Deriving distributed MIMD implementations from functional
specifications

J.P. Wray®, S. Fitzpatrick, M. Clint, P.L. Kilpatrick

*Department of Computer Science,The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland, UK

The construction of reliable and efficient scientific software for execution on novel com-
puter architectures is a demanding and error-prone task. By automatically generating
efficient parallel implementations of functional specifications using program transforma-
tion, many of these problems may be overcome. The basic method is discussed, with
particular reference to its extension to generate implementations for execution on dis-
tributed memory MIMD machines.

1. INTRODUCTION

Many commonly occurring problems in science and engineering involve the application
of a single operation to each element of a very large vector or matrix. Such problems
are eminently suitable for fast solution on both SIMD and MIMD parallel computers.
However, the construction of programs in the high level languages currently available for
these machines suffers from several drawbacks:

e constructing reliable parallel programs is a very demanding task—for example, the
programmer must consider non-determinism and deadlock;

e parallel programming languages are not, in general, portable; consequently port-
ing an existing program to a new machine may necessitate that the program be
completely rewritten.

e parallel programs are often hard to read and are difficult to prove correct.

3

By automatically generating multiple realisations of a program from a single machine-
independent specification these disadvantages can be eliminated without any sacrifice in
efficiency.

2. FUNCTIONAL SPECIFICATIONS

In the work described in this paper, machine-independent functional specifications are
expressed in a small subset of standard ML [6]. A library of numerical mathematical
primitives is provided for the most common matrix operations. For scientific applications
ML specifications are easy to write and understand because they closely resemble the
original mathematical descriptions|5, 3].

In order to illustrate the functional specification style, we outline the functional speci-
fication of a significant problem in applied mathematics:

2.1. Specification of the multigrid algorithm for Poisson’s problem
We require to solve the equation

Lu=f

where L is an approximation, on a given step length, to the Poisson operator, u is a
grid over which the equation is to be solved (each element of w is a function of z and vy),
and f is a given n x n grid (each element of which is a function of 2 and y). The problem
is assumed to have Dirichilet boundary conditions, ie. the values of u are known on all
boundaries. The solution is given by

solve(L, Jc,f,bv,epsilon)

where L is the operator, Jc is the Jacobian of the operator, f is the given grid, bv is the
boundary value function, epsilon is a measure of the required accuracy, and solve is

defined as

fun solve(L:grid*int*int->real, Jc:jacobian, f:grid,
bv:int*int->real, epsilon:real) =

let

val n = size(f);

val h = 1.0/real(n-1);

val u0 = create(n, bv);

val hsqf = scale(f, hxh);

val epsilon0 = epsilon*residual(L, hsqf, u0)
in

iterate(L, Jc, u0, hsqf, epsilon0)
end;

The functions size, create, and scale are library functions which return the dimension
of a grid, generate a grid from an index function, and scale each element of a grid,
respectively.

The function iterate repeatedly applies a function mg (multigrid) until an acceptably
accurate approximation to the result is obtained:

fun iterate(L:grid*int*int->real, Jc:jacobian, ui:grid,
f:grid, epsilon:real) =

let

val res = residual(L, f, ui);
in

if res < epsilon

then ui

else iterate(L, Jc, mg(L, Jc, ui, f), f, epsilon)
end;

The function residual returns the error in an approximation to the result.
A single application of the multigrid method is defined as follows:

fun mg(L:grid*int*int->real, Jc:jacobian, u:grid, f:grid):grid =

let
val relaxu = relax(L, Jc, u, f);
val csize = (Grid.size(u)+1) div 2
in
if size(u) = 3
then relaxu
else relax(L, Jc,
interpolate(mg(L, Jc, constant(csize, 0.0),
restrict(defect(L, f, relaxu))),
relaxu),
)
end;

The functions relax, restrict, etc. are all specified in the same style. This top-down
derivation continues until all functions are expressed in terms of primitive functions or
previously defined functions.

