
An Algebra for Deriving Efficient Implementations for an
Array Processor Parallel Computer from

Functional Specifications
Technical Report 1995/Jun.SF.AS.MC.JMB

Stephen Fitzpatrick�, A. Stewart, M. Clint, J. M. Boyle�y

June 1995

The Queen’s University of Belfast,
Department of Computer Science,
Belfast BT7 1NN,
Northern Ireland.

yMathematics and Computer Science Division,
Argonne National Laboratory,
Argonne IL 60439, USA.

fS.Fitzpatrick, A.Stewart, M.Clintg@cs.qub.ac.uk, boyle@mcs.anl.gov

Abstract

We present a set of program transformations which are applied automatically to convert an abstract
functional specification of numerical algorithms into efficient implementations tailored to the AMT DAP
array processor. The transformations are based upon a formal algebra of a functional array form, which
provides a functional model of the array operations supported by the DAP programming language. The
transformations are shown to be complete.

We present specifications and derivations of two example algorithms: an algorithm for computing
eigensystems and an algorithm for solving systems of linear equations. For the former, we compare the
execution performance of the implementation derived by transformation with the performance of an in-
dependent, manually constructed implementation; the efficiency of the derived implementation matches
that of the manually constructed implementation.

Keywords: program transformation, program derivation, normal forms, functional specification,
AMT DAP array processor

1 Introduction

The implementation of numerical mathematical algorithms on modern, high-performance computers presents
an interesting contrast: most algorithms in this class have clear, easy-to-follow specifications, yet efficient
implementations for high-performance computers are neither clear nor easy-to-follow.

That numerical mathematical algorithms have transparent specifications is not surprising — their mathe-
matical foundation provides a coherent, logical and systematic framework and a rich body of knowledge
that may be used to construct their specifications.

That acceptable implementations of numerical mathematical algorithms are rarely clear or easy-to-follow
(or even correct!) is also not surprising — a programmer must usually formulate an implementation which

�This work is supported by a research studentship from the Department of Education, Northern Ireland.
�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of

Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

1

differs radically from the specification in order to comply with the programming model supported by
a particular implementation language and to exploit the specific hardware architecture in use (and thus
improve the execution performance of the implementation). For example, a programmer may attempt to
express certain operations in whole array or vector forms or to split a time-consuming task amongst a
number of co-operating processes that execute concurrently on a parallel machine. Each implementation
technique exacts a price as far as the clarity of the implemented program is concerned. When several
implementation techniques are combined, the implementation becomes so complex that its relationship to
the original algorithm specification is not apparent. Efficient implementations are thus often difficult to
construct, to verify, to maintain and to adapt for execution on other computer systems.

In this paper, we discuss a method for automatically deriving efficient implementations from abstract spec-
ifications through program transformation: the transformational programmer constructs an abstract algo-
rithm specification in a clear, natural style, paying no heed to efficiency, and initiates the application of a
sequence of meaning-preserving program transformations which implement the abstract constructs of the
specification language in some chosen target language (usually a Fortran or C dialect), eliminate inefficien-
cies occasioned by the clear style of the specification and tailor the implementation for the chosen computer
system.

The programmer’s task is thus changed from manually constructing a single implementation of a spec-
ification, to developing systematic implementation methods, and to encoding these methods as program
transformations. Most transformations are independent of the particular algorithm being implemented, so
a programmer’s efforts will be be reused to produce implementations of other algorithms. In addition, many
transformations are independent of the particular computer system for which an implementation is being
derived, and can be reused for many computer systems. A single specification may serve as the source from
which multiple implementations are derived, each implementation being tailored for a particular computer
system.

The automated derivation of implementations for sequential and vector computer systems has been dis-
cussed previously [15]; in this paper, we extend this work to the derivation of implementations for the
AMT DAP array processor. In Section 2 we discuss the specification language we use, a functional pro-
gramming language ML [69]; functional programming languages provide a convenient basis for expressing
numerical mathematical algorithms [15, 36, 44]. We also discuss a small set of functions that support ar-
ray operations in ML, and we illustrate the use of these functions by defining common matrix and vector
operations. In Section 3 we specify two significant algorithms that are used to solve problems frequently
encountered in scientific and engineering applications (the computation of eigensystems and the solution
of systems of linear equations). We then outline the target architecture in Section 4. In Section 5, we dis-
cuss the transformation system and the transformations used to produce DAP implementations. Example
applications of the transformation are outlined in section 6 and an analysis of the execution performance
of the derived implementations is given in section 7. A discussion of related work and conclusions are
presented in sections 8 and 9.

2 A Functional Specification Language for Numerical Mathematical
Algorithms

We use a (small) subset of the language constructs of ML as an algorithm specification language. We apply
the term functional specification to an ML definition to convey that the definition is intended as an abstract
specification of an algorithmic solution to a problem, not a concrete program to be executed in order to
compute a solution efficiently. By regarding an ML definition as a specification, we liberate its style from
all demands for efficient execution. Specifications can then be written in a style and using those techniques
that produce the greatest degree of clarity, the strongest guarantee of correctness, and the greatest degree
of adaptability. The problem of creating an executable, efficient, concrete implementation by automated
program transformation is addressed later.

2

2.1 Vector and Matrix Primitives

Algorithms in numerical linear algebra are conventionally expressed in terms of operations on vectors and
matrices, which we support through a standard library of operations, based upon an array data abstraction.

An array is defined as a mapping from a Shape to a set of values of a particular type:

array � Shape�� .

A Shape defines a set of indices (where an index is a list of integers specifying a position). We use the
term Shape to emphasize that, in array operations, the set is usually regular; i.e. it can be specified using a
small number of parameters. In this paper, a Shape is defined by a number of dimensions with the details
of each dimension expressed as a triple of the form:

�lower� upper� step�

where lower is the smallest value in the set, upper is the largest value in the set and step is the offset
between adjacent values. For example, a two dimensional ��� Shape may be defined as

���� �� ��� ��������

and denotes the set of indices
f�i� j�ji������j�����g .

For brevity, we use �n� to denote a dimension with unit lower bound and offset; for example:

�n� n������ n� ��� ��� n� ��� .

The elements of a shape are indices, which are denoted as lists of values; for example, ��� �� and ��� �� are
indices in the above ��� shape.

The library operations are defined in terms of three primitive functions for array element selection, array
creation and array reduction.

Element Selection element � � array�index��

Element selection is denoted using the function element; for example, element�A� i� is (the value
of) the element of array A at the position specified by index i. For convenience, an operator notation

A	i � element�A� i�

is also used.

Array Creation generate � Shape��index����� array

An application of generate (called a generation) creates an array of the specified shape having
elements given by applying the second argument (a function, called the generating function) to each
index in the shape. Formally, generate is defined by:

v�S � element�generate�S� �x�E�� v� � �x�E�v� � Ex
v

where �x�E denotes a function with formal argument x and with body E, and where Ex
v denotes the

result of substituting v for all free occurrences of x in the expression E. For example,

element�generate�S� ��i� j��i
 j�� ��� ��� � �i
 j�
�i�j�
����� � �
 � � � .

3

Array Reduction reduce � shape��index���������������

A reduction combines a set of values into a cumulative value by means of a binary reducing function
(the third argument to reduce). The set of values to be reduced is produced by applying a generating
function (the second argument) to each index in a shape (the first argument). The final argument is
the initial value — it is used to instantiate the reduction by inclusion in the set of values to be reduced
(so that the application of a binary reducing function to the set is a valid operation even when the set
contains only a single element). Formally, reduce can be defined by:

reduce�fg� �x�E� op� a� � a
reduce�S�fyg� �x�E� op� a� � reduce�S� �x�E� op� a op Ex

y � .

No order for applying the generating or reducing functions is specified, so the reducing function
should be associative and commutative.

Common examples of reductions are summing of the elements of a matrix, conjoining the elements
in a boolean matrix, and determining the maximum value in a matrix.

The two functions size and shape are also used: size�A� n� returns the size ofA in the dimension specified
by n; shape�A� returns the shape of A.

The primitive array functions have been designed to provide a convenient means for defining common
mathematical operations and to avoid biasing functions in favour of any particular computer architecture.
For example, an application of generate or reduce can be evaluated either sequentially or in parallel —
no order is specified for applying the generating function to the indices, or (in the case of reduce) for
combining values.

Algebraic laws for the array operations are presented in Section 5.3.1.

2.2 Specifications for Numerical Mathematical Algorithms

A library of standard matrix and vector operations is defined in terms of the primitive array operations.
Most of the library operations are simple recastings of the conventional mathematical definitions. For
example:

Matrix Addition
Mathematical definition: �A
 B��i� j� � A�i� j�
B�i� j�
ML specification:� plus(A, B) = generate(shape(A), �[i, j]�A@[i, j]+B@[i, j])

Matrix Transpose
Mathematical definition: AT �i� j� = A�j� i�
ML specification: transpose(A) = generate(Shape.transpose(shape(A)), �[i, j]�A@[j, i])

Vector Inner Product
Mathematical definition: �U� V � � U ��� 	 V ���
 � � �
 U �n� 	 V �n�
ML specification: inner˙product(U, V) = reduce(shape(U), �[i]�U@[i]*V@[i], +, 0.0)

Matrix Multiplication
Mathematical definition: �A 	B��i� j� � �row�A� i�� column�B� j��
ML specification:
multiply(A, B) = generate([size(A, 1), size(B, 2)], �[i, j]�inner˙product(row(A, i), column(B, j)))

�In this paper, �-expressions are used to denote function expressions; ML uses the equivalent notation fn�args� ��

expression.

4

In each case the ML definition and the conventional mathematical form are closely related.

The definitions of commonly used functions such as plus, transpose, inner product, and multiply have
been placed in a library of numerical mathematical functions which are used in specifications. In most
cases, the functions are invoked using standard operator notation — the specification language permits
operators to be overloaded, so that, for example, ‘
’ denotes matrix addition as well as integer addition
and real addition.

The simplicity and clarity of functional programs make them particularly satisfactory for specifying nu-
merical computations, especially when the basic specification language is enhanced by the inclusion of
data abstractions. Data abstractions make it possible to introduce concepts and notations that are suited to
the problem domain of a specification, or even to the particular problem under consideration.

