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1 Introduction

A good programmer attempts to minimize architecture specific detail when writing a sequential implemen-
tation of an algorithm. Such good programming practice makes it possible to transport the implementation
to other hardware architectures and thus minimize programmer effort. Indeed, high-level programming
languages attempt to hide the detail required by particular machine architectures and thus make it easier to
construct programs and transport them.

When using traditional methods to implement an algorithm for an advanced parallel architecture, the
programmer faces the dilemma of

� writing the algorithm implementation in an architecture independent way and thereby, unfortunately,
achieving disappointing execution performance (when compared to the architecture’s theoretical
execution performance); or

� writing the algorithm implementation in a way that exploits the capabilities of the hardware archi-
tecture and achieving good execution performance, but in the process producing an implementation
dedicated to a particular parallel architecture.

With the scientific community’s insatiable desire for performance, a programmer will generally choose
the latter course. However, the increasing variety of parallel computer architectures and the speed of
technological change make this course an expensive one, since it requires a new implementation to be
prepared when a new parallel architecture is considered.

The problem that we address in this paper is how to enable a programmer to obtain high performance from
an implementation without having to write a low-level, machine specific implementation. The approach
that we use is to write high-level, machine independent specifications of algorithms in a pure, functional
programming language.

Such functional specifications can be executed, and indeed often are executed in the initial stages of
development to give confidence that an algorithm has been correctly described. However, a functional
specification of an algorithm is intended as a clear statement of the algorithm, that captures the essence of
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the algorithm without consideration for execution efficiency. As such, a specification executes prohibitively
slowly using available functional language compilers, much more slowly than could be expected of a
hand-crafted, imperative implementation of the algorithm.

So, rather than compile a functional specification,we derive imperative implementations of the specification,
normally expressed in some dialect of Fortran. Many implementations may be derived from a single
specification; each implementation is tailored for the hardware to be used and the data that are to be
manipulated.

The derivation of an implementation from a specification is performed by automatically applying program
transformations. Each transformation is a simple rewrite rule that produces a change in a program;
normally, a single application of a transformation produces a minor, local change; a derivation effects the
implementation of a functional specification by applying many transformations, each applied many times.
We have demonstrated that it is possible to derive highly efficient implementations from our functional
specifications; indeed, these implementations are comparable in performance to implementations written
by a programmer using a conventional approach.

2 Functional Specifications

The language we use for functional specifications is (a small subset of) the SML functional language [7].
The important features of this language are:

� algorithms are denoted as pure expressions; executing an algorithm is performed by evaluating
expressions;

� modularity is supported through functional decomposition and a structure mechanism for defining
abstract data types;

� functions and operators can be overloaded to allow vector/matrix operations to be expressed in a
manner similar to standard mathematics.

We use a library of vector/matrix operations that commonly occur in numerical/scientific algorithms. These
library functions are defined in terms of a small number of primitive functions which we discuss below.

element:� array � index � �

The function element is applied to an array of arbitrary dimensions (vectors and matrices being
particular examples) and returns the value of the element stored at the location specified by the
index. For convenience, various notations can be used for element. For example, the i th element
of a vector V can be denoted as V@[i] — read as ‘V at i’ — and the �i� j�th element of a matrix A

as A@[i,j].

generate:shape � (index � �) � � array
An application of the generate function evaluates to an array. The set of indices over which the
array is defined is specified as a shape. The values of its elements are defined by a generating
function which takes an index as argument: the value of an element at a particular location is given
by applying the generating function to the index for that location.

As with element, we allow several forms of generate that are convenient for vector and matrix
operations. For example, the vector of length n and with element i equal to i can be defined as

generate(n,fn(i:int)=>i)

where the expression fn(i)=>expression defines a function over i. The transpose of a matrix
A of dimensions m�n can be defined as

generate([n,m],fn(i:int,j:int)=>A@[j,i]).
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reduce:shape � (index � �) � (� � � � �) � � � �

Thereduce function is used to combine a set of values into a single value by the repeated application
of some binary function. For example, a function to sum the elements of a vector V can be defined
as

fun sum(V:real vector):real = reduce(shape(V),fn(i)=>V@[i],+,0.0).

