A Specification of Java L oading and Bytecode Verification

Allen Goldberg
Kestrel Ingitute
3260 Hillview Av.
Palo Alto, CA 94304
goldberg@kestrel .edu

December 22, 1997

Abstract

This paper gives a mathematical specification the Java Virtual Machine (JVM) bytecode verifier. The
specification is an axiomatic description of the verifier that makes precise subtle aspects of the JVM
semantics and the verifier. We focus on the use of data flow analysisto verify type-correctness and the use
of typing contexts to insure global type consistency in the context of an arbitrary strategy for dynamic class
loading. The specification types interfaces with sufficient accuracy to €liminate run-time type checks. Our
approach isto specify a generic dataflow architecture and formalize the JVM verifier as an instance of this
architecture. The emphasisin this paper is on readability of the specification and mathematical clarity. The
specification given is consistent with the descriptions in the Lindholm’s and Ydlle'slava™ Virtual
Machine Specificatiart less committed to certain implementation choices than Sun’s version 1.1
implementation. In particular, the specification does not commit an implementation to any loading strategy,
and detects all type errors as early as possible.

1 Introduction

1.1 TheJava Virtual Machine

The Java compiler translates Java class definitions into platform-independent target language known as the
Java Virtual Machine. Théava Virtual Machine (JVM) is a type-safe, stack-oriented abstract machine.

Type safety requires that programs with type errors must produce an error indication rather than execute
and produce an erroneous result. Type safety is an important property of a language because it aids in
development and debugging, but particularly because the erroneous executions resulting from executing
programs with type violations can be exploited to introduce security fldBdvs code (also called

bytecode), not Java™ source is transmitted when an “applet” is sent over the Internet and remotely
executed. Because the transmitted code cannot be trusted to be the unmaodified output of a correct Java (or
other language) compiler, the code must be checked for consistency either prior to execution or by run-time
checking.

A JVM program consists of a collection of class (including interface) definitions that are dynamically
loaded into the execution environment. A program is type safe if each class is type consistent within itself
and with respect to other classes already loaded into the environment. Thus we formulate the type safety
problem as: given a consistent global typing environment and a class file, determine if the class file is well-
typed given the current global typing environment. If it is, then extend the global typing environment with
the additional declarations and subtyping relationships derived from the class description.

The bytecode verifier performs static checks and dynamic checks. The static checks insure that a class
definition can be parsed to yield a constant pool and syntactically-correct code for each method. The
constant pool, which is a symbol table, has entries for each method and field defined in the class and for
each class, field, and method referenced in the method code. It also identifies a class’ direct superclass and
the interfaces it directly implements. For class files that define interfaces, it identifies its direct
superinterfaces. The static checks performed insure that every literal referenced in the code of a method is
described by and is consistent with an entry in the constant pool for the class.

This work is supported by DARPA contract F30602-96-C-0363

The type correctness of a class definition is difficult to verify because the VM isweakly typed. The VM is
a stack machine manipulating an operand stack, a set of local variables, or registers, and a heap containing
object ingances. The type of stack positions and local variables, like hardwareregisters, vary during
method execution. Thus, for example, for a method to be type safe, it must be the case that whenever a
floating add instruction f add is executed the top two stack elements must be typed as floating point
numbers. This check can be performed during execution, by labeling stack elements with type tags, but this
introduces an unacceptabl e run-time inefficiency. The dynamic checks of the verifier verify the type safety
and related properties of all possible execution paths of each method defined in the class. Providing such a
proof for all correct programsis an undecidable problem. There is, though, a decidable and efficient
method of computing a conservative estimate in which some programs that are type safe are incorrectly
rejected, along with all type inconsistent programs. Using a conservative approximation when it is clear
what subset is accepted is not problematical since then Java compilers can be designed to generate VM
code that falls outside of the subset of type-correct but rejected programs.

In the VM, when a method isinvoked it executes with anew empty stack with actual parameters|oaded

into local variables;, when it returns, either normally or because of an uncaught exception, contral is

transferred to the calling method. The caller's execution environment (in particular, its own operand stack

and local variables) isrestored and updated. Although methods may run concurrently, a method cannot

access or modify another method’s local variables or stack. Thus gieloehtyping context of signature

and subtyping information, bytecode verification can be performed independently on each method of the
class.

1.2 Dynamic Loading

Unfortunately, the complete global typing context of a class is generally not available when a class is
verified. One reason for this is that classes may reference the other recursively. More fundamentally, the
JVM specification permits a class to be loaded at the latest possible moment—when a method of the class is
invoked.

Dean [D97] considers how to insure global type consistency in a dynamically loaded environment. The key
condition ismonotonicity of the global typing context. Intuitively, this means that only consistent additions
are made to the typing context as classes are loaded. The model of bytecode verification presented here is
insures global type correctness in the following sense. The verifier inputs a class definition and a global
typing context; it rejects a class definition that is either internally inconsistent or inconsistent with the

global typing context. If it accepts the class d&bn, it generates an extended global typing context. If the
global typing context is sequentially threaded to all invocations of the verifier, global consistency is
assured.

The Sun JDK 1.1 implements one strategy for dynamic loading and its bytecode verifier is specialized to
this loading strategy. The JDK 1.1, when verifying of a otasswill dynamically load any classes
referenced by that are required to insure that all classes are correctly typed. It uses a lazier strategy to
check interface types. In this paper, the bytecode verifier we specify is hot committed to any particular
strategy for dynamic loading nor does it rely on run-time checks to insure type safety.

1.3 Limitations

There are two limitations of this paper. It does not consider enforcement of restrictions specified by access
flags, such apri vat e, prot ect ed, abst ract, andf i nal and excludes thiesr andr et

instructions. While treatment of access flags are straightforyvardy et adds significant complication to

the dataflow analysis.

