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For certain structural testing criteria a significant
proportion of tests instances are infeasible in the
sense the semantics of the program implies that
test data cannot be constructed that meet the test
requirement. This paper describes the design and
prototype implementation of a structural testing
system that uses a theorem prover to determine
feasibility of testing requirements and to optimize

the number of test cases required to achieve test
coverage. Using this approach, we were able to
accurately and efficiently determine path feas-
ibility for moderately-sized program units of
production code written in a subset of Ada. On
these problems, the computer solutions were
obtained much faster and with greater accuracy
then manual analysis. The paper describes how
we formalize test criteria as control flow graph
path expressions; how the criteria are mapped to
logic formulas; and how we control the com-
plexity of the inference task. It describes the
limitations of the system and proposals for its
improvement as well as other applications of the
analysis.

1 . Introduction
Given a description of a set of control flow paths
through a procedure, feasible path analysis
(FPA) determines if there is input data which
causes execution to flow down some path in the
collection. FPA is central to most applications of
program analysis. But, because this problem is
formally unsolvable, syntactic-based approx-



imations are used in its place. For example, the
dead-code analysis problem is to determine if
there are any input values which cause execution
to reach a specified program point. The
approximation determines whether there is a con-
trol flow path from the start of the program to the
point. This syntactic approximation is efficiently
computable and conservative: if there is no such
path the program point is clearly unreachable, but
if there is such a path, the analysis is incon-
clusive, and the code is assumed to be live.

Such conservative analysis too often yields
unsatisfactory results because the approximation
is too weak.  As another example, consider data
flow analysis. A du-pair is a pair of program
points such that the first point is a definition of a
variable and the second point a use and for which
there exists a definition-free path from the def-
inition to the use. The sharper, semantic def-
inition of a du-pair requires that there be a
feasible definition-free path from the definition to
the use. A compiler using du-pairs for detecting
dead variables may miss optimizations by not
considering feasibility. Similarly, a program
analyzer computing program slices to merge
parallel versions may report conflicts where none
exist.

In the context of software testing, feasibility anal-
ysis plays an important role in identifying testing
requirements which are infeasible. This is espec-
ially true for data flow testing and modified cond-
ition/decision coverage. This will be discussed in
section 3.
Syntactic approximations are generally used be-
cause there is a jump from the near linear comp-
lexity of syntactic methods to intractable comp-
lexity of semantic criteria. In this paper we de-
scribe our approach to implementing feasible path
analysis, and provide experimental evidence that
it can be both efficient and effective for many ap-
plications of program analysis. The analysis is
not (nor can it be) exact, but is conservative in
that only those paths which can be proved
infeasible are identified as such. Feasible path
analysis may thus enhance program analysis
systems, trading additional computation for
sharper analytical results.

Feasible path analysis requires both symbolic
analysis and theorem proving. Symbolic analysis
relates expressions occurring at different program
points and theorem proving  determines the va-
lidity of logical relations between expressions.
The relevance of symbolic analysis and theorem

proving to testing and analysis is well known.
Traditionally, the inefficiency of such methods
precluded their applicability to practical prob-
lems. At Kestrel Institute we have been de-
veloping a high-performing theorem prover
[Wang87, Wang92] which is used for
verification and program transformation. The
prover has been effectively adopted to feasible
path analysis because most inference problems
encountered in practice are broad and shallow.
The proofs typically require just a few inference
steps, but the formulas passed to the prover are
generally very large, with much of the infor-
mation being irrelevant. It is precisely this kind
of problem for which automated inference is cost
effective compared with manual analysis.

Theorem provers are notoriously difficult for
people to use interactively. In our work all
aspects of the prover, other than the setting of
high-level strategies and resource bounds, are
invisible to the user. Our prover runs completely
automatically, generally taking on the order of
seconds for each inference task.

Consider the Ada procedure in Appendix A. This
problem is generally illustrative of the sample
problems we have treated except for the fact that
all the variables are Boolean-valued. (The ex-
ample was chosen to illustrate why a standard
theorem proving technique of placing formulas is
conjunctive normal form is a poor strategy in this
context.) A typical problem that may be posed is:
if underlined statements are executed is the value
of dc-14 (and hence the outcome of the if
statement) determined at point E? A reader
attempting a manual analysis of this problem will
quickly get a sense of the complexity of the task.
Appendix B contains a logical formula derived by
symbolic analysis which captures this problem as
a theorem proving task.

