

indicates a high-quality coloring, while a high value of γ indicates a low-quality coloring.
The objective of (soft) colorers is to quickly minimize the degree of conflict.

2.2 Normalized Degree of Conflict: Γ
This report considers graph coloring with a fixed number of colors2, which may be less
than, equal to, or greater than the chromatic number of the graph that is to be colored –
the degree of conflict is well-defined in any case.

A random coloring (i.e., a coloring in which each vertex is randomly assigned a color) that
uses C colors has an expected degree of conflict of 1/C. This value can be used as a base-
line for assessing non-random colorers: since a random coloring can be produced in a
distributed system using no communication, any colorer that does incur communication
costs had better produce better-than-random colorers.

As the above paragraph illustrates, coloring with a high number of colors is essentially eas-
ier than coloring with a low number of colors: even a random coloring algorithm can
produce arbitrarily low values of the degree of conflict, if the number of colors is high
enough. The inherent effect of the number of colors can be partially eliminated by scaling
the degree of conflict by the number of colors to give the normalized degree of conflict Γ:

	C,G��G
C (normalized degree of conflict)

This metric simplifies the assessment of the performance of a given coloring using differ-
ent numbers of colors. For example, using the normalized metric, a random coloring has
an expected score of 1, regardless of the number of colors. The unqualified term “degree
of conflict” will generally refer to the normalized metric.

3 Decentralized, Iterative-Repair Graph Colorers
The graph colorers that are considered in this report are decentralized, local, iterative-
repair colorers: each vertex is responsible for assigning its own color and, after randomly
choosing an initial color, it repeatedly chooses a color that minimizes the number of con-
flicts its has with its neighbors, based on what it knows of its neighbors' colors when it
makes its choice.

The colorers considered here are synchronous3: each vertex simultaneously determines if it
should activate; each vertex that does activate, simultaneously chooses a color for itself;
then each vertex that changed color, simultaneously communicates its new color to its
neighbors.

2 Coloring using a fixed set of colors may be viewed as an abstraction of problems where a fixed
number of indivisible, exclusive resources are to be allocated; for example, registers in a CPU or time
slots in a cyclic schedule. The important problem of minimizing the number of colors will be
addressed in other reports.

3 Asynchronous colorers will be considered in other reports: much of what is reported here carries over
to asynchronous colorers.

6/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

A vertex’s decision to activate is probabilistic: each vertex determines an activation prob-
ability, generates a random number (in the range [0,1]), and activates if the random
number falls below its activation probability. The method for determining the activation
probability can significantly affect the performance of the colorer. Indeed, various families
of colorers can be defined based on different methods for determining the activation prob-
ability. For example, a particularly simple family is that of the Fixed Probability Colorers:
FP(p), where 0≤p≤1, denotes the colorer in which each vertex’s activation probability is
the constant p.

A summary of the synchronous coloring algorithm is shown in Figure 1.

• Each vertex randomly chooses a color from some fixed set.

• Each vertex communicates its color to its neighbors.

• The following loop is performed indefinitely:

1. Each vertex determines an activation probability α.

2. Each vertex generates a random number r.

3. For each vertex, if r≤α the vertex chooses a color c such that, accord-
ing to its current information, the number of its neighbors that have
color c is minimized.

4. For each vertex, if in the previous step the vertex actually changed
color, the vertex communicates its new color to its neighbors.

Figure 1 Synchronous, decentralized, iterative-repair graph coloring

3.1 Coherence and Convergence
In a decentralized graph colorer, it is possible for two neighbors (i.e., two vertices that are
connected by an edge) to change color simultaneously, in which case each of the neigh-
bors chooses its color based on out-of-date information; consequently, the color chosen
may not be optimal. For example, consider the following step in the coloring of a 2-vertex
graph, using 2 colors:

color

If each vertex (on the left) activates, then each will independently determine that its opti-
mal color is green, since its only neighbor is red. This is an example of the well-known
problem of coherence in distributed systems (it arises, for example, in distributed cache
mechanisms). For decentralized graph coloring, what must be ensured is that neighbors
are unlikely to change color simultaneously, on average. The algorithm is generally robust
enough to tolerate some degree of simultaneous change, but at sufficiently high levels, the
conflicts introduced by neighbors simultaneously changing color outweigh the conflicts
resolved.