1.4 Outline of this Paper

The next section describes aspects of the JVM type system relevant to this paper. Next, we specify a
generic data flow architecture. Then we instantiate the data flow architectureAltgpe analysis

problem. We then consider the problem of verifying tig¢ct instances have been properly initialized.

We then discuss our plans to implement the specified verifier using the Specware system. This is followed

by a discussion of related work and some conclusions. The paper assumes familiarity with the JVM. The
reader is referred to Lindholm’s and Yellinfhe Java™ Virtual Machine Specificatifiny 97].

2 TheJVM Type System

The JVMtype system islargely derived from the Javalanguage, but it also differs from Javain significant
ways.

2.1 Primitive Types

The complexity surrounding the primitive types derives from low-level efficiency and portability issues.

The elements of the stack and local variables of the JVM are “words” that hold at least 32 Hitong and

doubl e are held in two consecutive words. On the other hand, in arrays and objects instances values that
can be stored with fewer than 32 bits may be packed into bits or bytes.

The types explicated in thM specification are:
* byt e, 8 hit signed two’'s complement integers,
e short, 16 bit signed two's complement integers,
« char, 16 bit unsigned integers representing unicode characters,
e int, 32 bit signed two’s complement integers,
* | ong, 64 bit signed two’s complement integers,
« float, 32 bit IEEE 754 floating point numbers,
* doubl e, 64 bit IEEE 754 floating point numbers,
* returnAddress, denoting an instruction addresses within the method’s code. Since we do not
treatj sr/ ret, this type is not used in the specification.

In addition, we define the following types:
* | Long, representing the low-order 32 bits df ang,
* hLong, representing the high-order 32 bits dfang,
* | Doubl e, representing the low-order 32 bits adaubl e,
* hDoubl e, representing the high-order 32 bits af@ubl e,
* Bool ean, representing a single bit quantity,
* Voi d, used in method signatures to denote the return type of a method that does not return a value.

Define SkPrTy={i nt,fl oat,| Long, hLong, | Doubl e, hDoubl e }. These are the type designations
of primitive types on the stack or in local variables.

Define SgPrTy={byt e, short,char,int,l ong,fl oat, doubl e}. These are the type designations
of primitive types in fields and in method signatures.

Define ArrPrTy = SgPrTy({bool ean}. These are the primitive types that may appear as elements of
arrays.

2.2 Reference Types

There are four kinds of reference types: classes, arrays, interfaces and thd typthe type with a single
value, the referenaeul | . Each object and interface type is uniquely named by its fully qualified name
together and the name of its class loader [S97]. For the purposes of this paper, the structure of the name
space of classes is not relevant. Thus the collection of class names is denoted by an abst{Shbsiéd

this paper be extended to check access constraints implied fayahect ed attribute, then the package
structure of the name space must be formalized.) The pre-definefl @lessl ang. obj ect , loaded by

the system loader, is denotebj ect in the selN. LetN, denote the set of non-array objects, Ahthe

set of interfaces. Thad=N,UN,.

Define BaseArr Ty=ArrPrTy UN. BaseArr Ty defines the set of non-array types that may be elements of an
array. Define the set of array ter#us Ty as the smallest set closed under the following rules.

* Iftisin BaseArrTy then theterm [{], read “array of type t” isin ArrTy, and has dimension 1.
e Iftisin ArrTy and hasdimension i, then[t] in ArrTy, and hasdimension i+1.
e All termsin ArrTy have dimension at most 255.

The collection of reference types RefTy= NCArT (fnul |'}. A stack typesan element of the set StkTy =
StkPrTyURefTy.These are the types designations of stack elements and local variables.

In our specification, four binary subtype relations over N are used. a<ob for a, b= N, hastheintended
meaning that a directly extends b. a<; b for a, b&N; has the intended meaning tiés a direct
superinterface dd. The assertioax;obj ect has the intended meaning thatloes not have direct

superinterfaces. Finallg<imps b for a&c N, andb &N, has the intended meaning that object tyhrectly
implements interfacb. These three relations are caltkcect subtype relations. The fourth relation, the

indirect subtype relation, ax'b for a, beN, has the intended meaning tifab) is in the reflexive transitive
closure s, UsxiUsimp. FOr any relatiom, let TC(r) denote its reflexive transitive closure. Finally, define
the set ofignaturetypes, SgTy = NUArrType S gPrTy.

2.3 Global Typing Contexts and Name Resolution

As theJVM executes, it loads class definitions. When a class gets loadastant pool for that class is
constructed. The constant pool specifies if the class is an object class or an interface, the signature of fields
and methods of the class, the interfaces the class implements, and its superclass or superinterfaces. It also
specifies the fully qualified name, the type of fields, and signature and return type of methods referenced by
the class. The former are treatechssertions true of the defined class, the latéssumptions about other

classes that must be verified. When a class is verified, the (internal) consistency of the method code is
checked against the type information in the constant pool. When the referenced class is loaded, it is
possible check the type consistency of the referenced methods and fields. To perform this verification a
global typing context of assertions and assumptions is maintained.

Let F denote the abstract set of field namesMnohethod names. Aeld signature assertion is a term of
the formn.f:t wheren&N is a reference type namg&sF is a field name ant=SgTy. A method signature
assertion is a term of the form.f:a whereneN, m& M is a method name, aads a method signature of

the formt” — r. Heret is a sequence of zero or more elements By, andr € SgTy{voi d}. A
classassertion is a term of the form:class or n:interface. A sgnature assertion is either a field signature
assertion, a method signature assertion, or a class assertion.

An assertion set is a set containing signature assertions and direct subtype assertions.