3 Example Specifications

In this section, we present specifications for two useful numerical mathematical algorithms as examples of
more complex specifications.

3.1 An Algorithm for Computing Eigensystems — Parallel Orthogonal Transfor-
mations (POT)

The eigensystem �Q�
� of a matrix A of order n satisfies the equation, AQ � Q
, where
 is a diag-
onal matrix with the eigenvalues ��� � � � � �n of A as its diagonal elements, and the columns of Q are the
corresponding eigenvectors. If A is symmetric, Q is guaranteed to be non-singular and is, in addition,
orthogonal.

POT [20] computes the eigensystem of a symmetric matrix by constructing a sequence of orthonormal
matrices of eigenvector approximations, fUkg, and a sequence of similar symmetric matrices, fBkg, thus:

1. U� � I

2. Uk�� � ortho�AUktransform�Bk�� diagonal�Bk��� k
 �

3. B� � A

4. Bk � UT
k AUk

Then limk��fBkg �
 and limk��fUkg � Q.

The function transform is defined below. The function ortho orthonormalizes the columns of its non-
singular matrix argument using the Modified Gram-Schmidt method. The columns of the argument matrix
are orthogonalized in an order determined by the magnitude of the diagonal elements of Bk: the column
corresponding to the diagonal element with greatest magnitude is orthogonalized first; the column corre-
sponding to the diagonal element with second greatest magnitude is orthogonalized second; and so on.

POT may be realized by the following application of a functionPot

(eigenvectors, eigenvalue˙matrix) = Pot(A, identity˙matrix(shape(A)))

whose definition in Standard ML is

fun Pot(A:real Array, U:real Array): real Array*real Array =
let val B = transpose(U)*(A*U)
in
if (is˙satisfactory(B))
then (U, B)
else Pot(A, ortho(A*U*transform(B), diagonal(B))

end;

5

where let . . . in . . . end defines a local expression: the identifier B is bound to the specified value (trans-
pose. . .) during evaluation of the conditional expression; the value of the conditional expression is the
value of the whole local expression.

This definition follows directly from the description of POT given above: if Bk � UT
k AUk is sufficiently

close to being diagonal (as determined by the function is˙satisfactory) then Uk is the matrix of eigen-
vectors of Q and the diagonal elements of Bk are the required eigenvalues; otherwise a more accurate
approximation to Q is derived and Pot is re-applied with this new approximation as its second argument.

The operation transform produces from its matrix argument a matrix Tk which, ignoring its diagonal, is
anti-symmetric and each column of which is an approximation to an eigenvector of Bk. The components
of Tk are computed as shown in Figure 1(a). The ML specification shown in Figure 1(b) defines a function
transform that realizes the transform operation (the operator ˜ denotes negation). This specification
uses generate to construct the transformation matrix, Tk, which has the same shape as Bk. A function
Calculate computes the value of the �i� j�th element of the transformation matrix. The generating function
embodies the cases required by the specification. A similar development yields a specification for the
function ortho.

tij �

���
��

�bij

dij�sign�dij �
p

d�
ij
�	b�

ij

� i � j

�� i � j
�tji� i � j

where dij � bjj � bii,
and where bij is a typical element of Bk

(a) Mathematical definition [71]

fun transform(B:real Array):real Array =
let

fun Calculate(i:int, j:int):real =
let val d = B@[j, j]-B@[i, i]
in 2*B@[i, j]/(d+sign(d)*sqrt(sqr(d)+4*sqr(B@[i, j])))

in
generate(shape(B), �[i, j]�
if (i¿j) then Calculate(i, j)
else if (i=j) then 1.0
else ˜Calculate(j, i))

end

(b) ML specification

Figure 1: The transform operation

3.2 A Conjugate Gradient Algorithm

The Conjugate Gradient algorithm uses an iterative process to compute (an approximation to) the vector x
of order n satisfying the equation Ax � b where A is a positive-definite, symmetric matrix of order n�n
and b is a vector of order n.

To solve Ax � b, where A is a positive-definite symmetric n�n matrix:
Set an initial approximation vector x�,
calculate the initial residual r� � b�Ax�,
set the initial search direction p� � r�;
then, for i � �� �� � � �,

(a) calculate the coefficient �i � pTi ri�p
T
i Api,

(b) set the new estimate xi�� � xi
 �ipi,
(c) evaluate the new residual ri�� � ri � �iApi,
(d) calculate the coefficient �i � �ri��Api�p

T
i Api,

(e) determine the new direction pi�� � ri��
 �ipi,
continue until either ri or pi is zero.

Figure 2: Mathematical definition of Conjugate Gradient (J.J. Modi [58], p152)

The name ‘Conjugate Gradient’ often refers to a class of algorithms which employ the basic method defined
in Figure 2, rather than to a specific algorithm. The particular version used here is known as a bi-conjugate

6

gradient algorithm; the functional specification is shown in Figure 3.�

type cgstate = real vector*real vector*real vector*real vector;
fun cgiters(a:real matrix, b:real vector):cgstate =
let
(* Terminating condition.*)
fun has˙converged((x, r, p, q):cgstate):bool = inner˙product(r, r)¡epsilon;

(* One iteration.*)
fun cgiter((x, r, p, q):cgstate):cgstate =
let
val rr:real = innerproduct(r, r);
val alpha:real = rr/innerproduct(q, q);
val x�:real vector = x+p*alpha;
val atq:real vector = transpose(a)*q;
val r�:real vector = r-atq*alpha;
val beta:real = innerproduct(r�, r�)/rr;
val p�:real vector = r�+p*beta;
val q�:real vector = a*r�+q*beta

in
cgstate(x�, r�, p�, q�)

end
in
iterate(cgiter, cgstate(x0, r0, p0, q0), has˙converged)

end

Figure 3: SML specification of conjugate gradient

� The algorithm is based upon manipulation of a collection of vectors x, r, p and q (x being the current
approximation to the solution); the type cgstate is defined to represent this collection of vectors, as
a 4-tuple of real vectors. Instances of the cgstate type are constructed using the function cgstate.

� The function cgiters takes A and b as arguments and returns a cgstate whose first component is the
solution.

� The specification uses the iterate library function to perform the repetition required by the algo-
rithm.

– The first argument to iterate is a function cgiter defining the computation that is to be repeated.

– The second argument is a value (an instance of cgstate) with which to initialize the process.

– The third argument, has˙converged, is a function which determines when the repetition is to
cease (i.e. when the approximation to the solution is sufficiently accurate).

� The function defining the repeated computation, cgiter, takes a single argument of type cgstate and
returns a value of the same type. In the specification, pattern matching is used to bind the names x,
r, p and q to the four components of the cgstate argument.

� The body of cgiter computes the next collection of vectors as local values x�, r�, p� and q� and returns
these values as an instance of cgstate.

� For brevity, the computation of the initial values x0, r0, p0 and q0 is not shown.

The bulk of the computational costs are incurred by the two matrix-vector products in the computation of
atq and q�.

�We emphasize that we are not interested in the merits and demerits of this particular specification — it is merely one that was
convenient for us to use as an example.

7

The functional specifications presented above are straightforward recastings of the mathematical definitions
into the chosen specification language. Although some of the syntactic detail differs from the mathematical
form, the basic structures of the specifications mirror those of the mathematical definitions. The specifica-
tions should be readily understood by a reader with a knowledge of basic mathematics.

4 The Target Architecture: The AMT DAP 510

The AMT DAP 510 [59] is a Single Instruction Multiple Datastream (SIMD) parallel computer system,
consisting of a 32 by 32 grid of processing elements (see Figure 5) controlled by a separate master proces-
sor.

The master processor — essentially a conventional 32 bit processor with some additional components for
controlling the operations of the processing elements — performs most scalar calculations. The processing
elements, which are single bit processors, perform the parallel processing operations. The master processor
issues instructions to the processing elements, all of which obey the instruction simultaneously. The master
processor may also issue data to the processing elements.

Processing element (i,j)

Memory element (i,j)
in memory plane k

Figure 4: DAP memory planes

N

S

EW

Figure 5: DAP processor grid

Each processing element has its own local memory to which it has direct access; no processing element has
direct access to the memory of any other processing element. In general, in a given operation, all processing
elements access the same component of their respective memories. Thus, the memory of all the processing
elements may be thought of as consisting of a sequence of planes, the kth plane being the aggregate of the
kth component of each processor’s memory; the processor grid may be thought of as performing operations
on these memory planes (see Figure 4).

When a processing element requires a value which is stored in the memory of another element, it must
obtain the value by a communication mechanism. Each processing element is connected to its four nearest
neighbours in the grid, an element on an edge being connected to the corresponding element on the opposite
edge (directions on the grid are designated as north, south, east and west — see Figure 5); all of the
processing elements can simultaneously obtain a value from one neighbour, though the direction in which
each neighbour lies is the same across the entire grid.

In addition to the nearest neighbour connections, the DAP hardware supports three broadcast mechanisms
which can be used to duplicate values across the grid: a single scalar value can be broadcast to each
processing element, or a set of 32 scalar values (called a vector) can be broadcast to each row or to each
column of the grid.

Associated with each processing element is an activity register which controls whether or not the element
participates in certain operations. The activity mask (that is, the grid of 32 by 32 activity registers) can be
set under program control and can thus be used to implement conditional operations.

The DAP hardware also supports reduction operations (such as summation and conjunction) over the entire
processor grid, and along only the rows or columns (to produce a vector of values).

8

4.1 The Target Language: Fortran Plus Enhanced

Fortran Plus Enhanced (FPE [1]) is an extension of standard Fortran allowing the processor grid of the
AMT DAP to be used efficiently. It supports two non-conventional types, scalar vector and scalar matrix,
which are similar to one dimensional and two dimensional arrays, but which have associated functions that
make use of the processor grid.

The size of vectors or matrices which may be used is limited only by the the amount of memory available,
not by the size of the processor grid. Fortran Plus Enhanced subdivides a vector or matrix whose dimen-
sions are larger than those of the processor grid into segments each of which is the size of the processor
grid (if necessary, it pads the edges of the vector or matrix to make the size a multiple of the processor grid
size).

The features of Fortran Plus Enhanced that are important in the context of this paper are:

Componental functions — scalar functions applied either to each element of a vector or matrix or to
corresponding elements of a pair of vectors or matrices. The componental functions include common
arithmetic and logical operations.
e.g. A
B, for vectors and matrices A and B.

