
The use of theorem-proving techniques
in question-answering systems

by C. CORDELL GREEN and
BERTRAM RAPHAEL

Stanford Research Institute
Menlo Park, California

INTRODUCTION

For the purpose of this paper, a question-answering system is a computer program
that has at least the following three characteristics:

(1) The ability to accept statements of fact and store them in its memory

(2) The ability to search stored information efficiently and to recognize items that are
relevant to a particular query

(3) The ability to respond appropriately to a question by identifying and presenting
the answer if it is present in memory, and by deducing a reasonable logical response
from relevant knowledge if the complete answer is not explictly available.

The logical deductive ability mentioned in characteristic (3) is a crucial ingredient
of any question answerer. In fact, this is the key factor that distinguishes question-
answering systems from conventional fact-retrieval systems (such as those used for airline
reservations).

This paper describes two programs developed as part of a continuing effort to build
more effective question-answering systems. These programs apply predicate calculus
theorem-proving methods to question answering. Although research along these lines
is by no means complete, the work reported here establishes the feasibility of adapting
formal mathematical techniques for use in this important area of artificial intelligence.

PREVIOUS WORK IN QUESTION-ANSWERING SYSTEM

Early work in the general area of question-answering systems is competently surveyed
by Simmons.1 Additional and more recent work has been reported by several groups
including Colby and Enea,2 Craig et al.,3 Levien and Maron,4 McCarthy,5 Quillian,6

Simmons,7 Slagle,8 Thompson,9 and Weizenbaum.10

Some of the previous work, including that of Weizenbaum and Colby and Enea, has
been primarily concerned with the form of the input language to the question answerer.
These groups are developing ways for a question answerer to accept subsets of natural
English as the input language. Others, including Coles11 and Darlington,12 have iso-
lated and attacked the problem of translating from English into a formal intermediate
language, usually the first-order predicate calculus, that might then be used as input to
a question answerer. McCarthy has been largely concerned with the interesting question
of how to formalize everyday knowledge. McCarthy’s “advice taker” discussions13 and

1



Slagle’s DEDUCOM8 system, among others, have proposed the application of formal
logical techniques to question answering.

Simmons, Raphael,14 Levien and Maron, Thompson, and Craig et al. seem to be con-
verging toward the viewpoint that some sort of list structure representation of relational
data is necessary in a question-answering system as a general semantic model. Quillian
has implemented an elaborately cross-referenced dictionary. This model of English se-
mantic relations should be viewed as a potentially useful tool for (rather than an example
of) a question-answering system.

Our current work is based upon both the semantic question-answering work reported
by Raphael,14,15 and the formal theorem-proving techniques developed by Robinson16

and others. We have constructed two question-answering systems that use list-structured
data bases and formal theorem-proving techniques to store facts, extract relevant data,
and deduce logical answers to questions. These two systems were programmed in the
LISP 1.5 language and implemented via remote terminals on the Q-32 time-shared com-
puter at the System Development Corporation.

KEY PROBLEMS IN QUESTION ANSWERING

Previous work in question answering has pointed up two key problems that must be
solved before practical question-answering systems can be developed: the problem of
identifying relevant facts and the problem of deducing answers that are not explicit in
the data.

Identification of Relevance

The problem of identifying those stored items that are relevant to a particular query
does not arise in many experimental systems because their sample data are small enough
to be scanned exhaustively. However, this problem of relevance could easily become over-
whelming in more realistic situations. Consider, for example, the monkey-and-bananas
problem:∗ Slagle’s formalization8 includes as an axiom, “Under the bananas is a place.”
Now, suppose the system “knew” that any of an infinity of geographic locations may be
considered “places”? It would have to be able to select the relevant place to form the
necessary axiom. Similarly, Newell17 has pointed out that, in most proposed formaliza-
tions, as soon as the monkey climbs the box he is stuck on top of it because the axioms
include “The monkey can climb onto the box” but not “The monkey can climb off the
box.” The importance of selectivity becomes obvious when we realize that a knowledge-
able system would have not only both these facts to consider as potential axioms, but
also “The monkey can jump up and down,” “The monkey can scratch his head,” “The
monkey can go to sleep,” etc.