Here reduce adds the values of fn(i)=>V@[i] for all indices in shape(V), i.e. it is equivalent
to V �1� � V �2� � � � �. (An identity element, 0.0, is specified to make the definition of reduce valid
even when the set of values contains only one element).

These functions can be used to define the elementwise multiplication of two vectors:

fun times(U:real vector, V:real vector):real vector
= generate(shape(U),fn(i:int)=>U@[i]*V@[i]).

This can then be combined with the summation function above to obtain more complex matrix and vector
operations:

fun innerproduct(U:real vector, V:real vector):real
= sum(times(U,V))

fun mvmult(A:real matrix, V:real vector):real vector
= generate(size(A,0),fn(i:int)=>innerproduct(row(A,i),V)).

We believe that functional definitions should be high-level: they should express operations in the most
natural way, with no consideration given to efficiency or implementation concerns such as vectorization.
However, functional definitions are algorithmic and can be executed for the purpose of rapid prototyping.
We provide library definitions for a collection of useful functional specification primitives. When textually
included with a specification, the elements of this library provide a complete executable definition of a
computation.

It is our experience that a competent mathematician can be taught to write functional specifications, in the
style discussed above, in a few hours. Indeed, our style of algorithm specification is close to that used
by mathematicians when describing algorithms in text books. Interestingly, the difficulty many have in
initially learning to produce good specifications is in trying to ignore the efficiency considerations that are
important when writing traditional Fortran implementations of algorithms.

3 A Family of Transformational Derivations

3.1 Transformations

A transformation is a rewrite rule, consisting of a pattern and a replacement defined using a wide-spectrum
grammar. The transformations used for the work reported here are applied by the TAMPR transformation
system [1],[3]. When a transformation is applied to a program, all sections of the program that match the
pattern are replaced by the replacement.

For example, consider the transformation

<term>"1"+<term>"1" ==> 2*<term>"1"

(the non-terminal symbol <term> may informally be thought of as an expression):

� the pattern is <term>"1"+<term>"1";

� the replacement is 2*<term>"1";

� the label "1" on the non-terminals in the pattern indicates that each <term> must match the same
expression for the pattern as a whole to be a match;
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� the <term>"1" in the replacement stands for whatever is matched by <term>"1" in the pattern.

This transformation would convert the expression x+x into 2*x, and (1/2)+(1/2) into 2*(1/2); but
it would not convert the expression x+y, since x and y are different expressions.

Many of the transformations used in practice are no more complex than the above example; the power
of transformations comes from the cumulative effect of perhaps thousands of applications of dozens of
transformations, each application performing some simple, local change to a program section. Since the
application is performed entirely automatically, the number of applications is of little significance to the
program developer.

What is significant is the simplicity of each transformation; usually it is trivial to see that an application of
a transformation preserves the meaning of a program. (As transformations are formal, formal proofs can
be used to guarantee the correctness of more complex transformations.) And if each application preserves
meaning, then their combined application also preserves meaning. Thus, an implementation is known to
be equivalent to the specification from which it was derived.

Often, several transformations are required (or are convenient) to perform some change to a program, so
transformations can be combined into transformation sets; the application of a transformation set is the
exhaustive application of all the transformations in the set. A TAMPR derivation is a sequence of such
transformation sets. Each set is applied in turn to a program.

3.2 A Family of Data Parallel Derivations

The implementation of a functional specification is a complex task; its complexity may be reduced by
identifying intermediate forms between the specification language and the final implementation language.
For example, rather than make the transition directly from SML to Fortran, a specification may first be
converted into the �-calculus, then into Fortran:

SML � �-calculus � Fortran.

Each of these transitions may also be sub-divided into further intermediate forms, to whatever level is
convenient.

A derivation to implement a specification is correspondingly divided into sub-derivations; one sub-
derivation being used to create each intermediate form.