7/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

The probability that two neighbors change color simultaneously could be reduced to zero
by, for example, imposing a total order on the vertices and iterating over the vertices
sequentially (a vertex’s activation probability would be 1 when its “turn” comes round,
and 0 otherwise). However, that is not a scalable solution since only one vertex at a time
would be active (and the rate at which conflicts are resolved would be low).

Thus, there is a need to balance parallel activity (having lots of vertices trying to resolve
conflicts at each step) against the danger of simultaneous change by neighbors. For the
Fixed Probability colorers, this balance can be shifted by adjusting the uniform activation
probability: the more likely it is that a vertex will activate, the more likely it is that neigh-
bors will change color simultaneously.

This is illustrated in Figure 2. Each solid curve shows how well FP colored a fixed graph
for various activation probabilities. (The graph has chromatic number 4 and 4 colors were
used in the colorings.) The data were obtained by measuring the degree of conflict after
each step in a run of 1000 steps (and averaging over several such runs). The dashed line
shows the expected value for a random coloring.

Note that for FP(0.9), the colorer performs worse than a random colorer, whereas for
smaller values of the activation probability, the colorer fairly quickly converges to a high-
quality coloring. The minimum activation probability at which FP performs worse than
random may be much lower than 0.9 for more complex graphs.

Also note that, even for low activation probabilities, the colorer does not achieve a proper
coloring even though the number of colors is as large as the chromatic number. This is
typical behavior – it is difficult for a purely local algorithm to achieve a proper coloring,
which may require non-local coordination between vertices.

0 200 400 600 800 1000

0

20

40

60

80

100

120

140

Change in Conflicts over Time

4 colors, chromatic number=4

FP(0.1)

FP(0.3)

FP(0.5)

FP(0.8)
FP(0.9)

random

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Figure 2 Effect of activation probability on convergence

It should be emphasized that the degree of conflict is measure by instrumentation that is
separate from, and unavailable to, the coloring algorithm: the degree of conflict is a global
metric and thus is not suitable for incorporation into a local, decentralized algorithm.

8/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

3.2 A Communication Cost Metric: µ
The degree of conflict measures the quality of a coloring. For a decentralized colorer, the
cost of achieving a coloring is primarily concerned with the amount of communication for
two reasons: (i) the communication latency is often the dominating factor in the absolute
speed of the colorer; (ii) radio communication is considered a risk because it helps adver-
saries to locate sensors, for example.

Communication cost could be measured as the number of messages sent. However, color-
ing graphs of high degree would then be expected to incur higher costs than coloring
graphs of low degree, since each time a vertex changes color, it sends a message to each
of its neighbors.

Instead, the communication cost is measured in terms of the number of color changes: this
can be viewed as the a normalized form of the message-based costs, where normalization
has accounted for the graph’s topology. For a single step in the coloring of a graph G, the
transition rate is defined as the fraction of vertices whose color changes:

�i�
��v�V G : cv,i�cv,i�1��

�V G�
(transition rate)

where cv,i is the color of vertex v at step i. Given that a vertex’s color can change at most
once per step, the transition rate has range [0,1], where low values indicate low communi-
cation costs.

4 Performance Experiments
In this section, various classes of performance experiments are discussed and typical
results are presented. This is not intended to be a comprehensive analysis/comparison of
the algorithms. Rather, it is intended to be an introduction to the sorts of results that are of
interest: thorough analyses will be presented in subsequent reports.

Only two families of decentralized, iterative-repair colorers are considered: the Fixed
Probability family (FP) and the Conservative Fixed Probability family (CFP). FP was intro-
duced above: every vertex has the same, constant activation probability. CFP is a variant
of FP: it differs from FP in that only those vertices that have at least one conflict with a
neighbor are eligible for activation; it is similar to FP in that those vertices that do have at
least one conflict set a fixed, uniform activation probability.

The performance experiments fall into four classes:

Scalability:
the effect of graph size on colorer performance and cost.

Long-term convergence:
whether or not a colorer converges, and, if it does, the quality of the coloring.

