
Dtre—A Semi-Automatic Transformation System

Lee Blaine and Allen Goldberg

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California 94304, USA

Abstract

This paper describes the theoretical framework and an implemented system (Dtre) for
the specification and verified refinement of specifications using operations on abstract
data types. The system is semi-automatic in that users can specify some (possibly none)
of the implementations and the system will determine the rest of the implementations.

Data types are specified as parameterized theories within many-sorted first-order logic;
usually these theories are centered around inductive sorts. Abstract specifications (the-
ories) are refined in a stepwise fashion into increasingly more concrete theories. Our
primary method of refinement is based on theory interpretation [1, 2, 3].

Theories and interpretations provide a clean, logically based separation between types
and their implementations; thus permitting specification to proceed independently of
implementation while simultaneously providing a basis for rapid and verifiably correct
transformation to efficient code. Dtre provides a convenient syntax for the description
and use of interpretations as refinements. Interpretations can be composed both horizon-
tally (as parameters) and vertically (sequentially) and the Dtre language provides the
means for describing implementations via such compositions. Pragmas (program annota-
tions) are written using these terms to direct the compiler to implement particular objects
and operations using the specified refinements. Hence, users (including components of
the system) can change implementations by simply changing annotations. The Dtre

system has been integrated with the kids system[4] for algorithm design and refinement.

1 Introduction

The notions of abstraction, particularly data Abstraction, and verified refinement are
fundamental to the construction of software systems. Despite the fact that these concepts
are to date only weakly supported in languages such as Ada and design tools such as
JSD [5], they still have had a significant impact on software productivity.

Experimental systems such as those supporting algebraically-specified abstract types [6]
provide axiomatic specification of semantics—albeit in the restricted language of equa-
tional logic—but do not support refinement and rely on weak methods of implementation,
namely term rewriting. While term rewriting is a largely automatic method suitable for

1

prototyping, we do not believe that it represents a viable methodology for the develop-
ment of production-quality systems.

In this paper we present the Data Type REfinement system (Dtre) which supports
the abstract specification and verified refinement of axiomatically-specified data types.
The system is geared toward the construction of production-quality code. The system
has been used to refine set-theoretic abstract types (sets, sequences, finite maps, and
tuples) into diverse lower-level implementations, such as lists, bit-vectors, and array-
based representations. The refinements themselves have been proven correct, some with
the aid of a mechanical theorem prover.

Section 2 of this paper describes the theoretical foundations for this work. Data types
are specified as parameterized theories within many-sorted first-order logic; usually these
theories are centered around inductive sorts. Abstract specifications (theories) are refined
in a stepwise fashion into a sequence of increasingly more concrete theories. The general
notion of correct refinement is the same as that of Sannella and Tarlecki in [7, 8]: the
specification S ′ is a refinement of S iff every model of S ′ is a model of S. Our primary
method of refinement is based on theory interpretation [1, 2, 3]. Roughly speaking, given
two theories, T1 and T2 a theory interpretation of T1 into T2 is a translation mapping
expressions written in the language of T1 into expressions in T2 such that the translation
of the axioms of T1 are provable from the axioms of T2. An interpretation of T1 into
T2 ensures the existence of a construction transforming models of T2 into models of T1;
hence, establishing the correctness of the refinement. Correctness of interpretations is
established once, not at each use; however, there are often conditions on the use of a
particular interpretation for a given refinement that must be verified for each use. For
example, the partial implementation (only some operations are implemented) of sets as
stacks requires establishing certain data flow relations.

Theories and interpretations provide a clean, logically-based separation between types
and their implementations; thus permitting specification to proceed independently of
implementation while simultaneously providing a basis for rapid and verifiably correct
transformation to efficient code.

Section 3 describes the Dtre system, a semi-automatic synthesis system designed to
utilize implementation directives to synthesize efficient code from high-level specifications
in a verifiably correct manner. Dtre provides a convenient syntax for the description and
use of interpretations as refinements. Interpretations can be composed both horizontally
(as parameters) and vertically (sequentially) and the Dtre language provides the means
for describing implementations via such compositions. Pragmas (program annotations)
are written using these terms to direct the compiler to implement particular objects and
operations using the specified refinements. Hence, users can change implementations by
simply changing annotations.

Operationally, interpretations from a theory T1 to a theory T2 are compiled into collections
of transformation rules which when applied exhaustively to a program written using the
types and operations of theory T1 transform the program into one over the types and

2

operations of theory T2. The current implementation contains a library of refinements
which can be used to implement set-theoretic types (sets, maps, sequences, and tuples)
in terms of arrays, lists, bit-vectors, etc.

We believe that the primary advantages of Dtre are those stemming from its foundation
in theories and interpretations between theories: the incremental capture and capitaliza-
tion of knowledge and its utilization of that foundation as a basis for rapid and verifiably
correct transformation to efficient code. Dtre’s primary disadvantages are those stem-
ming from its immaturity and incompleteness. I.e., too few theories and interpretations;
and, in general, the methods for adding user specified theories and interpretations cur-
rently are in a primitive state.

Dtre has a number of capabilities that are utilized in attempting to generate efficient
code (some of which are beyond the scope of this paper to describe in detail). Some of
those capabilities are:

Partial Implementations—Dtre supports partial implementations [9], i.e. imple-
mentations of a type that support a subset of the defined operations. For example,
Dtre can use a stack to represent a set, provided that only certain operations are
performed on the set and that certain data flow conditions are met.

Multiple Representations and Conversions—Objects involved in a single operation
can have differing implementations. For example, in A∪B, A and B can have the
same or different implementations; further, the implementation of the result can
be the same as either or both arguments or it can be yet another implementation.
Correct code can be generated for any of the possibilities. In cases where objects
must have the same representation (e.g., they are both elements of a set literal),
the system is designed to generate conversion code.

Multiple Targets—Dtre is designed to support the generation of code in multiple
languages. An abstract target language at the level of arrays, pointers, and records
is defined and abstract types are refined down to this level. Additional refinement
steps map from the abstract target language to particular programming languages
like Common Lisp, C or Ada. The system is also designed to compose the two
steps and map directly to the target language.

In-Place Modification and Copy Optimization—Many useful abstract types are
large composite objects which are expensive to copy. Naive translation often intro-
duces unnecessary copy operations. Dtre uses data flow and value flow analysis
to determine when destructive operations may replace copy operations.

Proceduralization—To reduce the size of the generated code Dtre has the capability
to proceduralize its implementation of abstract operations. (In essence, this is
lambda abstraction with implementation directives.)

Program Analysis—The system utilizes such information as data flow and value flow
analysis, operations analysis (the set of operations performed on the object), and

3

symbolic containment and size bounds on objects in attempting to select efficient
implementations. Planned upgrades include estimating the relative efficiency of
operations on given implementations [10]. Currently, for efficiency reasons, the the-
orem proving utilized during data structure selection and transformation is rather
shallow: essentially fact gathering augmented by computing closures. The theo-
rem proving involved in establishing interpretations is somewhat deeper but still
routine.

Data Structure Selection—Dtre utilizes a semi-automatic Data Structure Selection
(DSS) system: the user provides some implementation directives (possibly none)
and the system determines the rest. It utilizes the information from the program
analysis along with the choices already made in selecting implementations for those
objects whose implementations have not been determined.

Section 4 describes related work.

2 Theories, Interpretations, and Refinement

This section describes the logical framework on which Dtre is based. We describe and
give examples of such basic notions as: theory, theory interpretation, refinement, and
implementation. The primary example is an interpretation of Set(α) (the theory of sets
whose elements are of type α) in List(β) (the theory of lists whose elements are of type
β). To this end we give descriptions of the theories Set(α) and List(β). The notation
used in these examples is a more readable notation than that used by the Dtre system.

2.1 Theories

In Dtre generic data types are formulated as parameterized theories within many-sorted
first-order logic; usually these theories are centered around inductive sorts. Axioms may
be unrestricted first-order formulas or schemas. A special notation is used for specifying
inductive sorts.

Each theory has a signature Σ = 〈S,Ω〉 where S is a set of sort names and Ω is a
family of sets {Ωw,s}w∈S∗,s∈S of operation names indexed by arity and result sorts. A
theory presentation is a pair 〈Σ,Φ〉 where Σ is a signature giving the vocabulary of the
theory and Φ is a set of axioms for the theory. The theory denoted by 〈Σ,Φ〉 is the set
of consequences of Φ1.

A concrete theory presentation can have the following components:

1In general the abstract notation is that employed in the algebraic specification literature. E.g., see
[11, 8].

4

Name—A name and parameters, used to identify the theory. The parameters are used
to represent sorts of the theory that have yet to be instantiated. Dtre actually
supports a more sophisticated notion of parameterized theory in which full theories
are passed as parameters, but a description of this is beyond the scope of this
paper. Since all theories are assumed to have an equality predicate, reference to
the equality relation of a parameter is valid within a theory definition.

Imports—A list of imported theories. The types, operations, and axioms of the theory
are the union of the types, operations, and axioms defined in the imported theories
and those defined explicitly.