Generality of Inference Deduction

A question-answering system must be able to deduce facts that are not explicitly
available in its data base; in other words, it must be capable of logical reasoning. In
many previous systems, such logical ability has been introduced in a haphazard manner,
if at all. In Raphael’s SIR system,15 for example, a different responding subroutine was
used for each of a catalog of question types. Each subroutine had, built into its code,
“knowledge” of the logical relations that affected answers to questions of the type that
it handled. Although this approach was effective for small experiments, it caused the
system to be extremely difficult to expand and modify. New question types and data

∗This problem was suggested by McCarthy as a test for question-answering or problem-solving sys-
tems. Briefly, one presents as data a description of a situation in which a monkey is located in a room
that has a bunch of bananas hanging from the ceiling out of his reach and a box sitting in a corner.
Upon receiving the question, “How can the monkey get a banana?” the “intelligent” system would reply,
“He pushes the box under the bananas, climbs the box, and then reaches a banana.”

2



structures frequently interacted with previous ones in subtle ways that required major
portions of the system to be reprogrammed.

A valuable feature missing from such experimental question answerers is the ability
to store in the data base general facts about the relations of the logical system, e.g.,
the fact that set inclusion is transitive, as well as specific facts about the objects in
the real domain, e.g., the fact that John is a member of the set of all boys. If such
general information were present in the data, the logical portion of thequestion-answering
program could be an isolated theorem-proving routine. Such a routine would permit the
experimenter to change both the individual relations and their logical and interactive
properties without reprogramming.

In the remainder of this paper we describe two new experimental question-answering
systems that have this kind of logical capability. The first, QA1, uses a simple theorem
prover that operates upon an elaborate list-structured data base containing both specific
facts and logica’l axioms. The second, QA2, represents a major departure from previous
approaches to question answering. Here a formal theorem-proving system lies at the heart
of the question answerer. The particular structure of the data base is unimportant, at
least in our current early version of the system.

QA1 – A THEOREM-PROVING QUESTION ANSWERER BASED ON
LIST-STRUCTURED MEMORY

Summary of Approach

QA1 is based largely on the SIR system of Raphael. The major advantage of QA1
over SIR lies in the ability of QA1 to hold in its list-structure memory logical statements
about how various kinds of facts might interact. Thus QA1 does not require many
separate ad hoc question-answering routines as did SIR.

A modified version of the first-order predicate calculus was selected to represent in-
formation from a few of the subject areas that had been used by previous question-
answering systems. Statements in this formal language were placed, by the system, on
property lists of various key words. Facts were retrieved by searching these property
lists, and logical conclusions were deduced by using modus ponens and substitution as
rules of inference.

QA1 is the first of what we expect to be a series of successively more powerful question
answerers; it was never intended to be a complete polished system. Thus sample problem
domains were borrowed from previous question-answering programs, and the control
language and logical deduction programs of QA1 were left in rather rough form.

Abilities of QA1

QA1 is capable of accepting facts from any subject domain, provided the input state-
ment is properly posed, and then answering questions based on those facts. The following
are examples of questions that the system is capable of answering, after the given facts
have been stated in an appropriate input language:

(1) Part-whole relationships

(a) Facts: Every person has two arms, and every arm has one hand, and every
hand has five fingers.

(2) Set-membership

(a) Facts: John is an instance of a person.

(b) Questions: Is John a person? John is an instance of what? Who is an
instance of a person?

3



(3) Set-inclusion

(a) Facts: Every boy is a person.

(b) Questions: Is every boy a person? If John is a boy, who is an instance of a
person?

(4) Spatial-relationships

(a) Facts: The telephone is on top of the table.

(b) Questions: What is on top of the table? If any telephone can be used for
communication, what is on top of the table that can be used for communica-
tion?

(5) Miscellaneous

(a) Facts: Scott is an airfield having an asphalt runway which is 6000 feet long.
Scott, Clark, and Dover are all airfields.

(b) Question: What is Clark? Does Scott have a runway? Does Scott have a
runway length of of 2000 feet?

Data Representation

Suppose we wish to store in a computer some items of information, which we shall
call “the data,” for use by a question-answering system. These data may have as their
source English text, logical rules, pictures, etc. The problem of representing this data
may be divided into three parts:

(1) Determining the semantic content of the data. For example, we may decide that
the semantics of the sentence, “John is the father of Bill,” is expressed by the
binary relation “is-the-father-of” applied to the objects named “John” and “Bill.”