The main body of this paper describes our design
and implementation of feasible path analysis for a
very restricted subset of Ada. While limitations
on the Ada subset limit the applicability of the
tool, this work points the way to developing
capabilities which can have pervasive impacts on
software testing, re-engineering and other tasks.

The next section describes our approach to FPA.
In section 3 we describe results of its application
to structural (white-box) testing and mention
other applications. A companion paper [] de-
scribes some specific applications to testing. In
section 4 we describe related work and in section
5 our future plans.



2 . Feasible Path Analysis
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Figure 1. Basic FPA System Architecture

A control flow path through a procedure is
feasible if there is an assignment to input values,
(i.e. global variables and parameters) which
drives execution down the path. A set of control
flow paths is feasible if one of its members is
feasible.  We use a regular expression to describe
a set of paths.  Such an expression is called a
path regular expression  (PRE).

Feasible path analysis, given

• A procedure and associated type,
constant, and variable declarations

• A path regular expression P from a start
point s to an end point e

• A formula ϕ,
attempts to determine if there is a computation
state, that is, values for program variables, at s,
which drives execution down one of the paths
denoted by P, such that the formula ϕ evaluated
at point e  is true.  Typically s  is the entry to the
procedure and we seek values of global variables
and parameters with the required properties.

FPA constructs a formula in first order logic
which is satisfiable if and only if there are inputs
meeting the specification above. Construction of
the formula and related axioms is called symbolic
evaluation. A theorem prover is invoked to test

the satisfiability of the constructed formula. The
output may be yes, no, or inconclusive if the
prover does not yield a definitive result within the
resource bounds imposed.

2.1. System Architecture
Figure 1 illustrates the basic architecture of the
FPA system. The system incorporates
components of Software Refinery and
Refine/Ada [Reasoning92], products available
from Reasoning Systems, Incorporated.
Software Refinery is an environment for the
transformation and manipulation of the abstract
syntax trees stored in an object base, and for
graphical and mouse sensitive display of these
entities. Refine/Ada provides a parser, static
analyzer, control flow graph, and analysis ca-
pabilities, such as data flow analysis, for Ada.
Our system is implemented in Lisp and Refine
[Reasoning90]. Some of the features which make
Refine a good environment for building a testing
system are described in [Kotik89].

In this architecture we assume the existence of
some client, such as the Test Specification and
Determination Tool [Jasper94], which generates
requests for FPA using the interface illustrated
above. Prior to processing such requests, the
Ada procedure and associated definitions are
parsed to an abstract syntax tree, any
transformations such as loop unrolling or



function inlining are performed, and a control
flow graph (CFG) is constructed. The symbolic
analysis component then analyzes relevant type,
variable and constant declarations to generate a
set of axioms about the types and operations used
in the procedure. Next the symbolic analyzer
examines each basic block (represented as a node
in the CFG) and captures its semantics as a set of
equations relating the values of variables on entry
to the block to their value on exit. FPA requests
are processed by generating a formula in first-
order logic and testing its satisfiability with the
theorem prover.

2.1 .1 . Subset of Ada Control
Constructs
Unlike syntactic analysis, feasible path analysis
requires formalization of program semantics.
Often such formalizations are unavailable, or are
incompatible with first-order logic.  In this work
we have employed straightforward formalizations
of rudimentary Ada features, including functions
and procedure calls, assignment, case and if
statements. Ada tasks and exceptions are not
treated.

Procedure calls are treated in one of two ways.
The procedure may be unfolded (inlined), which
increases the size and complexity of the
formulas, but enhances the analysis. A procedure
may also be treated as a black box by determining
which global variables and parameters it
modifies, and assuming that it modifies each of
them in some arbitrary way.

Limited facilities are currently provided for
treating loops. If the loop does not set variables
which affect control flow or the value of ϕ , then
it raises no difficulties. If the loop consists of a
statically-determinable finite enumeration it is
unrolled. In section 5.2 we describe a future
approach to more comprehensive treatment of
loops. Otherwise loops are assumed to modify
assigned variables in some arbitrary way.

Our motivation—to demonstrate the effectiveness
of techniques on production, safety-critical
code— has been fortuitous, since safety-critical
software is often written in such restricted
subsets for understandability and predictability of
run-time performance. While extending the
analysis to a richer set of programming language
constructs is non-trivial, once done, we see no
reason why the effectiveness of the analysis will
degrade. A possible exception is high-order

functions; their treatment requires enhancements
to our first-order prover.