Types—A list of base types and type constructors. These introduce new types and
generic type constructors. Type constructors are n-ary functions from types to
types. The sort parameters of the theory are associated with the parameters of the
type constructors to achieve generic types. We use Greek letters to range over type
variables. For example, a theory may define type constructors set(α), and seq(β).
The only assumption made on the sorts α and β is that equality is defined.

Operations—A collection of operation signatures. This introduces the operations of
the theory, i.e. functions, relations and constants defined by the theory. The
signatures of generic operations are defined using type variables. For example, the
signature of the image operation of a set by a map is image : map(α, β)×set(α) →
set(β). The signature of the generic empty set constant is { } : set(α)

Axioms—A collection of axioms and axiom schemas. Axioms are written using stan-
dard first order notation with variables over the generic sorts. For example, an
axiom asserting the commutativity of a set union operation can be written

∀(S1 : Set(α)) ∀(S2 : Set(α)) S1 ∪ S2 = S2 ∪ S1

Initial universal quantifiers will be omitted when convenient as will type information
that can be inferred by a ML-style type inference procedure. First order axiom
schemas indexed by formulas φ(x̄) over the language of the theory are permitted.
A special form of axiom schema which facilitates the definition of inductive theories
is provided. Specifically the notation:

constructors {c1, . . . , ck, f1, . . . , fm} construct τ

where each ci is a constant of type τ and each fi is an ni-ary function with sig-
nature τ × s1 × . . . ,×sni

→ τ — with each of the si distinct from τ 2 asserts
that every object of type τ can be finitely generated from the constants c1, . . . , ck
and the operations f1, . . . , fm. A use of the constructors notation introduces the
corresponding induction schema:

2This restriction is made to simplify notation.

5

φ(c1) ∧ . . . ∧ φ(ck) ∧
m
∧

i=1

∀(x : τ)[∀(ȳ : s̄) φ(x) ⇒ φ(fi(x, ȳ))] ⇒ ∀(x : τ) φ(x)

where φ is a formula in which the ȳ do not occur free [12, 13]. The use of the
constructors notation also enables the use of definition by structural induction.

Axiom schemas, i.e. formulas with terms and formulas as parameters are also
permitted.

Theory Development—This is a sequence of definitions and theorems (the depen-
dency order is a tree). Generally to keep the specification of theory interpretations
concise, the number of constant, function, and relation symbols defined in a theory
is kept to a minimum. Additional operations are introduced by definitions, which
yield conservative extensions to the theory. Theorems are stated and latter referred
to to prove that theory interpretations are correct, and to facilitate reasoning about
programs written using the theory. Our presentation of theories, particularly the
theory development part will be interspersed with explanations.

A structure for an unparameterized theory is defined in the usual way: it consists of a
collection of non-empty sets called domains for each sort of the theory together with
operations (i.e. functions, relations and constants) over the domains corresponding to
the operations of the theory.

A structure for a theory parameterized by sorts α1 . . . αN is a function that when given
a structure (i.e. a set with equality relation over the set) for each parameter yields a
structure for the theory.

A model of a theory is a structure in which all of the axioms are true. Mod(T) denotes
the set of all models of T .

2.1.1 Theories with Equality

For each sort of a theory there is an equality relation denoted by the (overloaded) symbol
=. Where confusion may result we subscript the equality symbol with the sort to which it
applies. When presenting a theory we will not explicitly mention equality or its associated
axioms. However it is understood that the usual axioms for equality hold: the axioms
that assert that equality is an equivalence relation, and that for each n-ary function
symbol f (or relation symbol) of the theory there is an equality substitution axiom

⊢ t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

I.e., equality is a congruence relation in the theory. When a theory interpretation is given
it is often not the case that equality of a sort α is mapped to equality of the sort that

6

interprets α. For example, when the theory of sets is interpreted in the theory of lists,
equality on sets is interpreted by a defined relation not by equality on lists. Thus, to prove
that a theory interpretation is correct it is necessary to show that the interpretations of
the axioms of equality are derivable in the target theory.

2.2 Theory Extensions

Extensions of theories play a major role both theoretically and practically in the re-
finement of specifications to code. In this section we review some of the logical issues
involved in theory extensions.

A theory is a set of theorems closed under consequence; hence, proving a theorem does
not extend the theory, merely our knowledge of the theory or its presentation. However,
adding axioms that are not already theorems of the theory does extend the theory. Also,
definitions extend both the language of the theory and the theory itself by adding new
symbols to the language and by adding the defining formulas as new axioms to the theory.
On the other hand, definitional extensions should be merely linguistic and not creative:
replacing defined symbols by their definitions should yield a theory equivalent to the
original theory. In the sections below we review some of the basic notions and results for
various forms of definitional extensions. See [14, 1, 2] for these results and the details.

A theory T2 is an extension of a theory T1 (T1 ⊆ T2) iff L2 is an extension of L1 and
every theorem of T1 is a theorem of T2. T2 is a correct extension iff the consistency of T1

implies the consistency of T2. T2 is a conservative extension of T1 iff it is correct extension
of T1 and for every formula φ of L1, if ⊢T2 φ then ⊢T1 φ.

A definition of symbol ζ will be called explicit if ζ does not occur in the right hand
side of the definition. Otherwise, the definition is implicit; usually these are recursive or
inductive definitions.

2.2.1 Definitional Extensions

A theory T2 is a definitional extension of a theory T1 iff L2 is obtained from L1 by
introducing a new (function, relation or constant) symbol and the axioms of T2 are the
axioms of T1 plus a definition (set of defining axioms). A definition defines (picks out)
an object whose existence is a consequence of the current theory; hence, a definitional
extension based on a proper definition is consistent if the base theory is consistent.

The following sections deal primarily with the case of extensions that add new functions;
the case of relations is simpler. Explicit definitions of functions are of the form 3:

f(x) = y ⇔ φ[x, y]

3The extension to the case of conditional definitions is straightforward

7

where f does not appear in φ[x, y]. For such definitions there are two conditions that
ensure that they are legitimate 4:

Existence—The definition should define a function in the current theory: it should
pick out some function whose pointwise existence and uniqueness is a consequence
of the current theory. Hence, if f is new function symbol and T1 is the current
theory, then it must be the case that:

T1 ⊢ ∀(x) ∃!(y) φ[x, y]

Conservative Extension—The definition should not be creative: the extended theory
should be a conservative extension of the current theory. If T1 is the current theory,
T2 is the extended theory, and φ is a formula in the language of T1, then

⊢T2 φ ⇒ ⊢T1 φ

We will say that a definitional extension is justified iff the definition defines a function
and the extension is a conservative extension. For explicit definitions, satisfaction of the
existence condition implies that the definitional extension is a conservative extension[1, 2].
The basic form of the argument is as follows, where T1 is the original theory and T2 is T1

extended with the defining axioms for the function symbol f .

Existence—Provability of the pointwise existence and uniqueness condition in T 1 im-
plies that there exists a function F satisfying T1 plus the defining axioms.

Conservative Extension—Existence of a function F satisfying T1 plus the defining
axioms implies that T2 is a conservative extension of T1. To see this, let M1 be
a model of T1. Then M1 extended by F is a model of T2. Hence, T2 is a correct
extension of T1. Further, if φ is a formula of L1 (φ does not mention F), then
|=M2 φ ⇒ |=M1 φ. It follows that T2 is a conservative extension of T1

Hence, for explicit definitions, the question of justification reduces to the question of
existence; which, in turn, reduces to the pointwise existence and uniqueness condition.
We will often use ‘justification condition’ to refer to this residue condition that must be
established in each case.

2.2.2 Extensions by Implicit Definitions

A recursive definition of a function is one in which the defining axiom of the function is
of the form

f(x) = y ⇔ φ[x, y]

4There are other conditions on free variables, etc. See [14, 1, 2] for the full details

8

where φ[x, y] does involve occurrences of f . For recursive definitions, the situation is
similar to that of explicit definitions: if the existence of a function satisfying the defining
axioms can be established, then it follows that the definitional extension is conservative
extension. Hence, what must be established is the existence of a function satisfying the
defining axioms.

We review some standard methods of demonstrating the existence of a function (not
necessarily unique) that satisfies an implicit definition.

The most commonly encountered method of inductive definition is the use of structural
induction over the generators of a sort. Recall that the notation

constructors {c1, . . . , ck, f1, . . . , fm} construct τ

asserts an induction principle which informally states that every object of type τ can be
finitely generated from the constants c1, . . . , ck and the operations f1, . . . , fm.

Suppose a function f is defined by an axiom schema of the form

f(ci, ~p) = gi(~p)

f(fi(x, ~y), ~p)) = H(f(x, ~p), x, ~y, ~p))

Such a definition is said to be defined by structural induction over the constructors of τ .
By using the induction schema it is straightforward to prove ∀(x)φ(x) where φ(x) is:

∃(y) y = f(x, ~p)

which asserts the existence part of the justification condition. The proof of the uniqueness
of such a y can not be demonstrated in general. The theory may have axioms which assert
the equality of syntactically distinct terms of the type τ ; e.g., if τ is not freely generated
from its constructors. A function definition by structural induction defines a value for
each term. If the values given for syntactically distinct, but provably equal terms are
different the function “definition” does not actually define a function. Thus, when a
function definition is introduced a proof that the function is well-defined must be given.
An example is given in the next section. In this paper all inductive definitions will be
based on structural induction over constructors.