There are advantages to such division beyond simplifying the task of implementation: the sub-derivation
that creates the �-calculus form is independent of the final implementation form, and so may be combined
with another sub-derivation to create, say, an array processor implementation (for example, for the AMT
DAP). Similarly, the �-calculus to Fortran sub-derivation is independent of how the �-calculus form was
created, and may be combined with another sub-derivation that converts another specification language into
the �-calculus.

SML
Lisp

Miranda

��
� � �-calculus �

�
Fortran

DAP Fortran

Further, sub-derivations can be added to optimize implementations by performing, for example, function
unfolding or common sub-expression elimination. Other sub-derivations can be added to tailor an imple-
mentation when data sets are known to have particular properties, such as a matrix being sparse. Figure
1 is a (somewhat simplified) illustration of the relationships among various intermediate forms created by
such sub-derivations.
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SML Miranda Lisp

�-calculus

Unfolded

Evaluated

Sparse

Sectioned

Array

Common sub.

DAP Fortran Fortran90

Common sub.

Sequential CRAY

Processes

Common sub.

Shared memory

Communication

Common sub.

Distributed memory

Figure 1: A family of derivations

4 Example

As an example of the various forms a specification may take during the implementation development
process, we will consider the derivation from a functional specification of a simple, computationally
efficient, functional form for matrix-vector multiplication. We will then consider the implementation of
this form for a sequential processor, for a CRAY vector processor and for the AMT DAP array processor.
We will then consider the derivation of a form optimized for a tridiagonal matrix, and the implementation
of this sparse form for the same three architectures.

4.1 Specification of Matrix-Vector Multiplication

The standard ‘row into column’ definition of matrix-vector multiplication and some of the functions used
in the definition are shown in figure 2.

fun times(U:real vector, V:real vector):real vector
= generate(size(U), fn(i:int) => U@[i]*V@[i])

fun sum(U:real vector):real
= fold(U, +, 0.0)

fun innerproduct(U:real vector, V:real vector):real
= sum(times(U,V))

fun mvmult(A:real matrix, V:real vector):real vector
= generate(size(A,0), fn(i:int) => innerproduct(row(A,i), V))

Figure 2: SML specification of matrix-vector multiplication

For this example, we assume that matrix-vector multiplication is used in an ‘algorithm’
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fun init(n:int)
= let

val A:real matrix = read_matrix([n,n]);
val V:real vector = read_vector([n])

in
A*V

end

which we shall refer to as MVM, and shall consider the implementation of MVM.

4.2 Initial Stages

The initial stages of the derivation are applied to a specification to produce a computationally efficient form
in a standard, simple notation.

4.2.1 �-Calculus

The �-calculus that we use is a simple extension of the standard �-calculus [9], in which named function
definitions are allowed. The most noticeable differences from SML are:

� function definitions have the form name = open �-expression;

� function prototypes have been converted into open �-expressions;

� local values have been converted into closed �-expressions;

� operators have been converted into prefix functions (overloaded operators such as * have generic
names such as op.times).

The �-calculus form of MVM is shown in figure 3.

fun times
= �U:real vector, V:real vector�

generate(size(U),
�i:int�op.times(element(U,[i]),element(V,[i])))

� � �
fun init

= �n:int�
�A:real matrix��V:real vector�

op.times(A,V)
(read_vector([n]))
(read_matrix([n,n]))

Figure 3: MVM: �-calculus

4.2.2 Unfolded

Functions are unfolded: that is, an application of a function is replaced by a copy of the function’s
definition, with formal and actual arguments bound (this requires function overloading to be resolved using
type information). For MVM, the entire specification collapses into a single function definition.

In addition, �-conversion and currying are performed. See figure 4. (From this point on, we do not show
type information, though it is still present in programs.)
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fun init
= �n�

�A��V�
generate (size(A) (0))(�i�

�U1�
�U2�

reduce (size(U2))(�i2�element (U2)([i2]))(real.plus)(0.0)
(generate (size(U1))(�i1�

real.times (element (U1)([i1]))(element (V) ([i1])))
)

(generate (size(A) (1))(�j�element (A)([i,j])))
(read_vector([n]))
(read_matrix([n,n]))

Figure 4: MVM: unfolded

4.2.3 Statically Evaluated

Consider the unfolded form from an operational or computational perspective; that is, as instructions for
calculating a value. The outermost generation specifies that, to calculate element i of the product:

� calculate U1, row i of A;

� calculate U2, the elementwise product of the row and V ;

� sum the elements of U2.

