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Abstract

This report details how each node in a network of computational devices can con-
struct a spatial map of its own position and those of other, nearby nodes based on
inter-node distance information; and how each node can align and reconcile its own
map with those of nearby nodes; with the result that the collection of maps forms a
consistent, global coordinate system.
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1 Introduction

The problem that is addressed in this report is:

• given a collection of communicating, uniquely identified, computational nodes located
at fixed positions in the (Euclidean) plane

• in which each node has estimates of some of the distances between itself and its neigh-
bours (i.e., nearby nodes) and between some pairs of its neighbours,

• each node is to construct a spatial map showing its own position and the positions of
some of its neighbours

• such that the maps are approximately consistent (i.e., all of the positions for a given
node are to be approximately the same).
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Figure 1: Distances between nodes

For example, Figure 1 shows a collection of nodes and estimates of distances between some
pairs of those nodes. An individual node may acquire some subset of the distance estimates,
as illustrated in Figure 2 for node ➁.

Each node determines a map of its own neighbourhood and where maps overlap, they are
required to agree. For example, Figure 3 shows the areas covered by maps for nodes ➁ and

➃; they overlap on nodes ➁, ➂ and ➅ and so are required to (approximately) have the
same positions for each of these nodes.

The chosen approach to solving this problem has two main elements.
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Figure 2: Distance matrix for node ➁
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Figure 3: Overlapping local maps

• Local map formation: Each node uses its distance information to construct a map
of its neighbourhood. For any given node, its map can only be determined up to a
translation, rotation and reflection (unless other sources of information are used to fix
the locations of some nodes).

• Alignment of local maps: For any given pair of maps that have at least three non-
collinear nodes in common, the positions of the nodes that appear in both maps can
be used to calculate an isometric coordinate transformation (a translation + rotation
+ optional reflection) that approximately aligns the maps. Such calculations can be
used in an anytime, peer-to-peer process in which each node continually tries to align
its own map with its neighbours’.

This report is organized as follows. First, the construction of a local map from distance
information is discussed. Then the calculations required to align two overlapping maps
are detailed. Then the peer-to-peer alignment process is discussed. Finally, two methods
for trying to improve the speed of convergence of the peer-to-peer alignment process are
considered.
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2 Map Formation from Distance Information

This report assumes that nodes have some means to acquire appropriate inter-node distance
information. The distance information may be subject to measurement errors. Such infor-
mation may be thought of as a distance graph, i.e., an undirected graph whose (graph) nodes
are labeled with node identifiers, and whose edges are labeled with distances (nonnegative
real values), as in Figure 1. Nodes connected by a single edge are called neighbours.

A spatial map and a distance graph are (approximately) consistent when inter-node distances
computed from the positions of the nodes recorded in the map are (approximately) the same
as the inter-node distances recorded in the distance graph.

A distance graph is rigid when — up to isometry: translation, rotation and reflection —
there is a unique spatial map that is optimally consistent with the distance graph.

Spatial maps should only be constructed for rigid distance graphs; in the case of a non-rigid
graph, a rigid subgraph can be used.

The distance information in a distance graph can be represented as a distance matrix map-
ping pairs of neighbouring nodes to distances, as in Figure 2. A distance matrix is thus a
partial map from pairs of node identifiers to distances. The diagonal of a distance matrix
cannot carry useful information — the distance of a node to itself is 0 — and is not used. It is
further assumed that each distance matrix D is symmetric (Dpq = Dqp), which is enforced by
defining the domain of a distance matrix D — denoted dom(D) — to be a set of unordered
pairs {p, q}, p 6=q, of node identifiers. (Assuming some arbitrary but fixed linear ordering on
the set of node identifiers, the elements of dom(D) can equivalently be viewed as ordered
pairs of node identifiers (p, q) with p < q.) For example, taking D to be the distance matrix
of Figure 2, |dom(D)| = 6.

The objective is to compute a Spatial Map M : Id → Pos which maps node identifiers
to spatial positions. (Although it is assumed that space is two-dimensional, most of the
calculations, algorithms and processes should readily extend to three dimensions.)

The notions of neighbour, consistency and rigidity are now reformulated in terms of distance
matrices.