2.2. Symbolic Evaluation
The task of symbolic evaluation is to construct
first-order logic formulas to pass to the theorem
prover. Some of these formulas are data type
axioms derived from type declarations. Others
are derived from Ada expressions, usually in
control conditions within the procedural code.

Variables in an inference system are referentially
transparent. Unlike program variables, their
denotation does not depend on a store of values.
To deal with this difference,  each program
variable is represented as a family of logic
variables within the theorem proving
environment.  The family is indexed by the
program points where their values may differ.
“Backward” symbolic evaluation is used to
generate assertions which relate the values of
variables at different program points.

2.2 .1 . Data Representation
Ada data types and operations must be
represented and reasoned about by the theorem
prover. For each Ada data operation the system
constructs a corresponding function in a first-
order logical theory to represent the operation.
The semantics of the operations are characterized
by axioms about the associated functions. Thus
the task of representation is two-fold: first to
translate Ada expressions into the corresponding
expressions in the logic and second to generate
axioms, statically for built in types, and
dynamically for user-defined types. Axioms are
generated for relevant constant, variable and type
definitions directly from the Ada source code.

2 . 2 . 1 . 1 . Integers
Our axiomatization of the integers formalizes the
standard properties of addition, multiplication,
equality, inequality, and other Ada arithmetic
operations. The axioms are expressed in an  opti-
mized form for effective theorem proving per-
formance, because arithmetic reasoning is in
general a difficult task.  The axiomatization
assumes that integer values are unbounded. This
is a pragmatic choice in accordance with our
overall conservative approach.  Specifically, by
omitting integer overflow restrictions, we may
miss identifying an infeasible path, but we will
never make an incorrect assertion of infeasibility.



Explicitly declared subranges are axiomitized as
inequalities.

2 . 2 . 1 . 2 . Enumerations and

Subranges
Enumeration types are mapped into integer
subranges, with operations such as equality and
successor mapped into their integer equivalents.
For subranges, inequalities or a disjunction of
equalities are asserted.

2 . 2 . 1 . 3 . Real Numbers
Axiomatization of the properties of floating point
numbers is difficult. Our approach is to only
formalize those properties of the reals which are
also true about their representation as floating
point numbers. For example, associativity of
addition is not part of the axiomatization but the
transitivity of less than is.

2 . 2 . 1 . 4 . Arrays
The primary difficulty with arrays is that since
the indices used in array assignments can be arbi-
trary expressions, one does not in general know
whether consecutive assignments to an array in-
volve the same element. We model such
assignments through a symbolic history list
which represents sequential assignments to
individual elements or index subranges.  The
history list is built from nested functions over
which the prover can reason and apply rewriting
rules. Some specific examples of this basic
approach are presented in [Jasper94]. The
approach can be extended to model multi-di-
mensional arrays, as well as operations such as
array slicing and array aggregate definition.

2 . 2 . 1 . 5 . Records
Ada records are represented by a construction
function which builds an aggregate from
component fields, along with a set of projection
functions which select individual fields from an
aggregate.

2.2 .2 . Back Substitution
A control flow graph (CFG) is a directed graph
in which nodes represent basic blocks and edges
represent control flow. A basic block is a
segment of code with a single entry point and a
single exit point. Control flow path sets may be
expressed as regular expressions over the

alphabet of control flow nodes (CFNs). The
graph itself is language neutral.

In imperative languages such as Ada, each CFN
is associated with a sequence of assignment state-
ments, possibly terminated by a test predicate
which controls a multi-way branch, such as from
an if or case statement. In the discussion be-
low we restrict our attention to if statements.
Case statements are treated similarly.

The point of symbolic evaluation is to logically
relate the values of expressions at different
program points. To work within a logical
framework we introduce for each global program
variable a logical variable which denotes its value
at either the start or end of a CFN; strictly local
variables are replaced through substitutions.
Thus in node n referencing global variable v, vn
denotes the variable’s value at exit to the
associated code block n and vn*  denotes its value
upon entering the block.

A naive implementation of this model will in-
troduce a plethora of logical variables. We
optimize logical variable introduction by only
introducing those variables that are a logical
necessity. A program variable’s value at program
points p and q can be represented by the same
logical variable if for every execution of the
program that reaches p and q the value of the
program variable is the same at both points. In
particular there need only be one more logical
variables than assignments to the variable.

