
1

A Specification of Java Loading and Bytecode Verification

Allen Goldberg
Kestrel Institute

3260 Hillview Av.
Palo Alto, CA 94304
goldberg@kestrel.edu

December 22, 1997

Abstract

This paper gives a mathematical specification the Java Virtual Machine (JVM) bytecode verifier. The
specification is an axiomatic description of the verifier that makes precise subtle aspects of the JVM
semantics and the verifier. We focus on the use of data flow analysis to verify type-correctness and the use
of typing contexts to insure global type consistency in the context of an arbitrary strategy for dynamic class
loading. The specification types interfaces with sufficient accuracy to eliminate run-time type checks. Our
approach is to specify a generic dataflow architecture and formalize the JVM verifier as an instance of this
architecture. The emphasis in this paper is on readability of the specification and mathematical clarity. The
specification given is consistent with the descriptions in the Lindholm’s and Yellin’s The Java™ Virtual
Machine Specification. It less committed to certain implementation choices than Sun’s version 1.1
implementation. In particular, the specification does not commit an implementation to any loading strategy,
and detects all type errors as early as possible.

1 Introduction

1.1 The Java Virtual Machine

The Java compiler translates Java class definitions into platform-independent target language known as the
Java Virtual Machine. The Java Virtual Machine (JVM) is a type-safe, stack-oriented abstract machine.
Type safety requires that programs with type errors must produce an error indication rather than execute
and produce an erroneous result. Type safety is an important property of a language because it aids in
development and debugging, but particularly because the erroneous executions resulting from executing
programs with type violations can be exploited to introduce security flaws. JVM code (also called
bytecode), not Java™ source is transmitted when an “applet" is sent over the Internet and remotely
executed. Because the transmitted code cannot be trusted to be the unmodified output of a correct Java (or
other language) compiler, the code must be checked for consistency either prior to execution or by run-time
checking.

A JVM program consists of a collection of class (including interface) definitions that are dynamically
loaded into the execution environment. A program is type safe if each class is type consistent within itself
and with respect to other classes already loaded into the environment. Thus we formulate the type safety
problem as: given a consistent global typing environment and a class file, determine if the class file is well-
typed given the current global typing environment. If it is, then extend the global typing environment with
the additional declarations and subtyping relationships derived from the class description.

The bytecode verifier performs static checks and dynamic checks. The static checks insure that a class
definition can be parsed to yield a constant pool and syntactically-correct code for each method. The
constant pool, which is a symbol table, has entries for each method and field defined in the class and for
each class, field, and method referenced in the method code. It also identifies a class’ direct superclass and
the interfaces it directly implements. For class files that define interfaces, it identifies its direct
superinterfaces. The static checks performed insure that every literal referenced in the code of a method is
described by and is consistent with an entry in the constant pool for the class.

This work is supported by DARPA contract F30602-96-C-0363

2

The type correctness of a class definition is difficult to verify because the JVM is weakly typed. The JVM is
a stack machine manipulating an operand stack, a set of local variables, or registers, and a heap containing
object instances. The type of stack positions and local variables, like hardware registers, vary during
method execution. Thus, for example, for a method to be type safe, it must be the case that whenever a
floating add instruction fadd is executed the top two stack elements must be typed as floating point
numbers. This check can be performed during execution, by labeling stack elements with type tags, but this
introduces an unacceptable run-time inefficiency. The dynamic checks of the verifier verify the type safety
and related properties of all possible execution paths of each method defined in the class. Providing such a
proof for all correct programs is an undecidable problem. There is, though, a decidable and efficient
method of computing a conservative estimate in which some programs that are type safe are incorrectly
rejected, along with all type inconsistent programs. Using a conservative approximation when it is clear
what subset is accepted is not problematical since then Java compilers can be designed to generate JVM
code that falls outside of the subset of type-correct but rejected programs.

In the JVM, when a method is invoked it executes with a new empty stack with actual parameters loaded
into local variables; when it returns, either normally or because of an uncaught exception, control is
transferred to the calling method. The caller’s execution environment (in particular, its own operand stack
and local variables) is restored and updated. Although methods may run concurrently, a method cannot
access or modify another method’s local variables or stack. Thus given a global typing context of signature
and subtyping information, bytecode verification can be performed independently on each method of the
class.

1.2 Dynamic Loading

Unfortunately, the complete global typing context of a class is generally not available when a class is
verified. One reason for this is that classes may reference the other recursively. More fundamentally, the
JVM specification permits a class to be loaded at the latest possible moment—when a method of the class is
invoked.

Dean [D97] considers how to insure global type consistency in a dynamically loaded environment. The key
condition is monotonicity of the global typing context. Intuitively, this means that only consistent additions
are made to the typing context as classes are loaded. The model of bytecode verification presented here is
insures global type correctness in the following sense. The verifier inputs a class definition and a global
typing context; it rejects a class definition that is either internally inconsistent or inconsistent with the
global typing context. If it accepts the class definition, it generates an extended global typing context. If the
global typing context is sequentially threaded to all invocations of the verifier, global consistency is
assured.

The Sun JDK 1.1 implements one strategy for dynamic loading and its bytecode verifier is specialized to
this loading strategy. The JDK 1.1, when verifying of a class c, it will dynamically load any classes
referenced by c that are required to insure that all classes are correctly typed. It uses a lazier strategy to
check interface types. In this paper, the bytecode verifier we specify is not committed to any particular
strategy for dynamic loading nor does it rely on run-time checks to insure type safety.