Thus, the calculation of a single element of the product requires the construction of two intermediate vectors
(U1 and U2). However, it is possible to calculate the element without forming these intermediate vectors:

� there is no need for U2, as the elements of U1 and V can be multiplied together as the sum is being
formed;

� there is no need for U1, as the elements of a row of A can be accessed in situ.

The calculation of the product could thus be expressed as shown in figure 5. This form has a more
efficient computational interpretation. It is produced from the unfolded form using the techniques of static
evaluation, in which transformations evaluate expressions.

fun init
= �n�

�A��V�
generate ([n])
(�i�reduce ([n])

(�j�real.times (element (A) ([i,j])) (element (V) ([j])))
(real.plus) (0.0)

)
(read_vector([n]))
(read_matrix([n,n]))

Figure 5: MVM: statically evaluated

In the MVM example, the important evaluations are:

� The �-reduction of U1 and U2.

� These �-reductions result in expressions of the form:

element (generate (size(A) (1))(�j�element (A)([i,j]))) ([i1])

which can be evaluated using an identity of generate to
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element(A) ([i,i1]).

4.3 Dense Implementations

Having derived the statically evaluated form, sub-derivations can be applied to produce implementations
for a variety of architectures. These implementations are discussed below.

4.3.1 Sequential

Implementing the evaluated form of MVM is straightforward, requiring only the creation of two loops to
implement the generation and reduction. Normally the implementation is more complex; see [2] for a
detailed discussion.

The Fortran77 [10] version of MVM is shown in figure 6.

program init
parameter(n)
integer n
real A(n,n)
real V(n)
real init(n)

read_matrix(A)
read_vector(V)
DO 20 i=1,n,1
init(i) = 0.0
DO 10 j=1,n,1
init(i) = init(i)+A(i,j)*V(j)

20 continue
10 continue

end

Figure 6: MVM:Sequential and CRAY form

4.3.2 CRAY

The CRAY range of vector computers is programmed using Fortran77; the compiler converts certain types
of loops into instructions for the hardware vector units. Thus, the CRAY implementation is similar to the
sequential form, but with some tailoring performed. For example:

� Some versions of the CRAY Fortran compiler cannot vectorize a loop if it contains more than a
certain number of conditional statements. Transformations can reorganize loop structures to assist
the compiler.

� The CRAY software libraries contain highly optimized implementations of some commonly used
matrix and vector operations; for example, the Basic Linear Algebra Subroutines (BLAS). Even a
Fortran implementation of these routines may be unable to match the performance of the library
implementations, which have been hand-crafted in low-level machine language. Thus, it may be
preferable to use a library routine for an operation if such is available, rather than code the routine in
Fortran. (It is not always preferable to use library routines: many library routines are designed to be
of general use and generality frequently reduces efficiency. A less general Fortran routine may give
better performance than a general purpose library routine.)

The Fortran compiler recognizes certain simple forms of loops as applications of library routines and
replaces the loops with calls to the library routine. Transformations perform similar substitutions for
more complex forms that the compiler cannot recognize.
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For the MVM example, the sequential form in figure 6 is suitable for vectorization; the compiler replaces
the double loop with an application of the SGEMV routine.

4.3.3 DAP

The implementation of MVM for the AMT DAP array processor is performed in two stages: the statically
evaluated form is converted into an array form, which is then converted into DAP specific Fortran.

Array Form

The array form is a functional abstraction of the operations that a typical array processor could be expected
to perform; that is, it is a form that has an operational interpretation suited to array processors, but that is
expressed entirely functionally. There are several reasons for introducing an array form, rather than going
directly to an imperative form for, say, the AMT DAP:

� problem decomposition: the problem of converting into an imperative form is separated from the
problem of converting into a data-parallel form;

� the array form should be reasonably suited to implementation for other array processors, or for
conversion to other array forms such as the emerging parallel Fortran standards (Fortran90, High
Performance Fortran);

� the functional form has simple semantics and so is amenable to further manipulation (such as common
sub-expression elimination).

