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Abstract

This technical note details how to determine the points of closest approach of two
objects, each moving along a piece-wise linear route.

1 Introduction

The motion of an object may be specified in terms of a route, that is, a sequence of way points,
in which each way point provides a position in space (in arbitrary dimensions) and a time
(with time strictly increasing between successive way points). The object has a constant
velocity between successive way points, and thus moves along a sequence of straight line
segments between successive way points. For example, Table 1 shows a 2-dimensional route
with way points at times 0, 10, 20 & 60.

Time Position
0 (0, 0)

10 (2, 2)
20 (4, 2)
60 (0, 0)

Table 1: A route as a sequence of way points

Given two objects, each moving along its own route, the distance between the objects typ-
ically varies over time. (The distance between two positions is assumed to be Euclidean —
that is, the square root of the sum of the squares of the differences along each dimension of
the objects’ positions.)

This report details how to determine the positions and times at which the distance between
the objects is minimized as they progress along their routes — that is, the routes’ closest
approaches. Note that this is the instantaneous distance that is minimized; an alternative is
the smallest distance between the all of the positions covered by one route, without regard
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to time, and all of the positions covered by the other route, without regard to time. The
latter is not considered in this note.

First, the closest approach is determined for two objects, each moving along a single straight
line segment, with the two motions having common start times and common end times. This
is then generalized to piece-wise linear routes.

2 Closest Approach between Two Objects Moving Along

Straight Line Segments with Common Start Times

and Common End Times

Given an object moving with constant velocity from starting position ~s at time ts to ending
position ~e at time te > ts, the object’s position at some intermediate time t (ts ≤ t ≤ te) is
given by:

p(k) = ~s+ k(~e− ~s) (1)

where k = (t− ts)/(te − ts), the interpolation parameter, is the fraction of the route covered
up to time t.

Note that k = 0 at t = ts, 0 < k < 1 for ts < t < te, and k = 1 at t = te. That is, k has
value 0 for the start of the motion, 1 for the end of the motion, and intermediate values in
between. Since k is linear in t, the object’s motion is linear in k.

2.1 Distance between Objects

For two objects, with starting positions ~si and ending positions ~ei, for i = 1 and i = 2, and
with common starting time ts and common ending time te, the difference in the objects’
positions at a given k (0 ≤ k ≤ 1) is:

∆~p(k) = ~p1(k)− ~p2(k)
= ~s1 + k(~e1 − ~s1)− ~s2 − k(~e2 − ~s2)
= (~s1 − ~s2) + k[(~e1 − ~e2)− (~s1 − ~s2)]
= ∆~s+ k(∆~e−∆~s)

where ∆~s = ~s1 − ~s2 is the (vector) difference between the starting points, and ∆~e = ~e1 − ~e2
is the (vector) difference between the ending points.

Note that ∆~s+k(∆~e−∆~s) is the interpolation, by k, between the objects’ initial separation,
∆~s, and their final separation, ∆~e.

If the two objects are moving in parallel, then the difference in their positions is constant.
In particular, ∆~e−∆~s = ~0, so ∆~p(k) is constant, with value ∆~s.

The distance between the objects, D(k), is

D(k) = ||∆~p(k)|| (2)
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Figure 1: Closest approach between two objects moving in straight lines

where ||v|| =
√∑n

j=1(vj)
2 is the 2-norm of the vector ~v, where ~v has n dimensions, and vj

denotes the jth dimension of ~v (for j = 1, . . . , n).

For example, Figure 1 shows the movements of two objects:

• One object follows the blue line, starting at the left end and moving right.

• The second object follows the red line, starting at the bottom and moving up.

• The green, dashed lines show the offsets between the two objects for various values of
k.

Figure 2 shows how the distance between the objects varies as k varies. Note D(k) is the
instantaneous distance between the objects (k being linear in t) — this is the distance for
which the minimum is to be found.

In contrast, the atemporal distance can be defined as the minimum distance between any
position covered by one route and any position covered by the other route:

min
p1∈P1,p2∈P2

||p1 − p2||

where Pi = {pi(k) | 0 ≤ k ≤ 1}, for i = 1 or i = 2, is the set of all positions covered by route
i.

In Figure 1, the instantaneous distance has a minimum at k ≈ 0.65, with a value of 0.30,
whereas the atemporal distance between the two routes is 0 since they cross. The crossing
point is not the closest approach because the two objects are not at the crossing point at
the same time.

2.2 Computing the Minimum Distance

Minimizing the inter-object distance can be achieved by minimizing the square of the dis-
tance, which is simpler.
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Figure 2: Distance between objects as a function of k; minimum is at k ≈ 0.65

The square of the distance is:

D2(k) = ||∆~p(k)||2
=

∑n
j=1[∆sj + k(∆ej −∆sj)]

2 .