1.3 Limitations

There are two limitations of this paper. It does not consider enforcement of restrictions specified by access
flags, such as private, protected, abstract, and final and excludes the jsr and ret
instructions. While treatment of access flags are straightforward, jsr/ret adds significant complication to
the dataflow analysis.

1.4 Outline of this Paper

The next section describes aspects of the JVM type system relevant to this paper. Next, we specify a
generic data flow architecture. Then we instantiate the data flow architecture to the JVM type analysis
problem. We then consider the problem of verifying that object instances have been properly initialized.
We then discuss our plans to implement the specified verifier using the Specware system. This is followed

3

by a discussion of related work and some conclusions. The paper assumes familiarity with the JVM. The
reader is referred to Lindholm’s and Yellin’s The Java™ Virtual Machine Specification [LY97].

2 The JVM Type System

The JVM type system is largely derived from the Java language, but it also differs from Java in significant
ways.

2.1 Primitive Types

The complexity surrounding the primitive types derives from low-level efficiency and portability issues.
The elements of the stack and local variables of the JVM are “words” that hold at least 32 bit. long and
double are held in two consecutive words. On the other hand, in arrays and objects instances values that
can be stored with fewer than 32 bits may be packed into bits or bytes.

The types explicated in the JVM specification are:
• byte, 8 bit signed two’s complement integers,
• short, 16 bit signed two’s complement integers,
• char, 16 bit unsigned integers representing unicode characters,
• int, 32 bit signed two’s complement integers,
• long, 64 bit signed two’s complement integers,
• float, 32 bit IEEE 754 floating point numbers,
• double, 64 bit IEEE 754 floating point numbers,
• returnAddress, denoting an instruction addresses within the method’s code. Since we do not

treat jsr/ret, this type is not used in the specification.

In addition, we define the following types:
• lLong, representing the low-order 32 bits of a long,
• hLong, representing the high-order 32 bits of a long,
• lDouble, representing the low-order 32 bits of a double,
• hDouble, representing the high-order 32 bits of a double,
• Boolean, representing a single bit quantity,
• Void, used in method signatures to denote the return type of a method that does not return a value.

Define StkPrTy={int, float, lLong, hLong, lDouble, hDouble }. These are the type designations
of primitive types on the stack or in local variables.

Define SigPrTy={byte, short, char, int, long, float, double}. These are the type designations
of primitive types in fields and in method signatures.

Define ArrPrTy = SigPrTy {boolean}. These are the primitive types that may appear as elements of
arrays.

2.2 Reference Types

There are four kinds of reference types: classes, arrays, interfaces and the type null, the type with a single
value, the reference null. Each object and interface type is uniquely named by its fully qualified name
together and the name of its class loader [S97]. For the purposes of this paper, the structure of the name
space of classes is not relevant. Thus the collection of class names is denoted by an abstract set N. (Should
this paper be extended to check access constraints implied by the protected attribute, then the package
structure of the name space must be formalized.) The pre-defined class java.lang.object, loaded by
the system loader, is denoted object in the set N. Let No denote the set of non-array objects, and Ni the

set of interfaces. Then N=No Ni.

Define BaseArrTy=ArrPrTy N. BaseArrTy defines the set of non-array types that may be elements of an
array. Define the set of array terms ArrTy as the smallest set closed under the following rules.

4

• If t is in BaseArrTy then the term [t], read “array of type t” is in ArrTy, and has dimension 1.
• If t is in ArrTy and has dimension i, then [t] in ArrTy, and has dimension i+1 .
• All terms in ArrTy have dimension at most 255.

The collection of reference types RefTy = N ArrT {null}. A stack type is an element of the set StkTy =

StkPrTy RefTy. These are the types designations of stack elements and local variables.

In our specification, four binary subtype relations over N are used. a Rb for a, b No has the intended

meaning that a directly extends b. a
L
 b for a, b Ni has the intended meaning that b is a direct

superinterface of a. The assertion a
L
 object has the intended meaning that a does not have direct

superinterfaces. Finally, a
LPS�b for a No and b Ni has the intended meaning that object type a directly

implements interface b. These three relations are called direct subtype relations. The fourth relation, the

indirect subtype relation, a �b for a, b N, has the intended meaning that (a,b) is in the reflexive transitive

closure�
R� L LPS

. For any relation r, let TC(r) denote its reflexive transitive closure. Finally, define

the set of signature types, SigTy = N ArrType SigPrTy.

2.3 Global Typing Contexts and Name Resolution

As the JVM executes, it loads class definitions. When a class gets loaded a constant pool for that class is
constructed. The constant pool specifies if the class is an object class or an interface, the signature of fields
and methods of the class, the interfaces the class implements, and its superclass or superinterfaces. It also
specifies the fully qualified name, the type of fields, and signature and return type of methods referenced by
the class. The former are treated as assertions true of the defined class, the latter assumptions about other
classes that must be verified. When a class is verified, the (internal) consistency of the method code is
checked against the type information in the constant pool. When the referenced class is loaded, it is
possible check the type consistency of the referenced methods and fields. To perform this verification a
global typing context of assertions and assumptions is maintained.

Let F denote the abstract set of field names and M, method names. A field signature assertion is a term of

the form n.f:t where n N is a reference type name, f F is a field name and t SigTy. A method signature

assertion is a term of the form Q�I� where n N, m M is a method name, and is a method signature of

the form t*→ r. Here t* is a sequence of zero or more elements from SigTy, and r SigTy {void}. A
class assertion is a term of the form n:class or n:interface. A signature assertion is either a field signature
assertion, a method signature assertion, or a class assertion.

An assertion set is a set containing signature assertions and direct subtype assertions.