9/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

Short-term conflict reduction:
how well a colorer can reduce conflicts over a comparatively short period.

Robustness:
the effect of unreliable communication and a dynamic topology on a colorer.

4.1 Scalability
A decentralized graph coloring algorithm may be said to be scalable if the maximum per-
vertex costs are independent of the number of vertices. There is a tacit assumption that the
mean degree of the graph is bounded; i.e., that the number of edges per vertex does not
grow significantly as the number of vertices grows. This is a reasonable assumption: there
are certainly well-known classes of graph which violate this assumption (e.g., the complete
graphs) but such topologies are unlikely to arise in the sort of resource network consid-
ered in this report because then the network technology itself would likely not be scalable.

The general algorithm scheme for decentralized, local, iterative repair colorers is given in
Figure 1. Its costs are as follows:

• Step 1, determining an activation level, is undefined in that schema. However, for the
FP algorithm, this step clearly has a constant computational and storage cost per ver-
tex, and zero communication costs. For the CFP algorithm, determining if a vertex has
a conflict with any neighbor has computational, storage and communication costs that
are proportional to the vertex’s degree.4 Averaged over the graph, it may be expected
that the per vertex costs are proportional to the mean degree of the graph.5 In any case,
the costs are not dependent on the number of vertices. In general, any method for
determining an activation level that uses only neighbor-to-neighbor information should
have constant per-vertex costs.

• Step 2, generating a random number: constant per-vertex costs.

• Step 3, choosing an optimal color: for a given vertex, this computation has costs pro-
portional to the number of neighbors (and number of colors). Averaged over the graph,
the per-vertex costs are dependent on the mean degree of the graph but independent of
the number of vertices.

• Step 4, communicating color changes to neighbors: communication costs per vertex are
proportional to the mean degree of the graph and independent of the number of verti-
ces.

In summary, the maximum per-vertex computational, storage and communication costs for
each coloring step depend on the mean degree of the graph rather than on the size of the
graph. Moreover, experimental results support an additional assertion, about the perform-

4 This computation can be performed as a cheap addendum to the computations of step 3, so these costs
can actually be subsumed into that step.

5 This assumes that the vertices change color with an approximately uniform frequency.

10/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

ance of the colorers rather than their costs: for large graphs, the performance of the color-
ers is not dependent on the size of the graph.

For example, Figure 3 shows the results of coloring six graphs of similar structure and of
sizes varying from 500 to 5000 vertices using the FP(0.3) colorer with 2, 3, 4 and 5 col-
ors. For each number of colors, the results for the different graphs show little dependence
on the graph's size.

0 100 200 300 400 500
0

20

40

60

80

100

120

Scalability - FP(0.3)
normalized degree of conflict for 6 graph sizes (chromatic number=4)

2 colors

3 colors

4 colors
5 colors

step

no
rm

al
iz

ed
d

eg
re

e
of

co
n

fli
ct

(%
)

Figure 3 Performance of FP colorer is not dependent on graph size

In light of the size-independence of the colorers, the results of the remaining experiments
are presented as averages over multiple graphs of different sizes (and also over multiple
runs per graph).

4.2 Long-Term Convergence
As discussed previously, the FP algorithm may or may not converge to a high-quality col-
oring, depending on the activation probability. Figure 4 (left) summarizes the long-term
performance of FP: each curve shows the degree of conflict achieved by FP, averaged
over steps 950 to 1000, for a fixed activation probability and for various number of colors.
Figure 4 (right) shows the corresponding communication costs.

The following observations may be made:

• For high activation probabilities, the quality of the colorings is uniformly poor, and is
often worse than random. Moreover, the transition rate is high, showing that the color-
ing is unstable (the colorer is said to be thrashing – i.e., constantly changing each
vertex’s color without improving the quality of the coloring).

• When the number of colors used for a coloring is less than the chromatic number (4)
the coloring is said to be over-constrained. It is impossible to reduce the degree of con-
flict to zero in over-constrained colorings. Nevertheless, for moderate activation levels,
FP manages to reduce the degree of conflict significantly below random (i.e., below
100%). Moreover, the communication costs are low, indicating that the coloring is
fairly stable (if many vertices were changing color, the communication costs would be
high).