When a class is loaded, an assertion ggt is extracted from its constant pool and each assertifpisn
added into a global assertion gefThe typing assertions ifi are determined as follows.

» If cis an object class, then the asserti@mBss is in /.. If ¢ is an interface then the assertion
cinterfaceis in /.. Class files define either classes or interfaces, not arrays or the null reference
type.

« If cis class (other than object) its direct superclass is specified by an entry of the constant pool. If
the name is, then thex,sis in /.. If cis an interface, then no superclass assertions are made.

e If cis an interface, for each of its direct superinterfites assertioox;sis in /.. If c has no
superinterfaces the assertiog;obj ect isin /.

e If cis an object class, for each interfadbatc implements, the assertios;mySis in /.

* For each field namé, with typet defined, not inherited ip, the field signature assertiatf:t is in
I

e For each methodh defined, not inherited, ia with signature and return type o, the method
signature assertionf:ois in /.

If /"isan assertion set define ax - b if the pair (a,b) isin the reflexive trangtive closure of the union of
the subtype assertionsin /-
An assertion set /isinconsistent if any of following conditions hold.
1. aclass&e/ and azinterfacesr.
a<ob& I and eithem:interface&/ or b:interface&r.
axib&l anda:classer.
axiberl, b=obj ect, andb:classer.
aximpb€& [and eitheainterface&/ or b:classer.
a<ob &l axob’ € andb=b’.
There is am such thabbj ect <, norobj ect x7norobj ect <impn.
<r contains a non-trivial directed cycle.
as’b,aft rel,bfit .r'erandr=r’.
. Supposey <o &M a<o B ES,..., a0 0bj ect €M aysimpb el , b< b, andb’.m.c& I, but

there is na such thag.m.c& /. In words,/”is inconsistent if a clasg implements an interfadg
all of the superclasses af have been loaded, and some method that is defined or inherited in
interfaceb;, is not defined or inherited fay.

© N OO A WN

=Y
o

An assumption set is a set containing signature assertions and assertions of tha<ftxrivhen a class is
loaded, an assumption ggf is extracted from its constant pool. Each asserti@q ia added into a global
assumption sek. The assertions iA. are determined as follows.
« Ifin some method aof a fieldf, defined in class, is referenced, then the constant pool has an entry
with the name of the defining class, field name and itsttypken the field signature assertioht
is inA..
« Ifin some method it a method defined in clagds referenced, then the constant pool has an entry
with the name of the defining class, field name and signaturieen the method signature
assertiorr.fio is in A..

* Furthermore, as methodsmére verified assertions of the foasb are added to the assumption
set.

A namen & N is closed with respect to an assertion g&f the following conditions are met.
* Ifnisobj ect, thennis closed

* For neN, other tharobj ect, nis closed if
« thereis exactly onbk such that the assertiox.b&/, andb is closed, and
« for eachbe&N such thabximp b &/, biis closed.
e ForneN;, nis closed if
e ninterfacee I,
« and for eactb &N, such thanx;b, b is closed.

Let A; be the set signature assertionsiandA.. the subtypes assertionsAnlf /~is an assertion set aAd
an assumption set, the péfr, A) isinconsistent if any of the following are true.
1. [is an inconsistent assertion set.
2. cmo&Aand eithec:classe/ or ciinterfaces/” bute.m.o &l . (A field or methodmis asserted to
be declared in the classThe clasg has been introduced to the typing context as evidenced by the
assertiorc:class&/. However, the methonh is not declared or has incorrect signature or return
type.)
3. [UAsis an inconsistent assertion set. (Note because of condition (10), an inconsistency assertion

set is may become consistent with the addition of signature assertiong. (/Rusonsistent
doesn’t imply/” consistent.)

4. Thereflexive trandtive closure of A Ux"r containsanon-trivia directed cycle.
5. axbéA, ainterface&r, aisclosed with respect to /~ but (a,b) & <

6. ayxbcEA, adassel bicassel, aixod €F, d<o 83/ ..., 8n0 Obj ect €[butb=g for some
i=1,.,n.

7. asbe&A, acclassel, biinterface<r, ais closed with respect t© but(a,b) & <7
A consistent paif/, A) is atyping context.

In Sun’s JDK 1.1.4 implementation, when an interface class gets resolved, all of its superinterfaces are
loaded, if necessary, and resolved. In other words, before an interface method can execute, its interface
class must be closed. This specification is consistent with a lazier strategy in which may allow a interface to
be loaded, and initialized without loading a superinterface, as long as there are no references in the already
loaded classes to methods or static fields defined in the superinterface. With this lazy loading strategy it
may be that a class that purports to implement an interface but does not, because it fails to implement a
method defined a superclass of the interface. If the superinterfcae is subsequently loaded a type error will
be reported.

3 A DataFlow AnalysisArchitecture

Data flow analysis is a methodology used to establish assertions at program points that are invariant over
all program executions. A typical assertion that may be computed by flow analysis is “the value of variable
r at program poinp is a constant.” Assertions are represented by elements of a meettseei-la

Intuitively, the meet operation of two lattice poiatandb represents what can be maximally asserted if

along one control flow patais true, and along anothleiis true. For each statement in the program, a

transfer function is defined that maps an element of the lattice representing an assertion true prior to
execution of the statement to a lattice point representing an assertion true after execution of the statement.
The basic idea of flow analysis is to symbolically execute via the transfer function the program over the
lattice structure using the meet operation to merge the properties true about different execution paths to the
same program point. This is computation is a fixed-point computation over the lattice structure that
terminates when stability is reached. Under suitable conditions, the least fixed-point solution is
characterized as the meet-over-all-paths solution. This means the assertions associated with a program
point at the termination of the algorithm are sharpest invariants true of every execution sequence that
reaches that point. To instantiate the data flow architecture to a problem, the control flow graph, the lattice
and the transfer functions are specified. This paper is organized around the specification of these
parameters.