Aggregate functions — certain elementwise reductions on a vector or matrix.
e.g. sum�A�, for a vector or matrix A.

Vector or matrix assignment — simultaneous assignment of all elements of a vector or matrix.

e.g. A � B, for vectors or matrices A and B.

Masked assignment — vector or matrix assignment controlled by a mask (a boolean vector or matrix).

Masked assignment affects only those elements of the left side vector or matrix for which the corre-
sponding element of the mask is true.
e.g. A�mask� � �, which assigns � to matrix A where the mask mask is true.

Masked vector or matrix assignment is the primary mechanism supporting conditional execution on
the DAP processor array.

Pattern functions — construction of vector or matrix masks having true elements arranged in certain
commonly used patterns.
For example: patunitdiag�N � is an N�N matrix with true along its leading diagonal and false
everywhere else; patlowertri�N � is an N�N matrix with true in its lower triangle (the area on and
below the leading diagonal) and false everywhere else.

Geometric functions — functions to re-arrange the order of elements in a vector or matrix.
e.g. transpose�A�, for matrix A.

Extractions — a vector with elements equal to the elements of a given row or column of a matrix.
e.g. A��� � is row 1 of matrix A.

Complex extraction functions — extractions performed using a mask as an index.

For example, if M is a boolean matrix with one and only one element true in each row, then the
positions of the true elements can be used to extract a vector from a matrix A, where A has same
size as a column of M . For example, patunitdiag�n� is a boolean matrix with true values along
the main diagonal; A�patunitdiag�n�� � is a vector comprising the diagonal elements of A.

9

Expansion functions — a vector or matrix having each element equal to a given scalar value, or a matrix
having each row or each column equal to a given vector.
e.g. mat�����m� n� is an m�n matrix with each element having the value 1.0, and
matr�V�m� is a matrix having m rows each of which is a copy of the vector V .

Shifts — vectors or matrices with all elements translated in the same direction. For example, a north
shift moves all the elements of a matrix to the north, introducing null values along the south edge.

To run efficiently on the DAP, a program must be expressed almost entirely in terms of the operations
described; operations which cannot be expressed as combinations of these operations are executed on the
scalar processor, resulting in much slower execution than is achievable on the processor array.

5 Transforming Functional Specifications to Efficient Programs

The TAMPR program transformation system [10, 14] can be employed to apply program transformations
to derive efficient Fortran or C programs from higher-order functional specifications. Each TAMPR trans-
formation rule is a rewrite rule, having a pattern and a replacement, both of which are specified in terms of
the grammar of the programming language.

Most of the transformations that carry out such a derivation are independent of the problem being solved
and of the target hardware, and so can be employed in derivations for any problem domain and for any
target hardware architecture. As we discuss, however, one can easily add a few problem-domain-specific
or hardware-specific transformations to the derivation to produce highly efficient code.

Typically, a derivation is structured into a sequence of major stages, each of which consists of a short
sequence of transformation sets. TAMPR applies each transformation set once in turn, but exhaustively
applies all transformations comprising that set. The total number of transformation applications may be
large: for the POT specification, for example, the entire derivation from ML to Fortran Plus Enhanced
requires about 10000 rewrites. Clearly, it is vital that TAMPR supports the automatic application of the
rules. It would be unrealistic to attempt to apply thousands of transformations by hand, or even to guide
their application.

5.1 Sketch of the Basic Transformational Derivation

The stages in the basic transformational derivation are depicted in Figure 6, in which the boxes represent
particular transformation sequences and the arcs represent the order in which particular stages may be
combined. The starting point for the derivation is a pure, functional specification (expressed in Lisp or
ML); the result of the derivation is an imperative implementation expressed either in Fortran 77 or ANSI
C.

The specification is transformed by:

1. converting the specification into the abstract functional language used by the transformation system
(essentially, the �-calculus extended with named functions and type information);

2. standardizing the abstract functional language to facilitate later processing;

3. simplifying structure of the functional specification by unfolding function definitions and evaluating
certain resulting expressions;

4. converting the abstract functional form to an equivalent abstract imperative form; and

5. converting the abstract imperative language to the required implementation language.

10

Lisp
Specification

ML
Specifciation

Functional
form
to
Imperative
form.

Fortran 77 ANSI C

1 1

Functional
Language
Canonicalization

2

Unfolding
and
Simplification

3

Functional form
Preparation

Tail
Recusion
elimination

Functional to
Imperative
Mapping

Stack
implementation

4

5
Fortran
Standardization

5
C
Standardization

ML
Conversion

Lisp
Conversion

Figure 6: Basic Transformation Derivation

Lisp
Specification

ML
Specifciation

Lisp
Conversion

ML
Conversion

Fortran Plus Enhanced

Functional
Language
Canonicalization

Unfolding
and
Simplification

Array
Operation
Generation

Common
Subexpression
Elimination

Functional form
to
Imperative form

Fortran
Standardization

Array Operations
to
DAP Operations

Array Algebra
Optimizations

Figure 7: AMT DAP Transformation Derivation

11

By removing the ‘syntactic sugar’ of the initial specification (written in ML or in another functional lan-
guage) the derivation is freed from the syntactic details of the functional language used for specification
and thus permits other specification languages to be used with little additional effort.

Unfolding function definitions ensures that the only (non-recursive) functions persisting in a specification
belong to a small set of designated ‘primitive’ functions, such as generate and reduce. When defining
the semantics of specifications or when transforming specifications, only the primitive functions need be
considered after unfolding has been performed. The Unfolding and Simplification stage (stage 3) may be
omitted.

The conversion of an abstract functional specification into an equivalent abstract imperative form (step 4)
is achieved by:

4.1. manipulating the functional specification into a form that renders the conversion to imperative form
a straightforward task;

4.2. performing tail recursion elimination on the abstract functional form;

4.3. mapping the language constructs of the abstract functional language onto equivalent constructs in
the abstract imperative language (for example, conditional expressions are mapped on to conditional
statements); and

4.4. implementing recursive functions by introducing a stack to store function arguments, return values
and return addresses (thus removing the requirement on the implementation language to support
recursive functions).

The tail recursion elimination and stack implementation phases may be omitted.

The transformations in the basic derivation provide the framework upon which other specialized derivations
may be constructed. A more detailed discussion of the basic transformation steps, including some example
code fragments generated at various stages, is given in [12, 15].

5.2 Transformational Derivation for the AMT DAP

For efficient execution on the AMT DAP, a specification is recast into Fortran Plus Enhanced in order to
exploit the parallel array operations provided on the processor grid. Rather than convert directly into FPE,
the conversion is performed in two stages (see Figure 7):

� In the first stage, array operations expressed in single-element terms are converted into whole-array
operations. These whole-array operations are similar to those supported by Fortran Plus Enhanced,
but they are all denoted as pure functions, whereas some of the FPE operations, such as masked array
assignment, are destructive operations. The output form generated by this stage is called the Array
Form.

� In the second stage, which augments the standard functional-to-imperative stage, the Array Form
operations are converted into FPE operations.

Although it is based on operations supported by FPE, the Array Form is not intended to be DAP specific —
the operations it supports are generic array-processor operations. The Array Form could thus be used as
an intermediate form for other array processors, or for other implementation languages that are based on
whole-array operations (such as Fortran90 or High Performance Fortran). Moreover, because the Array
Form is a pure, functional form, it is retains a simpler semantics than FPE, facilitating further manipulation
such as Common Sub-expression Elimination.

In addition to the two stages described above, a stage that uses algebraic properties of vectors and matrices
to optimize specifications is included. For example, in the specification of POT, the expressions UTAU and
AUtransform�B� are evaluated. The matrix algebra stage ensures that the matrix product AU is com-
puted only once, by rewriting these expressions as UT �AU � and �AU �transform�B�. This optimization

12

is obvious, and may seem trivial, but it has considerable effect on the execution performance (since the
matrix product operation is so computationally expensive).

5.3 Converting to Array Form

In this section we emphasize, in the main, the conversion from single-element to whole-array form; the
other stages of the transformation to FPE, though important, are not very interesting.

The Array Form is based upon the �-calculus augmented with a set of functions that perform generic array-
processor operations. The additional functions correspond to the FPE operations discussed in Section 4.1.
For example, the following operations are available:

� an operator
array for the elementwise addition of two arrays (usually the ‘array’ subscript is
dropped in the discussion);

� a function row for extracting a specified row of a matrix;

� a function sum for summing the elements of a numeric array.

In addition, a data-parallel conditional expression, defined below, is used:

Ifarray M then T else F � generate�S� �i�if M	i then T	i else F	i�

where M , T and F are arrays of shape S. The data-parallel conditional constructs an array by merging the
elements of two arrays (T and F): a particular element of the result is drawn from T if the corresponding
element of M (the ‘mask’) is true; otherwise the element is drawn from F .

The purpose of the Array Form stage of the derivation is to convert array operations expressed using
generate and reduce into Array Form operations. For example,

generate��n�m�� ��i� j��A	�i� j�
 B	��� j���A
 expand rows�n� row�B� ���

where expand rows�n� V � denotes a matrix having n rows, each of which is equal to the vector V . The
advantage of the second, whole-array form is that it is easy to implement directly on an array processor. To
implement directly and efficiently the first, single-element form on an array processor would be difficult.

The strategy that is used in the conversion to Array Form is to simplify the internal structure of applica-
tions of generate by propagating generate inwards through arithmetic and other operations contained in
generating functions. For example,

generate��n�m�� ��i� j��A	�i� j�
B	��� j��
�generate��n�m�� ��i� j��A	�i� j��
array generate��n�m�� ��i� j��B	��� j��
�A
array expand rows�n� generate��m�� ��j��B	��� j���
�A
array expand rows�n� row�B� ���

� Each step of the transformation is based upon algebraic properties of generate and reduce, which
are discussed below.

� Propagation through operators converts single-element operations into array operations.

� Propagation results in expressions such as

generate��n�m�� ��i� j��A	�i� j�� and generate��m�� ��j��B	��� j��

for which further propagation is impossible. The generating functions are assessed to determine
whether or not they correspond to particular forms (such as ‘identity generate’ or ‘row extraction’),
which can be implemented efficiently on an array processor. Establishing such correspondences is

13

facilitated by the simplified structure of the transformed generating functions (as compared with the
structure of the original generating function).