When a class c is loaded, an assertion set Γc, is extracted from its constant pool and each assertion in Γc is
added into a global assertion set Γ. The typing assertions in Γc are determined as follows.

• If c is an object class, then the assertion c:class is in Γc. If c is an interface then the assertion
c:interface is in Γc. Class files define either classes or interfaces, not arrays or the null reference
type.

• If c is class (other than object) its direct superclass is specified by an entry of the constant pool. If

the name is s, then the c
R
s is in Γc. If c is an interface, then no superclass assertions are made.

• If c is an interface, for each of its direct superinterface s the assertion c
L�
s is in Γc. If c has no

superinterfaces the assertion c
L�
object is in Γc.

• If c is an object class, for each interface s that c implements, the assertion c
LPS

s is in Γc.
• For each field name, f, with type t defined, not inherited in c, the field signature assertion c.f:t is in

Γc.
• For each method m defined, not inherited, in c��ZLWK�VLJQDWXUH�DQG�UHWXUQ�W\SH� ��WKH�PHWKRG

signature assertion�Q�I� �is in Γc.

5

If Γ is an assertion set define a
Γ�b if the pair (a,b) is in the reflexive transitive closure of the union of
the subtype assertions in Γ.

An assertion set Γ is inconsistent if any of following conditions hold.

1. a:class Γ and a:interface Γ.

2. a Rb Γ and either a:interface Γ or b:interface Γ.

3. a Lb Γ and a:class Γ.

4. a Lb Γ, b�object, and b:class Γ.

5. a LPS�b Γ and either a:interface Γ or b:class Γ.

6. a Rb Γ, a Rb Γ and b�b .

7. There is an n such that object R�n or object L�n or object LPS�n.

8.
Γ��contains a non-trivial directed cycle.

9. a
Γb, a.f:t*→ r Γ, b.f:t*→r Γ and r� r .

10. Suppose a1 R�a2 Γ, a2 R�a3 Γ,…, an R object Γ, a1 LPS b Γ , b Γ b � and b �P� Γ, but

there is no i such that ai�P� Γ. In words, Γ is inconsistent if a class a1 implements an interface b,
all of the superclasses of a1 have been loaded, and some method that is defined or inherited in
interface b1 is not defined or inherited by a1.

An assumption set is a set containing signature assertions and assertions of the form a b. When a class c is
loaded, an assumption set Ac, is extracted from its constant pool. Each assertion in Ac is added into a global
assumption set A. The assertions in Ac are determined as follows.

• If in some method of c a field f, defined in class d, is referenced, then the constant pool has an entry
with the name of the defining class, field name and its type t. Then the field signature assertion c.f:t
is in Ac.

• If in some method in c a method defined in class d is referenced, then the constant pool has an entry
with the name of the defining class, field name and signature . Then the method signature
assertion F�I� is in Ac.

• Furthermore, as methods of c are verified assertions of the form a b are added to the assumption
set.

A name n N is closed with respect to an assertion set Γ if the following conditions are met.
• If n is object, then n is closed.

• For n No other than object, n is closed if

• there is exactly one b such that the assertion n Rb Γ, and b is closed, and

• for each b Ni such that a LPS�b Γ, b is closed.

• For n Ni, n is closed if

• n:interface Γ,

• and for each b Ni such that n L�b, b is closed.

Let As be the set signature assertions in A and A the subtypes assertions in A If Γ is an assertion set and A
an assumption set, the pair (Γ, A) is inconsistent if any of the following are true.

1. Γ is an inconsistent assertion set.

2. c.m. A and either c:class Γ or c:interface Γ but F�P� Γ. (A field or method m is asserted to
be declared in the class c. The class c has been introduced to the typing context as evidenced by the

assertion c:class Γ. However, the method m is not declared or has incorrect signature or return
type.)

3. Γ As is an inconsistent assertion set. (Note because of condition (10), an inconsistency assertion

set is may become consistent with the addition of signature assertions. Thus Γ As consistent
doesn’t imply Γ consistent.)

6

4. The reflexive transitive closure of A
Γ contains a non-trivial directed cycle.

5. a b A, a:interface Γ, a is closed with respect to Γ but (a,b)
Γ

6. a1 b A, a1:class Γ,b:class Γ, a1 Ra2 Γ, a2 R a3 Γ ,…, an R
 object Γ but b�ai for some

i=1,..,n.

7. a b A, a:class Γ, b:interface Γ, a is closed with respect to Γ but (a,b)
Γ

A consistent pair (Γ, A) is a typing context.

In Sun’s JDK 1.1.4 implementation, when an interface class gets resolved, all of its superinterfaces are
loaded, if necessary, and resolved. In other words, before an interface method can execute, its interface
class must be closed. This specification is consistent with a lazier strategy in which may allow a interface to
be loaded, and initialized without loading a superinterface, as long as there are no references in the already
loaded classes to methods or static fields defined in the superinterface. With this lazy loading strategy it
may be that a class that purports to implement an interface but does not, because it fails to implement a
method defined a superclass of the interface. If the superinterfcae is subsequently loaded a type error will
be reported.

3 A Data Flow Analysis Architecture

Data flow analysis is a methodology used to establish assertions at program points that are invariant over
all program executions. A typical assertion that may be computed by flow analysis is “the value of variable
r at program point p is a constant.” Assertions are represented by elements of a meet semi-lattice.
Intuitively, the meet operation of two lattice points a and b represents what can be maximally asserted if
along one control flow path a is true, and along another b is true. For each statement in the program, a
transfer function is defined that maps an element of the lattice representing an assertion true prior to
execution of the statement to a lattice point representing an assertion true after execution of the statement.
The basic idea of flow analysis is to symbolically execute via the transfer function the program over the
lattice structure using the meet operation to merge the properties true about different execution paths to the
same program point. This is computation is a fixed-point computation over the lattice structure that
terminates when stability is reached. Under suitable conditions, the least fixed-point solution is
characterized as the meet-over-all-paths solution. This means the assertions associated with a program
point at the termination of the algorithm are sharpest invariants true of every execution sequence that
reaches that point. To instantiate the data flow architecture to a problem, the control flow graph, the lattice
and the transfer functions are specified. This paper is organized around the specification of these
parameters.