(2) Choosing a language in which to express this semaritic content. For example, we
may represent the above relation by the following symbols: Father(John, Bill).

(3) Choosing a memory organization–i.e., a way to represent statements in the com-
puter memory. For example, this could consist of a simple string of characters, or
of an elaborate cross-referenced list structure.

Part (1) of the representation task, semantic analysis, must be performed by a pre-
processor such as a naturallanguage interpretation program or a picture.scanner and
interpreter. QA1 and QA2 both assume that this difficult task has already been done.†

The first-order predicate calculus was chosen as our language for expressing semantic
content, because it is well defined and well understood by mathematicians and also
because it resembles the functional notation of LISP 1.5, our principal programming
language. The actual input to our programs consists of relational statements in this
notation of logic.

The data are represented in QA1 by list structures organized for efficient information
retrieval. (See references19 for a discussion of list structures and property lists.) Binary
relations are stored in memory as attribute-value pairs on the property lists of the sym-
bols that are related. Statements of greater complexity than binary relations are also

†A question-answering system with considerable background “knowledge” would be a useful compo-
nent of the semantic analysis system itself, e.g., to help resolve syntactic ambiguities.

4



stored on these property lists under special attributes. A sample of the data base may
be represented as follows:

JOHN → TYPE(proper name), INST(John, Boy)

PERSON → TYPE(generic name), INCLUDE(Boy, Person),
HAS-PART-SET(person, arm, 2)

TELEPHONE → TYPE(generic name), INST(telephone1, telephone),
USE(telephone, communication)

TELEPHONE1 → TYPE(proper name), INST(telephone1, telephone),
ONTOP(telephone1, table1)

TABLE → TYPE(generic name), INST(table1, table)

TABLE1 → TYPE(proper name), INST(table1, table),
ONTOP(telephone1, table1)

USE → TYPE(relations), ARGUMENTS(2)

INST → TYPE(relation), COMPUTES(INST (ST X RULE(FREEVARS
(U V W) PRED(IMPLIES (AND (INCLUDE V W) (INST U V))
(INST U W)))))

(The word at the tail of each arrow is an elementary symbol. The list at the head of
an arrow is the property list of that symbol. Each pair of elements of a property list
associated with an elementary symbol consists of the name of an attribute of that symbol,
denoted above by an upper-case word, and the value of that attribute for that symbol,
denoted above by an expression or list of expressions enclosed in parentheses. INST is
the name of the set-membership relation, and INCLUDE is the name of the set-inclusion
relation.)

These statements represent the information that: “JOHN” is the name of an object
belonging to the set of Boys; “PERSON” is the name of a set that includes the set of
Boys; every “PERSON” has as parts a set of two arms; “Telephone1” is a member of the
set of all telephones; all telephones are used for communication; “Table1” is a member
of the set of all tables; “Telephone1” is on top of “Table1;” “USE” is a binary relation;
“INST” is a relation; and the following axiom holds:

(∀u)(∀v)(∀w)[v ⊂ w ∧ u ∈ e⇒ u ∈ w].

(This axiom states the following elementary set-theoretic fact: For all u, v, and w, if v
is a subset of w and if u is an element of v, then u is an element of w.)

Query Language

To interrogate QA1, the user types questions in one of two formats, depending upon
whether the question is to be answered by the FINDR function or the VFIND function.

1. FINDR

The function FINDR takes as its arguments the name of a relation and the ar-

5



guments for that relation. Each argument for a relation, called a term, may be
completely specified by name, partially specified by a descriptive operator, or un-
specified (a “don’t-care” term). FINDR will attempt to find objects that satisfy
the specifications for each term and for which the relation holds. If it succeeds,
it will return the relation with the names of the appropriate objects filled in. Al-
though FINDR has a limited degree of logical inference ability embedded in its
specification-matching facility, it is primarily a memory-searching function. It also
knows about and deals with the abbreviations used in the memory.

Some examples of its operation are given below. In each case the machine’s output
is given on the line following the input (which starts with FINDR).