Below, the transformations that convert functional specifications into Array Form are discussed. The strat-
egy used in applying these transformations (‘propagation of generate’) is described. Formal proofs that
application of the transformations terminates under this strategy, and that application is complete, are given.

5.3.1 Algebraic Identities for generate and reduce

The transformations that convert single-element form into Array Form are based upon algebraic identities
for generate and reduce. These identities are listed here in three categories:

Propagation rules — which propagate applications of generate into expressions (thereby, for example,
converting operators into whole-array form).

Special forms — which convert particular forms of generate into array operations (thereby, for exam-
ple, extracting a row of a matrix).

Optimizations — which enhance the degree of parallelism in expressions (thereby, for example, con-
verting multiple vector operations into a single matrix operation).

Propagation Rules

1. Infix Element Operator to Infix Array Operator

generate�S� �x�E�bopscalarE�� � generate�S� �x�E�� boparray generate�S� �x�E��

where bop is a binary infix operator.

A generation constructed from the expression E� bop E� is equivalent to the array version of bop
applied to arrays constructed from E� and E�. For example,

generate�S� �x�E�
scalar E�� � generate�S� �x�E��
array generate�S� �x�E�� .

2. Unary Element Operator to Unary Array Operator

generate�S� �x�uopE� � uoparray generate�S� �x�E�

where uop is a unary operator.

An array constructed from uopE is equivalent to the elementwise application of uop to the array
constructed from expression E. For example,

generate�S� �x�absE� � absarraygenerate�S� �x�E� .

3. � Promotion from generate

generate�S� �x����y�E��E��� � ���Z�generate�S� �x�E�y
Z�x�

��generate�S� �x�E���

Consider the left side of this identity: an array is constructed in which each element requires the
evaluation of expression E� and the binding of the result to identifier y. There is no mechanism in

�Of course, not every residual generating function produced by propagation will correspond to an array processor operation. In
such circumstances, efficient implementation on an array processor may not be possible.

14

FPE for constructing such an array in parallel; the construction would have to be implemented in
FPE as a sequential loop.

However, the binding of E� to y can, potentially, be performed for all elements in parallel by con-
structing a separate array, Z, as shown on the right of the identity — the value of E� for each index
x is stored as an element of Z. The original array is constructed as before except that the binding
for y is replaced with an access to the appropriate element of Z. It may then be possible to construct
both arrays in parallel. For example,

generate�S� �x���y��y
 sqrt�y���� 	A�x����
� ��Z�generate�S� �x��y
 sqrt�y��y

Z�x����generate�S� �x�� 	A�x���

� ��Z�generate�S� �x�Z�x�
 sqrt�Z�x�����generate�S� �x�� 	A�x���
� ��Z�Z
 sqrt�Z���� 	A� .

4. Conditional Expressions

generate�S� �x�if Eb thenE� elseE��
� ifarray generate�S� �x�Eb� then generate�S� �x�E�� else generate�S� �x�E��

This identity is essentially the definition of the data-parallel conditional.

Special Forms

Array processor programming languages generally include a predefined set of optimized methods for per-
forming certain operations — primarily communication operations — commonly required for numerical
mathematical algorithms. To produce an efficient program, these standard optimizations must be exploited.
Thus, it is necessary to identify, from the array expressions within a specification, those expressions that
are instances of supported operations. Identifying such expressions is facilitated by the simplification of
generating functions that results from the propagation of generate carried out by the preceding set of
transformations.

5. Array Identity
generate�S� �x�A�x�� � A where Shape�A� � S.

6. Array Constants
generate�S� �x�e� � expand�S� e�

where e is independent of the generating index x and expand�S� e� is an array of shape S with each
of its element having the value e. For example,

generate��n�� �x����� � expand��n�� ����

is a vector of length n with each element having the value ���.

7. Column or Row Expansion

generate��n�m�� ��i� j��E� � expand cols��m�� generate��n�� ��i��E��

where E is independent of j,

generate��n�m�� ��i� j��E� � expand rows��n�� generate��m�� ��j��E��

where E is independent of i.

Constructing a matrix by applying a generating function that is independent of one of the indices is
equivalent to constructing a vector and duplicating the vector row- or column-wise, as appropriate.

15

8. Array Patterns

generate��n� n�� ��i� j��i � j�
� generate��n� n�� ��i� j��i� � generate��n� n�� ��i� j��j�
� diagonal pattern�n�

where diagonal pattern�n� is an n�n mask with each of its diagonal elements having the value
true, and all of its other elements having the value false. (Identities exist for other patterns, corre-
sponding to other relations such as �.)

The propagation rules apply to the first term in this identity, to give the second term, because the
equality operator = has an elementwise equivalent.

9. Permutations

generate��n�m�� ��i� j��A�j� i�� � transpose�A� where shape�A� � �m�n�

Transpose is the most common permutation.

10. Extractions

generate��n�� ��i��A�i� i�� � diagonal�A� where shape�A� � �n� n�
generate��n�� ��i��A�i� k�� � column�A� k� where shape�A� � �n�m�
generate��m�� ��i��A�k� i�� � row�A� k� where shape�A� � �n�m�

where, in each case, k is independent of i.

11. Shifts
generate��n�m�� ��i� j��if i � � then � elseA�i� �� j��

� Ifarray generate��n�m�� ��i� j��i � ��
then generate��n�m�� ��i� j����
else generate��n�m�� ��i� j��A�i � �� j��

� ShiftSouth�A�

where shape�A� � �n�m�.

An expression of the first form is converted into an expression of the second form by the propagation
rules and is then converted into an application of ShiftSouth. Similar rules apply for shifts in
other directions, for combinations of shifts (such as a north-east shift) and for unidirectional shifts of
magnitude greater than 1.

Optimizations

To obtain optimum performance from a DAP implementation, it is necessary to augment the preceding
rules with others that are designed to take advantage of the particular capabilities of an array processor
architecture and, in particular, those of the AMT DAP.

For an array processor architecture, it is preferable that a single large data-parallel operation be performed
rather than a sequence of smaller data-parallel operations — this means that it is worthwhile to seek to
combine or reorder sequences of generate and reduce operations to give a data-parallel operation that
applies to the largest possible number of array elements.

12. reduce-reduce Combination

reduce�S� ��x��reduce�S�� ��y��E�
� ����
� ��� � reduce�S�S�� ��x� y��E�
� ���

where S� is independent of x, � denotes the cartesian product of shapes, and �� is an identity
element of operator
.

16

This identity asserts that a reduction, using an operator
, of a set of values each of which is itself
the result of a reduction using
, is equivalent to a single reduction. For example,

reduce��n�� ��x��reduce��m�� ��y��A�x� y��
� ���
� ��� reduce��n�m�� ��x� y��A�x� y��
� ��

This optimization establishes a larger parallel reduction from a number of smaller reductions — by
converting, in this example, n
 � vector reductions into a single matrix reduction.

This rule can be generalized to reductions in which the initial value is not the identity element of the
reducing function.

13. generate-reduce Swap

generate�S�� ��x� y��reduce�S�� ��z��E�
� v��� reduce�S�� ��z��generate�S� � ��x� y��E��
� v��

where S�, v are independent of x, and where
 and v on the right side are an array operator and an
array of initial values, respectively.

This identity asserts that the evaluation of multiple reductions, each of which produces a single
element of a matrix, is equivalent to a single reduction which constructs the complete matrix, using
the array version of the reducing function. This optimization is important in the context of the matrix
product operation:

generate��n�m�� ��x� y��reduce��l�� ��z��A	�x� z� 	B	�z� y��
� ���
� reduce��l�� ��z��generate��n�m�� ��x� y��A	�x� z� 	B	�z� y���
� ��

The left side corresponds to the ijk order of evaluation (with k parallelised); the right side corre-
sponds to the kij order of evaluation (with ij parallelised). As discussed in [16], the latter order of
evaluation can be understood as computing the matrix product by a sequence of n rank-one updates
to the zero matrix.

The motivation for this optimization is as follows: the reduce-generate combination can be con-
sidered as exhibiting three-dimensional parallelism (the expression E must be evaluated for each
combination of x, y and z, in the appropriate ranges). However, the DAP can utilize at most two-
dimensional parallelism, so that at least one dimension must be processed sequentially. Because
reductions tend to exploit parallelism less than other operations (such as elementwise operations)	, it
is an optimization to use this identity to arrange for the reduction to be the operation that is performed
sequentially.

14. generate-reduce Combination

generate��m�� ��x��reduce��n�� ��y��E�
� v�� � reduce rows�generate��m�n�� ��x� y��E��
� v�

where n and v are independent of x and reduce rows reduces its matrix argument along its rows to
form a vector of values.

This identity asserts that the evaluation of multiple reductions, each of which creates a single element
of a vector, is equivalent to the construction of a matrix followed by a reduction along its rows.� This
optimization improves performance by increasing the degree of parallelism — if the generate and
reduce were not combined, the generate would be evaluated sequentially. For example, matrix-
vector product is optimized as:

generate��m�� ��x��reduce��n�� ��y��A	�x� y� 	 U	�y��
� ���
� reduce rows�generate��m�n�� ��x� y��A	�x� y� 	 U	�y���
� �� .

�The parallel reduction of an vector of length n by an array processor typically requires log ��n� steps, whereas the parallel
addition of two vectors of length n can be performed in one step.

�A column-wise combination is more efficient than a row-wise combination for some expressions. The transformations used in
practice include heuristics to decide which to use.

17

15. generate-generate Combination

generate�S� �x�generate�S� � �y�E�� � generate�S�S�� �x�y�E�

This identity asserts that an array of arrays is considered equivalent to a single, ‘flattened’ array. This
equivalence is included for completeness; it is not used in practice since it requires a more complex
interpretation of basic operations. For example, array indexing must be ‘curried’ so that, for example,
a two-dimensional index applied to a four-dimensional array returns a two-dimensional array.