A meet semi-lattice is a tuple L = (U, , ,) where U is a universe of elements, a partial order on U,

:U × U U, is called the meet operation, and U is the bottom element satisfying the axioms:

• �is reflexive, anti-symmetric and transitive

• x for each x U,

• x for each x U,

• for each x and y, x y x, x y y, and for all a such that a x and a y, a �x y.

A descending chain is sequence of strictly decreasing elements of U. If all descending chains in a lattice are
finite then the lattice satisfies the descending chain condition. A function f:U×U → U is distributive if for

all a, b in U, f(a �b) = f(a) f(b).

 A data flow problem consists of a
• a directed graph, called the control flow graph, G=(V, E) with a distinguished entry vertex, init,

• a meet semi-lattice, L =(U, ,) with a maximal element,,�satisfying the descending chain
condition;

• for each edge e of G a function TFe:U→U that is distributive over L, and

• an initial value i U initializing the data flow at node init.

7

Let P(v) be the set of paths from the initial vertex to v. The meet-over-all-paths solution to a dataflow

problem is a map M :V→L so that M(v)=
S� 3�Y�

 TFp(i)� where TF is extended from edges to paths by
composition.

Theorem. The following algorithm converges and computes the meet-over-all paths to the dataflow
problem:

2� � Y�if v = init then i else �

while there exist an edge e=(v, w) such that TFe (O(v))� O(w) do

O(w) 2�Z�� �TFe (O(v));
return O;

Proof. See [Mu97] and [K73].

The algorithm can, of course, be refined into efficient implementations.

3.1 Product and Stack Lattices

The product lattice L = L1 × × Ln of meet semi-lattices Li = 〈 Ui, i, i, i〉 is a meet semi-lattice whose

universe is �U1 × × Un. The partial order and meet operations are defined componentwise, e.g. <a1 , ,

an> �<b1 , , bn> iff ai i bi for each i. < 1 , , n>

The coalesced product lattice L = L1 × × Ln of meet semi-lattices Li = 〈〈Ui, i, i, i〉〉 is a meet semi-

lattice whose universe is { `� �U1 –{ 1 } × × Un-{ n }. The partial order is defined componentwise,

<a1 , , an> �<b1 , , bn> iff ai i bi for each i. If for any i, ai i bi= i, <a1 , , an> �<b1 , , bn>

= . On other values the meet operation is defined componentwise.

Define select:L× i:{1..n} →Li to be the projection function, select(<a1 , , an>, i)= a i. Define

update:L× i:{1..n}, Li→L to update the ith
 component, update(<a1 , , an>, i, b)= <a1 , �, ai-1, b , ai+1,� ,

an>.

Fact 1. Select is distributive in its first argument, update is distributive in its first and third arguments.

Suppose L = (U, , ,) is a meet-semi lattice. Consider stacks of maximum size s, s>0 whose elements
are taken from U. Such a stack is itself a meet semi-lattice, denoted Stack(L, s). The universe of Stack(L, s)

are all stacks of size up to s with �adjoined,; Define s t iff size(s)=size(t) & top(s) top(t) and,

inductively, pop(s) pop(t).The meet operation is defined similarly. top and pop are the usual stack

operations extended so that top, push and pop yield (in the appropriate lattice) if any of its arguments are

. Also, define top(empty)= , pop(empty)= , and push(x, t)= , if size(t)=s.

Fact 2. pop is distributive, i.e. pop(s t)=pop(s) pop(t). Also, push is distributive in both arguments.

Fact 3. The composition of distributive functions is distributive.

Note that the type Boolean is a meet semi-lattice with false as , false �true, and x y=x&y.

Fact 4. if L is a lattice with a top element , and f:L→ L and p:L→ Boolean are distributive and then so is

 , if x = ,
g(x) = f(x), if p(x),

 , otherwise.

8

4 Instantiation of the Dataflow Architecture to the JVM

4.1 Control Flow Graph

The control flow graph, G=(V, E), for a JVM method has a vertex for each instruction and edges denoting
control flows between instructions. With the exception of the pair of instructions jsr and ret
construction of the flow graph from the class file is straightforward and not formally specified in this paper.
This paper does not treat jsr/ret, instructions that we believe are best formalized using inter-procedural
dataflow methods. We assume the existence of a function that produces a control flow graph from a method
in a class file. Such a function must perform the static checks to insure that the code and its exception table
are well-formed, must process wide instructions, and must determine control flow edges corresponding to
caught exceptions. It is not necessary to explicitly model exceptions that are not caught within the method
since these simply terminate execution of the method. An instruction’s affect on the stack and on local
variables depends on whether an exception is raised or not. Thus, transfer functions are associated with
edges, not with vertices. Edges from a statement to exception-handling code are called exception edges,
non-exception edges are called normal edges.

4.2 The Lattice for the JVM

In this section, we define a lattice, L, used for the dataflow analysis of JVM programs. L=〈〈Lg,Lt〉〉 is the

coalesced product of two lattices, with adjoined as a top element. Lg representing the global typing
context and Lt the types of the local variables and stack elements.