FINDR(INST(TELEPHONE1 TELEPHONE))
(INST(TELEPHONE1 TELEPHONE))

Here all terms are objects specified by name. The statement is found true, and
FINDR returns the input unchanged.

FINDR(INST(DCE TELEPHONE))
(INST(TELEPHONE1 TELEPHONE))

(DCE) stands for a don’t-care expression–i.e., any term that satisfies the above
relations.

FINDR(ONTOP((ST X USE(X COMMUNICATION)) TABLE1))
(ONTOP(TELEPHONE1 TABLE1))

The first argument of the relation ONTOP is partially specified by using the de-
scriptive operator ST (“such that”). The term (ST X USE(X COMMUNICA-
TION)) means “the object X such that X is used for communication.” Some logical
inference was necessary to answer this question. Three facts–(a) TELEPHONE1 is
a telephone, (b) every telephone is used for communication, and (c) TELEPHONE1

is on top of TABLE1–were used in the course of answering this question.

2. VFIND

The function VFIND represents our first attempt at a procedure for applying spe-
cial axioms found in the data. The arguments of VFIND are a list of variables
and a list of predicates containing those variables. The program will then attempt
to find values for the variables that will satisfy all of the predicates. VFIND first
calls FINDR to look for an explicit answer. IF FINDR fails to find the answer by
searching memory, then VFIND searches memory for a relevant axiom and then
tries to deduce the answer. If FINDR succeeds, VFIND returns a list of dotted
pairs in which each variable is paired with the value that satisfies the predicates.
The deductive procedure is described in the section below. Some examples of the
use of VFIND are given below.

VFIND((X)(INST JOHN X))
((X . BOY))

VFIND((X)(INST X PERSON))
((X . JOHN))

6



VFIND((Y)(HASPARTSET HUMAN FINGER Y))
((Y . 10))

This last result may be interpreted precisely to mean that every member of the
set of humans has as parts a set of 10 elements from the set of fingers. Each of
the above questions required several step deductions and the use of special axioms
found in memory.

Deduction Routines

If the answer to a given question was not found in memory, the program VFIND
carried out the following procedure: Let us suppose the input is

VFIND((X)(INST X PERSON)),

meaning “find some element in the set of persons.” Also, suppose that no information of
the form

(INST MIKE PERSON)

is in memory. FINDR will thus fail to find the answer in the first search. It will then
search for an axiom and find, on the property list of INST, the rule

(FREEVARS (U V W) PRED(IMPLIES
(AND (INCLUDE V W) (INST U V))
(INST U W))))

that was described in Sec. C above.
Having found an axiom that is probably relevant, VFIND then uses a backward-

chaining heuristic similar to that of the Logic Theory Machine19 in an attempt to deduce
an answer. The consequent (INST U W) is “matched” to (INST X PERSON); and
then, since the match succeeds, two subproblems consisting of the two predicates in the
antecedent

(INCLUDE V PERSON) and

(INST JOHN V)

are generated. Two predicates that match these requirements,

(INCLUDE BOY PERSON) and

(INST JOHN BOY),

are then found in memory. The program keeps track of variable assignments resulting
from successful matches and returns the value

((X . JOHN))

The process is recursive, and at any point in a subproblem it may search for additional
special axioms. In QA1 all axioms are in the form of implications, so no additional rules
of inference are used.

Evaluation and Limitations of QA1

The system was fast, taking only a few seconds of real time for the most difficult
questions that it was capable of answering. Exact machine times are unknown because of
the difficulty of obtaining accurate timing in the Q-32’s time-sharing environment. Once
the program was operative, the ability to deal with new subject areas could be added in

7



a few minutes by merely typing in the necessary relations and axioms. Also, new and
old subjects could be interactive. For example, the program would automatically employ
set-membership information, if necessary, in solving spatial-relationship problems.

However, QA1’s logical deductive ability was drastically incomplete. The program
handled existential quantifiers only in certain cases and recognized only two logical con-
nectives, AND and IMPLIES. The functions VFIND and FINDR were not quite com-
patible; and, as a result, the rule of inference

(∀x)P (x)⇒ P (a)

(which says, if a predicate is true for all values of its argument, then it must be true
for a particular value of its argument) could not be applied in some cases. The program
had no sophisticated means of preventing loops or picking the order in which to attempt
deductions. It tried a simple depth-first search‡ of the proof tree generated by the
deductive routine described in Sec. E above. As a result of these limitations, QA1 could
not answer such questions as “How many hands does John have?” and “Does there exist
a person who is not a boy?” The formalization of these two problems and their solutions
by QA2 are given in a section below.