5.3.2 Transformation Application Strategy

The equivalences in Section 5.3.1, when used left-to-right, constitute the transformations required when
converting an abstract functional specification into an efficient form suitable for execution on an array
processor architecture and, in particular, on the AMT DAP. The rules involve patterns that are disjoint; thus,
no transformation interferes with any other transformation (i.e., for a given program section, at most one
transformation is applicable). In addition, the rules cannot result in an infinite sequence of transformations
(see next section). Thus, the rules can be applied automatically to transform an element-based functional
specification to an array-based specification optimized for an array processor architecture.

5.3.3 Completeness Proof and Normal Form

The DAP transformation strategy propagates generate functions into expressions as far as is possible.
This strategy may be viewed as a way of deriving a normal form for generate and reduce, since these
functions cannot be driven indefinitely far into expressions. The existence of a normal form enables the
transformations to be applied automatically in the TAMPR system, without the need for human guidance.

The basic idea is illustrated by demonstrating how a generate term may be transformed into Array Form.
The individual rewrites used in the transformation process are equivalences in the algebra of generate—
see Section 5.3.1 — just as the rewrites used in earlier transformation stages are equivalences in the �-
calculus.

For simplicity, the discussion concentrates on the propagation rules, and it is assumed that the elements of
arrays are scalar values (integers, reals or booleans). Specifically, terms are assumed to have the following
form:

generate�S� �x�E�

where E is defined (using Extended Backus Naur Form) as

E �� C j
V j
N �E� j
uop E j
E� bop E� j
if Eb then E� else E� j
���y�E��E��

where

y denotes a tuple of names;
C denotes a constant;
V denotes an index variable in y;
N �E� denotes a function application; and
E and Ei denote expressions.

The details of the classes C, V and N are irrelevant in the derivation of the DAP normal form.

The application of the transformations can be represented by a recursive tactic T , defined by:

T �generate�S� �x�E��
def
�

case E of
C � generate�S� �x�C�
V � generate�S� �x�V �
N �E�� � generate�S� �x�N �E���

18

(Rule 1) E� bop E� � T �generate�S� �x�E��� bop T �generate�S� �x�E���
(Rule 2) uop E� � uop T �generate�S� �x�E���
(Rule 3) ���y�E��E�� � ��X�T �generate�S� �x�E�y

X�x����T �generate�S� �x�E���

(Rule 4) if Eb thenE� elseE� � if � T �generate�S� �x�Eb���
then T �generate�S� �x�E���
else T �generate�S� �x�E���

It is important to note that unary and binary operators (syntactic classes uop and bop) are overloaded: on the
left of the rewrites they are applied to individual elements while on the right they are applied to structures.

Proposition 1 After transformation, all remaining generate terms have the form tg defined by:

tg �� generate�S� �x�C� j
generate�S� �x�V � j
generate�S� �x�N �E��

Proof of Proposition 1
Define a measure 	 on generating functions; this measure induces an ordering which is used to establish

proposition 1 by structural induction. The measure also facilitates a proof of termination of the transfor-
mation.

The definition of 	 is:

	�C� � �
	�V � � �

	�N �E�� � �
	�uop E� � �
 	�E�

	�E� bop E�� � �
 	�E��
 	�E��
	�if Eb then E� else E�� � �
 	�Eb�
 	�E��
 	�E��

	����y�E��E��� � �
 	�E��
 	�E��

The relation�� on generating functions is defined as E �� E� � 	�E� � 	�E��, where� is the usual ‘less
than’ relation on natural numbers. The salient point of the ordering on generating functions is that ‘com-
pound’ expressions (unary and binary operator expressions, conditional expressions and �-applications)
are ‘larger’ than their constituent sub-expressions.

Let
�E� denote the property that all generations occurring in E have the form tg. It is shown that:

�
�T �generate�S� �x�e��� holds for base cases of E (viz. C, V and N �E�), and that

� if
�T �generate�S� �x�e���� holds for all e� �� e, then
�T �generate�S� �x�e��� also holds.

Then, by structural induction,
�T �generate�S� �x�e��� holds for all e.

Base Steps: Consider case C of E. A generation with generating function of this form is left unchanged
by T . It is already in the form tg, so
�T �generate�S� �x�C��� holds. Similarly for the cases V and N �E�.

Inductive Steps: Consider the case E � if Eb then E� else E�.

�T �generate�S� �x�if Eb then E� else E����
�
�if T �generate�S� �x�Eb�� then T �generate�S� �x�E��� else T �generate�S� �x�E����
�
�T �generate�S� �x�Eb��� �
�T �generate�S� �x�E���� �
�T �generate�S� �x�E����
� true � true � true by hypothesis, since Eb, E�, E� �� E
� true

19

The cases for unary and binary operators follow similarly. The case E � ���x�E��E�� requires a little
more attention:

�T �generate�S� �x����y�E��E�����
�
����Z�T �generate�S� �x��E��

y

Z�x���� T �generate�S� �x�E�����

�
�T �generate�S� �x��E��
y

Z�x���� �
�T �generate�S� �x�E����

Now the second term in the above,
�T �generate�S� �x�E����, holds by the induction hypothesis, since
E� �� E. Since 	�y� � 	�Z�x��, the substitution of the latter for the former in an expression leaves the
measure of the expression exchanged: that is,

	��E��
y

Z�x�� � 	�E�� .

Now E� �� E, so �E��
y

Z�x� �� E and
�T �generate�S� �x��E��
y

Z�x���� follows by the induction hypoth-
esis.

Thus, by structural induction, Proposition 1 holds.

�

Corollary: It is possible to detect, in the normal form, generate (and reduce) terms which have data-
parallel implementations using rules 5–11.

6 DAP Implementations

To illustrate the use of the transformations discussed above, we consider in detail the transformation of part
of the function Pot, whose specification is discussed in Section 3.1, The derived implementation of CG is
also discussed briefly.

6.1 POT

1. Functional Language Standardization

fun Pot:real Array =
�A:real Array�
�U:real Array�
�B:real Array�
if (is˙satisfactory(B))
then (U, B)
else orthogonalize(mmmult(A, mmmult(U, transform(B))), diagonal(B))

end (mmmult(transpose(U), mmmult(A, U)))
end

end
end

Infix operators have been converted to applications of functional equivalents and �-bindings have
been introduced for ML let bindings.

2. Matrix Algebra Optimizations

The repeated calculation of matrix A�U is recognized and bound to the name AU to ensure it is
evaluated only once.

20

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
if (is˙satisfactory(B))
then (U, B)
else orthogonalize(mmmult(AU, transform(B)), diagonal(B))

end (mmmult(transpose(U), AU))
end (mmmult(A, U))

end
end

end

3. Unfolding and Simplification

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
. . .

end (generate([n, n], �[i, j]�reduce([n], �[k]�U[k, i]*AU[k, j], plus, 0.0)))
end (generate([n, n], �[i, j]�reduce([n], �[k]�A[i, k]*U[k, j], plus, 0.0)))

end
end

end

Applications of functions such as mmmult and transpose has been replaced by their definitions
expressed as generate and reduce operations (see Section 2.2).

4. Array Form

by generate � reduce rule 13 �

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
. . .

end (reduce([n], �[k]�generate([n, n], �[i, j]�U[k, i]*AU[k, j]), plus, 0.0))
end (reduce([n], �[k]�generate([n, n], �[i, j]�A[i, k]*U[k, j]), plus, 0.0))

end
end

end

by Element Operator to Array Operator rule 1 �

21

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
. . .

end (reduce([n],
�[k]�generate([n, n], �[i, j]�U[k, i])*generate([n, n], �[i, j]�AU[k, j]),
plus, 0.0)
)

end (reduce([n],
�[k]�generate([n, n], �[i, j]�A[i, k])*generate([n, n], �[i, j]�U[k, j]),
plus, 0.0)
)

end
end

end

by Expand Special Case rule 7 �

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
. . .

end (reduce([n],
�[k]�expand˙cols([n], generate([n], �[i]�U[k, i]))
* expand˙rows([n], generate([n], �[j]�AU[k, j]),

plus, 0.0))
)

end (reduce([n],
�[k]�
expand˙cols([n], generate([n], �[i]�A[i, k]))
* expand˙rows([n], generate([n], �[j]�U[k, j]),

plus, 0.0))
)

end
end

end

by extraction rule 8 �

22

fun Pot:real Array =
�A:real Array�
�U:real Array�
�AU:real Array�
�B:real Array�
. . .

end (reduce([n], �[k]�
expand˙cols([n], row(U, k)) * expand˙rows([n], row(AU, k),
plus, 0.0))
)

end (reduce([n], �[k]�
expand˙cols([n], column(A, k)) * expand˙rows([n], row(U, k),
plus, 0.0))
)

end
end

end

5. Common Sub-expression Elimination

Common Sub-expression Elimination (CSE) has no effect on the example fragment from POT. Al-
though there is a common element, column(U, k), in the two matrix products it is not efficient to
make this a common computation in this context. In fact, this operation is implemented using a
particular form of DAP addressing so no computation need be performed to create a column of the
array U .

6. Functional form to Imperative form

subroutine Pot
. . .
block
real AU(n, n)
do k=1, n, 1
AU = AU+expand˙cols(n, column(A, k)) * expand˙rows([n], row(U, k))

enddo
block
real B(n, n)
do k=1, n, 1
B = B+expand˙cols([n], row(U, k)) * expand˙rows([n], row(AU, k))

enddo
...

end
end
end

The reduce operations are translated into loops over the index range.

7. Array Operations to DAP Operations

The abstract array operations are converted to the particular (and somewhat arcane) syntax required
by Fortran Plus Enhanced.