The universe of Lg are consistent global typing contexts together with , which denotes the inconsistent

global typing context. Given two consistent typing contexts (Γ1, A1) and (Γ2, A2), define (Γ1, A1) �(Γ2, A2)

if Γ2 Γ1 and A2 A1. Define (Γ1, A1)� �(Γ2, A2) to be (Γ1 Γ2, A1 A2) if (Γ1 Γ2, A1 A2) is consistent and

 otherwise.

The lattice Lt specifies information about the type and initialization status of each stack position and local
variable of a method. Lt =〈〈Lstk, Lvar〉〉 is a coalesced product lattice of the lattice Lstk representing the
operand stack, and Lvar representing the local variables. Lstk=Stack(Le, s) where s is the maximum stack size
for the method which is given in the class definition. Lvar is the n-fold product (not coalesced) lattice of Le,
where n is the number of local variables used by the method, which is also given in the class definition.

JVM semantics is such that if a local variable has an inconsistent typing then verification fails only if the
variable is used. On the other hand if a stack element has an inconsistent typing then verification fails,
regardless of whether the stack value is referenced. This difference is reflected by defining Lstk is a
coalesced product and Lvar as a product lattice.

Le is the lattice used to represent the type and initialization status of individual local variables and stack
positions. To motivate the construction of Le, consider the problem of typing a local variable at a program
point. Suppose following one execution path to that point the variable contains a reference to class c1, and
following some other path a reference to class c2. For the method to be well typed, any subsequent use of
that variable must treat the variable as having a type c that widens both c1 and c2, and is the most specific
type that does so. That is, c should be the least common supertype of c1 and c2. This suggests that the class
hierarchy be reflected within Le. However, there are two difficulties with this. First, because classes are
loaded dynamically, when the method is verified the least common supertype of c1 and c2 may not be
known. Second, if either one or both of c1 and c2 are interfaces, there is no least common supertype. The
alternative is to type variables and stack positions as consistent sets of compile-time types with the
interpretation that the variable may hold a value consistent with any type in the set. Suppose, for example, a

stack position is typed as {s1, …, sk} for si N. If that stack position is used in the context where a value of

type t N is required then the assertions si t� i=1,…, k are added to the typing assumptions.

A subset of StkTy is inconsistent if it contains two distinct terms such that

9

• one of the type terms is a primitive type (a consistent set with a primitive type term must be a
singleton);

• one is [t] and the any non-array type other than object or ;
• one term is [t] the other [s] and {s, t} is inconsistent.

The elements of the universe of Le are consistent subsets of StkTy. �is adjoined and denotes an

inconsistent typing. For s, t in the universe of Le different from , define s t iff t s and s t as s t if s t

is consistent and �otherwise.

Since only a finite number of classes are ever loaded into the JVM, L satisfies the descending chain
condition.

4.3 Dataflow Initialization

We assume object is the only pre-loaded class. Thus, when the JVM is started up the global typing

environment (ΓG, AG)= ({object:class}, �. With respect to verification, loading a class c requires

updating (ΓG, AG) to (ΓG, AG)� (Γc, Ac). If (ΓG, AG)= , the class c is rejected and the typing context
restored. Then for each method m of c the dataflow analysis is executed. The dataflow analysis is initialized
by assigning a lattice value to the vertex init in the control flow graph. The lattice value is determined by
the global typing context, and the signature of the method. Recall that when a method is invoked its
parameters are placed in local variables, starting at variable 0. The initial value l is defined as

l=〈〈lg,lt〉〉, where lg=(ΓG, AG), lt= 〈〈lstk, lvar〉〉. lstk = empty, lvar=〈{t1}, …, {tk}, , …, 〉. The types t1,…, tk

are the types of the parameters of m. Note t1 is the type of this if m is not a static method. Also, the types
long and double are replaced by hLong, lLong and hDouble, lDouble respectively. The data flow

algorithm is executed. A verification failure is indicated if the lattice value �is assigned to any vertex in
the control flow graph. Otherwise, the dataflow algorithm associates an element ln of the lattice L with each
vertex of the control flow graph. From this result, an updated global typing context is obtained by taking

the meet of the global typing context at each vertex. i.e. (ΓG, AG) = n in V project(ln,1). If (ΓG, AG) is

updated to be verification fails. Otherwise (ΓG, AG) is used to initialize the dataflow analysis for the next
method of the class c. This procedure is iterated until all the methods are analyzed. The final global typing
context is then passed to the next class that is loaded.

To adhere to the dataflow framework, the global typing context is part of the lattice, and so there is an
instance of the global typing context stored for each node of the control flow graph. In an actual
implementation, it is only necessary to maintain a single global typing context.

4.4 Transfer Functions

In the dataflow framework, the transfer functions formalize the typing rules for each JVM instruction. The
bytecode verifier constructs a transfer function for each instruction from the instruction’s opcode and
operand, and from the constant pool. In this section we define a few generic distributive functions that are
useful building blocks for constructing transfer functions.

The transfer function associated with the edge (v, w) expresses a typing rule for the instruction at vertex v.
The typing rule for exception edges differs from the one for normal edges. If an exception is raised, JVM
semantics dictate that all the values on the stack are popped, and that the object representing the exception
is pushed onto the stack. The local variables are untouched. The transfer function for exception edges need
also to make some additional checks as described in section5.

As with typing rules, the transfer functions specify enabling conditions on the typing environment, i.e. on

the lattice value associated with the vertex. If the condition is not satisfied, the transfer function yields ,
indicating that the method is not well typed. If the condition is satisfied, then the lattice value is
transformed according to the semantics of the instruction. Thus, transfer functions are generally of the form
of the function g in Fact 4 of section 3.1. Since the global typing context will not contain complete

10

information about subtype relations on classes, the expected enabling conditions cannot be checked.
Instead, the transfer function adds subtyping assertions to the assumption set of the typing context.