By  applying the well-known Hoare axiom for
assignment [Hoare69], a set of equations, called
the defining equations for CFN n, are construct-
ed which give the value of a variable at the end of
the block associated with n in terms of an
expression over variables at the start of a block.
We denote the set of these equations  for a CFN
n by σn. If a node contains a call to procedure F
(which has not been inlined), then let 

  
r1Lrn be

the variables that F may potentially modify. Let

  
f1L f n be new variables whose type is the same

as 
  
r1Lrn respectively. Then the equations r i = f i

are asserted.  Since 
  
f1L f n are unconstrained by

any axioms other then type axioms, this asserts
that the value of the outputs of F have been
modified in an arbitrary way.

Let r  be a regular expression denoting a
collection of paths from the entry to CFN s to the
exit of CFN e.  Then P(s,e,r,φ )  denotes a



logical formula over free variables vs
*  which is

satisfiable if and only if there is a state S (a map
of program variables to values), such that if
execution is started at the start of s in state S then
control will reach the exit of e along a path
denoted by r  and in the resulting state,
φ evaluates to true. The formula  P(s,e,r,φ )  can
be computed by expressing P recursively in its
argument r.  If φ  is a formula and σ a set of
equations of the form xi = ei  where xi  is a
variable and ei  is an expression, thenϕ [ σ ]  is the
formula obtained by the simultaneous substi-
tution of ei  for xi in φ .

As a base case consider P(s,s,s,ϕ ), i.e. the
execution of a single CFN s.

P(s,s,s,ϕ ) = ϕ [ σs ] .

If r  is the alternation of two expression r1and r2

then

P(s,e,r1 | r2,ϕ ) = P(s,e,r1,ϕ )" ∨" P(s,e,r2,ϕ )

We have written the disjunction in quotes to
emphasize that it denotes the expression formed
as the disjunction of two formulas, not the
boolean evaluation of two truth values.

Similarly, suppose 
  
r = r1 o r2, such that terminus

of r1 is m,  the start of r2 is n, and in order to
exit m and flow to n  the condition c must be
true. Then

  

P(s,e,r1 o r2,ϕ ) =

      P(s,m,r1,c)"&" P(n,e,r2,ϕ )[ vm = vn
* ])

.

This formula is a conjunction of the back-
substituted value of φ  and the back-substituted
value of condition c which must be satisfied to
flow along the specified path.

2 . 2 . 2 . 1 . Simplification
It is instructive to analyze the form of the
equations derived from this recursion.
Alternation of paths introduces disjunctions in the
formula and concatenation introduces
conjunctions. Thus the general form of the
resulting formulas is a nesting of conjunctions
and disjunctions. Consider the control flow
subgraph:

true false

s

f

e

c

t

Where c is the conditional expression controlling

the two-way branch. For this graph

  
p(s,e,(so t o e)|(so f o e),ϕ ) =
    (c[σs ]& ϕ [ σe ][ σ t ][ σs ]) ∨
        (¬c[σs ]& ϕ [ σe ][ σ f ][ σs ])

Note that “back substituting” the formula φ
through an if-then-else, as represented by
the diamond shaped CFG, generates a formula
which is a least twice the size of φ  (since there
are two substitution instances of φ ). In a
program which is the sequential composition of
diamond-shaped subgraphs, a formula back
substituted to the beginning of the program will
be exponential in the number of such diamonds,
i.e. the number of control flow merge points.
Basically, formula size grows in proportion to
the number of potential paths through the
program.

This behavior, if not addressed, prevents
scalability of our analysis tools to large
programs. Our defense against this growth,
which is unavoidable in the worst case, is
aggressive simplification of the formulas as they
are constructed. The theorem prover provides
this simplification, primarily through conditional
and unconditional term rewriting. An intuition as
to why such simplification prevents formulas
from growing too large is that P  may be thought
of as converting an imperative-style program into
a functional one. Experience has shown that
functional programs need not be much larger then
equivalent imperative ones.

A fundamental simplification rule is
(c&ϕ ) ∨ (¬c&ϕ ) ≡ ϕ . This rule can be applied
in the formula above if ϕ [ σ t ] = ϕ [ σ f ] . This
will happen most simply if the assignments in



nodes t and f do not modify variables of φ . In
our experience, as program size grows, the
number of assignments to any given variable and
the number of variables a given expression
depends on remains bounded. These
observations contribute to frequent application of
the fundamental simplification rule.