More general methods of establishing the existence of functions satisfying recursive defi-
nitions are based on the theory of fixed points of functionals. For example, see [15].

9

2.3 Theory of Set(α)

In this section we give an example of a theory, the theory of Set(α): the theory of finite
sets whose elements are of type α.

The theory is a parameterized first-order theory based on Set, =, { }, with , and ∈ .

All other notions are defined, usually by induction over { } and with . It is assumed
that equality is available on the parameter type. Relations are typed as boolean valued
maps. Only the simplest form of (separation) comprehension is presented: the form with
multiple base sets and with extra parameters ~p is valid, but not formalized here. For
readability we use some notation that is not part of the standard system.

theory Set(α)

imports integer, boolean
types α, Set(α)
operations

{ } : Set(α)
with : Set(α)× α → Set(α)
∈ : α× Set(α) → boolean

axioms

membership

x 6∈ { }
x ∈ (S with y) ⇔ x = y ∨ x ∈ S

with

The interchange axiom for with

(S with x) with y = (S with y) with x
The idempotence axiom for with

(S with x) with x = S with x

set-equality

The equivalence axioms for equality on sets.
The substitution axioms for equality on sets.

constructors {{ }, with } construct Set(α)

The constructor clause for sets introduces the induction schema:
If φ is a formula in which x does not occur free, then

φ[{ }] ∧ ∀(S, x)(φ[S] ⇒ φ[S with x]) ⇒ ∀(S)φ[S]

10

We have defined sets using a very small set of operations and axioms. In the theory
development section we shall extend the theory. Our development is similar to that in
[12].

theory development

definition: empty?

empty?(S) ⇔ S = { }

theorem: finite constructability

S = { } ∨ ∃(x) ∃(S ′ : Set(α))(S = S ′ with x ∧ x 6∈ S ′)

theorem: extensionality

S1 = S2 ⇔ ∀(x)(x ∈ S1 ⇔ x ∈ S2)

These two theorems state basic properties of sets. The first states that every set can
be written in the form

(. . . ({ } with t1) . . .) with tn

where i 6= j ⇒ ⊢α ti 6= tj . The second asserts that two sets are equal if and only if they
have the same members. Each of these theorems can be proven by induction over the
constructor set. See [12] for details.

A very powerful notation for defining sets is the set former or comprehension opera-
tor which permits a set to be defined by providing a description of its elements. Set
formers are defined and axiomatized by an axiom scheme in which instances are formed
by instantiating a term Tm[x] and a formula Fm[x] each with a single free variable x of
type α.

Set Formers

For S : Set(α), formula Fm[x] and term Tm[x] : α → α

the set comprehension {Tm(x) | (x ∈ S) Fm[x]}
denotes a function of type: Set(α) → Set(α)

{Tm(x) | (x ∈ S) Fm[x]}

=











{ } if S = { }
{Tm(x) | (x ∈ S ′) Fm[x]} if S = S ′ with a ∧ ¬Fm[a]
{Tm(x) | (x ∈ S ′) Fm[x]} with Tm[a] if S = S ′ with a ∧ Fm[a] ∧ a 6∈ S ′

This is an inductive definition of the set former operation. From it we can prove:

11

theorem: separation

∀(z) (z ∈ {Tm[x] | (x ∈ S) Fm[x]}
⇔

∃(x) (x ∈ S ∧ Fm[x] ∧ z = Tm[x])

definition: ⊆
{ } ⊆ S2

(S with x) ⊆ S2 ⇔ S ⊆ S2 ∧ x ∈ S2

theorem: ⊆
S1 ⊆ S2 ⇔ ∀(x ∈ S1)x ∈ S2

definition: size

size({ }) = 0
size(S with x) = (if x ∈ S then size(S) else size(S) + 1)

theorem: set-equality

S1 = S2 ⇔ size(S1) = size(S2) ∧ ∀(x)(x ∈ S1 ⇔ x ∈ S2)

definition: ∪
S1 ∪ { } = S1

S1 ∪ (S with x) = (S1 ∪ S) with x

theorem: ∪
x ∈ S1 ∪ S2 ⇔ x ∈ S1 ∨ x ∈ S2

definition: ∩
S1 ∩ { } = { }
S1 ∩ (S with x) = (if x ∈ S1 then (S1 ∩ S) with x else (S1 ∩ S))

theorem: ∩
S1 ∩ S2 = {x | (x ∈ S1) x ∈ S2} = {x | (x ∈ S2) x ∈ S1}
x ∈ S1 ∩ S2 ⇔ x ∈ S1 ∧ x ∈ S2

definition: less

{ } less y = { }
(S with x) less y = (if x = y then S less y else (S less y) with x)

theorem: less

S less y = {x | (x ∈ S) x 6= y}
x ∈ S less y ⇔ x ∈ S ∧ ¬(x = y)
x 6∈ S ⇒ (S with x) less y = (if x = y then S else (S less y) with x)

12

definition: setdiff

setdiff({ }, S2) = { }
setdiff(S with x, S2) =

(if x ∈ S2 then setdiff(S, S2) else setdiff(S, S2) with x)

theorem: setdiff

setdiff(S1, S2) = {x | (x ∈ S1) ¬x ∈ S2}
x ∈ setdiff(S1, S2) ⇔ x ∈ S1 ∧ ¬x ∈ S2

end-theory

2.4 Definitional Extensions of Set(α)

Many of the definitional extensions above, such as, ∪, size, ∩, less , setdiff, etc.
are defined by structural induction inductive, based on the constructor set {{ }, with }.
We must show that these definitions define functions, and hence by the discussion in
Section2.2, induce conservative extensions. To illustrate the potential problem consider
the “definition” of a function goofy : Set(α) → α by the following induction:

goofy({ }) = cα
goofy(S with x) = x

Here cα denotes an arbitrary element of type α. By definition, goofy((S with x) with y) =
y. But by the interchange axiom and the substitution axiom for equality,

goofy((S with x) with y) = goofy((S with y) with x) = x

implying ∀(x, y)x = y. This is an inconsistency since it requires that models of α contain
at most one individual.

The problem is that the axioms defining goofy do not imply that for provably equal terms
t1, t2 of set theory, goofy(t1) = goofy(t2), which is the substitution axiom for equality.
The equivalence relation on terms induced by equality in Set(α) is not a congruence
relation with respect to the goofy function. In other words, the choice of representatives
matters.

Hence, what must be shown to justify a definition for the function f defined by struc-
tural induction on the constructors is equality substitution (congruence) for f : if t1 and
t2 are equal in Set(α) then f(t1) = f(t2). The following theorem gives a simple-to-verify
condition that establishes congruence for f ; namely, that the terms in the interchange
and idempotence axioms are congruent with respect to f .

Theorem: If f(S, ~p) is defined by an inductive definition of the form:

13

f(S, ~p) =

{

g(~p) if S = { }
H(f(S ′, ~p), S, x, ~p) if S = S ′ with x

and the following conditions hold:

1. ⊢Setp(α) S = T

2. ⊢Setp(α) f((S with t1) with t1, ~p) = f(S with t1, ~p)

3. ⊢Setp(α) f((S with t1) with t2, ~p) = f((S with t2) with t1, ~p)

then ⊢Setp(α) f(S, ~p) = f(T, ~p)

For example, to show that ∪ is a well-defined function:

S1 ∪ ((S with x) with y) = (S1 ∪ (S with x)) with y

= ((S1 ∪ S) with x) with y

= ((S1 ∪ S) with y) with x

= (S1 ∪ (S with y)) with x

= S1 ∪ ((S with y) with x)

and

S1 ∪ ((S with x) with x) = (S1 ∪ (S with x)) with x

= ((S1 ∪ S) with x) with x

= (S1 ∪ S) with x

= S1 ∪ (S with x)

Proofs of the other definitions are similar. It is desirable to seek a syntactic condition
that is sufficient to establish for a given definition of f(S, ~p), whether or not the defi-
nition satisfies congruence with respect to the axioms of interchange and idempotence.
Unfortunately, we do not have a definitive test for this at the moment. What empirical
data show is that the proofs all have the same simple form: use the definition to push
the defined symbol down as far as possible; use interchange, idempotence, and simple
logic to put the reduced form into DNF and to manipulate the DNF to the DNF basis
for the result; and finally use the definition to lift the defined symbol back to the top. If
the definition does not use conditionals, then the DNF is trivial: it is simply the single
term. Hence, it should be a simple task for a resolution based theorem prover to decide.