Transfer functions may be specified by describing their behavior on the sub-lattices of L, For the stack
lattice, the enabling condition tests whether the top k elements of the stack exist and satisfy type constraints

derived from the instruction. Define TypMatch=StkPrTy {object, single, doublel, doubleh

[object]) {[t]| t StkPrTy}. The newly introduced “types” single, doublel, doubleh are used in
stack manipulation instructions such as dup are only concerned with whether a type is represented in a

single or double word. single will match (i.e. is) any single word type such as int or any RefTy;
doublel will match lDouble and lLong, and doubleh will match hDouble and hLong. Recall,
Stack(TypMatch, s) are stacks of size s (the maximum stack size for the method) whose elements are from
TypMatch. Let chkStk:Stack(TypMatch), Lstk → Boolean.

chkStk (p, l)�⇔ p = empty size(p)� size(l) &(x top(l)) top(m) x) & chkStk(pop(p), pop(l)).

Note object t is true iff t RefType. It is not difficult to prove that chkStk is distributive in its second
argument. Consider, for example, the aastore instruction; it requires the top of the stack to be typed as s,

int, [t] where t and s are reference types and s t. The call to chkStk with first argument <object, int,
[object]> checks the appropriate enabling condition for the aastore instruction. The transfer function
updates the Lstk lattice by popping its three top elements off the stack, and updates the global typing
environment with the addition of subtyping assertions to the assumption set. In this case the typing for the
top stack element is a set that contains reference types, {s1,…, sn} and the third argument is a set containing
arrays of references {[t 1], …, [tm]} . The subtype assertions that must be added to the global typing

assumption set are those in the set {norm(si tj)| si {s1,…, sn} , t j {t1,…, tm}} . A term in SigTy may denote

an array type, but global typing contexts do not contain such terms. Thus, if s, t SigTy, and s t is to be

asserted, then s t is first normalized, via the function norm, to a subtype assertions in N. For example,

normalization reduces null s to true, object [a] to true, [[a]] [[b]] to a b, and [a] [[b]] to
false.

Assuming chkStk has verified the type stack, the transfer function to update the stack, are composed from
push, pop, top perhaps binding popped values to variables, so they can be pushed back on the stack. One
other function, element-type, which maps a set of array types to a set of the corresponding element types, is
also needed. We give three examples of transfer functions that update the stack representation. Nearly all
transfer functions can be defined as simple compositions of the functions defined.

Instruction chkstk pattern Transfer function

fadd int, int �x.pop(x)

aaload int, [t]
x.let
 e-t= element-type(top(pop(x))
in
 push(e-t, pop(pop(x)))

dup_x1 single, single
x.let
 t1=top(l),
 t2=top(pop(l))
in
 push(t1, push(t2, push(t1, pop(pop(l))))

4.4.1 Instructions on Primitive Types

Many JVM instructions, including all of the arithmetic operations, manipulate primitive types on the stack.
The transfer functions for these instructions are the identity on global type, and local variable lattices, and
modify the stack using the methods described above.

11

 Load and store instructions for primitive values are also straightforward, using methods to verify and
update local variables that are analogous to the methods described for stacks. One subtlety is that
instructions that write into a local variable that holds one word of a double or long, must also update the

other word to .

4.4.2 Object Creation and Manipulation Instructions

4.4.2.1 Array Instructions

The transfer function for aaload was given above. The transfer function for the anewarray instruction
pushes the type of the array onto the stack. The type is determined by lookup into the constant pool. The
baload instruction will pop either [boolean] or [byte] off the top of the stack and replace it with an
int. Other array operations are straightforward.

4.4.2.2 Non-array Instructions

The new instruction creates a new object instance. The next section describes how flow analysis is used to
track that newly-created objects are properly initialized. Transfer functions for field access instructions,
such as getfield, are easily constructed using data in the constant pool. These transfer functions add
subtype assertions to the global assumption set.

Of the four method invocation instructions, the invoke_special instruction is the most complex. This
instruction is used for invoking instance initialization methods, private methods, or a method of a
superclass of the current class. The typing of this instruction is dependent on which case arises. Case
discrimination is statically determined by its operand. The operand of the instruction indexes the constant
pool and retrieves a class, c, method, m, and signature, , If the method name is <init> then the
instruction is used for method initialization. Typing of instance initialization methods is discussed in the
next section. If the method has the private access flag, then this is an invocation of a private method.
Otherwise, it is the invocation of a superclass method. Although this paper has not treated access flags, this
context is the most complex situation where they are used and so we consider them here.

In each case, the top of the stack should contain an object reference followed by the parameters. Type
checking the parameters is the same in each case. The type constraints on the methods’s pararameters are
derived from the signature and are enforced using the techniques describe above. The difference is
varying subtyping requirements on the current class, cc, (i.e. the class that is currently being verified, the
class c, and the object reference on the top of the stack. For an <init> invocation, the type of the object
reference must be an uninitialized object. For invocation of a superclass method, the subtype assertion

cc c is added to the global type assumptions. If the method is private, the assertions cc c and c cc are
added. For superclass and private invocations, for each reference type t the set of types for top of the stack,

t F is added to the global type assumptions.