The important thing to note about this style of specification is its transparency—the
functions specify the computation to be carried out, without adding any implementation
details. Furthermore, the specification is not biased towards a particular implementation
language or architecture. As well as being amenable to formal analysis, the specification
can be executed for testing purposes. However, direct execution of the specification is
extremely inefficient in comparison with an imperative implementation. We outline in
the next section how an efficient imperative implementation may be generated from the
functional specification.

3. DERIVATION OF IMPERATIVE CODE

An efficient imperative implementation (expressed in Fortran or C, say) of the specifi-
cation may be obtained by the automatic application to the specification of a sequence
of transformations. The transformations are applied using the TAMPR transformation
system[4]. Each transformation is defined by a syntactic pattern replacement rule. For
example, a transformation which applies the distributive law might be expressed as fol-
lows:

Transform:
(<factor>"1" <addop>"1" <factor>"2") <multop>"1" <factor>"3"
<factor>"1" <mult op>"1" <factor>"3" <add op>"1"
<factor>"2" <mult op>"1" <factor>"3"

Note that <factor>, <addop> and <multop> are non-terminals of the grammar being
transformed and not entities defined by the transformation tool. This rule would, for
example, transform any expression of the form (A+B)*C (where A,B, and C belong to the
syntax class <factor>) into the form A*C + Bx*C.

A single application of a transformation effects a small change to the specification;
consequently it is not difficult to prove that correctness is preserved. The cumulative

effect of the application of many transformations can produce an efficiently executable
Fortran or C version of the original specification. The main steps that are common to all
derivations are as follows:

1. The specification is prepared in order to simplify later transformations. For example,
bound variables are renamed in order to eliminate the possibility of name clashes,
and multiple-variable lambda expressions are converted to nests of single variable
lambda expressions. At this stage the transformed specification is in a standard
functional form. Employing a standard form allows alternative functional specifica-
tion languages (eg. LISP, Miranda) to be used as the starting point: transforming
any functional language into standard form is straightforward.

2. The specification is simplified using function unfolding and folding.

3. The prepared specification is manipulated into a form in which all function appli-
cations have simple arguments (either variables or constants). The transformations
which effect this change are based on algebraic identities of the A-calculus.

4. Transformations based on the distributive laws change assignments involving com-
plicated functional expressions into sequences of assignments involving only simple
expressions.

5. Function evaluation is implemented using a mechanism suitable for the target ar-
chitecture; for example, a simple push-pop stack.

6. The implementation is completed by inserting imperative equivalents for certain
functional primitives.

This is a somewhat simplified description: the complete process is described in more detail
in [4].

It is important to note that this approach is not a monolithic process such as compila-
tion. The user can inspect the transformed specification at any stage of the process, and is
free to modify the process by inserting additional transformations or modifying/deleting
existing ones. Therefore the entire process can be tailored to the user’s specific require-
ments. In particular, by inserting a few architecture-specific transformations at well-
chosen points in a derivation, an appropriate new implementation of the original speci-
fication can be quickly generated. The method has already been successfully applied to
generate efficient implementations for sequential, shared-memory multiprocessor, vector,
and distributed array processor machines[4, 1, 3, 2]. In all cases the performance of the
automatically generated code matched that of hand-crafted versions.

In the remainder of this paper the extension of the method to allow the generation of
code for distributed memory MIMD machines is described.

4. TRANSFORMATIONS FOR MIMD ARCHITECTURES

4.1. Implementation Strategy
All data parallel vector and matrix functions in a specification are (automatically)
unfolded and expressed in terms of a primitive function, generate. This function takes

two arguments: a shape expression (which defines the structure of the result) and a
generating function (which defines the computation to be carried out for each element of

the structure). For example, the application
generate([1 : n,1:n], fun(i, j) => a(i, j) + b(i,j))

returns the matrix sum of a and b. On a sequential machine, the result of this expression is
calculated by evaluating the expression a(i,j) + b(i,j) for each element of the matrix.
The result can be efficiently evaluated on a distributed memory machine if the matrices
a and b are partitioned over the available processing elements so that, for each i and
j, elements a(i,j) and b(i,j) are stored on the same processing element; then the
individual portions of the result can be evaluated in parallel.