14

2.5 Theory of List(β)

The theory is a parameterized first order theory based on List, =, nil, cons, head

and tail. All other notions are defined, usually by induction over nil and cons. It
is assumed that equality is available on the parameter type. We will not give an ex-
tensive axiomatization of list, but simply provide a basis for proving the interpretation
of set theory in list theory. Where proofs are given, the end of the proof is indicated by ✷.

theory List(β)
imports integer, boolean
types β, List(β)
operations

nil: List(β)
cons: β × List(β) → List(β)
head: List(β) → β

tail: List(β) → List(β)

axioms

cons

nil 6= cons(x, L)
cons(x, L1) = cons(y, L2) ⇔ x = y ∧ L1 = L2

head

head(cons(x, L)) = x

tail

tail(cons(x, L)) = L

list-equality

The equivalence axioms for equality on lists.
The substitution axioms for equality on lists.

constructors {nil, cons} construct List

The constructor clause for lists introduces the induction schema:
If φ is a formula then

φ[nil] ∧ ∀(L, x)(φ[L] ⇒ φ[cons(x, L)]) ⇒ ∀(L)φ[L]

theory development

definition: null?

null?(L) ⇔ L = nil

15

General List Formers

For L : List(β), formula Fm[x] and term Tm[x] : β → β

the list comprehension [Tm(x) | (x ∈ L) Fm[x]]
denotes a function of type: List(β) → List(β)

[Tm(x) | (x ∈ L) Fm[x]]

=











[] if L = nil

[Tm(x) | (x ∈ L′) Fm[x]] if L = cons(a, L′) ∧ ¬Fm[a]
cons(Tm[a], [Tm(x) | (x ∈ L′) Fm[x]]) if L = cons(a, L′) ∧ Fm[a]

definition: length

length(L) =

{

0 if L = nil

length(L′) + 1 if L = cons(x, L′)

definition: member?

¬member?(x, nil)
member?(x, cons(y, L)) ⇔ x = y ∨ member?(x, L)

definition: insert

insert(x, L) =

{

L if member?(x, L)
cons(x, L) if ¬member?(x, L)

corollary:

insert(x, nil) = cons(x, nil)
insert(x, cons(y, L))

= (if x = y ∨ member?(x, L)
then cons(y, L) else cons(x, cons(y, L))

theorem: member?(x, insert(y, L)) ⇔ x = y ∨ member?(x, L)
proof

⇒: Assume member?(x, insert(y, L))
Case 1: member?(y, L)

Then insert(y, L) = L Hence, member?(x, L).
Case 2: ¬member?(y, L)

Then insert(y, L) = cons(y, L) By definition of member?,
member?(x, cons(y, L)) => x = y ∨ member?(x, L)

⇐: Assume x = y ∨ member?(x, L)
Case 1: member?(y, L)

Then insert(y, L) = L. If x = y then member?(x, L);
hence, member?(x, insert(y, L)).

Case 2: ¬member?(y, L)
Then insert(y, L) = cons(y, L) By definition of member?,
x = y ∨ member?(x, L) => member?(x, cons(y, L))
✷

16

corollary: member?(x, insert(x, L))

corollary: insert(x, insert(x, L)) = insert(x, L)
proof:

By the first corollary, member?(x, insert(x, L)). Hence, by the definition of insert,
insert(x, insert(x, L)) = insert(x, L) ✷

theorem: member?(z, insert(y, insert(x, L))) ⇒ member?(z, insert(x, insert(y, L)))

definition: no-dup?

no-dup?(nil)
no-dup?(cons(x, L)) ⇔ no-dup?(L) ∧ ¬member?(x, L)

theorem: no-dup?(L) ⇒ no-dup?(insert(x, L))
proof: By induction on L.
L = nil

Because ¬member?(x, nil) then insert(x, nil) = cons(x, nil)
By the definition of no-dup? no-dup?(nil); hence, no-dup?(cons(x, nil)).
L = cons(y, L′)
Either member?(x, cons(y, L′)) ∨ ¬member?(x, cons(y, L′))
In the former case, insert(x, cons(y, L′)) = cons(y, L′); hence,
no-dup?(insert(x, cons(y, L′)).
In the latter case, insert(x, cons(y, L′)) = cons(x, cons(y, L′)) and the result is imme-
diate from the definition. ✷

definition: set-equal?

no-dup?(L1) ∧ no-dup?(L2) ⇒
set-equal?(L1, L2) ⇔ ∀(x)(member?(x, L1) ⇔ member?(x, L2))

corollary: equivalence axioms for set theory

no-dup?(L) ⇒ set-equal?(L, L)
no-dup?(L1) ∧ no-dup?(L2) ⇒ (set-equal?(L1, L2) ⇒ set-equal?(L2, L1))
no-dup?(L1) ∧ no-dup?(L2) ∧ no-dup?(L3) ⇒

(set-equal?(L1, L2) ∧ set-equal?(L2, L3) ⇒ set-equal?(L1, L3))

theorem: no-dup?(L) ⇒ set-equal?(insert(x, insert(x, L)), insert(x, L))
theorem: no-dup?(L) ⇒ set-equal?(insert(y, insert(x, L)), insert(x, insert(y, L)))

The set of all lists without duplications is an inductive sort generated by nil and insert:
theorem:

no-dup?(L) ⇔ L = nil ∨ ∃(x) ∃(L′ | no-dup?(L′)) ¬member?(x, L′) ∧ L = insert(x, L′)

end-theory

17

2.6 Interpretations Between Theories

Interpretations (translations) [1, 2, 3] are maps from the language L1 of theory T1 into
the language L2 of theory T2 that preserve the validity of the theorems of T1; in partic-
ular, the translations of the axioms of T1 must be provable from the axioms of T2 and
the images of the sorts of T1 must contain the interpretations of the constants of T1 and
must be closed under the interpretations of the functions of T1. Such an interpretation
naturally defines models of T1 in models of T2. See Section 2.6.3.

The basis required to establish an interpretation of T1 in T2 is:

• An interpretation map I from L1 to L2

• Proofs of the translations of the axioms of T1 in T2 (including the axioms for equality,
if present)

This basis must be extended to cover all definitions and theorems of T1. The core of this
is establishing that theorems in T1 theorems translate to theorems in T2. This implies
that explicit definitions in T1 translate to explicit definitions in T2.

In the following, we give examples of an interpretation map5 and translations of axioms,
using Set-to-List for the examples.

2.6.1 Interpretation Map

An interpretation map I is defined by first defining an auxiliary translation map I ′ by
induction over the syntactic classes of the source language. I ′ in turn is defined in terms
of the following four auxiliary maps:

Sort Map: IS
For each sort s′ of the source language, IS(s

′) is a (possibly constructed) sort of the target
language. For example,

IS[[α]] = β

IS[[Set(α)]] = List(β)

Variable Map: IV
For each variable ν of sort s′ of the source language, IV (ν) is a distinct variable of sort
IS(s

′). For example,
Variables over α go to variables over β with the same name.
Variables over Set(α) go to variables over List(β) with the same name.

5This presentation closely follows that in [3]; see it for the full details.

18

Relativization Map: IR
For each sort s′ of the source language, IR is a relativization predicate over the sort IS(s

′).
For example,

IR[[Set(α)]] = no-dup?

IR[[α]] = true?β
(Here true?β is a predicate over the sort β which always yields the value true). The
relativization predicate is used to restrict the target sort to just those “concrete” objects
that actually represent “abstract” objects; e.g., restricting lists to non-duplicating lists.
The extensions of these relativization predicates must contain the interpretations of the
constants of T1 and be closed under the interpretations of the functions of T1 if the model
construction in Section 2.6.3 is to succeed. In the case of interpreting Set(α) in List(β)
this requires (among other things) that:

IO[[{ }]] = nil be a list without duplicates
and that since IO[[with]] = insert:
if L is a list without duplicates, then insert(x, L) is also a list without duplicates.

Operations Map: IO
IO maps the “operation” (relation, function, constant) symbols of the source theory to
the (possibly defined) operation symbols of the target theory. For example,

IO[[{ }]] = nil

IO[[with]] = insert

IO[[∈]] = member?

IO[[=Set(α)]] = set-equal?6

Interpretation Auxiliary Map: I ′

Once the four basis maps are defined, the auxiliary map I ′ is defined by induction over
the terms and formulas of L1.

Terms

Variables I ′[[ν]] = IV [[ν]]
Constants I ′[[c]] = IO[[c]]
Applications I ′[[F (τ1, ..., τn)]] = IO[[F]] (I

′[[τ1]] , ..., I
′[[τn]])

Formulas

Atomic Formulas

I ′[[R(τ1, ..., τn)]] = IO[[R]] (I
′[[τ1]] , ..., I

′[[τn]])

6In a theory interpretation equality is treated as just another predicate: it can be interpreted by any
equivalence relation in the target theory that is a congruence relation with respect to the interpretations
of the other operations of the source theory.