To progress further, there were two alternatives:

(1) To modify the current program by correcting each deficiency one at a time and
experimentally evolve more sophisticated deductive routines, perhaps similar to
those of Fischer Black’s questionanswering program.20

(2) To base our new work upon relevant research in the field of automatic theorem
proving.

Like question-answering programs, effective automatic theorem-proving programs must
be logically complete and must contain heuristics for selecting subproblems–i.e., for
searching “proof trees” efficiently. To our knowledge, however, theorem provers have
not yet been used in systems containing information-retrieval capabilities. It was not
clear just how a mathematical theorem prover could be used.

We selected the second alternative-adaptation of results in automatic theorem proving–
because of its potential power to provide us eventually with a very general, yet concep-
tually simple, question-answering system. Thus work on QA1 was abandoned and we
proceeded to study how results from mathematical theorem proving could best be uti-
lized, and then to implement QA2.

THEOREM PROVING AND QUESTION ANSWERING

One of the most important characteristics of a question-answering system is its logical
deductive ability. A system that can derive new responses from its stored knowledge is
far more interesting than a system that can only parrot back responses that are stored
explictly in its memory.

Mathematicians and philosophers have studied the nature of implication and deduc-
tion, primarily in the abstract domain of formal logic, Most of the formal logical systems
that have been studied contain all the reasonable properties one might wish in “de-
ducing” facts in a particular, informal subject domain, and most formal systems can
be easily applied, with appropriate semantic models, to the particular subject domains
of interest. The system QA2 attempts to apply the most powerful logical procedures
reported in the mathematics literature to our question-answering problems.

‡A “depth-first search” is one which attempts such subproblem as soon as it arises, in contrast with
a “breadth-first search” which defines all subproblems at each level before attempting to solve the first
at the next level.

8



Review of Formal Theorem Proving§

Formal logic usually deals with well-defined strings of symbols called “well-formed
formulas” (wff’s), and with a subset of the wff’s called “theorems.” Each wff can be
interpreted as a statement, which may be true or false, about the state of a particular
semantic model. The semantic domain may consist of any objects and relations; in
the absence of specific semantic knowledge, a domain consisting of numbers and sets is
frequently used as the “standard interpretation.”

A model is said to satisfy a wff if the statement represented by the wff is true for that
model. A wff that is satisfied by all possible models (from the semantic domain) is called
valid.

The theorems of a logical system are usually intended to be the valid wff’s. However,
since it is not practical in general to enumerate and test all possible models, formal
syntactic procedures called proof procedures must be used to establish theorems. If
every theorem of a proof procedure is indeed valid, the procedure is called sound. If
every valid formula can be demonstrated to be a theorem, the procedure is complete. In
the desirable case that a proof procedure is both sound and complete, the theorems of the
procedure coincide with the valid wff’s. A decision procedure is a sound and complete
proof procedure that can effectively decide whether any given wff is valid or not.

Unfortunately, a famous theorem by Gödel shows that any consistent and sufficiently
rich formal system is incomplete; that is, wff’s will always exist that are valid but that
cannot be formally proved to be valid. This means that, for the interesting formal
systems, there can be no decision procedure; we must content ourselves with sound
proof procedures that can establish as theorems some, but not all, of the valid wff’s.

As a practical matter, however, the incompleteness property is much less restrictive
than it may at first appear. Because of the time and space constraints on practical
computation, the heuristic power of a proof procedure–i.e., its ability to prove useful
theorems efficiently–is more important than its ultimate effectiveness on all theorems.
A decision procedure that requires enormous amounts of time or intermediate storage
for some wff’s is indistinguishable, in practice, from an incomplete proof procedure that
never terminates for those wff’s.

In recent years, much work has been done on the development of proof procedures
suitable for implementation on a ditigal computer. The most effective of these seem to
be those that use the Robinson resolution principle16 of deduction for the area of logic
called “first-order predicate calculus.”