A meet semi-lattice is a tuplel = (U, =, 77, +) whereU is a universe of elements, a partial order otJ,
/.U xU — U, is called themeet operation, and. €U is the bottom element satisfying the axioms:

* L isreflexive, anti-symmetric and transitive

o« L xfor eachxe U,

x££ 7 for each xU,

o for eachx andy, x/7y =x, x/7y £y, and for all a such that= x andazy, a= x/7y.
A descending chain is sequence of strictly decreasing elementd.df all descending chains in a lattice are
finite then the lattice satisfies thlescending chain condition. A functionf:UxU — U is distributive if for
all a, bin U, f(as7 b) = f(a)/7f(b).
A data flow problem consists of a

» adirected graph, called the control flow gra@k,V, E) with a distinguished entry vertexjt,

e ameet semi-latticé, =(U, =, /7) with a maximal element;, satisfying the descending chain
condition;
« for each edge of G a functionTF.:U - U that is distributive ovelr, and

e aninitial value €U initializing the data flow at nodait.

Let P(v) be the set of paths from theinitial vertex to v. The meet-over-all-paths solution to a datafl ow

problemisamap M :V L sothat M(V)=/ 7, <pn TFs(i) whereTF is extended from edges to paths by
composition.

Theorem. The following algorithm converges and computes the meet-over-all paths to the dataflow
problem:

O=)v.if v=inittheniel se 7;
whi | e there exist an edge e= (v, w) such that TF, (O(v)) =O(w) do
O(W) —O(w) 17 TFe (O(V));
return O;
Proof. See [Mu97] and [K73].

The algorithm can, of course, be refined into efficient implementations.
3.1 Product and Stack Lattices

Theproduct latticeL = L; x -+ xL, of meet semi-latticels = /1J;, 5, /7, £i[is a meet semi-lattice whose
universe isU; x -+ xU,. The partial order and meet operations are defined componentwise,e.g: <
a> =<b,, -, b>iff a5 bforeachi. 1 =<t4, ~, L>

Thecoalesced product latticeL = L; x - xL, of meet semi-latticels, = /l0;, 5, /%, L[5 a meet semi-
lattice whose universe {st} U U;—{ 11} x - xUp-{_£n}. Thepartia order is defined componentwise,
<@, ,&> &<by, -, b>iff a5 bforeachi. If foranyi, a/7 b=, <a; , =, &> 77<by, -, b>
=_,. On other values the meet operation is defined componentwise.

Define select:Lxi:{1..n} L, to bethe projection function, select(<a ,-, &>, i)= a; Define

update:Lxi:{1..n}, L —L to updatethei™ component, update(<a ,--, &>, i, b)=<a,, a1, b, a1, -
a>.

Fact 1. Selectis distributive in its first argument, updateis distributive in itsfirst and third arguments.

SupposelL = (U, 5, 77, £)isameet-semi lattice. Consider stacks of maximum size s, s>0 whose e ements
are taken from U. Such a stack isitself ameet semi-lattice, denoted Stack(L, s)The universe of Stack(L, s)
are all stacks of sizeup to swith £ adjoined,; Define st iff size(s)=size(t) & top(&F top(t) and,
inductively, pop(s)=pop(t).The meet operation is defined similarly. top and popare the usual stack
operations extended so that top, push and popield £ (in the appropriate lattice) if any of itsargumentsare
L. Also, definetop(empty)=,, pop(empty)=, and push(x, t)=z, if size(t)=s.

Fact 2. popisdistributive, i.e. pop(s7t)=pop(sy7 pop(t). Also, pushisdistributive in both arguments.
Fact 3. The composition of distributive functionsisdigributive.

Note that the type Booleanis ameet semi-lattice with falseas £, false= true,and x/7y=x&y.

Fact 4. if L isalatticewith atop element 7, and f:L — L and p:L — Boolean aredistributive and then sois

ar, ifx=7,
g(x) = O(), ifp(),
(I otherwise.

4 |nstantiation of the Dataflow Architecturetothe JVM

4.1 Control Flow Graph

The contral flow graph, G=(V, E), for aJVM method has a vertex for each ingruction and edges denoting
control flows between instructions. With the exception of the pair of instructionsj sr and r et

construction of the flow graph from the classfileis straightforward and not formally specified in this paper.
This paper doesnot treat j sr/ r et , ingructionsthat we believe are best formalized using inter-procedural
dataflow methods. We assume the existence of a function that produces a control flow graph from a method

in aclassfile. Such afunction must perform the static checks to insure that the code and its exception table

are well-formed, must process wide ingructions, and must determine control flow edges corresponding to
caught exceptions. It is not necessary to explicitly model exceptionsthat are not caught within the method
since these simply terminate execution of the method. An instruction’s affect on the stack and on local
variables depends on whether an exception is raised or not. Thus, transfer functions are associated with
edges, not with vertices. Edges from a statement to exception-handling code amxasitemh edges,
non-exception edges are calleamal edges.

4.2 Thelatticefor the JVM

In this section, we define a lattidg,used for the dataflow analysis of JVM prograbs(liy,L./Iiis the

coalesced product of two lattices, withadjoined as a top elemehf,. representing the global typing
context and. the types of the local variables and stack elements.

The universe of4 are consistent global typing contexts together withvhich denotes the inconsistent
global typing context. Given two consistent typing contékisA;) and(/ >, Ay), define(/1, A)) = (/2, A2)

if el andACA,. Define(/1, Ay) 77 (2, A) to be(rLulh,, A UR,) I (M ul, AU A) is consistent and
L otherwise.