A node with identifier p is a neighbour of a node with identifier q in distance matrix D if
and only if {p, q} ∈ dom(D).

A spatial map and a distance matrix are (approximately) consistent when the discrepancy
between the inter-node distances computed from the positions of the nodes recorded in the
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Figure 4: Initial map

map and the inter-node distances recorded in the distance matrix is low. The discrepancy
can be quantified as, say, the root-mean-square of the differences between distances on the
map and in the matrix:

error(D, M) =̂

√√√√∑
{p,q}∈dom(D)(Dpq − |Mp −Mq|)2

|dom(D)|

where subtraction of spatial positions is, of course, vector subtraction.

A distance matrix is rigid when — up to isometry: translation, rotation and reflection —
there is a unique spatial map for which the discrepancy between the map and the distance
matrix is minimal.

2.1 Map Formation Heuristic

Consider now the process of computing a spatial map from a distance matrix. The first
step is to construct an initial map containing a triangle of three non-collinear pair-wise
neighbouring nodes. Then more nodes are inserted into the map, one at a time, based on
distances to nodes already in the map, in an iterative process. For a node to be inserted
into a map, the node must have at least three non-collinear neighbour nodes. The process
terminates when all nodes have been inserted into the map or when no uninserted node can
be inserted.

The choice of the initial triangle may have a significant impact on the number of nodes that
can be inserted. A heuristic is used that searches over triples of nodes that are pair-wise
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Figure 5: Inserting a node into a map: black nodes are reference points,
dashed circles indicate distances from the reference points and the gray
node indicates the position at which the new node will be inserted

neighbours, ruling out those that are nearly collinear1 or too close together. Given a choice
of three nodes, the initial map is computed as follows. (See Figure 4).

• Find the longest side (or one of them if there are several longest) and denote its end
nodes as p and r. Align this side with the x-axis by setting p’s position to the origin
(0, 0) and r’s position to (Dpr, 0).

• Let the third node be q. It is assigned the position (x, y) where, by simple geometry,

x = (D2
pq + D2

pr −D2
qr)/2Dpr, y =

√
D2

pq − x2 .

Of course, there is an arbitrariness to these choices of positions — any translation, rotation
or reflection of the whole map would do equally well.

Now consider the process by which additional nodes are inserted into an existing map. Nodes
are inserted iteratively, one at a time. At each iteration, a node with the highest number
of neighbours already in the map is chosen for insertion, with the process stopping when
no remaining unmapped node can be found with at least three mapped neighbours that are
non-collinear.

Figure 5 illustrates the multilateration computation used to determine the new node’s po-
sition, based on its distance from nodes in the map that are neighbours. Let this set of
neighbour nodes of the new node n be called the node’s reference set R. Each node r in the

1Collinearity is, strictly speaking, a property of nodes in spatial maps, while at this stage only distance
information is available. Instead, the geometrically equivalent requirement is used that the longest distance
of the three is less then the sum of the other two. For robustness, the difference must be at least some
number (e.g., 3.5) times the expected distance-measurement error.
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Compute the following terms:

u =
∑

pq a2
pq

v =
∑

pq apqbpq

w =
∑

pq b2
pq

g =
∑

pq apqcpq

h =
∑

pq bpqcpq

where each summation is over p, q ∈ R ∧ p < q and

apq = −2(xp − xq)
bpq = −2(yp − yq)
cpq = D2

pn −D2
qn − x2

p + x2
q − y2

p + y2
q

Let d = uw − v2. Then the new node’s position is (x, y) where

x = (gw − hv)/d, y = (hu− gv)/d .

Figure 6: Computing the position of a node as a least-squares solution to
a set of simultaneous equations arising from multilateration

reference set gives one quadratic equation in a set of simultaneous equations determining the
new node’s position (x, y):

(x−Mr.x)2 + (y −Mr.y)2 = D2
nr

where Mr.x indicates the x component of r’s position in map M (and likewise for the y
component).