11/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

• When the number of colors is equal to the chromatic number, the coloring is said to be
critically constrained. Theoretically, a colorer could reduce the degree of conflict to
zero; however, a local algorithm is unlikely to achieve this. For moderate activation
probabilities (and for this class of graph) FP manages to reduce the normalized degree
of conflict to around 5%; thus, only about 1.25% of the edges are conflicts.

• When the number of colors is slightly higher than the chromatic number, the coloring is
said to be under-constrained. For moderate activation probabilities (and for this class of
graph), FP manages to reduce the degree of conflict to a few percent.

• When the number of colors is significantly greater than the chromatic number, the col-
oring is said to be loosely constrained. Such colorings are inherently easier than
colorings with fewer colors, yet FP’s performance is significantly worse and its costs
higher. When the number of colors is very high, the normalized degree of conflict and
the transition rate become approximately constant.

2 6 10 14 18 22 26 30 34 38

0

25

50

75

100

125

150

175

Conflicts after 1000 steps

chromatic number=4

FP(0.1)

FP(0.3)

FP(0.5)

FP(0.7)

FP(0.8)

FP(0.9)

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

2 6 10 14 18 22 26 30 34 38

0

10

20

30

40

50

60

70

80

90

Communication after 1000 steps

chromatic number=4

FP(0.1)

FP(0.3)

FP(0.5)

FP(0.7)

FP(0.8)

FP(0.9)

#colors

tr
an

si
tio

n
ra

te
(%

)

Figure 4 Long-term performance and cost of FP colorer

FP’s counter-intuitive performance for loosely constrained colorings can be explained as
follows:

• When the number of colors is much higher than the chromatic number, a large number
of colors will not occur in a given vertex’s neighborhood at a given coloring step.

• Thus, the number of optimal colors available to a given vertex at each coloring step will
be high. The colorer chooses randomly from among the optimal colors.

• So the colorer behaves, in part, like a random colorer that has C-δ colors, where C is
the actual number of colors and δ is a small reduction that accounts for the number of
colors used, on average, in a neighborhood. (Experiments suggest that δ is approxi-
mately equal to the chromatic number.)

12/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

• Thus, the dependence of the unnormalized degree of conflict on C should be of the
form γ∝1/(C-δ) and the normalized degree of conflict should be approximately inde-
pendent of C: Γ∝C/(C-δ).

• Probability analysis predicts that the dependence of the degree of conflict on the activa-
tion probability α should be of the form Γ∝α/(2−α).

• These forms agree well with the experimental data.

FP’s communication costs for loosely coupled colorings are readily explained: since each
vertex is almost certain to change color every time it activates, the transition rate should
be approximately equal to the activation probability. This also agrees well with the experi-
mental data.

4.2.1 Long-Term Convergence of CFP

Figure 5 shows the performance of the Conservative Fixed Probability colorer. For over-,
critically, and under-constrained colorings, the performance and costs are similar to those
of FP. However, for loosely constrained constrained colorings, the performance is dra-
matically better: the degree of conflict and communication costs reduce to zero.

Clearly, the additional constraint of a vertex activating only when it has a conflict is suc-
cessful at eliminating FP's quasi-random behavior when the colorer is loosely constrained.
However, it is not clear a priori that such a constraint should always be applied: when a
coloring is critically constrained, the constraint may prevent a vertex from making a color
choice that is essential to achieving a high-quality coloring.

2 6 10

0

25

50

75

100

125

150

175

Conflicts after 1000 steps

chromatic number=4

CFP(0.1)

CFP(0.3)

CFP(0.5)

CFP(0.7)

CFP(0.8)

CFP(0.9)

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

2 6 10

0

10

20

30

40

50

60

70

80

90

Communication after 1000 steps

chromatic number=4

CFP(0.1)

CFP(0.3)

CFP(0.5)

CFP(0.7)

CFP(0.8)

CFP(0.9)

#colors

tr
an

si
tio

n
ra

te
(%

)

Figure 5 Long-term performance and cost of CFP colorer

4.3 Short-Term Conflict Reduction

In an application involving a resource network, the resource management proceeds con-
currently with the accomplishment of the application’s tasks. Thus, it is desirable not only

13/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

that the resource management algorithm resolve the conflicts (since they directly degrade
the application’s performance) but also that it resolve the conflicts quickly.