The array form is shown in figure 7. This form is considerably different from the previous forms, so we
will briefly explain the functions used:

� the application of reduce.rows forms the sum of the elements along the rows of its first argument
(a matrix), to produce a vector;

� times.array performs the elementwise multiplication of two matrices;

� the first matrix is A;

� the second matrix is formed by the application of expand.rows which duplicates the vector V so
that each row of the matrix is the same as V.

fun init
= �n�

�A��V�
reduce.rows (times.array (A) (expand.rows (V) (n)))

(real.plus) (expand (0.0) ([n]))
(read_vector([n]))
(read_matrix([n,n]))

Figure 7: MVM: array form

DAP Fortran

The AMT DAP 510 is an array processor with a 32 by 32 grid of single-bit processing elements. The
language used to program the machine is Fortran Plus Enhanced (FPE) [11], which uses the grid to support
data parallel operations on vectors and matrices of any size. Many of these operations are supported as
functions, so the conversion of some of the array form functions is straightforward. The FPE version of
MVM is shown in figure 8.
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program init
parameter(n)
real A(*n,*n)
real V(*n)
real init(*n)

read_matrix(A)
read_vector(V)
init = sumc(A*matr(V,n))
end

Figure 8: MVM: DAP form

4.4 Sparse Implementations

A sparse matrix is one in which most of its elements are zero. A program developer can take advantage
of sparsity to reduce the time and space complexity of an implementation by storing only the non-zero
elements and by restricting certain operations to only non-zero elements.

For the MVM example, we assume that the matrix A is tridiagonal (figure 9); that is, all elements outside
the tridiagonal region (the region for which the row index and the column index differ by not more than 1)
are zero. The number of elements that must be stored is thus reduced from n2 to 3n� 2. In addition, when
forming the inner product of a row of A with the vector V , only the non-zero elements in the row need be
considered (as the rest contribute nothing to the sum); thus, matrix-vector multiplication requires 3n � 2
multiplications and 2n� 2 additions when the matrix is tridiagonal, compared with n2 multiplications and
n�n� 1� additions when the matrix is dense.

�
�����

1� 1 1� 2 0 0 0
2� 1 2� 2 2� 3 0 0
0 3� 2 3� 3 3� 4 0
0 0 4� 3 4� 4 4� 5
0 0 0 5� 4 5� 5

�
				

�

�
�����

� 1� 1 1� 2
2� 1 2� 2 2� 3
3� 2 3� 3 3� 4
4� 3 4� 4 4� 5
5� 4 5� 5 �

�
				


Figure 9: A tridiagonal matrix and its storage scheme

The non-zero elements of A are stored in an n�3 matrix, as shown in figure 9. The diagonal elements are
stored in column 2; the elements below the diagonal in column 1, and those above in column 3. Notice
that there are positions in the storage matrix that do not correspond to positions in A; these positions must
be excluded from some calculations. Other storage schemes are possible, and could be employed by other
sub-derivations.

The sparse version of MVM is shown in figure 10. The conditional expressions are required for the first
and last elements of the product, as the first and last rows of A have only 2 elements, while the other rows
have 3.

4.4.1 Implementations of Sparse Form

The appropriate sub-derivations are applied to the sparse form to produce the sequential/CRAY form (figure
11) and DAP form (figure 12). Note that in the DAP implementation, the matrix A is stored as a set of three
vectors (A1, A2 andA3), rather than as a matrix of width 3. The latter would not make good use of the DAP
processor grid, as only 3 of the 32 columns of processors would be used; the former uses the entire grid, as
the DAP hardware can use the processors across a row of the grid to store and manipulate successive bits of
a single datum. The conversion into a set of three vectors was performed by an additional sub-derivation.
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fun init
= �n�

�A��V�
generate([n],�i�
(if (i=1)

then 0.0
else times(element(A�,[i,1]),element(V,[i-1]))