Provided there are at least three reference nodes, the set of simultaneous equations can
be solved for x and y. However, because there may be noise in the distance estimates,
the equations may not have an exact solution. Instead, a least-squares solution may be
computed. First, from each pair of quadratic equations for distinct reference nodes r and r′

a linear equation in the unknowns x and y is obtained by subtraction2:

{(x−Mr.x)2 + (y −Mr.y)2} − {(x−Mr′ .x)2 + (y −Mr′ .y)2} = D2
nr −D2

nr′ .

2That this equation is linear may not be immediately apparent from the given form, but after expansion
the squares of the unknown variables cancel.
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In the non-degenerate case, the new set of linear equations is satisfied if and only if the
original set of quadratic equations is. The least-squares solution for the new set is now
computed as shown in Figure 6.

In the worst case, to place N nodes, this computation has time complexity Θ(N3), but a
more realistic measure — using the observation that the degree of the graph tends to be
bounded — is Θ(N2). In a practical implementation, the distance matrices and maps are
confined to a small set of near nodes to preserve scarce memory on the actual computational
nodes, and the time complexity is not an issue.

2.2 Comment on Completeness

The local map formation process may terminate with some unmapped nodes even when the
distance matrix is rigid, for two reasons:

• Nodes are inserted into an existing map one at a time. Some distance matrices may
require the insertion of multiple nodes simultaneously in order for all nodes to be
inserted.

• At most, only one initial triangle is considered for map construction. The chosen
triangle may fail to allow all nodes to be inserted in cases where a different initial
triangle would succeed.

Given the real-time constraints under which the process would typically operate, it seems
better to accept occasional failures and to compensate for them using maps received from
neighbours.

3 Map Alignment

This section considers the problem of reconciling two maps that have at least some nodes
in common but that differ on the positions of those common nodes. There are three main
factors that can contribute to such discrepancies:

1. Alignment: Since maps computed solely from inter-node distances cannot have an ab-
solute sense of position, direction or orientation, two maps may use different coordinate
systems, and yet (restricted to their common nodes) be congruent in that they differ
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only by a combination of a translation, rotation and optional reflection. A transfor-
mation from one map to the other can be computed provided that they have at least
three non-collinear nodes in common.

2. Different Information Bases: The two maps may have been computed based on slightly
different distance information. For example, the distance between any given pair of
nodes may be estimated several times to reduce the effect of measurement error. Be-
cause communication may be unreliable, each estimate may be separately disseminated
through a network, resulting in different sets of estimates arriving at different nodes,
which then will subsequently compute different averages. Map discrepancies arising
from such estimate differences should be small and can usually be handled by averag-
ing the positions for a given node in the two maps. See however the next case.

3. Non-Rigidity: If a distance matrix is insufficiently rigid, several substantively different
possible maps are consistent with the distance matrix. Therefore, map formation
requires that the distance matrix is rigid. However, measurement error can make
a non-rigid matrix appear rigid. When considering the distributed case, it is possible
that different nodes acquire overlapping small fragments of the overall distance matrix,
and that one or more of these fragments are not very rigid, but are made to appear
rigid by measurement error. In combination with a different information base, these
nodes may compute different, incompatible maps. Unfortunately, such errors are hard
to correct without collecting a lot of information (to perform outlier rejection, for
example). Repeated averaging may still remedy this, though.

Moreover, many physical processes that may be used for distance estimation are subject to
multipath effects. For example, the distance between two nodes may be estimated from the
time required for an acoustic signal to travel between them. In the simplest formulation, it
is assumed that the estimate corresponds to the straight-line distance between the nodes,
but if the signal is reflected then this assumption is no longer valid. Multipath effects are
not considered in this report.

This section focuses on the map alignment problem. Specifically, given two spatial maps L
and M , an isometric coordinate transformation is to be computed such that the discrepancy
between positions in L and M is minimized, where the discrepancy is defined as the sum of
the differences in positions of nodes that appear in both maps:

discrepancy(L, M) =̂
∑
p∈C

|Lp −Mp|2

where C =̂ dom(L) ∩ dom(M) is the set of nodes that appear in both maps.
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There are five steps in aligning M with L (Figures 7 to 10 illustrate each step except reflec-
tion):

1. Determine Common Nodes: The set of nodes that appear in both maps is determined.
Let C denote this set and let LC and MC denote the restriction of maps L and M to
C (i.e., any nodes not in C are removed).