The latticel; specifies information about the type and initialization status of each stack position and local
variable of a method.; = [, L. Zis a coalesced product lattice of the lattigerepresenting the

operand stack, arld,, representing the local variablég,=Sack(L., S) wheresis the maximum stack size

for the method which is given in the class definitiog: is then-fold product (not coalesced) latticelgf
wheren is the number of local variables used by the method, which is also given in the class definition.

JVM semantics is such that if a local variable has an inconsistent typing then verification fails only if the
variable is used. On the other hand if a stack element has an inconsistent typing then verification fails,
regardless of whether the stack value is referenced. This difference is reflected by defiisirrg

coalesced product argl,, as a product lattice.

L. is the lattice used to represent the type and initialization status of individual local variables and stack
positions. To motivate the constructionLgf consider the problem of typing a local variable at a program
point. Suppose following one execution path to that point the variable contains a referencectpasidss
following some other path a reference to ctas&or the method to be well typed, any subsequent use of
that variable must treat the variable as having adypat widens botle; andc,, and is the most specific

type that does so. That sshould be the least common supertype, @ndc,. This suggests that the class
hierarchy be reflected within.. However, there are two difficulties with this. First, because classes are
loaded dynamically, when the method is verified the least common supertpanalic, may not be

known. Second, if either one or bothogfandc, are interfaces, there is no least common supertype. The
alternative is to type variables and stack positions as conssieat compile-time types with the
interpretation that the variable may hold a value consistent with any type in the set. Suppose, for example, a

stack position is typed 4s, ..., g} for 5 eN. If that stack position is used in the context where a value of
typeteN isrequired then theassertions § <t i=1,..., kare added to the typing assumptions.

A subset of StkTyisinconsistentf it contains two distinct terms such that

* oneof thetypetermsisa primitive type (a consistent set with a primitive type term must be a
singleton);

* oneis[t] and the any non-array type other than obj ect or;

« onetermis|[t] theother [g and {s, t} isincondstent.

The elements of the universe of L are consisent subsets of SIkTy. isadjoined and denotes an
inconsistent typing. For s, t in the universe of L different from ., define sct iff tcsand s/t assut if sut
isconsistent and £ otherwise.

Since only afinite number of classes are ever loaded into the JVM, L stisfies the descending chain
condition.

4.3 Dataflow Initialization

We assume obj ect isthe only pre-loaded class. Thus, when the JVM is started up the global typing
environment (', As)= ({obj ect :class}, £7). With respect to verification, loading aclass c requires

updating (e, Ag) to (g, Ac) 77 (I, Ao). If (I's, Ac)= L, the class cisrejected and the typing context
restored. Then for each method m of ¢ the dataflow anaysisis executed. The dataflow analysisisinitiaized
by assigning alattice value to the vertex init in the control flow graph. The lattice value is determined by
the global typing context, and the signature of the method. Recall that when a method isinvoked its
parameters are placed in local variables, starting at variable 0. The initial valuel isdefined as

|= 0\ /[/wherelg=(lg, Ag), = Mk, \ar M= enpt y, lva= B3}, ..., {t}, £,LLTThetypest,,..., t
are the types of the parametersrofNotet; is the type of hi s if mis not a static method. Also, the types
| ong anddoubl e are replaced bgLong, | Long andhDoubl e, | Doubl e respectively. The data flow

algorithm is executed. A verification failure is indicated if the lattice valug assigned to any vertex in
the control flow graph. Otherwise, the dataflow algorithm associates an elgmiaiie latticel with each
vertex of the control flow graph. From this result, an updated global typing context is obtained by taking

the meet of the global typing context at each vertex(/ice Ac) =/ hinv project(ln,1). If (I, Ag) is

updated to bes verification fails. Otherwisg/ g, Ag)is used to initialize the dataflow analysis for the next
method of the class This procedure is iterated until all the methods are analyzed. The final global typing
context is then passed to the next class that is loaded.

To adhere to the dataflow framework, the global typing context is part of the lattice, and so there is an
instance of the global typing context stored for each node of the control flow graph. In an actual
implementation, it is only necessary to maintain a single global typing context.

4.4 Transfer Functions

In the dataflow framework, the transfer functions formalize the typing rules forJgatimstruction. The
bytecode verifier constructs a transfer function for each instruction from the instruction’s opcode and
operand, and from the constant pool. In this section we define a few generic distributive functions that are
useful building blocks for constructing transfer functions.

The transfer function associated with the e@ig®)) expresses a typing rule for the instruction at vevtex

The typing rule for exception edges differs from the one for normal edges. If an exception igviised,
semantics dictate that all the values on the stack are popped, and that the object representing the exception
is pushed onto the stack. The local variables are untouched. The transfer function for exception edges need
also to make some additional checks as described in section5.

As with typing rules, the transfer functions speeifigbling conditions on the typing environment, i.e. on

the lattice value associated with the vertex. If the condition is not satisfied, the transfer function,yields
indicating that the method is not well typed. If the condition is satisfied, then the lattice value is
transformed according to the semantics of the instruction. Thus, transfer functions are generally of the form
of the functiong in Fact 4 of section 3.1. Since the global typing context will not contain complete

information about subtype relations on classes, the expected enabling conditions cannot be checked.
Ingtead, the transfer function adds subtyping assertions to the assumption set of the typing context.