)
+ times(element(A�,[i,2]),element(V,[i]))
+ (if (i=n)

then 0.0
else times(element(A�,[i,3]),element(V,[i+1]))

)
)

(read_vector([n]))
(read_matrix([n,n]))

Figure 10: MVM: tridiagonal form

program init
real A(n,n)
real V(n)
real init(n)

init(1) = A(1,2)*V(1)+A(1,3)*V(2)
do 100 i=2,n-1
init(i) = A(i,1)*V(i-1)+A(i,2)*V(i)+A(i,3)*V(i+1)

100 continue
init(n) = A(n,1)*V(n-1)+A(n,2)*V(n)
end

Figure 11: MVM: Sequential/CRAY tridiagonal form

program init
real A1(*n),A2(*n),A3(*n)
real V(*n)
real init(*n)

init = A1*shrp(V)+A2*v+A3*shlp(V)
end

Figure 12: MVM: DAP tridiagonal form

11



4.5 Comments

The emphasis in the derivational approach to implementing algorithms is that a programmer should develop
methods for implementing algorithms and encode these methods (as transformations/derivations), rather
than apply these methods to produce a single implementation of a single algorithm. Several advantages
accrue from this approach:

Reusability
The results of a programmer’s travails (derivations and transformations) are reusable: they can be
applied to multiple specifications to produce multiple implementations of each.

Extensibility
A programmer’s work may also be readily extended: if a new implementation technique is required
– for example, to use a pattern of sparsity or a computational architecture not already catered for
– a programmer need develop a sub-derivation that supports only that new technique; other sub-
derivations should not need to be altered.

In addition, almost all of the sub-derivations manipulate functional forms (that is, they manipulate
pure, referentially transparent expressions). Functional forms have simple semantics that facilitate
much of the manipulation.

Further, even when a new sub-derivation has to be written, some of the transformations from other
derivations may be reused. For example, the DAP has a sequential execution model and shares many
transformations with the sequential Fortran sub-derivation.

Transferability
Once a sub-derivation has been written, it requires no expertise to use. Thus, programmers may take
advantage of another’s experience in a particular implementation technique.

Correctness
Establishing the correctness of an implementation may be performed by establishing that each
transformation set preserves the meaning of a program. As a typical transformation is simple, it is
usually obvious that such is the case. Further, as transformations are formal, formal proof techniques
may be applied to show the correctness of more complex transformations.

In contrast, when a programmer manually implements a specification of an algorithm, the product is
a single implementation (for a single computer system) of that single specification. In addition, for a
complex algorithm or for complex implementation techniques, the likelihood is that the programmer has
made mistakes, due either to the complexity of the implementation procedure or to carelessness.

Further, the product’s usefulness is limited to execution. The product itself, for example, does not accom-
modate analysis of the effect of particular implementation techniques, nor can it reasonably act as a basis
for other implementations: if the specification is changed significantly, or an implementation is required for
a different algorithm, or a new implementation technique is to be used, or an implementation is required for
a new architecture, it is probably more cost effective to write a fresh implementation (with fresh mistakes)
than to modify the existing implementation.

4.6 Results

For the MVM example, the differences between the derived implementations and implementations that a
programmer would produce are trivial. The similarity of the derived and hand-crafted implementations is
a vindication of the efficacy of the derivations, though it does mean that our normal practice of assessing
derivations by comparing execution times would not be informative.

However, to illustrate the importance of tailoring implementations and the efficacy of transformations in
doing so, we compare here the execution performance of the sparse and dense implementations of MVM. In
addition, we can make a further comparison for CRAYs as there is a standard BLAS routine for multiplying

12



a vector by a banded matrix (a tridiagonal matrix being a banded matrix in which the band has width 3);
the CRAY routine is more general than our derived routine, but is also somewhat slower.
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Figure 13: Times for sequential dense and tridiagonal implementations

Figure 13 shows the execution times for various matrix sizes for the dense and tridiagonal implementations
on a sequential computer (A NeXT workstation). The tridiagonal implementation is considerably faster
than the dense implementation.
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Figure 14: Times for CRAY dense and tridiagonal implementations, and CRAY BLAS routine