However, it is frequently necessary to evaluate expressions such as

generate([1 :n,1:n], fun(i,j) =>F(a(i +1,3),b(i,j —1))).

In this case, assuming the same partition of data structures as before, there is no guarantee
that the elements a(i+1,j) and b(i,j-1) are local to the processor that is required to
calculate the (i,j)th element of the result. Therefore, in general, each processor must
obtain some non-local data, and transmit data to other processors, before it can evaluate
its portion of the result.

It is convenient to adopt a vertical “striped” partition of data structures. For example, a
structure of dimension (1:16, 1:16) could be partitioned over a four-element processor array
in segments of dimension (1:16,1:4), (1:16,5:8), (1:16,9:12) and (1:16,13:16) respectively.
The advantage of using stripes is that the north and south neighbours of each element
will always be stored on the same processor. Thus, for example, the expression

a(i,j)+b(i+1,j)+c(i—1,7)

could be evaluated locally on each processor without any inter-processor communication.

We assume that only nearest-neighbour data transfers are required. Many scientific
applications involve only generating functions of this type, and those that do not can be
re-expressed in this form.

Thus, evaluation of a generate involves, in general, a message-passing phase in which
neighbouring processing elements exchange the values of their leftmost and rightmost
columns, and a computation phase in which the individual segments of the result are
calculated in parallel.

4.2. Automatic Generation of a MIMD Implementation
The initial “Fortranizing” transformations will ensure that all instances of data parallel
primitives (generate) appear on the right hand side of assignment statements, viz

g999 = generate([l : n,1 :n], fun(i,j) =>F(a(i +1,j),b(i,j —1))).

We now counsider, in a little more detail, how a distributed MIMD implementation of
this assignment is derived. For the sake of clarity, a syntax slightly different from that
used in practice is employed.

The first step is to make explicit the data that will be required by each processing ele-
ment. This is achieved using transformations which abstract each occurrence of a variable
out of the body of the generating function. After the application of these transformations
the assignment becomes

g999 = generateusing((a(i +1,j),b(i.j—1)),[1 :n,1:n].
fun(i, j) =>F(a(i+1,7).b(i,j —1))).

The first argument of generateusing defines a list of matrix elements that are required
to evaluate the generating function for each element of the result. These elements may or
may not be local to the processing element which requires them. The second and third
arguments are the two arguments of the original generate.

A recursive transformation then generates the abstract message-passing and computa-
tion phases necessary to implement the assignment:

call obtainifnecessary(a(i +1,j),1,j);
call obtainifnecessary(b(i,j —1),1,j);
g999 = localgenerate([1 : n,1 :n],fun(i,j) =>F(a(i+1,j).b(i,j —1)))

Note that each of the stages described so far is common to any distributed MIMD imple-
mentation. Ounly at this point is it necessary to introduce language-specific transforma-
tions.

The next stage is to substitute the actual message passing code required for the two calls
to obtainifnecessary. Two subroutines, getfromeast and getfromwest, pre-written
in the target language are required for this. The subroutine getfromeast causes ecach
processor to pass the leftmost column of its portion of a structure to its west neighbour,
and obtain the corresponding values from its east neighbour; subroutine getfromwest is
similar. The first call to obtainifnecessary above is transformed to the empty statement
since, for each i and j, the element a(i+1,j) is local to the processor which is calculating
the (i, j)th element of the result. The second call, however, necessitates data transfer
from west to east and is therefore transformed to

call getfromwest(b,firstcolumn,lastcolumn);

(Note that firstcolumn and lastcolumn are local constants which define a processor’s
share of the matrix.)