2. Translation: The ‘centre of gravity’ (CoG) of the nodes in C is computed from their
positions in LC ; denote this as LC . (See below for an equation defining CoG.) Likewise,
the CoG of C in MC is computed and denoted as MC . Then M is translated by the
vector displacement LC −MC so that the CoGs are aligned, at LC .

3. Rotation Without Reflection: Then a rotation about LC is determined that minimizes
the discrepancy with L. The residual discrepancy with L under this optimal rotation
is also computed.

4. Rotation With Reflection: Similarly, an optimal rotation is computed after first re-
flecting the translated M in an axis through LC .

5. Choice of With or Without Reflection: A choice is then made for rotation with or
without reflection, depending on which of steps 3 or 4 produced the lowest residual
discrepancy.

Symbolically, the task is to find ϑ and ϕ that respectively minimize εϑ and εϕ where

εϑ = discrepancy(L, Mϑ)
εϕ = discrepancy(L, Mϕ)
Mϑ = rotate(LC , ϑ,MT )
Mϕ = rotate(LC , ϕ, MF )
MF = reflectx(LC , MT )
MT = translate(LC −MC , M)
M =̂

∑
i∈dom(M) Mi/|dom(M)|

where rotate(p, α, M) rotates map M about point p through an angle α, reflectx(p, M)
reflects map M in an axis that passes through point p and is parallel to the y-axis, and
translate(δ,M) translates map M through the vector displacement δ.

According to which of εϑ and εϕ is the smaller, Mϑ or Mϕ is chosen as the optimal alignment
of M to L.
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Figure 7: Unaligned maps
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Figure 8: Common nodes identified
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Figure 9: Centres of gravity aligned

N.B. Maps are shown slightly displaced for presentation

Figure 10: Optimal rotation

11



3.1 Computing an Optimal Rotation

Given two maps L and M with a non-empty set of common nodes C, a rotation of M
about any point G can be computed that minimizes the discrepancy between LC and the
rotated MC . (In degenerate cases, there may be more than one optimal rotation.) For the
sake of simplicity, we write L for LC and M for MC in the rest of this subsection, so then
dom(L) = dom(M) = C.

From the definition of discrepancy, it is easy to see that it is invariant under translation:

discrepancy(translate(L, δ), translate(M, δ)) = discrepancy(L, M) .

A rotation about a point p can be realized as a sequence of three transformations: a transla-
tion by vector −p so that p is the origin; then a rotation about the origin; then a translation
by p:

rotate(p, α, M) = translate(p, rotate((0, 0), α, translate(−p, M)) .

So
discrepancy(rotate(p, α, M)), L)

= discrepancy(translate(p, rotate((0, 0), α, translate(−p, M))), L)
= discrepancy(rotate((0, 0), α, translate(−p, M)), translate(−p, L)) .

In other words, the discrepancy, and thus the optimal rotational angle, can be computed by
first translating L and M so that the rotation point is the origin and then rotating about
the origin. So in the following, only rotation about the origin is considered.

Let Mϑ denote M rotated about the origin through an angle ϑ. The position (xϑ
p , y

ϑ
p ) of a

node p in Mϑ is related to the node’s position (xp, yp) in M by

xϑ
p = xp cos ϑ− yp sin ϑ, yϑ

p = xp sin ϑ + yp cos ϑ .

Defining xL
p =̂ Lp.x and yL

p =̂ Lp.y, the discrepancy with L for an angle ϑ is thus

discrepancy(Mϑ, L)
=

∑ |Mϑ
p − Lp|2

=
∑

(Mϑ
p .x− xL

p )2 + (Mϑ
p .y − yL

p )2

=
∑

(xp cos ϑ− yp sin ϑ− xL
p )2 + (xp sin ϑ + yp cos ϑ− yL

p )2

where all summations are over p ∈ C.
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Differentiating with respect to ϑ, equating to zero, and setting s =̂ sin ϑ and c =̂ cos ϑ for
brevity, gives:

0
=

∑
2(xpc− yps− xL

p )(−xps− ypc) + 2(xps + ypc− yL
p )(xpc− yps)

= 2
∑− csx2

p + s2xpyp + sxpx
L
p − c2xpyp + csy2

p + cypx
L
p

+ csx2
p + c2xpyp − cxpy

L
p − s2xpyp − csy2

p + sypy
L
p

= 2
∑

sxpx
L
p + cypx

L
p − cxpy

L
p + sypy

L
p

Hence,
sin ϑ

∑
xpx

L
p + ypy

L
p = cos ϑ

∑
xpy

L
p − ypx

L
p

⇒ sin ϑ : cos ϑ = (
∑

xpy
L
p − ypx

L
p ) : (

∑
xpx

L
p + ypy

L
p )

This determines the optimal rotational angle, and from this the residual discrepancy can be
calculated.

4 A Peer-to-Peer Alignment Process

The preceding sections showed how to compute a map from inter-node distance information
and how to reconcile two maps that differ by a translation, rotation and optional reflection
(using alignment) and by local noise (using averaging). This section discusses a peer-to-peer
algorithm that uses these techniques to establish a common coordinate system throughout
a network of communicating nodes.

The algorithm is staged into several phases, each of which executes more-or-less simulta-
neously throughout the network. However, in principle, the phases could be intermixed,
repeated or continually executed as needed.

1. Collect and Diffuse Distance Information: Each node directly measures distances to
some neighbours (nearby nodes) and locally broadcasts the distances it measures; this
is repeated several times to reduce measurement error. Each node collects its own
measurements and those communicated to it. It averages multiple measurements for
the distance between a given pair of nodes and broadcasts such averages. To reduce
storage and communication costs, each node continually prunes the information it
stores and broadcasts by discarding information about more distant nodes.

In this way, distance information is locally diffused through the network. It is expected
that each node will eventually acquire estimates for the distance between itself and,
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say, 7 neighbours, and for the distances between those neighbours. However, in a
practical application, this phase may be executed for only a limited duration and the
distance information acquired by a node may be incomplete; i.e., it may receive some
information regarding neighbours p ∈ H but it may not have an estimate for every
pair p, q ∈ H. Moreover, a given node may not have information about some nodes
that are nearby even if it has information about nodes that are further away.

2. Form and Reconcile Local Maps: When a node has sufficient distance estimates, it
computes and locally broadcasts a map of its neighbourhood. When a node receives a
map from a neighbour, it reconciles its own map with its neighbour’s and broadcasts
its own map. When reconciling its map, a node may remove more distant nodes.

In this way, each node should quickly acquire a map of its neighbourhood. Two nodes
that are nearby should acquire maps that closely agree, both in terms of which nodes’
positions are recorded in the maps and in terms of the closeness of the positions for a
given node.

Eventually, this agreement should spread throughout the network so that a common coordi-
nate system is formed. In particular, it should be possible, in principle, to gather all of the
nodes’ maps and construct a single composite map by averaging the positions for each node,
and but for measurement error the composite should differ from a map of the nodes ‘true’
positions only by an isometric transformation. (The nodes’ true positions may be determined
using any suitable exogenous measurement process. For example, a pair of orthogonal axes
may be arbitrarily fixed and the nodes’ true positions determined by measuring shortest
distances to those axes. This measurement process should, of course, be consistent with that
used by the network to measure inter-node distances.)

Of course, some practical considerations need to be given to mechanisms to reduce commu-
nication contention and instability. For example, a node may limit the frequency with which
it broadcasts distance estimates and maps.

4.1 Obtaining a Shared Coordinate System

The simple peer-to-peer algorithm described above should eventually result in a consistent
‘world view’ being established throughout the network. However, each node will still have
its own coordinate system, and data involving locations exchanged between nodes must be
subjected to a coordinate transformation from the sender’s to the recipient’s system.

For moderately large networks, a shared coordinate system can be obtained using a wavefront
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technique. On initialization, each node determines for itself a random priority with which
it tags its own map when it is broadcast. Ideally, each node would receive a unique priority
and priorities would be randomly distributed throughout the network.