19

Propositional Compounds

I ′[[¬φ]] = ¬ I ′[[φ]]
I ′[[φ1 ∧ φ2]] = I ′[[φ1]] ∧ I

′[[φ2]]
I ′[[φ1 ∨ φ2]] = I ′[[φ1]] ∨ I

′[[φ2]]
I ′[[φ1 ⇒ φ2]] = I ′[[φ1]] ⇒ I ′[[φ2]]

Universal Quantification

I ′[[∀(ν : σ) φ]]
= ∀(IV (ν) : IS(σ)) IR(σ)(ν) ⇒ I ′[[φ]])

Hence,
I ′[[∀(ν : Set(α)) φ]] = ∀(ν : List(β)) no-dup?(ν) ⇒ I ′[[φ]]

and
I ′[[∀(ν : α)φ]] = ∀(ν : β)(trueβ ⇒ I ′[[φ]]) = ∀(νβ) I

′[[φ]]

Existential Quantification

I ′[[∃(ν : σ) φ]]
= ∃(IV (ν) : IS(σ)) (IR(σ)(ν) ∧ I

′[[φ]])
Hence,
I ′[[∃(ν : Set(α)) φ]] = ∃(ν : List(β)) no-dup?(ν) ∧ I ′[[φ]]

and
I ′[[∃(ν : α) φ]] = ∃(ν : β)(trueβ ∧ I

′[[φ]])

Interpretation Map

Once I ′ is defined we can define the interpretation of arbitrary formulas (with possibly
free variables) as follows:

Formulas

Let φ[x1, ..., xn] be a formula with free variables x1, ..., xn of sorts s1, ..., sn. Then:
I[[φ[x1, ..., xn]]]
=

IR[[s1]] (IV [[x1]]) ∧ ... ∧ IR[[sn]] (IV [[xn]])
⇒

I ′[[φ[IV [[x1]] , ..., IV [[xm]]]]]

2.6.2 Interpretation of Set(α) in List(β)

The interpretation map was given via examples in the previous section; here we give
some examples of the translations of the Set(α) axioms (including the equality axioms)
in List(β); i.e., what must be proven in List(β) to establish the interpretation. In each
case, the result of the translation is a corollary, definition, or theorem of the theory of
lists presented in Section 2.5.

20

Prove: List(β) ⊢ I[[x 6∈ { }]]

I[[x 6∈ { }]]
= ¬I[[x ∈ { }]]
= ¬member?(I[[x]] , I[[{ }]])
= ¬member?(x, nil)

Prove: List(β) ⊢ I[[x ∈ (S with y) ⇔ x =α y ∨ x ∈ S]]

I[[x ∈ (S with y) ⇔ x =α y ∨ x ∈ S]]
= no-dup?(S) ⇒ I[[x ∈ (S with y) ⇔ x =α y ∨ x ∈ S]]
= no-dup?(S) ⇒ I[[x ∈ (S with y)]] ⇔ I[[x =α y ∨ x ∈ S]]
= no-dup?(S) ⇒ member?(x, I[[S with y]]) ⇔ I[[x =α y]] ∨ I[[x ∈ S]]
= no-dup?(S) ⇒ member?(x, insert(y, S)) ⇔ x =β y ∨ member?(x, S)

Prove: List(β) ⊢ I[[(S with x) with y =Set(α) (S with y) with x]]

I[[(S with x) with y =Set(α) (S with y) with x]]
= no-dup?(S) ⇒

I[[(S with x) with y =Set(α) (S with y) with x]]
= no-dup?(S) ⇒

set-equal?(I[[(S with x) with y]] , I[[(S with y) with x]])
= no-dup?(S) ⇒

set-equal?(insert(y, I[[S with x]]), insert(x, I[[S with y]]))
= no-dup?(S) ⇒

set-equal?(insert(y, insert(x, S)), insert(x, insert(y, S)))

Prove: List(β) ⊢ I[[(S with x) with x =Set(α) S with x]]
= no-dup?(S) ⇒

I[[(S with x) with x =Set(α) S with x]]
= no-dup?(S) ⇒

set-equal?(I[[(S with x) with x]] , I[[S with x]])
= no-dup?(S) ⇒

set-equal?(insert(x, I[[S with x]]), insert(x, S))
= no-dup?(S) ⇒

set-equal?(insert(x, insert(x, S)), insert(x, S))

The equivalence axioms for Set Equality

Prove: List(β) ⊢ I[[S = S]]
= no-dup?(S) ⇒ set-equal?(S, S)

21

Prove: List(β) ⊢ I[[S1 = S2 ⇒ S2 = S1]]
= no-dup?(S1) ∧ no-dup?(S2) ⇒ (set-equal?(S1, S2) ⇒ set-equal?(S2, S1))

Prove: List(β) ⊢ I[[S1 = S2 ∧ S2 = S3 ⇒ S1 = S3]]
= no-dup?(S1) ∧ no-dup?(S2) ∧ no-dup?(S3) ⇒

(set-equal?(S1, S2) ∧ set-equal?(S2, S3) ⇒ set-equal?(S1, S3))

The substitution axioms for Set Equality

Prove: List(β) ⊢ I[[S1 = S2 ⇒ (x ∈ S1 ⇔ x ∈ S2)]]
= no-dup?(S1) ∧ no-dup?(S2) ⇒

set-equal?(S1, S2) ⇒ ((x, S1) ⇔ member?(x, S2))

Prove: List(β) ⊢ I[[S1 = S2 ⇒ (S1 with x = S2 with x)]]
= no-dup?(S1) ∧ no-dup?(S2) ⇒

set-equal?(S1, S2) ⇒ set-equal?(insert(x, S1), insert(x, S2))

Note that since the constructors of Set are mapped to the “constructors” of non-duplicating
lists, the translation of an instance of the induction schema for sets is an instance of the
induction schema for lists.

2.6.3 Interpretation Model Construction

Our notion of an implementation of a theory is a model of the theory, and our notion
of refinement is an operation mapping a theory T1 to a theory T2 such that every model
of T2 is also a model of T1. I.e., refinement restricts the models that may be used as an
implementation. This is an abstract, model theoretic condition. At an operational level,
we use theory interpretations, a proof-theoretic concept, to specify refinements. We need
to explain, given an interpretation from T1 to T2, how to construct a model of T1 from
a model of T2. Note that T2 may be over a different language than T1 so models of T2

cannot be directly viewed as candidate models of T1.

The existence of an interpretation from T1 to T2 enables the use of general model-theoretic
methods for constructing modelsM2|I (the model induced by I in M2) of T1 from models
M2 of T2. In broad outline, for theories with equality, that method[2] is the following.

Sorts–The domains representing the sorts of M2|I consist of equivalence classes of
elements of the domains of M2 induced by the equivalence relation E that is the
interpretation of the equality relations in T1 restricted to the domain elements
satisfying the relativization predicates. In our example, this is the denotation of

22

set-equal? restricted to no-dup? together with the equality relation on β. Because
the interpretations of the axioms for = in T1 hold in T2 (including the equivalence
and substitution axioms), E will be a congruence relation.

Equalities–The equality relation on a given sort of M2|I is the equality over the
equivalence classes of E restricted to that sort.

Relations–The relations of M2|I are the denotations of the interpretations of the
relations of T1 factored by E.

Functions–The functions of M2|I are the denotations of the interpretations of the
functions of T1 factored by E.

Constants–The constants of M2|I are the equivalence classes of E containing the
denotation of the interpretation of constant symbol.

As mentioned in the previous section, in order for the construction to actually define
a first order structure for L1, we must show that the relativized interpretations of the
sorts of T1 contain the interpretations of the constants of T1 and are closed under the
interpretations of the functions of T1 and that E is a congruence relation.

The following theorem and its corollary are from [2].

Theorem:7 Let I be an interpretation of L1 in T2 and let M2 be a model of T2. Let φ be
a formula of L1, let γ be an assignment of values in M2 to the free variables of I[[φ]] , and
let γ ′ be the assignment that maps a variable ν to the equivalence class of γ(ν). Then

γ′ |=M2|I φ ⇔ γ |=M2 I[[φ]]

Corollary: If I is an interpretation of T1 in T2, M2 is a model of T2, and φ is a theorem
of T1, then |=M2|I φ.
Proof:

If ψ is an axiom of T1, then I[[ψ]] is a theorem of T2. By the theorem, |=M2|I ψ. Hence,
M2|I is a model of T1 and |=M2|I φ.

Hence, we have the following.
Theorem:[1, 2] If I is an interpretation of T1 in T2, then there is a construction (the
induced model construction) that transforms models of T2 into models of T1.

7It is this theorem that is at the core of the generalization of interpretations in first order logic to
institutions (see [11]).

23

2.6.4 Definitional Extensions

Let D be an explicit definition of a function in T1; say D has the form: f(x) = y ⇔
φ[x, y]. In order for D to be a justified definition of T1, it must be the case that justification
condition (the pointwise existence and uniqueness condition) is a theorem of T1:

|=T1 ∀(x) ∃!(y) φ[x, y]

If I is an interpretation of T1 in T2, then the interpretation of the justification condition
for D will be a theorem of T2

8. Hence, mapping a defined symbol f of T1 to a defined
symbol f ′ whose definition in T2 is the image under I of the definition of f in T1 always
yields a legitimate extension of the interpretation: justification conditions will be mapped
to justification conditions. It follows that establishing the correctness of the extended
interpretation is simply a matter of matching formulas. Further, if the interpretation is
specified by giving the interpretation of the primitives of T1 and generating the definitions
in T2 that are the images of the definitions in T1, then the extensions are guaranteed to
be correct.