The Robinson Procedure for Proof by Resolution

One approach to theorem proving in the first-order predicate calculus, due to Her-
brand, is to attempt to specify the set of models that satisfies the negation of the wff to
be proved. Since every wff is either true or false for each possible model, every model
must satisfy either a given wff or its negation, but not both. Only three results can occur
from the attempted specification of a set of models satisfying the negation of a wff:

(1) The specification process leads to obviously contradictory model assignments, prov-
ing that no satisfying model is possible and the wff is valid.

(2) The specification process terminates without a contradiction, proving that a satis-
fying model exists for the negation so that the wff is not valid.

(3) The process does not terminate in either state (1) or (2) in a finite amount of time,

§This subsection and the next are included to establish the background and terminology for our dis-
cussion of QA2. Readers interested in more complete presentations of these topics should see references
21, 22, 23.

9



and the validity of the wff is still undetermined.

This is why such proof procedures are not decision procedures.
The Robinson proof procedure uses the resolution principle in conjunction with the

Herbrand approach to theorem proving. The negation of the wff to be proved is first
placed into a standard form.¶ In this form, the wff is represented as the conjunction of a
set of formulas called clauses, each of which is a disjunction of elementary formulas called
literals. Then new clauses are deduced from the starting clauses by the inference rule of
resolution, described below, such that the original wff is satisfiable only if its descendent
clauses are all satisfiable. The goal of the procedure is to deduce a contradictory formula
of the form α ∧ ∼α which is clearly not satisfiable and therefore demonstrates that the
starting wff is not satisfiable.

The rule of resolution is best illustrated first in its propositional form: if p ∨ α and
∼p ∨ β are two wff’s in which p is any proposition and α and β are any wff’s, one may
deduce the wff α ∨ β.

The predicate calculus form of the resolution rule is this: Let L1 be any atomic
formula–i.e., a wff consisting of a single predicate symbol followed by an appropriate
set of terms (constants, variables, or functions) for arguments. Let L2 be the negation
of an atomic formula consisting of the same predicate symbol as L1 but generally with
different arguments. Let α and β be any wff’s in the predicate calculus. Let (α)σ be the
wff obtained from α by making all substitutions specified by the substitution set σ, of
formulas for free occurrences of variables in α. If any set of substitutions σ1 for variables
in L1 and L2 makes L2 identical to the negation of L1, then from the two wff’s L1 ∨ α
and L2 ∨ β we may deduce the “resolvent” (α ∨ β)σ.

Example:

P (x, f(y)) ∨Q(x) ∨R(f(a), y)

and

∼P (f(f(a)), z) ∨R(z, w)

imply, by resolution,

Q(f(f(a))) ∨R(f(a), y) ∨R(f(y), w)

where the substitution set is σ = {(f(f(a)) for x, f(y) for z}.
The main theorem of resolution states that if a resolvent is not satisfiable then neither

is the conjunction of its antecedents, and that the empty formula, obtained by resolving
two clauses of the form L and ∼L, is not satisfiable.

The resolution rule tells us how to derive a new clause from a specified pair of clauses
containing a specified literal, but it does not tell us how to choose which clauses to
resolve. A mechanical attempt to resolve all possible pairs of clauses generally results
in the generation of an unmanageably large number of irrelevant clauses. Therefore,
various heuristic search principles are being developed to guide and control the selection
of clauses for resolution. These heuristics, called set of support, unit preference, level
bound, subsumption, etc., are described in the literature.16,22,25,26,27

Utilizing a Theorem Prover

The theorem-proving techniques described above have been developed for the purpose
of proving theorems in mathematics. Let us consider how these results may be applied

¶For those familiar with Mathematical Logic, this form is prenex conjunctive normal form, in which
existentially quantified variables are replaced by Skolem functions24 of appropriate universally quantified
variables.

10



to the question-answering problem:

(1) Interesting mathematical theorems usually require lengthy, complex proofs. The
logic of everyday reasoning, on the other hand, is relatively simple, once the ap-
propriate premises have been identified; although people commonly draw upon a
wide range of knowledge for their premises, they rarely perform intricate chains
of deductive steps such as those needed to prove a theorem in Group Theory.
Thus one can expect the theorem-proving techniques currently being developed by
mathematicians to be useful in question answering even before they are powerful
enough to be valuable answering even before they are powerful enough to be valu-
able in mathematics. Of course, each improvement made in mathematical theorem
provers can be carried over into a corresponding improvement in the effectiveness
of a theorem-proving question answerer.