For example, a resource management algorithm that steadily reduces the number of con-
flicts to ten percent over one minute may be considered preferable to one that performs
only slight reduction for forty seconds, but then quickly reduces the number of conflicts to
0. The precise trade-off between speed and eventual degree of conflict should be defined
by a particular application.

time

co
nf

lic
ts

0 10 20 30 40 50

0

20

40

60

80

100

120

Short-Term Conflict Reduction by FP

#colors=4, chromatic number=4

FP(0.1)

FP(0.3)

FP(0.5)

FP(0.7)
FP(0.8)

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Figure 6 Short-term performance

For this report, it is assumed that what is important is the product of the number of con-
flicts and the time for which they are endured, or equivalently, the mean of the conflicts
over time. Thus, if the performance of a colorer is displayed as a plot of conflicts versus
time, the appropriate gauge of performance is the area of the plot (or the mean height).
For example, in Figure 6 (left), the red area (vertical stripes) represents better performance
than the green area (horizontal stripes). Figure 7 summarizes the short term performance
and costs of CFP for various activation probabilities and numbers of colors.

2 4 6 8 10

0

20

40

60

80

100

120

140

160

Conflicts - mean over 50 steps

chromatic number=4

CFP(0.1)

CFP(0.3)

CFP(0.5)

CFP(0.7)
CFP(0.8)

CFP(0.9)

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

2 4 6 8 10

0

10

20

30

40

50

60

70

80

Communication - mean over 50 steps

chromatic number=4

CFP(0.1)

CFP(0.3)

CFP(0.5)

CFP(0.7)
CFP(0.8)

CFP(0.9)

#colors

tr
an

si
tio

n
ra

te
(%

)

Figure 7 Short-term performance and cost of CFP

14/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

4.4 Robustness

4.4.1 Unreliable Communication

To assess the effect of unreliable communication on the colorer, each color-change mes-
sage sent between neighbors is subjected to a probabilistic process that may either
randomize the color information (with probability r) or discard the message altogether
(with probability d) – Figure 8 presents this process as pseudo-code.

input: original_message(color=c, sender=S, recipient=R)
real constants: d, r
integer constant: number_of_colors
real variable: p = random_real(0..1)
if (p<d) then discard_message(original_message)
else if (p<d+r) then

integer variable: new_color = random_int(1..number_of_colors)
deliver_message(new_message(new_color, S, R))

else deliver_message(original_message)

Figure 8 Pseudo-code for simulation of communication unreliability

Figure 9 shows typical results. The left diagram shows the effect of increasing r (with
d=0); the right diagram shows the effect of increasing d (with r=0). These results indicate
that small levels of unreliability cause small, proportional degradations in the performance
of the colorer. Higher levels of unreliability naturally cause worse degradation, but even at
high levels (e.g., 50% unreliability) the colorer does not suffer catastrophic failure.

0 200 400 600 800 1000

0

20

40

60

80

100

120

Effect of Random Communication Noise

CFP(0.3), chromatic number=4, #colors=4

r=50%

r=30%

r=15%

r=08%
r=04%

r=00%

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

0 200 400 600 800 1000

0

20

40

60

80

100

120

Effect of Communication Loss

CFP(0.3), chromatic number=4, #colors=4

d=50%

d=30%

d=15%

d=04%
d=00%

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Figure 9 Effect of communication unreliability on CFP(0.3)

15/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

4.4.2 Dynamic Topology

A dynamic graph topology, in which vertices and their incident edges are inserted and
removed over time, can be used to partially model dynamic resource availability. The
model is partial because it only reflects the need to accommodate the changing set of
resource constraints – it does not reflect the need to reassign tasks that had previously
been assigned to resources that have failed.

• The graph is initially generated with N vertices.
• Some small fraction, R, of the vertices are randomly selected and

removed from the graph, along with all incident edges.
• The vertices and edges so removed are recorded.
• The coloring process begins.
• After every P coloring steps:

• A further RN vertices are randomly selected and removed (along
with their incident edges).