Simplification of generated formulas relies on
other rules and techniques as well. To pursue this
discussion further, we describe the organization
and functionality of our prover. We then continue
with the discussion of general simplification and
testing for satisfiability.

2.3. Theorem Prover
In this work we are leveraging off the capabilities
of our theorem prover, KITP. This prover is
used in Kestrel Institute’s work in program
transformation [Smith90], and program
verification [Wang92]. KITP maintains a
knowledge base (KB) which holds axioms,
inference rules, and deduced results, which are
utilized by the main prover.

The main prover of KITP consists of a natural
deduction controller (NDC) [Bledsoe83], a
simplifier, a forward inference procedure (FIP),
and a backward inference procedure (BIP). FIP
is based on unit resolution, paramodulation, and
set of support strategy [Wos68].

The BIP is the most powerful part of the prover,
and is based on a goal-oriented proving proce-
dure, hierarchical deduction [Wang87]. The BIP
proves a theorem by traversing a tree of nodes.
Each node contains a different set of rule clauses.
All candidate goal clauses are contained in a goal-
list. Each literal of a goal is indexed by a node
name, through which a set of nodes can be lo-
cated to obtain rule clauses for the resolution and
paramodulation upon that literal. The  “legal” re-
solvents of BIP  are produced under a set of
constraints or narrowing strategies, such as local
subsumption, constraints on common tails,
proper reduction, global subsumption, subgoal
reordering, partial set of support, semantic
guidance, etc.

The simplifier is designed to replace a term or
subterm by a simpler, but semantically equivalent
term or subterm. The simplification is carried out
by term-rewriting and partial evaluation. Term-
rewriting is the main component of the simplifier;
its behavior is determined by the set of term-
rewriting rules, which can be augmented by the

user. Partial evaluation is used to deduce
canonical forms for those terms or subterms that
are computable. Simplification is applied
exhaustively to each result of FIP and BIP as part
of the symbolic evaluation procedure as it
constructs formulas.

The natural deduction controller is the top-level
control structure of the prover. It decomposes a
conjecture into sub-formulas, and dispatches
them to subcomponents.

To adopt the prover to feasible path determination
we made several enhancements and modifications
to KITP.

• The term rewriting system was extended
to support conditional term rewriting
rules. This was required for effective
treatment of arrays, a traditional
difficulty for symbolic evaluation.

• We scaled up the knowledge base to
hold very large formulas.

• We improved KITP’s capability for
propositional reasoning.

• We adapted the backward inference
procedure so that it does not require a
formula in conjunctive normal form.
Normalization of formulas can cause an
exponential increase in their size.

• In order to promote effective use of
term-rewriting and automatic operation,
we transformed as many rules as pos-
sible into term-rewriting rules.

• We modified the natural deduction
controller so that the prover is focused
on disproving a non-theorem, instead of,
as is usual, proving a theorem. This
strategy is useful because in most cases,
the conjecture given to KITP is a non-
theorem, and a standard theorem prover
would waste time before reporting fail-
ure.

• We tuned the control parameters
(number of generated clauses, depth of
search, function nesting limit, etc.) of
the prover to run effectively and auto-
matically with constrained resources.

The general inference process of the prover may
be outlined by the following. Given a conjecture
to be proved, it is first simplified. If the resulting
formula is true then a proof has been found.
Otherwise the formula is negated and trans-
formed into a negation normal form (i.e. an and-



or tree), and then given to the NDC. The NDC
will try to find a connective path [Andrews81,
Bibel81, Murray87] (a set of literals contained by
an and-branch of the and-or tree) that is con-
sistent or can not be proved to be inconsistent.
Once such a path is found, the inference process
is terminated and the prover reports that the input
conjecture is a non-theorem. If all connective
paths have been traversed and proved to be
inconsistent, then the prover reports that the input
conjecture is a theorem.