23

subroutine Pot
. . .
block
real AU(*n, *n)
do k=1, n, 1
AU = AU+matc(A(, k), n)*matr(U(k,), n)

enddo
block
real B(*n, *n)
do k=1, n, 1
B = B+matc(U(k,), n)*matr(AU(k,), n)

enddo
...

end
end
end

8. Fortran Standardization

The main section of the Fortran Plus Enhanced implementation of POT is shown in Figure 8.

integer n
real tol
parameter�tol��e����
parameter�n����

real A��n	 �n�	 U��n	 �n�
real �
 tranU��n	 �n�	 AU��n	 �n�
integer step
integer signD��n	 �n�
real B��n	 �n�	 diagB��n�	 D��n	 �n�
real g�����n	 �n�	 g��
��n�
logical mask��n	 �n�
logical g��
��n	 �n�	 g�����n	 �n�

���
�

 continue
C AU := A*U

tranU�tran�U�
AU�

do ��
 step��	 n
AU�AU�matr�A�	 step�	 n��

� matc�tranU�	 step�	 n�
��
 continue

C Compute B
B�AU
g����

do ��
 step��	 n
g����g����matc�tranS�	 step�	 n��

� matr�b�	 step�	 n�
��
 continue
��� B�g���

C Test for convergence
diagB�B�patunitdiag�n�	 �
g��
�abs�diagB�
if ��sum�abs�B���sum�g��
���

� �n��n�����lt�tol� goto �

C U := Transform(B)
g����patlowertri�n�

� �and� �not� patunitdiag�n�
mask�patlowertri�n�
g��
�patunitdiag�n�
U�mask�and�g��
���
mask�g��
���false�
g��
�g���
D�matr�diagB	 n��matc�diagB	 n�
signD��
signD�D�lt�
����
U�mask�and�g��
������B��

� �D�signD�sqrt�D�D����B�B���
��� U��not�patlowertri�n����tran�S�

C update U
D�

do ��
 step��	 n
D�D�matc�AU�step	 �	 n��

� matr�S�	 step�	 n�
��
 continue

S�R
���
goto �

�

 continue

Figure 8: Fortran Plus Enhanced implementation of POT

� The comments have been inserted manually to improve clarity for the reader.

� The * in the declaration of the matrices indicates that their elements are to be processed in
parallel.

� The iteration of POTiters has been realized by a GOTO loop beginning at line 100 and ending
at line 200.

24

� The loop which terminates at line 110 computes the product of matrices A and U . This product
is stored since it is used twice: in the computation of B (U T 	A	U) and in the new eigenvector
matrix approximationU (A 	 U 	 transform�B�).

� The computation of B (the diagonal of which gives the current approximation to the eigenval-
ues) is completed at line 125.

� If B is sufficiently close to being diagonal (the mean of the absolute values of the off-diagonal
elements is sufficiently close to zero) the loop is exited via the GOTO 200 statement.

� The following lines, up to line 126, construct the transformation matrix. The definition of
transform explicitly distinguishes elements in the lower triangle of the transformation matrix
from elements in its upper triangle; its implementation on a SIMD architecture thus requires
the computation of two matrices (one for lower triangle, one for upper triangle) which are
then ‘merged’. However, because the transformation matrix is (ignoring its diagonal) anti-
symmetric, only one of these matrices need be computed (say, the matrix for the lower triangle);
the other matrix can be formed by transposition and negation (as in line 126).

Some of the mask manipulation in this part of the computation is unnecessary: no effort has
been made to optimize mask expressions since they are very cheap on the DAP. (The grid of
single-bit processing elements can manipulate the single-bit representation used for booleans
very efficiently.)

� The eigenvector approximation matrix U is updated by the loop terminating at line 130. The
orthonormalization of the columns of U is not shown.

The FPE implementation of POT is considerably different from its ML specification: the details of
the computation of the matrix products and of the transformation matrix would be inaccessible to
one unfamiliar with the DAP. The program is efficient but it is not easy to read. Of course, it is
not intended that the FPE implementation should be read — it is nothing more than a source for
processing by the FPE compiler to produce efficient machine code for the AMT DAP.

6.2 Conjugate Gradient

The Fortran Plus Enhanced implementation of CG is shown in Figure 9.

� The collection of vectors manipulated by the algorithm is realized by four arrays x(*n), etc. The
computation of the vectors from which the next approximation is constructed is performed using
destructive updates on these arrays; thus there are no separate variables corresponding to x�, etc.

� The repetition required by the algorithm (expressed using iterate) is implemented using a loop real-
ized by a GOTO occurring at line 13; the loop ends at line 15.

� Line 2 computes the inner product of r with itself. This value is the measure of the accuracy of the
approximation to the solution.

� If the approximation is sufficiently accurate, the loop is exited via the GOTO statement on line 4.

� Otherwise, the next set of values (x�, r�, p� and q�) is computed by lines 6 to 12

� Note, in particular, that lines 7 and 9 compute the two matrix-vector products:

transpose(A)*q � sumr(A*matc(q, n))

A*r� � sumc(A*matr(r1, n))

In the first product, the matrix A is transposed, but no explicit transpose operation occurs in the
implementation; rather, row and column operations in the implementation of normal matrix-vector
multiplication (i.e. without transposition) are interchanged. This accounts for the slight difference in
form between the implementations of the two products.

25

real*8 A(*n, *n), x(*n), r(*n), p(*n)
real*8 q(*n), b(*n), r1(*n), beta, rr
integer cnt

...
1 continue
2 rr = sum(r*r)

3 if (sqrt(rr).lt. 1.0E-14) then
4 goto 15
5 else
6 alpha = rr/sum(q*q)
7 r1 = r-sumr(A*matc(q, n))*alpha
8 beta = sum(r1*r1)/rr
9 q = sumc(A*matr(r1, n))+q*beta
10 x = x+p*b
11 r = r1
12 p = r1+p*beta
13 goto 1
14 endif
15 continue

...

Figure 9: Fortran Plus Enhanced implementation of conjugate gradient

Again, the DAP implementation may appear rather ugly since it is not intended for a human reader. The
program is, however, an extremely efficient implementation that exploits the strengths (and indeed quirks)
of the DAP architecture. The implementation makes effective use of the DAP hardware, with all of the
vector and matrix operations being performed in fully data-parallel manner. The only unsatisfactory aspect
of the implementation is the unnecessary use of the variable r1: the assignment to r1 in line 11 could be
replaced with an assignment to r, obviating the need to assign to r later. Efficiency could be improved by
eliminating two vector assignments and one vector variable.

7 Execution Performance of Derived Implementations

From the point of view of a user of an implementation, its most important feature (after correctness) is its
execution speed. Clear, extensible functional specifications are useful only if it is possible to derive fast
and efficient implementations from them.

Examination of the derived implementations reveals that they are highly efficient — they make excellent
use of the parallel processing capabilities of the DAP. A more rigorous assessment of the execution per-
formance of the derived POT implementation can be made by comparing it with that of a hand-crafted
implementation developed independently by a programmer who was very familiar with the target architec-
ture.

In Figure 10 the time required to compute one approximation to the eigensystem� by a hand-crafted im-
plementation of POT is compared with the time required by the automatically derived implementation; the
hand-crafted version has been analyzed in [21, 70].

The execution times for the hand-crafted and automatically derived versions are almost identical. For
the larger matrix examples the derived implementation is marginally slower than the hand crafted version

�The same amount of time is required to generate each successive approximation.

26

Matrix Size Time per iteration (sec)
Hand Crafted Automatically Derived

Fortran Plus Enhanced Fortran Plus Enhanced
64 1.35 1.35
128 9.30 9.31
256 69.86 70.30

Figure 10: Execution times of derived and manually-constructed DAP implementations of POT

(by between 0.1% and 0.6%). This discrepancy arises from a minor optimization made possible by the
particular way in which the hand-crafted version implements the transform operation.

8 Related Work

The work presented in this paper addresses many different themes in computing science. Thus it is impos-
sible to provide an exhaustive survey of related work. However, the work described here treats the broad
themes of language selection for algorithm specification, functional language compilation and program
transformation.

8.1 Algorithm Specification

The primitive array functions, generate and reduce (see section 2) used in describing computations should
be familiar to those with experience of functional programming languages. The definitions presented are,
for the most part, natural extensions of the usual definitions over lists to definitions over arrays. (Those
unfamiliar with functional programming languages may consult [44, 7, 30, 63, 67, 26] for an introduction
to functional programming and the use of higher-order functions.) No claim is made in respect to the orig-
inality of the array functions; they are presented as objects that have proved to be particularly useful in the
specification of numerical mathematical algorithms and in the formal manipulation of such specifications.

Maaßen [50] proposes data structures and higher order functions over them for the parallel execution of
functional programs. The functions employed in the functional specifications in this paper are related to
these definitions.

Darlington et al. [29] use skeletons [28, 23, 61] in high-level specifications of algorithms. Skeletons are
higher-order functions that describe a repertoire of parallel operations and are used as the building blocks
of an algorithm’s specification. Skeletons are intended to separate the meaning of the computation from
any tailored parallel form which may be derived from such definitions. The primitive functional forms
used here may be regarded as simple skeletons in that they may be interpreted as indicating data-parallel
execution.

In [28, 29] other skeletons are defined that are oriented to particular computational models; for example,
processor-pipeline and processor-farm skeletons are defined. This type of skeleton may be viewed as
defining an execution model which is suitable for carrying out a particular computation. This approach
to algorithm specification is different from the one adopted here; in this paper, it is proposed that a speci-
fication should be as free from execution detail as possible — the algorithm specification defines only the
functions to be implemented and relegates the decisions as to implementation to the transformation phase.
It is clear that automatic tools (such as the transformation system suggested here) could not supersede the
rôle of the expert programmer; nevertheless, it is interesting to explore how much can be achieved auto-
matically. With TAMPR it is possible to apply particular algorithm transformations to achieve the effect
of model-oriented skeletons.

27

The Bird Meertens Formalism (BMF) [65, 5, 6, 56, 3, 52] provides a simple, consistent functional lan-
guage in which algorithms may be expressed. BMF provides an elegant framework for the study of algo-
rithms, but its utility as a numerical mathematical algorithm specification language is problematical given
its list-based approach. The array is fundamental to the natural expression of a large body of numerical
mathematical algorithms and to their efficient implementation. We contend that, for most numerical math-
ematical algorithms a functional specification that uses lists to represent arrays is unnatural — for example,
consider expressing a basic operation such as matrix transpose using a list representation. Moreover, such
list-based specifications are unlikely to be amenable to the utilization of the optimization techniques and
implementation strategies developed by implementers of numerical mathematical algorithms. This corpus
of implementation experience is essential for efficient implementation of functional, numerical mathe-
matical specifications and thus for the acceptance of functional programming languages for this purpose.
Numerical mathematicians readily accept array-based functions as a natural extension to the conventional
mathematical notations used in their community.

Hains and Mullin [36] define ML functions that operate on arrays. The dimensionality of the array is
expressed by defining the structure of the array. However, as with BMF, arrays are represented by lists of
elements thereby reducing the readability of specifications and impairing its usability for those to whom
the work reported here is particularly addressed.