Transfer functions may be specified by describing their behavior on the sub-lattices of L, For the stack
| attice, the enabling condition tests whether the top k e ements of the stack exist and satisfy type constraints

derived from the ingruction. Define TypMatch=3kPrTy (fobj ect, si ngl e, doubl el , doubl eh

[obj ect]) A[t]| teSKPrTy}. The newly introduced “types8i ngl e, doubl el , doubl eh are used in
stack manipulation instructions such as dup are only concerned with whether a type is represented in a

single or double wordsi ngl e will match (i.e. is<) any single word type such Bat or anyRefTy;

doubl el will match | Doubl e and/ Long, anddoub! eh will match hDoubl e andhLong. Recall,
Sack(TypMatch, s) are stacks of size(the maximum stack size for the method) whose elements are from
TypMaitch. Let chkSk: Stack(TypMatch), Lgx — Boolean.

chkSk (p, 1) = p= empty vsize(p) < size(l) &(Vx& top(l)) top(m) s X) & chkSk(pop(p), pop(l)).

Noteobj ect s tistrueiff t cRefType. It is not difficult to prove thathkSk is distributive in its second
argument. Consider, for example, #eest or e instruction; it requires the top of the stack to be types] as

int, [t] wheret ands are reference types amgt. The call tochkSk with first argument<obj ect , int,

[obj ect 1> checks the appropriate enabling condition foratast or e instruction. The transfer function
updates thé g lattice by popping its three top elements off the stack, and updates the global typing
environment with the addition of subtyping assertions to the assumption set. In this case the typing for the
top stack element is a set that contains reference tyges,, {8} and the third argument is a set containing

arrays of references {[t 1], ..., [tm]} . The subtype assertions that must be added to the global typing

assumption set are those in the set {norm(s< t)| s &su,..., 8}, tj&{ty,..., t}}. A termin SigTymay denote
an array type, but global typing contexts do not contain such terms. Thus, if s, t€ SigTy and sstisto be
asserted, then st isfirst normalized, viathe function norm,to a subtype assertionsin N. For example,

normalization reduces nul | < stotrue, obj ect <{a] totrue, [[a]] <[[b]] toaxb, and[a] <{[b]] to
false

Assuming chkStkhas verified the type stack, the transfer function to update the stack, are composed from
push, pop, toperhaps binding popped values to variables, so they can be pushed back on the stack. One
other function, element-typewhich maps a set of array typesto a set of the corresponding el ement types, is
also needed. We give three examples of transfer functionsthat update the stack representation. Nearly all
transfer functions can be defined as Smple compositions of the functions defined.

I nstruction chkstk pattern Transfer function
fadd int,int L X. pop(X)
. x. | et
aal oad int, [_ e-t= el ement-type(top(pop(x))
in
push(e-t, pop(pop(x)))
dup_x1 single,single X Ititzt op(1)

- t 2=t op(pop(l))
push(t1, push(t2, push(tl, pop(pop(l))))

4.4.1 Ingructionson Primitive Types

Many JVM instructions, including all of the arithmetic operations, manipulate primitive types on the stack.
The transfer functions for these instructions are the identity on global type, and local variable lattices, and
modify the stack using the methods described above.

10

Load and store instructions for primitive val ues are also straightforward, using methods to verify and
update local variables that are analogous to the methods described for stacks. One subtlety is that
instructionsthat writeinto alocal variable that holds one word of adoubl e or | ong, must also update the

other word to .

4.4.2 Object Creation and Manipulation Instructions

4.4.2.1 Array Instructions

The transfer function for aal oad was given above. The transfer function for theanewar r ay instruction
pushes the type of the array onto the stack. The type is determined by |ookup into the constant pool. The
bal oad instruction will pop either [bool ean] or [byt e] off the top of the stack and replaceit with an

i nt. Other array operations are straightforward.

4.4.2.2 Non-array Instructions

The newinstruction creates anew object ingance. The next section describes how flow analysisis used to
track that newly-created objects are properly initidized. Transfer functions for field access instructions,
suchasget fi el d, are easily constructed using data in the constant pool. These transfer functions add
subtype assertions to the global assumption set.

Of the four method invocation ingructions, thei nvoke_speci al ingruction isthe most complex. This
instruction is used for invoking instance initialization methods, private methods, or a method of a
superclass of the current class. The typing of thisingruction is dependent on which case arises. Case
discrimination is statically determined by its operand. The operand of the ingtruction indexes the constant
pool and retrieves a class, ¢, method, m, and signature, o, If the method nameis<i ni t > then the
instruction is used for method initialization. Typing of instance initialization methodsis discussed in the
next section. If the method hasthe pr i vat e access flag, then thisis an invocation of a private method.
Otherwisg, it isthe invocation of a superclass method. Although this paper has not treated access flags, this
context isthe most complex situation where they are used and so we consider them here.

In each casg, the top of the stack should contain an object reference followed by the parameters. Type

checking the parametersisthe samein each case. The type constraints on the methods’s pararameters are
derived from the signatureand are enforced using the techniques describe above. The difference is
varying subtyping requirements on the current class(i.e. the class that is currently being verified, the
classc, and the object reference on the top of the stack. For ant<> invocation, the type of the object
reference must be an uninitialized object. For invocation of a superclass method, the subtype assertion

ccxcis added to the global type assumptions. If the methpdiisat e, the assertionscxc andc<cc are
added. For superclass and private invocations, for each referentéhigrset of types for top of the stack,

txc is added to the global type assumptions.

5 Object Initialization

A further objective of the bytecode verifier is to insure that accepted programs do not use an object instance
unless it has been properly initialized. In the Java programming language, invoking a constructor method
allocates memory for a new class instance and initializes its fields according to user-specified code. In the
JVM, allocating memory for a new class instance is achieved metivénstruction. The new object’s

fields are initialized by executing a method calléshkt > compiled from a Java constructor for the class.

The bytecode verifier assures that objects that have been allocategwittut not yet initialized by

invoking <i ni t > cannot be used.