3 . Applications: Structural
Testing of Software
Structural (white box) testing is a widely-used
testing methodology in which test cases are con-
structed from code without reference to require-
ments, specification, or other description of in-
tended functionality.  A collection of test cases,
called a test suite, is constructed which satisfies
one or more coverage criteria. A coverage
criterion is a parameterized family of coverage
instances defined in terms of some structural
property of the code. For example, the coverage
criterion "statement coverage" has one parameter
instance for each statement of the program which
requires that the test set contain a test case in
which flow passes to the statement. More
formally, a coverage instance is a path regular
expression denoting a set of flows through a
program. A test case satisfies a coverage instance
if the control flow path traversed in execution of
the test case is in the class of paths denoted by
the regular expression. A test suite satisfies a co-
verage criterion if for each coverage instance of
the coverage criterion there is a test case that
satisfies it.
Many coverage criteria have been defined. We
note several with respect to consideration of a
path regular expression P and formula ϕ, as
outlined above:

• Statement Coverage  Each statement
of the program should be exercised.  For
each statement instance S , Ps wil l
denote the set of all paths passing
through S, and ϕ ≡ true . Statement
coverage is a very minimal criteria.

• Decision Coverage  The outcome of
every decision (e.g. if  alternative, or
case alternative) should be exercised to
be both true and false. Each decision D

will have an associated PD denoting the
set of all paths passing through D, and a
pair ϕ t  and ϕ f , each of which must be
made true.

• Condition Coverage  Besides testing
the outcome of every decision, the
various ways in which each outcome can
be reached through different values of
the subconditions within the decision
must be exercised. This is a  refinement
of decision coverage which will intro-
duce a set of ϕ i   over the individual
conditions, according to the particular
structure of the decision.

• All Paths  All control flow paths
through a program are tested. Thus each
Pi  is a family of precisely one path. This
is a very stringent coverage criteria
which becomes infeasible for large
programs since the size of the test suite
must grow exponentially in the size of
the target procedure.

• DU-Pair Coverage  This example of
data-flow coverage was discussed in the
introduction. For each variable v and
pair of its definition d and use u, Pd/u
will denote all definition-free paths be-
tween d and u. As with the all paths
criteria, the associated ϕd /u will simply
be true.

The relevance of feasible path analysis to testing
is based on the following observations:

• Though a single test case can exercise
only one path, it can in general satisfy
many coverage instances. For example a
single test case will exercise more than
one statement and (normally) more than
one du-pair. Moreover, two distinct test
cases may exercise a non-empty inter-
section of coverage instances. Feasibility
analysis can guide the judicious selection
of test cases to achieve a “minimal” size
test suite satisfying a given coverage
criterion.

• It is not obvious when a test set achieves
coverage since some of the coverage in-
stances defined by a coverage criterion
may not be feasible. For example there
may be statements in a program which
are not reachable in the sense that there
are no input values that cause execution



to reach the statement.  For data flow
criteria this is a significant issue.

In an initial use of FPA we used it to generate an
enumeration, by depth-first search, of all feasible
paths. The algorithm tests the consistency of
partial paths starting at entry to the program. If a
partial path is inconsistent, so are all of its
extensions. With a complete enumeration of all
feasible paths, detection of infeasible testing
requirement and test suite size optimization
become tractable problems for moderately sized
programs.

However, this solution does not scale since all
feasible paths must be enumerated, and the num-
ber of feasible paths grows exponentially in
program size. Nonetheless, because of the
overall efficiency of the enumeration procedure,
programs with over 200K feasible paths were
analyzed.  This corresponds to procedures of
moderate size— roughly 20 sequential i f
statements (with approximately 50% of the
structural paths feasible). It could be argued that
writing procedures with more decisions than that
is bad engineering practice, so this represents an
adequate solution.

Here is a typical result: To determine all of the
feasible paths in the program shown in Appendix
A, the prover was passed 337 conjectures by the
symbolic analyzer. Among these, 95 were
proved to be theorems. The entire analysis took
about 9 minutes, 8.5 of which were used by the
prover. On average, the prover used about 2
seconds checking an individual conjecture.

This example demonstrates the importance of our
use of a natural deduction controller for KITP
and our strategy of focusing on disproving that
the input conjecture is a theorem.  Since NDC
tries to find a model for the negation  of the input
conjecture, a non-theorem conjecture may be
detected before the entire formula has been
processed and checked.

Appendix B shows one of the 337 conjectures
passed to the prover. This conjecture is
interpreted as asserting that if the path defined by
the underlined statements is executed, then the
if statement at point E must take the then
branch. The formula is an implication composed
of a hypothesis which is a conjunction of the
conditions that must be satisfied if the underlined
path is taken. The conjunctions on the first three
lines correspond to the condition at point A. The
conditions corresponding to  the if statements
at points B, C and D follow and are delineated

by blank lines. The condition at point E is the
conclusion of the implication.  All of these
conditions are expressed by back substitution in
terms of the initial values of the variables on
entry to the procedure.