8.2 Functional language Compilers

Many functional language compilers generate machine code which is comparable in efficiency to that pro-
duced from hand-crafted imperative programs; among these are the Orbit Compiler [49] for the language
T, the ALFL language compiler [8], the compiler for the SISAL language [26] and the Lazy ML com-
piler [2]. This body of experience has been drawn upon in the compiler-oriented transformations of the
transformational derivations presented here.

Many computer systems have been developed specifically to support the parallel execution of functional
programming languages [24, 40, 45, 64, 48, 38, 53]. Special hardware that supports combinatoric graph
reduction offers the possibility of a radical change in the relative performances of functional and impera-
tive languages, thereby reducing the need for the construction of an imperative implementation of a func-
tional specification. Simon Peyton-Jones [63] gives an excellent survey and description of combinatoric
graph reduction. Although attractive in principle, very few special-purpose graph reduction machines have
been constructed and none is widely available. Even if a successful graph-reduction machine were built
and could yield execution performance comparable to that achieved by procedural programs executed on
conventional von Neumann architectures, such a machine is unlikely to be a cost-effective alternative to
mass-produced conventional machines.

A number of functional languages have been extended to include parallel evaluation primitives. Typically,
when using such languages, a programmer specifies that a process be created to evaluate some expression
and evaluation then proceeds until the value generated by the created process is required [33, 55, 37, 49, 34].
Such language forms might serve as a target for transformation derivation or as a standard form to be used
in the transformational process. As before, however, our goal is to have specifications that are free of
execution detail.

8.3 Program Transformation

A large volume of literature on program transformations and derivations is available. Although it is not
the main subject of this paper the interested reader is referred to Partsch [60] for an overview of various
transformations systems and to [25, 27, 72, 66, 42, 47] for discussions of particular transformation systems.

A major issue still to be addressed in transformation systems is the control of the derivation process; i.e.
the specification of strategies to achieve some goal. The approach advocated here is to define a sequence of
normal forms that achieves a goal (the conversion from some initial form to some final form): consideration

28

of strategy is then reduced to ensuring that the transformations convert one normal form into the next. The
use of normal forms has been discussed at least as early as 1970 by Boyle [10] and has been addressed
more recently by Hoare [43]. In a recent paper, Boyle [17] shows how a sequence of normal forms can be
used to control transformations that perform partial evaluation of programs.

Program transformation has traditionally been used to recast a program into an equivalent but more effi-
cient form. The initial and final forms are generally expressed in the same language. An early example
is Burstall’s and Darlington’s unfold-fold transformations [18] which improve the execution efficiency of
systems of recursive equations. This topic is pursued further in [9, 39, 46, 62]. Again, the work re-
ported in these papers has been employed in the optimization techniques used in the unfolding phase of the
transformational method discussed here.

8.4 Traditional Imperative Parallel Programming

The majority of programs that are executed by parallel computers are expressed in Fortran, a language
which is inherently sequential. Fortran compilers which generate code for parallel systems usually perform
extensive program analysis in order to exploit parallel execution. This is achieved primarily by executing
multiple iterations of DO loops simultaneously [73]. This area of study is not directly related to the work in
this paper, insofar as the results of research is this area are not employed in the derivations presented here.
However, the research is important because Fortran is currently the only feasible language for programming
many vector and parallel computer systems (and that has consequences for derivations). The intractability
of many of the problems that arise in vectorization or parallelization is a major factor motivating research
into alternative approaches to programming high-performance computer systems; the work reported here
may be viewed as one alternative.

Configuration languages such as those advocated in [31, 51] permit composition of black-box processes by
specification of the communication between these. Typically, the processes are expressed in a sequential
language, such as Fortran or C, and the communication is by reading and writing to communication ports.
Configuration languages normally require too low a level of detail to be suitable for specifying algorithms,
but they might be suitable as target languages for derivations.

Imperative languages have been extended to include parallel programming constructs. The extensions
range from subroutine libraries, that are little more than interfaces to operating system routines, to entirely
new languages such as ADA, which are designed with parallel execution in mind. Of particular relevance
in the context of this paper are the array extensions to Fortran provided by languages such as Fortran90
[57], Connection Machine Fortran [22], Fortran Plus Enhanced [1], Fortran-D [32] and Vienna Fortran
[4]. These extensions provide, to some degree, a data abstraction for arrays: many common operations
such as the elementwise addition of two arrays are provided as pure functions (denoted by the usual ‘+’
operator). Vienna Fortran is distinguished from the others by its advanced support for data templates, which
permit the programmer to define the distribution of data on distributed memory systems. Recently, many
of the features of these array-based Fortran dialects have been coalesced into a single language called High
Performance Fortran [41]. The language definition is still under review and there are, as yet, no widely
available HPF compilers.

In some ways, the array extensions to Fortran may be viewed as an attempt to introduce into Fortran some
of the features of functional languages: expressions permit array operations to be denoted in a high-level,
machine-independent manner that allows operations to be succinctly combined and that facilitates analysis.

It is thus natural to enquire whether the wide-spread use of array-based Fortran would render irrelevant the
work reported in this paper, since programmers would have available array operations that are almost the
same as those provided by the array data abstraction used here. We offer the following reasons for replying
in the negative:

� The array-based Fortran dialects fall short of providing complete data abstractions for matrices and
vectors; for example, they do not support common linear algebraic operations such as matrix product.

29

� Some of the Fortran dialects do provide module mechanisms for hiding implementation details, but,
in general, efficiency considerations will probably force programmers to continue using subroutines
as their main (if any) decomposition mechanism. What the derivational approach offers over Fortran
in any form is a clear separation of the tasks of specifying an algorithm and implementing it.

� The expression-based array operations are likely to impose just as high overheads on Fortran imple-
mentations as on functional implementations. The developers of compilers for the Fortran dialects
will have to address issues such as destructively updating arrays, but they will have to address the
issue in the context of an already complex compilation system. The derivational approach allows
implementation issues to be separated and addressed more methodically.

Thus, the chief relevance of the array-based dialects of Fortran for the derivational approach proposed here
will probably result from their use as programming models to replace the ill-defined model provided by
Fortran77. (It should be easier to derive implementations designed for parallel execution using HPF as the
implementation language rather than Fortran77.)

9 Conclusion

In this paper we demonstrated that it is possible mechanically to transform high-level functional specifica-
tions into highly efficient implementations tailored for execution on the AMT DAP array processor. The
functional specifications are not biased in ways that guarantee efficiency of their implementations on a
particular machine architecture; rather, they are expressed in ways that provide clear statements of algo-
rithms. Indeed, the example specifications may be used as starting points for deriving similarly efficient
implementations tailored for execution on other machines.

The transformations used to produce the implementations presented in this paper are problem independent
and may be applied to ML specifications of other algorithms. The method may be further refined by
tailoring the generated code for a particular compiler (for example, producing sectioned Fortran Plus array
operations that are tailored for the size of the processor array) and defining specialized data transformations
(for example, specific transformations for sparse matrices).

References

[1] AMT, Fortran-Plus Language Enhanced, man 102.01, 1988.

[2] L. Augustsson and T. Johnsson, The Chalmers Lazy-ML Compiler, Computer Journal, 32(2), pp 127-
141, 1989.

[3] Roland Backhouse, An Exploration of the Bird-Meertens Formalism, Technical report CS8810, De-
partment of Mathematics and Computing Science, University of Groningen, 1988
¡URL:ftp://ftp.win.tue.nl/pub/math.prog.construction/exploration.dvi.Z¿.

[4] S. Benker, et al., Vienna Fortran-90, in Proceedings of the Scalable High-Performance Computing
Conference, eds R. Voigt and J. Saltz, IEEE Computer Society, 1992, pp 51-59.

[5] R.S.Bird, Algebraic Identities for Program Calculation, Computer Journal, 32(2), pp 122-126, 1989.

[6] R.S.Bird and J.Hughes, The Alpha-Beta Algorithm: An Exercise in Program Transformation, Infor-
mation Processing Letters, 24, pp 53-57, 1987.

[7] R.S. Bird and P. Wadler, Introduction to Functional Programming, Prentice Hall, 1988.

[8] A. Bloss, P. Hudak and J. Young, An Optimizing Compiler for a Modern Functional Language, Com-
puter Journal, 32(2), 1989, 152-161.

30

[9] E. A. Boiten, Improving Recursive Functions by Inverting the Order of Evaluation, Science of Com-
puter Programming, 18(2), 1992, pp 139-179.

[10] J. M. Boyle, A Transformational Component for Programming Language Grammar, ANL-7690 Ar-
gonne National Laboratory, July 1970, Argonne, Illinois.

[11] J. M. Boyle, Program Adaptation and Program Transformation, in Practice in Software Adaptation
and Maintenance, ed R. Ebert, J. Lueger and L. Goecke, North-Holland Publishing Co., Amsterdam
1980, pp 3-20.

[12] J. M. Boyle and M. N. Muralidharan, Program reusability through program transformation, IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, 1984, pp 574-588

[13] J. M. Boyle and T.J. Harmer, Functional Specifications for Mathematical Computations, Construct-
ing Programs from Specifications, Proceedings of the IFIP TC2/WG2.1 Working Conference on Con-
structing Programs from Specifications, Pacific Grove, CA, USA, 13-16 May, 1991, B. Möller, Ed.,
North-Holland, Amsterdam, 1991, pp 205-224

[14] James M. Boyle, Abstract programming and program transformations—An approach to reusing pro-
grams. in Software Reusability, Volume I, ed. Ted J. Biggerstaff and Alan J. Perlis ACM Press
(Addison-Wesley Publishing Company), New York, NY, 1989, pp 361-413.

[15] J. M. Boyle and T. J. Harmer, A Practical Functional Program for the CRAY X-MP, Journal of Func-
tional Programming, Vol. 2, No. 1, 1992, pp 81-126.

[16] J.M. Boyle, Towards Automatic Synthesis of Linear Algebra Programs Production and Assessment of
Numerical Software, M. A. Hennell and L. M. Delves, eds., Academic Press, 1980, pp 223-245.