(2) The fact that the theorem prover is a well-defined subroutine independent of the
subject matter or memory organization of its data is important for the generality
of the question answerer.

(3) Any “true or false” question can be stated in a natural way as a theorem to be
proved. To find out if a given input sentence is true or false the theorem prover
will attempt first to prove that the sentence is true. If, after a certain expenditure
of effort, no proof is found, the theorem prover could then attempt to prove the
sentence false.

(4) A question that asks for a specific item of information can usually be stated in
the form, “Find x such that P (x) is true,“ where P (x) is some specified predicate.
This problem may be posed to a theorem prover as the statement (∃x)(Px). If this
statement is proved, then the answer to the question is the term that is substituted
for x during the course of the proof. This term may be a variable (signifying that
P (x) is true for all x), a constant, or a function. If the clause representing P (x)
is used several times in the proof, then the answer is the disjunction of the several
terms substituted for x. This answer may then be represented internally as a
clause, e.g., {P (a) ∨ P (b) ∨ P (x) ∨ P (f(y))} so that the theorem prover may then
simplify it by removing unnecessary disjuncts.

In the next section we describe and give examples of the operation of a question-
answering system, QA2, that uses a theorem prover in just these ways.

QA2–AN EXTENDED THEOREM PROVER AS A QUESTION ANSWERER

Summary of Approach

QA2 is a question-answering system derived almost exclusively from formal theorem-
proving ideas. It is based upon the Robinson proof procedure described in Sec. V-B and
uses the “unit preference strategy”25 and other heuristics to improve efficiency of proof
generation.

The input to QA2 consists of relational statements in the same standard logical nota-
tion that was used for QA1. However, instead of storing these statements on the property
lists of key words, QA2 transforms each statement into the standard conjunctive form
needed by the Robinson theorem-proving technique. Then it stores the resulting set of
clauses in a simple list structure indexed by relational symbols.

The problem of finding which facts are “relevant” to a query (or a theorem) is equiva-
lent to the problem of deciding which fact to try to use next in the process of answering
the query. In the context of QA2, this becomes the problem of which clause to use next

11



in the process of proving the theorem. A simple and logically complete solution to this
problem is given by the following extension of the set-of-support strategy:25

(1) First, the theorem prover is given only the clauses representing the negation of the
sentence to be proved. All clauses representing this negated sentence are said to
be in the “set-of-support.” Then an attempt is made to construct a proof. (Note
that a theorem of the predicate calculus–e.g., (∀x)[P (x)∨ ∼P (x)]–may be provable
without reference to facts in memory.)

(2) If no proof is found, the theorem prover then addresses memory for a limited num-
ber of additional clauses that will resolve with clauses in the theorem prover’s set-
of-support; i.e., additional clauses from which new clauses can be deduced by the
resolution method. (Suitable memory organization and use of the “subsumption”16

heuristic can be used to increase the efficiency of the search.)

(3) If no proof is found with the new clauses, then Step 2 is repeated to obtain more
“relevant” facts from memory.

As in other theorem-proving programs, heuristics such as a bound on level or comput-
ing time must be used to ensure practical run times for the program.

The measure of “relevance” of one clause to another is, then, whether or not the clauses
will resolve. Note that this process is complete in the sense that if a proof exists (within
the limitation on time and space) it will be found. The process is efficient in the sense
that some clauses that cannot lead to a proof are never used.

QA2, the program described below, contains an implementation of the above algo-
rithm. Although this technique has the advantage of relative efficiency over a more
direct approach like, say, giving all the clauses in memory to the theorem prover, several
further improvements will be necessary before we produce a truly practical system.

QA2–Control Language

The question-answering program for QA2 consists of a collection of functions or sub-
programs that perform the various tasks necessary for such a system. At the top level
an executive program EXEC allows for user-machine interaction by accepting input in
its “command language,” calling upon the appropriate function to perform the desired
operation, and responding to the teletype user. At present, the language accepts three
types of input: statements, questions, and commands.