For inductive definitions, the situation is similar: if the constructors are mapped to con-
structors, then the induction schemas will translate to induction schemas and legitimate
inductive definitions will translate to legitimate inductive definitions.

2.7 Data Type Refinement via Interpretations

The core notion of refinement used here is the same as that of Sannella and Tarlecki in
[7, 8]:

S refines to S’ iff every model of S’ is a model of S.

The notion of refinement utilized for data type refinement is the generalization called
constructor implementation in [8]:

S is implemented by S’ via the constructor k
iff

k transforms models of S’ into models of S.

These notions are model-theoretic notions; the actual techniques employed in our meth-
ods of data type refinement are proof-theoretic: the refinement is presented as an inter-
pretation between theories. The link between them is provided by the induced model
construction of Section 2.6.3. The correctness of refinement by interpretation follows di-
rectly from the fact that the induced model construction transforms models of the target

8Where the “there-exists-a-unique” quantifier is interpreted to mean “unique up to E-equivalence”.

24

theory into models of the source theory.9 Also, the abstraction or “retrieve” functions of
Hoare are given by the mapping taking elements of the model of T2 to the equivalence
class containing the element. Hence, the refinements are correct in the sense of [17].

2.8 Algebra of Interpretations

The atomic interpretations are interpretations from atomic data types into atomic data
types; e.g., the interpretation Std-Integer interprets the integers in Common Lisp

integers. The interpretations of parameterized theories are themselves parameterized:
Set-to-CL-List(β) maps Set(α) to lists in Common Lisp of elements whose type is
α and whose implementation is β. The following is a simple example of a compound
interpretation constructed via parametric composition:

Set-to-CL-List(Set-to-CL-Bitvector(β))

Interpretations can also be composed sequentially, which we will express using ◦. For ex-
ample the interpretation Set-to-CL-List(β) can be factored into the two interpretations
Set-to-List(β) and List-To-CL-List(β) and expressed as:

(List-To-CL-List ◦ Set-to-List)(β)

The basic interpretations form a category: the existence of identity interpretations is
trivial and the composition operator ◦ is easily shown to be associative.

3 Dtre Transformation System

The Data Type Refinement Environment (Dtre) is a synthesis system that utilizes di-
rectives to synthesize efficient code from specifications. Logically its core is the use of
interpretations between theories to implement data type refinements in a provably correct
manner. In system terms, the core of the system is the facility for annotating specifica-
tions with annotations directing that particular objects and operations be given specific
implementations together with the transformation system that refines specifications ac-
cording to those directives. This separation of types and their implementations permits
specification to proceed independently of implementation while simultaneously provid-
ing a basis for rapid and verifiably correct transformation to efficient code. Users can
change implementations by simply changing annotations. Among other things this pro-
vides a smooth transition between prototyping, producing a production quality system,
and maintaining the system. Dtre itself is implemented in Refine[18] and has been

9See [16] for a recent survey of the semantics of Algebraic Specifications.

25

integrated with the kids system[4] for algorithm design and refinement. We first give a
simple example of what the system does and then give brief descriptions of some parts
of the system. In the example, the user has not specified any implementations; hence,
the system will try to select reasonable implementations. The primary flow of control
is: type checking and inference; data-flow and bounds analysis; data structure selection;
and, finally, refinement.

We first give a simple example of what the system does and then give brief descriptions of
some parts of the system. In the example, the user has not specified any implementations;
hence, the system will try to select reasonable implementations. The primary flow of
control is: type checking and inference; data-flow and bounds analysis; data structure
selection; and, finally, refinement.

3.1 Example: Job Scheduling

Schedule-Jobs is an instance of topological sort: given a partial order it finds a linear
order that respects the partial order.

The algorithm presented below is the algorithm produced by the kids system: the basic
form of the algorithm has been determined by kids, the remaining task is to select effi-
cient data structures. The algorithm is a workset algorithm: each time through the loop,
the algorithm selects for scheduling some job all of whose predecessors have already been
scheduled. The actual algorithm below improves upon the basic algorithm by keeping
track of the number of unscheduled predecessors of a job and the immediate successors
of each job. This information is used to maintain the set of jobs with no predecessors.

Type declarations for Schedule-Jobs

Type JobsSet = Set(Integer)

Type JobsReln = Set(Tuple(Integer,Integer))

Type JobsSeq = Seq(Integer)

Type SuccMap = Map(Integer,set(Integer))

Type NumMap = Map(Integer,Integer)

Type IntWorkSet = Set(Integer)

26

Specification for Schedule-Jobs

This is the form of the specification as it enters Dtre.

Function Schedule-Jobs

(S : JobsSet, R : JobsReln | Domain(R) = S)

returns (p : JobsSeq | range(p) = S)

=

(Let (Sz = size(S),

result = [])

(Let (Succ: SuccMap = {| v -> {}| (v) v in S |},

NumPred: NumMap = {| v -> 0 | (v) v in S |}

| Domain(Succ) = S & Size(Succ) = Sz &

Domain(NumPred) = S & Size(NumPred) = Sz)

(Enumerate z over R do

(let (x : Integer = z.1, y : Integer = z.2)

Succ(x) <- Succ(x) with! y;

NumPred(y) <- NumPred(y) + 1));

(Let (MinEls: IntWorkSet = {})

(Enumerate v over S do

if NumPred(v) = 0

then MinEls <- MinEls with! v);

(While Sz > 0 do

(Let (a = arb(MinEls))

MinEls <- MinEls less! a;

result <- append(result,a);

(Enumerate w over Succ(a) do

NumPred(w) <- NumPred(w) - 1;

if NumPred(w) = 0

then MinEls <- MinEls with! w);

Sz <- Sz - 1))));

result)

27

Schedule-Jobs With Major Implementation Directives

This is the form of the specification after data structure selection; the implementations
were selected by the DSS algorithm. Other annotations have been omitted for readabil-
ity.

Function Schedule-Jobs

(S : JobsSet, R : JobsReln | Domain(R) = S)

returns (p : JobsSeq | range(p) = S)

=

(Let (Sz = size(S),

result = [])

(Let (Succ: SuccMap

impl-by MAP-TO-ARRAY(STD-INTEGER, SET-TO-LIST(STD-INTEGER))

= {| v -> {}| (v) v in S |},

NumPred: NumMap

impl-by MAP-TO-ARRAY(STD-INTEGER, STD-INTEGER)

= {| v -> 0 | (v) v in S |}

| Domain(Succ) = S & Size(Succ) = Sz &

Domain(NumPred) = S & Size(NumPred) = Sz)

(Enumerate z over R do

(let (x : Integer = z.1, y : Integer = z.2)

Succ(x) <- Succ(x) with! y;

NumPred(y) <- NumPred(y) + 1));

(Let (MinEls: IntWorkSet impl-by SET-TO-STACK(STD-INTEGER) = {})

(Enumerate v over S do

if NumPred(v) = 0

then MinEls <- MinEls with! v);

(While Sz > 0 do

(Let (a = arb(MinEls))

MinEls <- MinEls less! a;

result <- append(result,a);

(Enumerate w over Succ(a) do

NumPred(w) <- NumPred(w) - 1;

if NumPred(w) = 0

then MinEls <- MinEls with! w);

Sz <- Sz - 1))));

result)

28

Common Lisp Code Generated For Schedule-jobs

(DEFUN SCHEDULE-JOBS (S R)

(LET ((SZ (LENGTH S)) (RESULT (LIST)))

(LET ((SUCC (LET ((MAPVAR-1

(CREATE-CONSTANT-ARRAY1 SZ (QUOTE *UNDEFINED*))))

(LOOP FOR V IN S DO (SETF (SVREF MAPVAR-1 V) NIL))

MAPVAR-1))

(NUMPRED

(LET ((MAPVAR-0

(CREATE-CONSTANT-ARRAY1 SZ (QUOTE *UNDEFINED*))))

(LOOP FOR V IN S DO (SETF (SVREF MAPVAR-0 V) 0))

MAPVAR-0)))

(LOOP FOR Z IN R DO

(LET ((X (CAR Z))

(Y (CDR Z)))

(SETF (SVREF SUCC X)(CONS Y (SVREF SUCC X)))

(SETF (SVREF NUMPRED Y)(+ (SVREF NUMPRED Y) 1))))

(LET ((MINELS NIL))

(LOOP FOR V IN S DO

(IF! (LET ((VALUE-0 NIL))

(IF! (ZEROP (SVREF NUMPRED V))

THEN (SETQ VALUE-0 T))

VALUE-0)

THEN (SETQ MINELS (CONS V MINELS))))

(LOOP WHILE (> SZ 0)

DO (LET ((A (IF (NULL MINELS) (QUOTE *UNDEFINED*) (CAR MINELS))))

(SETQ MINELS (CDR MINELS))

(SETQ RESULT (CONS A RESULT))

(LOOP FOR W IN (SVREF SUCC A)

DO (PROGN

(SETF (SVREF NUMPRED W)(- (SVREF NUMPRED W) 1))

(IF! (LET ((VALUE-1 NIL))

(IF! (ZEROP (SVREF NUMPRED W))

THEN (SETQ VALUE-1 T))

VALUE-1)

THEN (SETQ MINELS (CONS W MINELS)))))

(SETQ SZ (- SZ 1))))))

(NREVERSE RESULT)))

The Data Structure Selection (DSS) algorithm in Dtre has selected array implemen-
tations for the maps SuccMap and NumPred and has selected a stack implementation for

29

the set IntWorkSet. These implementations represent a significant improvement over the
default implementations of association lists for maps and lists without duplicates for sets.
If the default implementations are used, the algorithm is cubic and takes approximately
18 seconds of cpu on a Sun-4 for input of size roughly 500. However, if arrays and a stack
are used, the algorithm is linear and the time for processing an input of size 500 is about
15 milli-seconds of cpu—a speedup of approximately 1200 times.