5 Object Initialization

A further objective of the bytecode verifier is to insure that accepted programs do not use an object instance
unless it has been properly initialized. In the Java programming language, invoking a constructor method
allocates memory for a new class instance and initializes its fields according to user-specified code. In the
JVM, allocating memory for a new class instance is achieved by the new instruction. The new object’s
fields are initialized by executing a method called <init> compiled from a Java constructor for the class.
The bytecode verifier assures that objects that have been allocated with new but not yet initialized by
invoking <init> cannot be used.

The new instruction initializes the fields of the object with default values for each type. Thus, type safety is
assured, even if <init> is not called. Nonetheless, the security of the JVM is dependent upon executing a
proper initialization sequence, since user-defined classes such as extensions to the classLoader, must

12

meet security-critical interface requirements, that are at least partially satisfied by insuring proper
initialization.

The lifecycle of object creation is follows. First, in some method m, a new instance of class c is created by
execution of a new instruction with the name c as its operand. The instruction places a reference to the
newly-created-but-not-yet-initialized object on the top of the stack. The reference can be stored in local
variable, duplicated on the stack, but may not have its fields referenced or updated, its method invoked, be
passed as an argument in a method call, assigned as the value of a field of some other object, or be
otherwise “used” until an <init> method of class c is called with the reference as the this parameter.
Finally, the called <init> method must itself call an <init> method of c’s superclass (assuming c is not
the class object), or another <init> method for c with different signature, before it may use the object
or return normally.

A method may invoke the same new instructions many times, or there may be many new instructions in
the code, so the task of pairing calls to <init> with executions of new is, in general, intractable. To make
the problem tractable, the JVM rejects programs that have two simultaneous uninitialized instances
allocated by the same textual occurrence of the new instruction.

Dataflow methods are well-suited to performing these checks. Define a new type term uninit(i, c) where i is
the index of a new instruction within a given method, and c is the name of the class allocated by that
instruction. In addition, we define needs-super as a new type term. Both uninit(i, c) and needs-super are in
StkTy. The definition of an inconsistent subset of StkTy is extended so that any non-singleton set containing
uninit(i, c) or needs-super is inconsistent.

In our formulation, the enabling condition of the typing rule for the new c instruction at location i requires
that there are no instances of {uninit(i, c)} on the stack or in local variables. This formulation is not in strict
adherence to JVM semantics. JVM semantics requires that when a backward branch is executed there are no
instances of {uninit(i, c)} on the stack or in local variables. Our rule seems simpler and more to the point.
The transfer function for new pushes {uninit(i, c)} onto the stack representation.

The enabling condition of the typing rule for the subcase of the invoke_special instruction, used to
invoke an <init> method from class c requires uninit(i, c) or needs-super as the type of its this
argument. If this is uninit(i,c), then the method must be an <init> method of class c. If this is
needs-super then the method must be an <init> method of the current class or its direct superclass. The
dataflow analysis of the called <init> method is initialized so that the type of local variable zero, which
receives the this argument is needs-super. If c is object, and so has no superclass, the type of local
variable zero is initialized to object.

The transfer function for the <init> method subcase of the invoke_special instruction pushes {c}
onto the representation of the stack. If the this argument is uninit(i, c) then all occurrences of {uninit(i,
c)} on the stack and in local variables is updated to {c}. If the “this “ argument is needs-super then all
occurrences of needs-super are updated to {c}. The typing rules are summarized in the table below.

13

Instruction Typing Conditions Transfer Function

new c
at location i

There is no occurrences of uninit(i,c) on
the representation of the stack or local
variables.

Push {uninit(i,c)} onto the
representation of the stack.

invoke_special
invoking an
<init> method

• The argument list must be correctly
typed.

• The this argument must have type
uninit(i,c) or needs-super.

• If this is uninit(i,c), then the
method must be an <init> method of
class c.

• If this is needs-super then the
method must be an <init> method of
the current class or its direct superclass.

c.<init>
initialized so that
local variable 0
has type needs-
super. Other
local variables
hold the types of
the argument list.

Upon return from
<init>, {c} is
pushed on stack
and each
occurrence of
{uninit(i,c)} or
{needs-super} is
updated to {c}

return There are no occurrences of
needs-super.

In addition, JVM semantics require that there must never be an uninitialized class instance in a local
variable protected by an exception handler or a finally clause. “finally” is a Java construct that compiled in
the JVM as a “subroutine.” This requires that the transfer function on any exception edge imposes the
condition that there are no occurrences of uninit(i,c) or needs-super in the sets representing the types of
local variables. It also imposes the same condition on certain edges exiting jsr instructions, but that is
beyond the scope of this paper.

6 Specware

This paper has given in informal mathematical notation, a reasonably precise formalization to the core
functionality of the bytecode verifier. It has only loosely described functions that extract from a class file a
control flow graph, and transfer functions. We plan to specify all of this using the Specware system
available from Kestrel Institute.

Specware[SJ95] supports the formal development of programs from specifications. In Specware, basic
specifications are theories in high-order logic. Complex specifications are composed from basic
specifications using high-level module operations that include parameterization. Thus constructions such as
instantiating the generic data flow architecture to the JVM, and constructing product and stack lattices from
other lattices are nicely expressed in Specware.

The unit of refinement is the interpretation, a theorem-preserving translation of the vocabulary of a source
specification into the terms of a target specification. Specware makes available a theorem prover to prove
interpretations correct and to prove putative properties of the specification. Specware supports the
generation of code in Lisp and C++.

Thus, using Specware, provably-correct code can be generated from our specification. The required
theories and proofs are currently under development. Implementing the specification is largely a matter on
selecting data structures and refining the dataflow algorithm into more efficient forms, for example by
maintaining a workset of the vertices that require updating [CP88].