• These removed vertices are also recorded, giving a total of 2RN
removed vertices.

• From this pool of 2RN vertices, RN vertices are randomly
removed and reinserted into the graph.

• All removed edges for which both end vertices are now contained
in the graph, are also reinserted into the graph.

Figure 10 Process for dynamic graph topology

The process for changing the topology is presented in Figure 10. This process is designed
to approximately preserve the structure of the graph; in particular, not changing the chro-
matic number of the graph being colored should simplify analysis of experimental data.
The process has two parameters which control how frequently the topology is changed
(every P steps) and to what extent (R% of the initial number of vertices).

Continuous, low-levels of change (P=1, R<10%)
Figure 11 (left) shows typical effects of changing the topology slightly after every col-
oring step – there is little change.

Intermittent, high-levels of change (P=30, R=20%)
Figure 11 (right) shows typical effects of changing the topology significantly but inter-
mittently – after each change, the degree of conflict increases (immediately) but quickly
drops again. Overall, the colorer still manages to converge. It is to be expected that
there be a limit to the colorer’s ability to adapt to high-levels of change: for example, if
such change occurs too frequently.

The results of these experiments suggest that the CFP colorer is quite robust against
changes in topology.

16/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

0 200 400 600 800 1000

0

20

40

60

80

100

120

Dynamic Topology - Low-Level, Continuous

CFP(0.3), #colors=4, chromatic number=4

R=10%

R=8%

R=4%
R=0%

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

0 200 400 600 800 1000

0

20

40

60

80

100

120

Dynamic Topology - High-Level, Intermittent

CFP(0.3), #colors=4, chromatic number=4

R=20%

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Figure 11 Effect of dynamic topology on CFP

5 Related Work
The Fixed Probability algorithm was first published by Fabiunke [Fabiunke1999] in the
context of general distributed constraint satisfaction – that paper did not consider over-
constrained systems, nor did it consider robustness.

Yokoo at al. have published several algorithms for distributed constraint satisfaction
[Yokoo1998]. They are concerned primarily with complete algorithms (i.e., algorithms
guaranteed to find a feasible solution when one exists, and to terminate if one does not
exist) and thus their algorithms are considerably more complex and incur considerable
overheads to track the search space.

Lemaitre and Verfaillie [Lemaitre1997] consider soft constraint optimization in a distrib-
uted setting, but their algorithm uses a central coordinating agent and is thus sequential
and unscalable. They do suggest that their algorithm can be parallelized, but do not con-
sider details.

6 Conclusion
This report presents a soft version of graph coloring that is based upon constraint “optimi-
zation” rather than hard constraint satisfaction. Soft graph colorers are required to
quickly and robustly reduce constraint violations to acceptable levels without incurring
high communication costs.

This report presents a family of scalable, decentralized soft graph colorers that are based
on probabilistic, synchronized, local, iterative-repair, anytime techniques. This report
defines what it means for the colorers to be under-constrained, critically constrained and
over-constrained in terms of the number of colors used in a coloring versus the chromatic
number of the graph being colorer. It also outlines a series of experiments that investigate
the short-term performance of the colorers, their long-term convergence, and their scal-
ability and robustness.

17/18



SOFT, REAL-TIME, DISTRIBUTED GRAPH COLORING

7 References
[Fabiunke1999] "Parallel Distributed Constraint Satisfaction", Marko Fabiunke, Proceedings of the Inter-

national Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’99), pp 1585–1591, Las Vegas, June 1999

[Lemaitre1997] "An Incomplete Method for Solving Distributed Valued Constraint Satisfaction Prob-
lems", Michel Lemaitre & Gerard Verfaillie, AAAI-97, Workshop on Constraints and
Agents, Providence, Rhode Island, USA, July 1997

[Yokoo1998] "The Distributed Constraint Satisfaction Problem: Formalization and Algorithms",
Makoto Yokoo, Edmund H. Durfee, Toru Ishida & Kazuhiro Kuwabara, IEEE trans. on
Knowledge and Data Engineering, vol. 10, no. 5, September/October 1998

18/18