When a node receives a map, it processes the map differently according to whether its own
priority is higher or lower than the received map’s:

• If the receiving node’s priority is lower than the received map’s, then the node aligns
and averages its own map with the received map and increases its own priority to
match that of the received map.

• If the receiving node’s priority is higher than the received map’s, then the node aligns
the received map with its own map and averages its own map with the aligned map.

In this way, the coordinate system of the node with the highest priority acts as a fixed ref-
erence system to which the other nodes align themselves. (In effect, the nodes are executing
an anytime leadership election algorithm combined with map reconciliation.)

However, for very large networks, the propagation of the common system throughout the
full network can take a long time, because it is limited by the local nature of the informa-
tion dissemination. Using only local broadcasts, the number of communication hops that
information requires to cross the network grows like the spatial diameter of the network.
(Assuming a bounded node density, for a roughly square or circular layout, the spatial di-
mension grows like the square root of the number of nodes; for a linear layout, the spatial
dimension grows even linearly with the number of nodes.)

4.2 Convergence

Although the simple peer-to-peer algorithm should lead to a consistent world view, the rate
of convergence can be rather slow, and for large networks it can take many iterations for
long-distance discrepancies to ripple back-and-forth through the network and be smoothed
out.

This is not so much due to any deficiency of the techniques described, but a generic problem
in obtaining a global map by patching together local maps, in which many small measurement
errors can add up to unbounded errors over large distances.

To fundamentally change the rate of convergence, a different communication paradigm is
required, as discussed in the next section. It will also accelerate the establishment of a
shared coordinate system.
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Layer 0 Layer 1 Layer 2

Figure 11: Nodes organized into layers

5 Hierarchical Localization

To overcome the limitations of strictly local broadcasts, a new organization is considered for
the network:

• The nodes are organized into communication layers, designated by an index k =
0, 1, . . . , K, where K is at most roughly equal to log2(N/7), where N is the total
number of nodes.

• All nodes belonging to layer k1 also belong to each lower level k2 < k1.

• The number of nodes in each layer is (approximately) double the number in the next
higher layer (if there is one).

• Layer 0 contains all of the nodes.

• Each layer is more-or-less evenly distributed throughout the network.

• A node in a given layer can communicate using local broadcast to other nodes in the
same layer. Thus, each layer can form its own peer-to-peer network.

• Communication between two layers can occur through nodes that are in both layers.

Such an organization can be obtained in a distributed way if, on initialization, each node
determines for itself a random bit string; it then belongs to layer k if its bit string starts
with at least k digits 1. So a node with random bit string 11010010 · · · belongs to layers 0,
1, and 2. The same bit string should be used for the random priority mentioned in Section
4.1 by taking it as a real number in the range from 0 to 1: 0.11010010 · · ·2 = 0.82 · · · .
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For localization, it is also assumed that a node in a given layer can estimate its distance to
some other nodes in the same layer (see Figure 11), and that all nodes know the value of K.
Hierarchical localization then proceeds layer by layer, starting with the highest layer.

• Each node in the highest layer estimates its distance to nearby nodes in the same layer
and forms a map representing its own position and those of its neighbours within the
same layer; these maps are reconciled as described in the preceding section so that
overall the highest layer forms a large-scale global coordinate system.

• Once reconciliation has completed at the highest layer, the next highest layer begins.
Each node in this layer executes a similar process of estimating distances, map forma-
tion and map reconciliation. However, first those nodes that also belong to the higher
layer broadcast their existing maps within this layer. These maps are incorporated into
the maps formed for this layer, and act as a large-scale skeleton onto which finer-scaled
maps are attached.

• This process repeats for each successively lower layer.

Aside from the highest layer, nearby nodes within a given layer should start out with similar
maps, arising from the next higher layer. Consequently, the number of iterations required
to reach convergence is expected to be significantly reduced. Provided that the number of
iterations is bounded as the size of the network grows, then the hierarchical organization
should require time that increases only logarithmically with the network size. However,
the underlying assumptions, that communication and distance estimation can be performed
over arbitrarily large distances, presumably will fail at some point as physical limitations
on communication or distance measurement become significant as the geometrical distance
increases.

17