Thenew instruction initializes the fields of the object with default values for each type. Thus, type safety is
assured, even ifi<ni t > is not called. Nonetheless, the security ofX¥ is dependent upon executing a
proper initialization sequence, since user-defined classes such as extensions & fieader , must

11

meet security-critical interface requirements, that are at least partially satisfied by insuring proper
initidization.

The lifecycle of object creation isfollows. Firg, in some method m, anew instance of class cis created by
execution of a newinstruction with the name ¢ asits operand. Theinstruction places areferenceto the
newly-created-but-not-yet-initialized object on the top of the stack. Thereference can be stored in local
variable, duplicated on the stack, but may not have its fields referenced or updated, its method invoked, be
passed as an argument in amethod call, assigned as the value of a field of some other object, or be
otherwise “used” until ar<i ni t > method of class is called with the reference as thiei s parameter.
Finally, the callecki ni t > method must itself call ani ni t > method ofc’s superclass (assumiiegs not
the clas®obj ect), or anotheki ni t > method forc with different signature, before it may use the object
or return normally.

A method may invoke the samew instructions many times, or there may be maaw instructions in

the code, so the task of pairing callstani t > with executions ofew s, in general, intractable. To make
the problem tractable, tt®&M rejects programs that have two simultaneous uninitialized instances
allocated by theame textual occurrence of the rew instruction.

Dataflow methods are well-suited to performing these checks. Define a new typmitat(n c) wherei is

the index of anewinstruction within a given method, ands the name of the class allocated by that
instruction. In addition, we defirmgeeds-super as a new type term. Bothninit(i, c) andneeds-super are in
SKTy. The definition of an inconsistent subseSKTy is extended so that any non-singleton set containing
uninit(i, ¢) or needs-super is inconsistent.

In our formulation, the enabling condition of the typing rule forrte ¢ instruction at locatiomrequires

that there are no instanceg ohinit(i, c)} on the stack or in local variables. This formulation is not in strict
adherence tGVM semanticsJVM semantics requires that when a backward branch is executed there are no
instances ofuninit(i, c)} on the stack or in local variables. Our rule seems simpler and more to the point.
The transfer function fanew pushedquninit(i, ¢)} onto the stack representation.

The enabling condition of the typing rule for the subcase dftv@ke_speci al instruction, used to
invoke an<i ni t > method from classrequiresuninit(i, c) or needs-super as the type of itshi s

argument. It hi s is uninit(i,c), then the method must be anni t > method of class. Ifthi s is
needs-super then the method must be @nni t > method of the current class or its direct superclass. The
dataflow analysis of the called ni t > method is initialized so that the type of local variable zero, which
receives thé hi s argument isieeds-super. If cisobj ect, and so has no superclass, the type of local
variable zero is initialized tobj ect .

The transfer function for thei ni t > method subcase of thevoke_speci al instruction pushef}
onto the representation of the stack. Iftthe s argument isninit(i, c) then all occurrences otifinit(i,
©)} on the stack and in local variables is updatda}df the “this “ argument isieeds-super then all

occurrences afieeds-super are updated tfc}. The typing rules are summarized in the table below.

12

I nstruction Typing Conditions Transfer Function
new c Thereisno occurrences of uninit(i,c) on | Push {uninit(i,c)} ontothe
at location i the representation of the stack or local representation of the stack.

variables.

i nvoke_speci al e The argument list must be correctly c.<init> Upon return from
invoking an typed. initidlized sothat | <j ni t >, {c} is
<i ni t > method * Thet hi s argument must havetype | |ocal variableO | pushed on stack
uninit(i,c) or needs-super. hastypeneeds- | and each
« Ift hi s isuninit(i,c), then the super. Other occurrence of
method must be an <i ni t > method of | |ocgl variables {uninit(i,c)} or
classc. hold thetypes of | { needs-super} is
* Ift hi s isneeds-super then the the argument list. updated to {c}
method must be an <i ni t > method of
the current class or its direct superclass.

return There are no occurrences of

needs-super.

In addition, JVM semantics require that there must never be an uninitialized class instance in alocal

variable protected by an exception handler or a finally clause. “finally” is a Java construct that compiled in
the JVM as a “subroutine.” This requires that the transfer function on any exception edge imposes the
condition that there are no occurrencearfit(i,c) or needs-super in the sets representing the types of

local variables. It also imposes the same condition on certain edges gegitimgstructions, but that is

beyond the scope of this paper.

6 Specware

This paper has given in informal mathematical notation, a reasonably precise formalization to the core
functionality of the bytecode verifier. It has only loosely described functions that extract from a class file a
control flow graph, and transfer functions. We plan to specify all of this using the Specware system
available from Kestrel Institute.

Specware[SJ95] supports the formal development of programs from specifications. In Specware, basic
specifications are theories in high-order logic. Complex specifications are composed from basic
specifications using high-level module operations that include parameterization. Thus constructions such as
instantiating the generic data flow architecture toJ¥id, and constructing product and stack lattices from

other lattices are nicely expressed in Specware.

The unit of refinement is thHaterpretation, a theorem-preserving translation of the vocabulary of a source
specification into the terms of a target specification. Specware makes available a theorem prover to prove
interpretations correct and to prove putative properties of the specification. Specware supports the
generation of code in Lisp and C++.

Thus, using Specware, provably-correct code can be generated from our specification. The required
theories and proofs are currently under development. Implementing the specification is largely a matter on
selecting data structures and refining the dataflow algorithm into more efficient forms, for example by
maintaining a workset of the vertices that require updating [CP88].

7 Related Work

The application of dataflow analysis to type inference is an old idea, used in SETL, a weakly-typed, high
level language with sets, maps, sequences, etc. as data types [Te74].