Differentiating with respect to k:

∂D2(k)

∂k
=

n∑
j=1

2[∆sj + k(∆ej −∆sj)](∆ej −∆sj) .

At the minimum, the derivative is 0, so:

n∑
j=1

k(∆ej −∆sj)(∆ej −∆sj) = −
n∑

j=1

∆sj(∆ej −∆sj)

which gives k for the closest approach as:

k =

∑n
j=1 ∆sj(∆sj −∆ej)∑n

j=1(∆sj −∆ej)2
=

∆~s.(∆~s−∆~e)

||∆~s−∆~e||2

where ~u.~v =
∑n

j=1 ujvj is the inner product of vectors ~u and ~v.

Note that ||∆~s−∆~e||2 is the squared length of ∆~s−∆~e. If this is 0, then the difference in
the starting positions is the same as the difference in the ending positions; i.e., the objects
are moving in parallel. In this case, k is undefined by the above equation — the distance is
the same for all k (0 ≤ k ≤ 1). If only the distance of closest approach is required (and not
the positions or time), then the distance can be computed from, say, the starting positions
or the ending positions.
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Figure 3: Closest approach is outside the time interval

Also note that the above equation may give k < 0 or k > 1. In such cases, if the objects’
straight-line motions were to be extended before ts or after te, respectively, then the closest
approach would occur in the extension. For example, Figure 3 shows two motions for which,
if they were extended, k ≈ 1.4 would give the closest approach.

If the equation gives k < 0 then the closest approach within the time period [ts, te] occurs
at ts; i.e., at k = 0. Likewise, if k > 1, the closest approach within [ts, te] occurs at te; i.e.,
at k = 1.

Thus, the closest approach within [ts, te] is given by:

k = max

(
0,min

(
1,

∆~s.(∆~s−∆~e)

||∆~s−∆~e||2

))
. (3)

Once k has been determined for the closest approach, the position of each object at closest
approach can be determined using Equation 1, and thence the inter-object distance at closest
approach using Equation 2.

3 Closest Approaches along Piece-wise Linear Routes

Equation 3 applies to two motions, each of which is a single straight-line segment; the two
motions must have a common start time and a common end time.

A route comprises a sequence of straight-line segments, so, given two routes, R1 and R2,
Equation 3 potentially could be applied to the first segment in R1 and the first segment in
R2, then to the second segment in R1 and the second segment in R2, and so on, to determine
the closest approaches segment by segment.

However, in general, the jth segment in R1 will not have the same start time, nor the same
end time, as the jth segment in R2. Indeed, in general, R1 and R2 will not have the same
number of segments. For example, Figure 2 shows two routes, one with way points at times
0, 10, 20 & 60; the other with way points at times 0, 20 & 40.
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Time Route 1 Position
0 (0, 0)
10 (2, 2)
20 (4, 2)
60 (0, 0)

Time Route 2 Position
0 (2, 8)
20 (0, 6)
40 (4, 2)

Table 2: Two routes with unaligned times

Time Route 1 Position Route 2 Position
0 (0, 0) (2, 8)
10 (2, 2) (1, 7)
20 (4, 2) (0, 6)
40 (2, 1) (4, 2)
60 (0, 0)

Table 3: Two routes with aligned times

To apply Equation 3, the routes need to be aligned in time, so that: (1) they have the same
number of way points; and (2) the jth way points in each have the same time.

For example, Figure 3 shows the same two routes after alignment:

• For Route 1, the straight line segment from position (4, 2) at time 20 to position (0, 0)
a time 60, was split into two segments by inserting a way point at time 40 at position
(2, 1), determined by interpolating the segment to time 40.

• Likewise, for Route 2, the segment from (2, 8) at time 0 to (0, 6) at time 20 was split
by adding a new way point at time 10, with position (1, 7).

In both cases, the position of the new way point was determined by interpolating the original
route to the appropriate time — thus, the insertion of the way point does not change the
motion of the object following the route.

Note that a way point at time 60 is not inserted into Route 2 since Route 2 finishes at
time 40. The final way point in Route 1 is discarded for the purpose of determining closest
approaches.

The following section provides methods for aligning the routes and determining the closest
approaches. Note that, in theory, there may be multiple closest approaches, with the same
distance.