By means of NDC, KITP determined that it is a
non-theorem in 0.05 second. However, for the
same conjecture, if the prover attempts to prove it
to be a theorem then the negated conjecture must
first be normalized into a set of 739 clauses.  The
attempted proof of this conjecture takes over five
minutes. The result of this example analysis is
that out of a possible 1018 paths through the
program, 242 were shown to be feasible.

In fact the inference system has no difficulty
testing individual path feasibility for programs
with over 100 sequential if  statements.
(Sequential if statements is an appropriate
complexity measure since each condition is
incorporated into the formula tested for
satisfiability.) Thus the prover could scale to
much larger problems. The intractability of this
approach on large problems is not due to the
theorem prover itself, but the enumeration of
individual paths.

In collaboration with the group at Boeing
[Jasper94], we are now working to apply FPA to
structural testing using the following approach:
Each test requirement corresponds to a path
regular expression. Satisfiability of the formula
associated with the PRE demonstrates feasibility
of the corresponding test. To obtain a minimal
size test suite we use a greedy algorithm which
partitions the formulas corresponding to feasible
tests into maximal satisfiable subsets.

The fundamental correspondence at work is that
the conjunction of two formulas, each represent-
ing a set of test requirements, produces a formula
which, if satisfiable, will meet both sets of re-
quirements. Thus the partitioning is done through
incrementally conjoining the formulas and testing
for satisfiability.

4 . Related Work
The significance of feasible path analysis to
structural testing is described in  [Clarke88,
Frankl88, Woodward80, Korel90, Weyuker90].
For example Weyuker [Weyuker90] writes:

Even though the size of the required test sets
were not nearly as large as predicted by the
theoretical upper bounds, we did encounter
one practical difficulty when using the data



flow criteria which has negative implications
to the use of these criteria for large programs.
The problem was determining which of the
definition/use associations or du-paths were
executable [feasible]. This problem is
encountered when using many program-based
criteria, including statement and branch
coverage, but is particularly acute for all-du-
paths criterion since there are frequently a
large number of unexecutable du-paths. In
fact, we found that the unexecutable path
problem, not the large number of required test
cases, was the primary practical difficulty in
using the all du-paths criterion.

Clarke et. al. in [Clarke88] state “For example,
data flow analysis tends to produce too many
uninteresting anomalies unless it is integrated
with a tool to evaluate path feasibility and
subsequently remove unexecutable anomalies.”

Despite this, to our knowledge, there are few
recent attempts to solve the infeasibility problem.
On the other hand there were a number of
attempts in the 1970’s. Typical of this work is
[Bicevskis79, Boyer75, Howden77, Clarke88,
Ramamoorthy76, Clarke76]. The sophistication
of  symbolic evaluators and the lack of significant
computational resource at that time precludes any
practical results from such  systems.

Field [Field93] has described a formal system
based on an equational axiomatization with a
confluent set of rewrite tools to capture reasoning
about imperative programs. In particular, his
system has a nice treatment of pointers,
somewhat in the style of our formalization of
array indexing.

Werner and Howden describe limited methods
that detect infeasible paths in COBOL programs
[Werner91].

Laski’s STAD system [Laski 90] performs the
symbolic evaluation but provides no tools for
testing feasibility. Indeed, without a simplifier
our experience is that these expressions become
unmanageable. Having determined that a testing
requirement is infeasible, he states rules which
propagate infeasibility assertions to other test
requirements. In [Yates89] a statistical path
generation strategy which minimizes the number
of infeasible paths is proposed.

Problems of infeasibility are not restricted to
white-box testing. Tripathy and Sarikaya
describe a test generation from LOTOS
specifications which may also generate infeasible
tests [Tripathy91].

An interesting alternative to symbolic evaluation
is  presented in [Korel90].

5 . Future Work

5.1. Extensions to the Inference
System
While the overall effectiveness of the prover in
this application has been a key enabling
technology, further improvements in its
performance will enable faster, more accurate
results, inter-procedural feasibility analysis,
specification-based testing and enhanced defect
analysis.  While tuning and implementation of
minor improvements based on experimental
results is a constant activity, we believe that
incorporation of a special purpose decision
procedure for integer linear programming (ILP)
will yield significant performance improvements.
This belief is based on two observations.

1. New methods for solving ILP problems
have obtained tremendous performance.
These methods employ linear
programming techniques, but search the
feasible space for lattice point (i.e.
integer valued) solutions.  While ILP is
NP-Complete these algorithms have
been quite practical over the problem
sizes we anticipate.