The graphs in figure 14 show the execution times for the dense and tridiagonal implementations on a 3
processor CRAY YMP with 128M words of (shared) memory. Each implementation was compiled for one
processor only and with full vectorization. These graphs also show timings for the CRAY implementation
of the BLAS SGBMV subroutine. This routine performs the assignment y:=�Ax+�y where A is a sparse
matrix with an arbitrary number of contiguous sub- and super-diagonals, x and y are dense vectors and
� and � are scalars. With 1 super-diagonal and 1 sub-diagonal, and with � � 1 and � � 0, this routine
corresponds to tridiagonal multiplication.

The left graph shows timings for the range over which the dense implementation could be used. The right
graph shows timings for the tridiagonal and BLAS implementations for much larger matrices (approaching
the maximum size that could be used with both of these implementations).

The BLAS routine is approximately 1.75 times slower than our tridiagonal routine for large matrices. The
comparison is somewhat unfair as the CRAY routine is a more general routine, although the comparison
does demonstrate the advantage of specialization that is part of the transformational approach.
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Figure 15: Times for DAP dense and tridiagonal implementations

Figure 15 shows timings for the DAP implementations. The left graph shows timings for the range over
which the dense implementation could be used. The right graph shows the timings for the tridiagonal
implementation over a wider range.

4.7 Further Results

While matrix-vector multiplication is an important component of many numerical algorithms, it is still
only a component. The derivations discussed in this paper have been applied to other, more complex,
scientifically significant algorithms, producing efficient implementations. See, for example:

[4] which reports on the derivation of a CRAY implementation of a solver for hyperbolic partial differen-
tial equations, the performance of which surpasses the performance of a hand-crafted implementation;

[8] which reports on the near equivalence in performance of a derived DAP implementation of an
eigenvalue algorithm with a hand-crafted implementation.

5 Conclusion

We have discussed a family of data-parallel derivations that produce highly efficient implementations from
a single clear, implementation-independent algorithm specification. These implementations are tailored
for the particular hardware architecture that will execute the algorithm and can be tailored further for the
particular data being manipulated. The tailoring of the implementation for the architecture ensures that
the best performance is extracted from the parallel architecture being used. When an implementation for
another architecture is required a new derivation specialization is developed and a new implementation
derived from the same initial specification.

The use of this approach does not require significant effort from the user. In our experience a competent
mathematician can write functional specifications in a few hours. An existing derivation can be used
in the same way a conventional compiler is used, without knowledge (or understanding) of the internal
transformation process—the programmer provides a functional specification and receives as output a Fortran
or C program which can be compiled and executed.

Developing a specialized derivation for a new architecture requires specialized skills. However, existing
derivations and transformations form a backbone from which new derivations may be extruded with minimal
programmer effort. The development of a derivation for a particular architecture requires, in practice, a
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few weeks. For example, the development of the CRAY derivation specialization took approximately two
weeks and much of this effort was in understanding the programming forms that execute well on the CRAY.
Of course once this effort has been expended, the derivation may be used with many specifications and
without the user needing to understanding the transformations that have been written. In contrast, using a
conventional approach, a programmer must reapply his skills for each new algorithm implementation and
must validate the implementation produced.

The transformational approach is comparable in purpose to that of developing a programming language
compiler, yet fundamentally different in method. In constructing a derivation we attempt to identify the many
distinct language models that exist between an abstract functional specification and some implementation
model. These models are subsequently encoded as transformations. The identification of intermediate
models simplifies development of a derivation, but, more importantly, produces models that are shared by
related derivations. So, for example, most of the transformations required to produce efficient code for
the CRAY and the AMT DAP — distinctly different implementation models — are shared. Indeed, the
transformations are also shared with the derivation for a shared-memory multiprocessor (see Figure 1).

The transformational approach is still in its infancy. Additional work is required in analysing additional
algorithm specifications and understanding and encoding programmer optimizations. Our work is con-
centrated on the consideration of example algorithms and the many possible implementations of these
algorithms.
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