Finally, the localgenerate isimplemented using a nested loop, the bounds for the inner
loop being defined by the constants firstcolumn and lastcolumn. Other transformations
introduce the declarations for loop-counter variables. Thus we obtain:

integer 1i,j,
a(l:n,firstcolumn : lastcolum),b(1 :n,firstcolumn : lastcolum)
call getfromwest(b,firstcolumn,lastcolumn);
do i=1,n
do j = firstcolumn, lastcolumn
g999(1,j) =F(a(i +1,]),b(1,j — 1))
end do
end do;

5. A DISTRIBUTED IMPLEMENTATION OF MULTIGRID

The transformations described in the previous section provide a basis for the generation
of a variety of distributed implementations of a functional specification. They have been
applied to produce an implementation of the multigrid specification outlined in Section 2.1
for execution on a ring of transputers. The implementation language used is Meiko Fortran
77. In order to produce this implementation, it was necessary to write the skeleton code for
setting up channel names, etc, and to code the subroutines getfromeast and getfromwest
in terms of the message passing primitives of the language. Of course, this only needs
to be done once, so implementations of other functional specifications may be generated
without further coding by hand. The code for getfromeast is given below:

SUBROUTINE getfromeast(firstcolumn,lastcolumn,columnsize,
* dimension,slice,ename,wname,transport,
* processid)

#include<csn/csn. inc>
#include<cs.inc>
#include<csn/names.inc>

PARAMETER (dimens=16)
integer westslaveid,status,firstcolumn,lastcolumn,
dimension,transport,processid,columnsize,
slice(dimens,0:*)
character*15 ename, wname
logical notonleft, notonright
notonleft= firstcolumn.NE.1
IF (notonleft) THEN
status=csnlookupname (westslaveid,wname, .TRUE.)
IF (status.NE.CSNOK) THEN
CALL csabort(’slavel: cannot look up ’//wname,-1)
ENDIF
CALL csntx(transport ,0, westslaveid, slice(1,0),columnsize)
ENDIF
notonright= lastcolumn.NE.dimension
IF (notonright) THEN
CALL csnrx(transport,CSNNULLID,
slice(1,lastcolumn-firstcolumn+2)
,columnsize)
ENDIF
RETURN

END

Even if adequately commented, code of this nature is quite difficult to read, write or
modify due to the low-level nature of the communication primitives it uses. However, since

calls to this routine are automatically generated by transformations, these problems are
of no concern to the user, whose view of the implementation is provided by the functional
specification.

As expected. the performance of the distributed imperative implementation far exceeds
that achieved by executing the functional specification, although it is not yet as good
as that of the best handwritten version. However, the automatically generated code can
be inspected to determine what optimizations might be applied to improve efficiency,
and these optimizations may then be applied automatically to the program using further
transformations.

6. CONCLUSION

It has been demonstrated that it is possible to derive automatically an (admittedly
primitive) imperative implementation of a functional specification for a distributed mem-
ory machine. This derivation is the skeleton for further development: in particular, by
considering other topologies with more sophisticated data transfer requirements and hy-
brid architectures. The strength of the transformational approach is that such tailoring

is a natural part of the software development process.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the work of Dr Jim Boyle in developing the TAMPR
system, and Dr Terry Harmer for providing many helpful suggestions. This work is funded

by the SERC under grant No. GR/G 57970.

REFERENCES

1. J.M. Boyle. Program adaptation and program transformation. In R. Ebert, J. Lueger,
and L. Goecke, editors, Practice in Software Adaptation and Maintenance, pages 3—20.
North-Holland Publishing Co., Amsterdam, 1980.

2. J.M. Boyle. M. Clint, S. Fitzpatrick, and T.J. Harmer. The construction of numerical
mathematical software for the AMT DAP by program transformation. In L. Bougé,
M. Cosnard, Y. Robert, and D. Trystam, editors, Parallel Processing: CONPAR92-
VAPP V (LNCS 634), pages 761-767. Springer-Verlag, Berlin, 1992.

3. J.M. Boyle and T.J. Harmer. A practical functional program for the Cray X-MP.
Journal of Functional Programming, 2(1):81 126, 1992,

4. J.M. Boyle and M.N. Muralidharan. Program reusablility through program transfor-
mation. IEEE Transactions on Software Engineering, SE-10(5):574 588, 1984.

5. J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98—
107, 1989.

6. A. Wilstom. Functional Programming using Standard ML. Prentice Hall, London,
1987.