[17] James M. Boyle, Automatic, Self-adaptive Control of Unfold Transformations, presented at PRO-
COMET ’94, IFIP Working Conference on Programming Concepts, Methods and Calculi, San Mini-
ato, Italy, June 6-10, 1994, proceedings to be published by North-Holland/Elsevier.

[18] R. M. Burstall and J. Darlington, A Transformation System for Developing Recursive Programs,
ACM Journal, 24(1), 1977, pp 44-67.

[19] M. Clint, et al., Towards the construction of an eigenvalue engine, Parallel Computing, 8, 1988, pp
127-132.

[20] M. Clint, et al., A Comparison of two Parallel Algorithms for the Symmetric Eigenproblem, Intern’l
Journal of Computer Mathematics, 15, 1984, pp 291-302.

[21] M. Clint and J. S. Weston and C. W. Bleakney, Comparison of Parallel Fortran Environments on the
AMT DAP 510 for a Linear Algebra Application, Concurrency: Practice and Experience, 6(3), May
1994, pp 193–204.

[22] CM Fortran Reference Manual, TMC, Thinking Machines Corporation, Cambridge, MA, USA, 1991,
October

[23] M Cole, Algorithmic Skeletons: Structured Management of Parallel Computation, MIT Press 1989.

[24] A. Contessa, et al., MaRS, a Combinator Graph Reduction Multiprocessor, in PARLE ’89 Parallel
Architectures and Languages Europe, I, eds E. Odijk, M. Rem and J. C. Syre, LNCS 365, Springer-
Verlag, 1989, pp 176-192.

[25] M. S. Feather, A System for Assisting Program Transformation, ACM Programming languages, 4(1),
1982, pp 1-20.

[26] J.T. Feo, D. Cann, R.R. Oldehoeft, A Report on the SISAL Language Project, Journal of Parallel and
Distributed Computing, v. 10, no. 4, December 1990, pp 349–366.

[27] J. Darlington, et al., A Functional Programming Environment Supporting Execution, Partial Execu-
tion and Transformation, in PARLE ’89 Parallel Architectures and Languages Europe, I, eds E. Odijk
and M. Rem and J. C. Syre, LNCS 365, Springer-Verlag, pp 286-305.

31

[28] J.Darlington, et al., Parallel Programming Using Skeletons, in PARLE’93: Parallel Architectures and
Languages Europe, LNCS 694, eds Arndt Bode and Mike Reeve and Gottfried Wol, Springer-Verlag,
June 1993.

[29] J.Darlington, Yi-ke Guo and Hing Wing To, Structured Parallel Programming: Theory Meets Prac-
tice, Draft paper obtained from the first author, January 1995.

[30] A.J. Field and P.G. Harrison, Functional Programming, Addison Wesley, 1988.

[31] I. Foster, et al., Productive Parallel Programming: The PCN Approach, Scientific Programming, 1(1),
1992, pp 51–66.

[32] G. Fox, et al., Fortran D Language Specification, Research Report, Rice University, January 1992.

[33] R. Gabriel and J.McCarthy, QLISP, in Parallel Computing and Computers for AI, Kluwer Academic,
pp 63-89.

[34] A. Giacalone, et al., Facile: A Symmetric Integration of Concurrent and Functional Programming,
Journal of Parallel Computing, 18(2), 1989, pp 121-160.

[35] A. Gill, et al. A Short Cut to Deforestation, in FPCA, 1993,
¡URL:ftp://ftp.dcs.gla.ac.uk/pub/glasgow-fp/papers/deforestation-short-cut.ps.Z¿

[36] G.Hains amd L.M.R. Mullin, Parallel Functional Programming with Arrays, The Computer Journal,
36(3), 1993, pp 238-245.

[37] R.H. Halstead, Parallel Computing Using Multilisp, in Parallel Computation and Computers for AI,
ed J.S. Kowalik, Kluwer Academic, pp 21-40.

[38] P. G. Harrison and M. Reeve, The Parallel Graph Reductions Machine ALICE, in Graph Reduction,
eds J. H. Fasel and R. M. Keller, LNCS 279, Springer-Verlag, 1986, pp 181-202.

[39] P. G. Harrison and H. Khoshnevisan, Algebraic Transformation Techniques for Functional Lan-
guages, Computer Journal, 31(3), 1988, pp 229-242.

[40] L. O. Hertzberger and W. G. Vree, A Coarse Grain Parallel Architecture for Functional Languages,
in PARLE ’89 Parallel Architectures and Languages Europe, I, eds E. Odijk, M. Rem and J. C. Syre,
LNCS 365, 1989, Springer-Verlag, pp 269-285.

[41] High Performance Fortran Language Specification, Version 1.1 High Performance Fortran Forum,
Nov 10 1994,
¡URL:http://www.hensa.ac.uk/parallel/documents/hpf/hpf-v11.ps.gz¿

[42] D. Hildum and J. Cohen, A Language for Specifying Program Transformations, IEEE Transactions
on Software Engineering, 16(6), 1990, pp 630-638.

[43] C. A. R. Hoare, et al., Normal Form Approach to Compiler Design, Acta Informatica, 30(8), 1993, pp
701-739.

[44] J. Hughes, Why Functional Programming Matters, The Computer Journal, Vol. 32, No. 2, 1989, p.
98.

[45] S. Hwang and D. Rushall, The nu-STG machine: a parallelized Spineless Tagless Graph Reduction
Machine in a distributed memory architecture, in Proceedings of the 4th Int. Workshop on the Parallel
Implementation of Functional Languages, 1992,
¡URL:ftp://ftp.informatik.rwth-aachen.de/pub/reports/1992/92-19.dir/92-19-21.ps.gz¿

[46] O. Kaser, et al., On the Conversion of Indirect to Direct Recursion, ACM Letters on Programming
Languages and Systems, 2, 1993, pp 151-164.

[47] E. W. Karlsen, et al., The PROSPECTRA System: A Unified Development Framework, in Algebraic
Methodology and Software Technology (AMAST ’91), eds M. Nivat, C. Rattray, T. Rus and G. Scollo,
Springer-Verlag, 1991, pp 421-433.

32

[48] J.A. Keane, An Overview of the Flagship System, Journal of Functional Programming, 4(1), 1994, pp
19-45.

[49] D.A.Krantz, R.H Halstead and E Mohr, MulT: A High-Performance Parallel Lisp, ACM SIGPLAN
Notices, 24(7), 1989, pp 81-90.

[50] A. Maaßen, Parallel Programming with Data Structures and Higher Order Functions, Science of
Programming, 18, 1992, pp 1-38.

[51] J. Magee, et al., An Overview of the REX Software Architecture, 2nd IEEE Computer Society Work-
shop on Future Trends of Distributed Computing Systems, 1990.

[52] G. Malcolm, Data Structures and Program Transformations, Science of Computer Programming, 14,
1990, pp 255-279

[53] Shogo Matsui, et al., SYNAPSE: A Multi-microprocessor Lisp Machine with Parallel Garbage Col-
lector, in Parallel Algorithms and Architectures, LNCS 269, Springer-Verlag, 1987, pp 131-137.

[54] C. McCrosky, Intermediate Container Removal, Computer Languages, 16(2), 1991, pp 179-195.

[55] P. F. McGehearty and E. J. Krall, Potentials for Parallel Execution of Common Lisp Programs, in
Proceedings of the 1986 International Conference on Parallel Processing, eds K. Hwang, S. M. Jacobs
and E. E. Swartzlander, 1986, pp 696-702.

[56] L. Meertens, Constructing a Calculus of Programs, in Mathematics of Program Construction, LNCS
375, Springer-Verlag, 1989, pp 66-90.

[57] Metcalf, Michael and Reid, John, Fortran 90 Explained, Oxford University Press, Oxford Science
Publications, 1990, ISBN 0-19-853772-7.

[58] Jagdish J. Modi, Parallel Algorithms and Matrix Computations, Oxford University Press, 1988, ISBN
0-19-859670-7

[59] Massively Parallel Computing with the DAP, Parkinson, Dennis and Litt, John (Eds.), Research
Monographs in Parallel and Distributed Computing, The MIT Press, 1990, ISBN 0-273-08809-2

[60] H. Partsch and R. Steinbrüggen, Program Transformation Systems, ACM Computing Surveys, 15(3),
1983, pp 199-236.

[61] S. Pelagatti, A Methodology for the Development and Support of Massively Parallel Programs, PhD
Thesis, Universita Delgi Studi di Pisa, 1993.

[62] A. Pettorossi and R. M. Burstall, Deriving very Efficient Algorithms for Evaluating Linear Recur-
rence Relations using the Program Transformation Technique, Acta Informatica 18, 1982, pp 181-
206.

[63] S.L. Peyton-Jones, The Implementation of Functional Programming languages, Prentice-Hall, New
York, 1987.

[64] S.L. Peyton Jones, et al., High-Performance Parallel Graph Reduction, in PARLE Parallel Architec-
tures and Languages Europe, I, eds E. Odijk and J.-C. Syre, LNCS 365, Springer-Verlag, pp 193.

[65] D.B. Skillicorn, Architecture-Independent Parallel Computation, IEEE Computer, 23(12), pp 38-50,
1990.

[66] D. R. Smith, KIDS: A Semiautomatic Program Development System, IEEE Transctions on Software
Engineering, 16(9), pp 1024-1043.

[67] GL Steele, Common Lisp, Digital Press, 1986.

[68] P. Wadler, Deforestation: Transforming Programs to Eliminate Trees, Journal of Theoretical Com-
puter Science, 73, 1990, pp 231-248.

[69] A. Wilström, Functional Programming using Standard ML, Prentice Hall, London 1987.

33

[70] J. Weston and M. Clint, Two Algorithms for the Parallel Computationof Eigenvalues and Eigenvectors
of Large Symmetric Matrices using the ICL DAP, Parallel Computing, 13, 281-288, 1990.

[71] J. Weston, et al., The Parallel Computation of Eigenvalues and Eigenvectors of Large Hermitian
Matrices using the AMT DAP 510, Concurrency: Practice and Experience, Vol 3(3), 179-185, June
1991.

[72] J. A. Yang and Young-il Choo, Parallel-Program Transformation using a Metalanguage, ACM SIG-
PLAN Notices 26(7), 1991, pp 11–20.

[73] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, Frontier Series, ACM
Press, 1990, ISBN 0-201-17560-6.

34