3.2 System Components And Technology

There are many capabilities required of transformation systems such as Dtre; we give
brief descriptions of:

• Refinements and the Dtre Language

• Data Structure Selection

• Transformation Procedure

3.2.1 Refinements and the Dtre Language

The core technology is the formulation of data type refinements as interpretations. The
algebra of interpretations provides the basis for the description of compound implementa-
tions as compositions of basic interpretations; and, hence, provides the basis of the Dtre

language for specifying implementations. The Dtre language is a primary medium for
communication between the user and the system as well as between parts of the system
such as the DSS and the transformation system. The system provides special gram-
mars for describing implementations, maintains a library of data type refinements, and
provides both textual and menu-based methods for specifying refinements. These are
described below along with the special role that equality plays in the formulation and
refinement of the abstract generic types.

Descriptions of Interpretations in Dtre Logically, interpretations are meta-level
maps from the language of one theory to another. Operationally, interpretations in
Dtre are implemented as lists of transformation rules in the language Refine [18]
which provides an object based representation of the abstract syntax and a pattern
based transformation system for manipulating the abstract syntax. We have added an
interpretation compiler that takes a specification of the interpretation in a language close
to the object level of the theories involved (with a few simple pattern notations), lifts
it to the meta-level, and then utilizes a knowledge base to generate the Refine rules
including the auxiliary code to bind and test attributes on the left hand sides of rules
and set them on the right hand sides of rules.

30

Library of Data Type Refinements There is a library of Data Type Refinements
formally expressed as compositions over the basic proof theoretic interpretations. Here
is a sample of some of the current basic interpretations.

Atomic Types

Each atomic type has a standard impl in the target language.
For example, Std-Integer, Std-Char, etc.

Sets Seqs

Set-to-List Seq-to-List

Set-to-BitVector Seq-to-Array

Set-to-iBitVector Std-String-Seq

Set-to-Stack Seq-to-BitVector

Tuples Relations

Tuple-to-Pair Relation-to-Map

Tuple-to-List

Maps (Functions)
Map-to-aList

Map-to-Array

Map-to-Code

Map-to-Lambda

Map-to-Cached-Code

Methods for Annotating Specifications The current Dtre language for specify-
ing implementations is essentially the language of the algebra of interpretations: terms
are constructed from parameterized interpretations via both parametric and sequential
composition. As mentioned in the previous sections, users can annotate program objects
with these terms as implementation directives. This is supported textually: programs
with such annotations can be parsed in and out. The following is a simple example of
the use of a compound implementation directive in Dtre to annotate the declaration of
a program variable V .

V : Set(Set(Integer)) impl-by Set-to-CL-List(Set-to-CL-Bitvector(Std-Integer))

There is also mouse driven menu support for annotating program objects. We have pro-
totyped a performance tuning environment based on Dtre[10] that relies solely on mouse

31

driven menu selections for annotating program objects. In that environment specifica-
tions are tuned to particular classes of data via a loop of Select, Test, and Analyze.
Here Select means to select implementations. The selection is semi-automatic: the user
specifies some implementations (possibly none) and the program selects the rest (see be-
low). Test means to run the synthesized program over the test data. Analyze means
timing analysis and profiling to spot performance bottlenecks. In this performance tun-
ing environment, all implementation selections by the user are via mouse clicks on menus
of applicable implementations.

Generics and Equality Some of the abstract data types are generic (e.g., Seq(α))
in that they take other data types (with equality) as parameters. In such data types,
notions are defined in terms of the equality of the parameter type; for example, x is a
member of the sequence S can be defined by

∃(i | 1 ≤ i ≤ size(S)) S(i) = x

where the = is equality on the parameter type. The function that implements the =

is bound to it at compile time. Usually the value is the equality of an atomic data
type or a compound data type all of whose values have the same implementation. But
occasionally the equality is between two objects of the same type but different imple-
mentations. In such cases, the system can utilize the proceduralization facility described
below to generate an equality procedure with the appropriate implementations; this can
generate (recursively) a collection of such auxiliary procedures. This technique provides
the basis for the option of finessing certain conversions. An equality between sets of
differing implementations could be implemented by first converting and then applying
a “pure” equality procedure or it could be implemented as an equality between sets of
differing implementations; in effect pushing the conversion inside. This often permits the
conversion to be finessed: for example, if S1 is a set of integers implemented as a list
and S2 is a set of integers implemented as a bitvector, then the set equality procedure
will be implemented as a procedure that first compares the sizes and then iterates over
S1 testing the elements of S1 for membership in S2. At no point is any object converted
from one representation to another.

If the implementing language supports it (as, for example, Common Lisp does), the
system can translate generic procedures into procedures where the generic function pa-
rameters are passed as arguments to the implementing function. For example, the generic
abstract data type Set(α) is translated by Set-to-CL-List into Common Lisp proce-
dures with extra function arguments for the equality of the parameter type. The mem-
bership function on Set(α) is translated to

(member x S :test eqfun)

The generated rules that transform membership tests contain code to look up or create
the appropriate equality function and substitute its name for eqfun in the call.

32

3.2.2 Data Structure Selection

The term Data Structure Selection (DSS), refers to selecting implementations for abstract
objects in terms of lower level data structures such as lists, arrays, bitvectors, etc. We
believe that fully automatic selection of efficient implementations is beyond current tech-
nology and the system we are developing is a semi-automatic system for data structure
selection and refinement. In such a semi-automatic system the user supplies some imple-
mentation directives and the system determines the rest and refines the specification to
code. The DSS algorithm has three phases:

Propagate During this phase user supplied and readily available information is prop-
agated and collected at appropriate program points. Some examples are: the op-
erations on a given program object, user assertions about sizes, etc.

Analyze Here the program is analyzed to determine such properties as data flow, value
flow, size bounds, base bounds, etc. needed to make reasonable data structure
selections.

Select

• First, “plausible” DSS rules are use to filter possible implementations and
arrive at a set of plausible implementations.

• Second, simple heuristics are utilized to select from among the plausible im-
plementations. (This is being upgraded[10] to select from the collection of
plausible implementations on the basis of a qualitative measure of the “cost”
of the operations on a given implementation weighted by the “importance”
(frequency) of the operations.)

3.2.3 Transformation Procedure

The overall transformation procedure is an exhaustive top down application of the trans-
formation rules to the abstract syntax tree of the specification or program. An important
auxiliary facility is the Proceduralization Facility which is used at compile time to con-
struct new procedures and translation rules according to specifications generated by other
transformation rules.

Structure of the Transformation Map The rules are organized into an indexed
map with the primary index being the class of the node (of the abstract syntax tree).
The rules for each node class are placed into three groups:

Simplification and Normalization Rules—Used to reduce the kinds of syntactic
forms seen by the main translation rules.

33

Translation Rules—These are the main interpretation rules. They are organized into
a tree indexed by the dominant terms of the implementation specification for the
current node. An attempt is made to order them most specific first. The indexing
is good enough that it is rare to have more than one applicable rule.

Backstop Rules—These are rules that apply when a node should be translated but
there is no specific translation rule that applies. The usual case is that it is an
operation with mixed implementations; e.g., A ∪ B where the implementations of
A and B differ. In such cases the system passes a general definition for ∪ (i.e.,
at the level of set theory rather than at the level of an implementation) to the
proceduralization facility which then uses the actual implementations attached to
the node (and its subnodes) to construct a ∪ procedure in the target language. It
then constructs a translation rule to recognize similar instances of ∪ and to translate
them to calls on the generated procedure. It also inserts the new translation rule
into the transformation map.

Proceduralization Facility and Data Base The proceduralization facility provides
two main services:

Procedure Generation Take an appropriate piece of the program tree, instructions
about which pieces correspond to formal parameters, and implementation directives
for the program and generate a procedure. (This is essentially lambda abstraction
with implementation directives.)

Rule Generation Generate a translation rule to recognize instances of the generated
procedure body and replace them by a call to the generated procedure.

The system handles either generic or ground structure. It also maintains a data base of
such procedures and rules.

4 Related Work

This paper describes a system for data refinement and its theoretical foundations. The
system itself is well developed and has been used to compile a language with set-theoretic
data types into Common Lisp. Much of the theoretical framework reflects requirements
derived from experience with the system.

Our formalism for specification of abstract types is based on standard notions from first-
order logic (theory, conservative extension, models, and interpretations), in contrast to a
more algebraic approach derived from restricting axioms to universally-quantified condi-
tional equations. This, in general, excludes term-rewriting as a generic implementation

34

technique [6, 19], but it is our thesis that pervasive use of axiomatically defined types is
dependent on the ability to generate highly efficient representations for these types.