3.1 Aligning Times and Determining Closest Approaches

First note that a straight-line movement from a way point with starting position ~s at time
ts and ending position ~e at time te can be broken into two consecutive movements by intro-
ducing an intermediate way point at any time τ between the starting and end times, with
corresponding position given by interpolation between the starting and ending positions.
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That is, the movement (ts, ~s)→ (te, ~e) can be broken into the movements (ts, ~s)→ (τ, ~p(τ))
and (τ, ~p(τ))→ (te, ~e), where ts < τ < te and p(τ) = ~s+k(~e−~s) where k = (τ − ts)/(te− ts).

Now assume initially that the two routes start at the same time and end at the same time.
Then a sequence of increasing times τl, 1 ≤ l ≤ m for some m, needs to be determined
such that τ1 is the common start time, τm is the common end time, and for each successive
pair of times τl and τl+1, 1 ≤ l < m, each object has a uniform velocity over the period
[τl, τl+1]. Then Equation 3 can be used to determine the closest approach that occurs within
each [τl, τl+1], and the overall closest approaches determined by finding those that have the
smallest separation.

Route 1 Route 2 Closest Approach
ts te s1 e1 s2 e2 Time Route 1 Route 2 Distance
0 10 (0, 0) (2, 2) (2, 8) (1, 7) 10 (2.0, 2.0) (1.0, 7.0) 5.10

10 20 (2, 2) (4, 2) (1, 7) (0, 6) 12 (2.4, 2.0) (0.8, 6.8) 5.06
20 40 (4, 2) (2, 1) (0, 6) (4, 2) 36 (2.4, 1.2) (3.2, 2.8) 1.79

Table 4: Closest approaches for corresponding segments of aligned routes

For example, Table 4 shows corresponding segments of aligned routes, with the closest ap-
proach for each segment. The rightmost columns of the table show the time at which the
closest approach occurs in the segment, the way point in Route 1 for closest approach, the
way point in Route 2 for closest approach, and the separation at closest approach. The
overall closest approach thus occurs in the final segment (between times 20 and 40).

If the objects’ routes do not start at the same time, then any motion prior to the later start
time is ignored. Likewise, any motion after the earlier end time is ignored. In other words,
the objects’ separation is only considered over the common period of their two routes. If
there is no common period (i.e., one route ends before the other begins), then there is no
closest approach.

The algorithm for aligning two routes in time is detailed in Figure 4. Determining the closest
approaches between two routes is detailed in Figure 5.

4 Conclusion

This technical note details an algorithm for determining the times, positions and distance of
closest approaches between two piece-wise linear routes.
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1. Given routes R1 and R2.
2. Determine the common time period [s, e] for the two routes: s = max(s1, s2) where si

is the start time of Route Ri; e = min(e1, e2) where ei is the end time of Route Ri.
3. If there is no common period (i.e., e < s), then there is no closest approach and the

algorithm is complete. The aligned routes are both empty. (Note that if one route is
empty, so is the other.)

4. Otherwise, let Ti be the set of times of Ri’s way points that fall within [s, e].
5. Let T be the sequence of times that contains, in ascending order, the time s, every

time in T1, every time in T2, and the time e, with each time occurring at most once
(i.e., T = sort({s} ∪ T1 ∪ T2 ∪ {e})).

6. Let R′
i be the route formed by interpolating Ri at each time in T . That is, the jth way

point in R′
i has time Tj, and position given by interpolating Ri to time Tj.

7. The aligned routes are R′
1 and R′

2.

Figure 4: Algorithm for aligning two routes in time

1. Given two routes R1 and R2.
2. Determine time-aligned routes R′

1 and R′
2.

3. If both aligned routes are empty, there is no closest approach. The algorithm is com-
plete.

4. Otherwise, if either aligned route has exactly one way point, then that way point
determines the unique closest approach. (This can happen only when one route’s end
time is the same as the other route’s start time.)
Let t be the time of that way point — note that the other route must also have a way
point at time t, since the routes are aligned in time. The positions of these two way
points, at time t, are the positions of the closest approach, and their separation gives
the distance of closest approach. The algorithm is complete.

5. Otherwise, both aligned routes have at least two way points. Let T denote the sequence
of common times of the aligned routes, in ascending order.

6. Determine a sequence Cl of candidate closest approaches by considering each consec-
utive pair of times in T , as follows:
(a) Let ts be the earlier of the pair of times. Let te be the later of the pair of times.
(b) Let si be the position in Route R′

i at time ts.
(c) Let ei be the position in Route R′

i at time te.
(d) Determine the closest approach for the straight-line movements given by ts, si, te

and ei, using Equation 3. If the movements are parallel (or effectively so given
finite precision computations), then take the closest approach as occurring at the
midpoint; i.e., at t = (ts + te)/2.

7. Determine the candidate closest approaches that have the smallest inter-object sepa-
ration. These are the closest approaches between the two routes.

Figure 5: Algorithm for determining closest approaches
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