7 Related Work

The application of dataflow analysis to type inference is an old idea, used in SETL, a weakly-typed, high
level language with sets, maps, sequences, etc. as data types [Te74].

Most closely related to our work is the work of Qian [Q97] who is also formalizing JVM semantics and the
behavior of the bytecode verifier. We believe our formulation is crisper; for example, ours makes it clear

14

how type information from different control flow paths is merged and the requirement of distributivity of
transfer functions. We treat arrays and all primitive types, and are explicit about stack overflow. He treats
the jsr/ret instructions. The dJVM [C97] defines an interpreter for the JVM using ACL2, a functional
language with an associated proof system. The dJVM insures type safety at runtime using type tags and so
does not yet address the bytecode verifier.

The English, official JVM specification by Linholm and Yellin is quite precise and well organized. We
found an obfuscation on page 130 where the merging of the typing of the stack and local variables is
described. “If both local variables contain a reference, then the merged state contains a reference to the first
common superclass of the two types.” The statement is technically correct assuming that “class” excludes
interfaces. For interfaces, the first common superclass of the two interfaces i1 and i2 is
java.language.object. This is in fact what the code does, but then should a value typed as object
be used in a context where a common superinterface of i1 and i2 is required, type checking should fail. Of
course, it doesn’t. The verifier lets this case through and run-time checks are used to insure type safety.
Both this paper and Qian [Q97] recognized that if the bytecode verifier uses sets of types to characterize the
possible types of local variables, then runtime checks can be avoided. However, there is not much gained in
doing so because invoking an interface method requires a search of the method table of the this pointer’s
object class. The type test corresponds to searching the table but not finding a name/signature match.

Saraswat in his paper “Java is not type safe” [S97] describes a bug in the JVM due to class name spoofing.
It suggests that a formal specification of namespaces management and loading, particularly in a muti-
threaded environment, should be pursued. Dean initiated such a study in [D97].

The Kimera project [K97] has uncovered bugs in the JVM using mutation analysis. They have written their
own bytecode verifier. They take JVM programs mutate them and run both verifiers. If they get different
results then a potential bug site has been exposed. This testing approach nicely complements formal
method approaches.

Nipkow in his paper “Java-light is type safe — definitely” [N97] presents a formalization of the Java type
system, an operational semantics for a significant subset of Java, and a proof of type soundness using
Isabelle/HOL. We have not considered an operational semantics for the JVM and have not proved a type
safety result. However since the type system of Java and the JVM are closely related, his rules
characterizing a well-formed typing environment closely correspond to our definition of a consistent
global typing context.

8 Conclusions

We claim our specification is clear and explicit about key issues in the semantics of the JVM. At the same
time, the specification is directly implementable by either manual or automated methods. Furthermore our
specification is not committed to a loading strategy and does not require run-time checks on interface types.

The use of the bytecode verifier to establish that object instances are properly initialized illustrates the
flexibility of dataflow analysis. We believe that there are other analysis tasks specific to Java that require
dataflow analysis. These include:

• Program optimizations that reduce the number of array bound checks. or null de-referencing.
• Constraints on class loaders. A significant feature of Java is that it Java permits user-defined class

loaders. However, this has lead to bugs because these loaders did not satisfy interface requirements.
These interface requirements can be verified by an extended bytecode verifier.

• Finer type analysis for security or other applications. Type systems are a good vehicle to specify
security models. Dataflow analysis is an effective mechanism to statically verify conformance to
these models. [V97]

Thus, it is desirable to design a bytecode verifier that permits extension. Our specification and the code that
derives from it have the necessary modularity and locality to support such extensions. By making
“monotonic” additions or refinements to the lattice, the safety guarantees of the verifier can be maintained
while adding new functionality.

15

9 References

 [CP88] Cai, J., and Paige, R., “Program derivation by Fixed-Point Computation,” Science of Computer
Programming Vol. 11, 1988/89, pp. 197-261.

 [D97] Dean, D. “The Security of Static Typing with Dynamic Linking,” Proceedings of the Fourth ACM
Conference on Computer and Communications Security, April, 1997.
http://www.cs.princeton.edu/sip/

[C97] Cohen, R. “The Defensive Virtual Machine Specification 0.5,”
http://www.cli.com/software/djvm/index.html

[K73] Kildall, G. “A unified Approach to Global Program Optimization,” POPL, 1973.

[K97] The Kimera project, http://kimera.cs.washington.edu/

[LY97] Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification, Addison Wesley, 1996.

[Mu97] Muchnick, S., Advanced Compiler Design & Implementation, Margan-Kaufmann, 1997.

 [N97] Nipkow, T. and von Oheimb, D. “Java-light is Type-Safe – Definitely” To appear POPL98,
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/popl98.html

[Q97] Qian, Zhenyu “A Formal Specification of Java™ Virtual Machine Instructions,” (Draft),
http://www.informatik.uni-bremen.de/~qian/abs-fsjvm.html

[S97] Saraswat, V. “Java is not type safe,” http://www.research.att.com/~vj/bug.html

[SJ95] Srinivas, Y. V. and Jüllig R., “Specware™: Formal Support for Composing Software,”
Proceedings of the Conference on Mathematics of Program Construction, Kloster Irsee, Germany,
July 1995. Kestrel Institute Technical Report KES.U.94.5,
http://www.kestrel.edu/HTML/publications.html

[Te74] Tennenbaum, “Automatic Type Analysis in a Very High Level Language,” Thesis, New York
University 1974.

[V97] Volpano, D., “A Type-Based Approach to Program Security,” Int’l Joint Conference on the
Theory and Practice of Software Development, LNCS 1214, Lille France, April 1997, pp. 607-621.