Most closely related to our work is the work of Qian [Q97] who is also formalizing JVM semantics and the
behavior of the bytecode verifier. We believe our formulation is crisper; for example, ours makes it clear

13

how type information from different control flow pathsis merged and the requirement of distributivity of
transfer functions. Wetreat arrays and all primitive types, and are explicit about stack overflow. He treats
thej sr/ret ingructions. ThedVM [C97] defines an interpreter for the JVM using ACL 2, afunctional
language with an associated proof system. The dJVM insures type safety at runtime using type tags and so
does not yet address the bytecode verifier.

The English, official JVM specification by Linholm and Yédlin is quite precise and well organized. We

found an obfuscation on page 130 where the merging of the typing of the sack and local variablesis

described. “If both local variables contain a reference, then the merged state contains a reference to the first
common superclass of the two types.” The statement is technically correct assuming that “class” excludes
interfaces. For interfaces, the first comnsaperclass of the two interfacel andi, is

j ava. | anguage. obj ect . This is in fact what the code does, but then should a value tyjpdd ast

be used in a context where a common superinterfagendi, is required, type checking should fail. Of

course, it doesn’t. The verifier lets this case through and run-time checks are used to insure type safety.
Both this paper and Qian [Q97] recognized that if the bytecode verifier uses sets of types to characterize the
possible types of local variables, then runtime checks can be avoided. However, there is not much gained in
doing so because invoking an interface method requires a search of the method tablkics {hainter’s

object class. The type test corresponds to searching the table but not finding a name/signature match.

Saraswat in his paper “Java is not type safe” [S97] describes a bug in the JVM due to class name spoofing.
It suggests that a formal specification of namespaces management and loading, particularly in a muti-
threaded environment, should be pursued. Dean initiated such a study in [D97].

The Kimera project [K97] has uncovered bugs in the JVM using mutation analysis. They have written their
own bytecode verifier. They take JVM programgate them and run both verifiers. If they get different
results then a potential bug site has been exposed. This testing approach nicely complements formal
method approaches.

Nipkow in his paper “Java-light is type safe — definitely” [N97] presents a formalization of the Java type
system, an operational semantics for a significant subset of Java, and a proof of type soundness using
Isabelle/HOL. We have not considered an operational semantics for the JVM and have not proved a type
safety result. However since the type system of Java and the JVM are clizgely; tes rules

characterizing a well-formed typing environment closely correspond to our definition of a consistent
global typing context.

8 Conclusions

We claim our specification is clear and explicit about key issues in the semantics of the JVM. At the same
time, the specification is directly implementable by either manual or automated methods. Furthermore our
specification is not committed to a loading strategy and does not require run-time checks on interface types.

The use of the bytecode verifier to establish that object instances are properly initialized illustrates the
flexibility of dataflow analysis. We believe that there are other analysis tasks specific to Java that require
dataflow analysis. These include:
* Program optimizations that reduce the number of array bound checks. or null de-referencing.
e Constraints on class loaders. A significant feature of Java is that it Java permits user-defined class
loaders. However, this has lead to bugs because these loaders did not satisfy interface requirements.
These interface requirements can be verified by an extended bytecode verifier.
* Finer type analysis for security or other applications. Type systems are a good vehicle to specify
security models. Dataflow analysis is an effective mechanism to statically verify conformance to
these models. [V97]

Thus, it is desirable to design a bytecode verifier that permits extension. Our specification and the code that
derives from it have the necessary modularity and locality to support such extensions. By making
“monotonic” additions or refinements to the lattice, the safety guarantees of the verifier can be maintained
while adding new functionality.

14

9 References

[CP88] Cai, J., and Paige, R., “Program derivation by Fixed-Point ComputaSoetice of Computer

[D97]

[C97]

[K73]
[K97]
[LY97]
[Mu97]
[N97]

[Q97]

[S97]
[SJ95]

[Te74]

[vo7]

Programming Vol. 11, 1988/89, pp. 197-261.

Dean, D. “The Security of Static Typing with Dynamic Linking,” &edings of the Fourth ACM
Conference on Computer and Communications Security, April, 1997.
http://www.cs.princeton.edu/sip/

Cohen, R. “The Defensive Virtual Machine Specification 0.5,”
http://www.cli.com/software/djvm/index.html

Kildall, G. “A unified Approach to Global Program Optimization,” POPL, 1973.

The Kimera project, http://kimera.cs.washington.edu/

Lindholm, T. and Yellin, FThe Java™ Virtual Machine Specification, Addison We4RS6.
Muchnick, S., Advanced Compiler Design & Implementatithargan-Kaufmann, 1997.

Nipkow, T. and von Oheimb, D. “Java-light is Type-Safe — Definitely” To appear POPL98,
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/popl98.html

Qian, Zhenyu “A Formal Specification of Java™ Virtual Machine Instructions,” (Draft),
http://www.informatik.uni-bremen.de/~qgian/abs-fsjvm.html

Saraswat, V. “Java is not type safetp://www.research.att.com/~vj/bug.html

Srinivas, Y. V. and Jillig R., “Specware™: Formal Support for Composing Software,”
Proceedings of the Conference on Mathematics of Program Construction, Kloster Irsee, Germany,
July 1995. Kestrel Institute Technical Report KES.U.94.5,
http://mww.kestrel.edu/HTML/publications.html

Tennenbaum, “Automatic Type Analysis in a Very High Level Language,” Thesis, New York
University 1974.

Volpano, D., “A Type-Based Approach to Program Securitytl Joint Conference on the
Theory and Practice of Software Development, LNCS 1214, Lille France, April 1997, pp. 607-621.

15