In this paper only the most basic facilities for defining types are presented. Hierarchical
structuring and partial functions as in Prospectra [20], parameterization as in OBJ and
RAISE [6, 21, 22], and non-determinism are features we regard as essential. Note that the
manner in which Dtre treats polymorphism generalizes to the richer parameterization
of OBJ3.

There is a considerable body of literature on the theoretical foundation for data refine-
ment; we only supply a few representative references. Hoare [17] was among the first to
address the problem and introduced the use of abstraction functions to state correctness
conditions for the implementation of an “abstract” type in terms of a “concrete” type.
Burstall and Darlington demonstrated a transformational approach to data refinement
in [23].

An extensive amount of work has been developed in the context of algebraically-specified
data types. Here the notions of signature, signature morphism, theory morphism, etc.
were introduced into the Computer Science community along with the use of theories
for specifications. See, for example, [24, 25, 26, 19]. Also, much of this work has been
generalized to institutions and given a category-theoretic formulation. See [27, 28, 24,
29, 11]. Also, see [16] for a recent survey of Algebraic Specifications.

Much of the current work on refinement is done in the context of the Dijkstra-Gries
formalism using predicate transformers as the semantic basis [30, 31, 32, 33]. Prins’
Thesis [9] describes the design of a data refinement system based on weakest pre-condition
semantics that supports implementation directives, partial implementations, and generic
implementations. His goals are in agreement with ours: to formally describe reusable
refinements of abstract types suitable for practical programming systems.

The refinement framework we have adopted is based on the general notions described
in [7, 8]. In this formulation specifications are theories and a refinement step simply
restricts the class of models of the specification; for example, by strengthening the theory.
We have used theory interpretations [1, 2] to specify implementation refinements in a
manner similar to that of Maibaum and Turski [34, 3]. We are also using the notion
of theory interpretation to extend the generic types presented here to the more general
mechanism of parameterized theories as presented in [6]. We have found that specifying
data refinements with theory interpretations rather than abstraction functions as used in
VDM [35] provides added generality, and, more significantly, may be directly compiled
into transformation rules.

Although our methods are applicable to the refinement of an arbitrary abstract data
types, we have concentrated our efforts on developing a library of refinements which can
generate the large variety of implementations for set-theoretic types. Since these types
are fundamental to VDM and Z [36], our work will support the formal machine-mediated
refinement of VDM and Z specifications.

35

The SETL project [37, 38] pioneered optimization methods within a traditional compiler
framework for automatic representation of set-theoretic data structures. Recent work
on SETL emphasizes interactive systems for data structure selection [39]. Taliere, the
system developed at NYU for interactive data structure selection utilizes user estimates
of branching frequencies and size estimates to select based representations for sets and
maps.

To our knowledge there is no work in which as comprehensive a system as Dtre for
data refinement is actually implemented. Our work also derives from early experimental
systems as described in Barstow [40] and Kant [41], Kotik and Goldberg [42]. The earliest
designs based on using theory interpretations for refinements and terms over the extended
algebra of interpretations for implementation directives were done in 1986.

5 Bibliography

References

[1] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

[2] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York,
1972.

[3] Wladyslaw M. Turski and Thomas E. Maibaum. The Specification of Computer
Programs. Addison-Wesley, Wokingham, England, 1987.

[4] Douglas R. Smith. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering, 16(9):1024–1043, September 1990.

[5] Michael A. Jackson. System Development. International Series in Computer Science,
Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] Joseph A. Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SRI-
CSL-88-09, SRI International, Menlo Park, California, 1988.

[7] Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. In Twelfth ACM Symposium on Principles of Programming Lan-
guages, pages 67–77, New Orleans, LA, January 14–16, 1985.

[8] Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: implementations revisited. Acta Informatica, 25(3):233–281,
1988.

[9] Jan F. Prins. Partial Implementation in Program Derivation. Technical Report 87-
854, Cornell University, Department of Computer Science, August 1987.

36

[10] Lee Blaine. Semi-Automatic Data Structure Selection. Technical Report, Kestrel
Institute, August 1990. Kestrel Institute Internal Report.

[11] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract Model Theory for
Computer Science. Technical Report CSLI-85-30, Stanford University, 1985.

[12] Zohar Manna and Richard Waldinger. Logical Basis for Computer Programming,
Vol. 1: Deductive Reasoning. Addison-Wesley, Reading, MA, 1985.

[13] Zohar Manna and Richard Waldinger. Logical Basis for Computer Programming,
Vol. 2: Deductive Systems. Addison-Wesley, Reading, MA, 1990.

[14] Patrick Suppes. Introduction to Logic. Van Nostrand, Princeton, N.J., 1957.

[15] Z. Manna. Mathematical Theory of Computation. New York, McGraw-Hill, 1974.

[16] Yellamraju V. Srinivas. Algebraic Specification: Syntax, Semantics, Structure. Tech-
nical Report 90-15, University of California, Irvine, June 1990.

[17] C. A. R. Hoare. Proof of correctness of data representation. Acta Informatica,
1:271–281, 1972.

[18] The REFINETM User’s Guide. 1985.

[19] J. V. Guttag, J. J. Horning, and A. Modet. Report on the Larch Shared Language:
Version 2.3. Technical Report 58, DEC Systems Research Center, April 1990.

[20] Manfred Broy. The PROSPECTRA Methodology. Technical Report, Universität
Passau, November 1986.

[21] Erik Meiling and Chris W. George. The RAISE Languages and Method. Technical
Report 315, ESPRIT, Dansk Datamatik Center, September 1986.

[22] Søren Prehn. From VDM to RAISE. In D. Bjørner and C. B. Jones, editors, VDM
’87: VDM — A Formal Method at Work, pages 141–149, Springer-Verlag, Berlin,
1987. Lecture Notes in Computer Science, Vol. 252.

[23] Rod M. Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, January 1977.

[24] R. M. Burstall and J. A. Goguen. Algebras, theories, and freeness: an introduction
for computer scientists. In M. Broy and G. Schmidt, editors, Theoretical Foundations
of Programming Methodology (Marktoberdorf NATO Summer School), pages 329–
349, D. Reidel, 1982.

[25] J. W. Thatcher, E.G. Wagner, and J.B. Wright. Data type specification: parameter-
ization and the power of specification techniques. IEEE Transactions on Software
Engineering, 4(4):711–732, October 1982.

37

[26] R. M. Burstall and J. A. Goguen. Putting theories together to make specifications.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
pages 1045–1058, IJCAI, Cambridge, MA, August 22–25, 1977.

[27] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In R.
Yeh, editor, Current Trends in Programming Methodology, Vol. 4: Data Structuring,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

[28] J. Goguen and J. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In A. Nielson and E. Schmidt, editors, ICALP
’82, pages 265–281, Springer-Verlag, Berlin, 1982. Lecture Notes in Computer Sci-
ence, Vol. 140.

[29] J. Meseguer and J. A. Goguen. Initiality, induction and compatibility. In M. Nivat
and J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541, Cambridge
University Press, Cambridge, 1983.

[30] R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, 1988.

[31] Carroll Morgan. Data refinement by miracles. Information Processing Letters,
26:243–246, 1987/88.

[32] Carroll Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3):403–419, July 1988.

[33] J. Morris. A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming, 9:287–306, 1987.

[34] T. S. E. Maibaum, Paulo A. Veloso, and M. R. Sadler. A theory of abstract data
types for program development: bridging the gap. In H. Ehrig, C. Floyd, M. Nivat,
and J. Thatcher, editors, Formal Methods and Software Development (TAPSOFT
’85), Volume 2, pages 214–230, Springer-Verlag, Berlin, 1985. Lecture Notes in
Computer Science, Vol. 186.

[35] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.

[36] J. M. Spivey. Understanding Z. Cambridge University Press, Cambridge, 1988.

[37] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. Experience with
the SETL optimizer. ACM Transactions on Programming Languages and Systems,
5(1):26–45, January 1983.

[38] Edward Schonberg, Jacob Schwartz, and M. Sharir. An automatic technique for
the selection of data representations in SETL programs. ACM Transactions on
Programming Languages and Systems, 3(2):126–143, April 1981.

38

[39] Robert Straub. Taliere: An Interactive System for Data Structuring SETL Pro-
grams. PhD thesis, Dept. of Computer Science, New York University, May 1988.

[40] David Barstow. Automatic Construction of Algorithms and Data Structures Using
a Knowledge Base of Programming Rules. PhD thesis, Stanford University, 1977.

[41] Elaine Kant. Efficiency in Program Synthesis. UMI Research Press, Ann Arbor,
MI, 1981.

[42] Allen Goldberg and Gordon Kotik. Knowledge-based programming: an overview
of data and control structure refinement. In H. Hausen, editor, Software Valida-
tion: Inspection, Testing, Verification, Alternatives, pages 287–309, Elsevier, 1984.
Technical Report KES.U.83.7, Kestrel Institute, October 1983.

39