2. Because most operations on integer,
enumeration, record, and array types are
generally represented by linear arithmetic
formulas in the prover, there is a
significant opportunity to apply these
methods.

A notable application of ILP methods in the
context of program analysis is array dependency
analysis [Pugh92, Goff91] as used in
parallelizing compilers.

5.2. Extensions to the Symbolic
Evaluator
We also wish to implement a more
comprehensive and accurate analysis of loops.
The traditional means for establishing such
relationships is via a loop invariant, but our goal
is a completely automated system which does not
require the user to provide loop invariants.
Instead we plan to “lift” loops so that each loop is
replaced by assignment statements assigning



values to the variables modified in the loop with
values expressed using high-level functional
forms such as accumulations, reductions, filters,
and maps [Letovsky88, Wills87].  Lifting loops
into a sequence of assignments written over high-
order functionals allows us to back formulas
through loops in the same way as we would back
a formula through straight-line code.

Pointers are not treated by the system, but their
implementation is generally straightforward. For
user defined (abstract) data types we could
construct axioms for their behavior or directly
unfold the implementation bodies.

5.3. Other Applications of
Feasible Path Analysis
Program dependence graphs [Horwitz88] have
been used to support diverse applications such as
program slicing, program optimization, and
program understanding. Integrating feasible path
analysis into the construction of program
dependence graphs will leverage the sharper
analysis our techniques provide into a broad
range of applications.

There are a number of potential applications
associated with finding program defects, such as
zero divides, nil pointer references, array bounds
violations, and so forth.  The basic capability of
querying whether an arbitrary formula at a given
program point reached by some collection of con-
trol flow paths can (or must be) true is a quite
general and powerful analysis paradigm.
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Appendix A
  -- All variables are externally declared and of type Boolean

  procedure test is
  begin
   dc_1 := cc_1 or ic_1;
   dc_2 := cc_2 and dc_1 and ic_2;
   dc_3 := (ic_3 or cc_3 or cc_1) and (ic_4 or not (ic_5 and cc_2

        and not cc_3));
   dc_4 := (dc_3 or not cc_4);
   dc_5 := (dc_1 and cc_2) or cc_3 or not cc_4;
   dc_6 := ic_6 and cc_5;
   dc_7 := ic_7 and cc_5;
   dc_8 := ic_8 xor dc_5;
   dc_9 := dc_3 or ic_9;
   dc_10 := (not (dc_4 and dc_2) or ic_10) and dc_9;
   dc_11 := true;
A   if not (not dc_7 or not dc_2 or ic_11 or cc_6) then
B      if ic_12 then
         dc_11 := ic_13;
      end if;
   end if;
   dc_12 := dc_11 or not ic_14;
C   if not (dc_2 and cc_3) then
      null;
D   elsif not dc_12 then
      null;
   end if;
   dc_13 := dc_6 and (cc_6 or not (dc_2 and dc_12));
   dc_14 := dc_13 and dc_8 and dc_10;
E  if dc_14 then
      null;
   end if;
   if not dc_14 then
      if ic_15 then
         null;
      end if;
   end if;
 end test;



Appendix B

  (CC-5 & IC-7)
  & (IC-2 & ((IC-1 or CC-1) & CC-2))
  & ~IC-11 & ~CC-6

  & IC-12

  & (IC-2 & ((IC-1 or CC-1) & CC-2))
  & CC-3

  & ~(~IC-14 or IC-13)

  =>

     ((IC-9
         or (~(~CC-3 & (CC-2 & IC-5)) or IC-4)
              & (CC-1 or (CC-3 or IC-3)))
        & (IC-10
             or ~((IC-2 & ((IC-1 or CC-1) & CC-2))
                    & (~CC-4
                         or (~(~CC-3 & (CC-2 & IC-5))
                               or IC-4)
                              & (CC-1 or (CC-3 or IC-3))))))
       & (((~CC-4
              or (CC-3 or CC-2 & (IC-1 or CC-1)))
             & ~IC-8
             or ~(~CC-4
                    or (CC-3 or CC-2 & (IC-1 or CC-1)))
                  & IC-8)
            & ((~((~IC-14 or IC-13)
                    & (IC-2 & ((IC-1 or CC-1) & CC-2)))
                  or CC-6)
                 & (CC-5 & IC-6)))