1. Statements

A statement is entered in the following format:

S expression

where the letter S signifies that the following “expression” is to be added to the
system’s data base

The expression is a predicate calculus statements such as

(IN JOHN BOY)

or

((FA (X Y Z) (IF (AND (IN X Y) (INCLUDE Y Z)) (IN X Z))).

The first states that John is a boy, or more precisely, that John is an element of
the set named Boy.

12



The second is equivalent to the predicate calculus statement:

(∀x)(∀y)(∀z)[x ∈ y ∧ y ⊂ z ⇒ x ∈ z]

2. Questions

A question is entered in a similar fashion:

Q question

where Q signifies that the predicate calculus expression that follows is to be treated
as a question to the system. Here, the negation of the question is put into the
appropriate standard form and passed on to a subexecutive program EXEC1, which
attempts to answer the question based on the current information in the data
base. (Examples of QA2 in operation shows how various questions may be posed
as predicate calculus expressions.)

3. Commands

The following series of additional commands have been implemented, allowing the
user to interrogate and alter the system:

(1) UNWIND

After a question has been successfully answered, the UNWIND command will
print the proof of the answer given to the question.

(2) CONTINUE

If the system was unsuccessful in answering a question, the CONTINUE com-
mand will cause the system to continue searching for proof with the level
bound raised.

(3) LIST

The command LIST PR where PR is a predicate symbol will list all of the
statements in the data base that contain the symbol PR.

(4) FORGET

The command FORGET PR S will delete certain statements that contain the
predicate letter PR according to the format of S–e.g., if S is an integer n, the
nth statement will be deleted.

(5) FILE

FILE F asks the theorem prover to operate on a prepared list F of clauses.

The Theorem Prover: Technical Considerations

The theorem prover accepts as input a list of clauses CLAUSELIST and a level bound
MAXLEV. Its goal is to determine, if possible, that the set of clauses is unsatisfiable,
or equivalently, to derive the null clause (containing no literals) that results from two
contradictory clauses.

The algorithm uses the unit preference strategy with set-of-support. In addition, it
traces the values assigned to variables contained in the question that were originally
bound by existential quantifiers. Thus if the theorem prover completes a proof of a
statement of the form (∃x)P (x), the question answerer can frequently exhibit the x that
satisfies P . This is extremely useful, as the examples in “Examples of QA2 in Operation”
below will show.

13



The operation of the theorem prover starts by ordering the clauses on CLAUSELIST
by the number of literals in each clause. The program successively attempts to produce
resolvents from the clauses in CLAUSELIST, producing first those resolvents of shortest
length. To avoid redundant computation as much as possible, resolvents of two clauses
C1 and C2 are produced only if the following criteria are satisfied:

(1) Either C1 or C2 (or both) are in the set-of-support

(2) The level ` of any resolvent of C1 and C2 plus the length of the resolvent must
not be greater than the level bound MAXLEV. (This is a modification of the usual
level bound strategy.)

(3) Neither C1 nor C2 has been “subsumed” by any other clause in the proof.

Furthermore, if a resolvent R of C1 and C2 is produced, it is added to CLAUSELIST
only if R is not a tautology–i.e., does not contain complementary literals–and if R is not
subsumed by any clause already on the list.

Examples of QA2 in Operation

A sample dialogue with QA2 is given below. The input and output from the com-
puter are printed in all capital letters. After some of the exchanges, we have added an
explanation.

S (IN JOHN BOY)
OK

The statement (indicated by “S”) that John is contained in the set of boys is accepted
and the response is “OK.”

Q (IN JOHN BOY)
YES

The question (indicated by “Q”), “Is John in the set of boys?” is answered “Yes.”
This is an example of a simple yes or “no proof found” answer.

Q (EX(X) (IN JOHN X))
YES WHEN X = BOY

Does an x exist such that John is in the set x? Note that the program reports what
assignment is made to x to complete its proof.

S (FA(X) (IF (IN X BOY) (IN X PERSON)))
OK

This says that every boy is a person, or (∀x)[x ∈ BOY ⇒ x ∈ PERSON ]

Q (EX(X) (IN X PERSON))
YES WHEN X = JOHN

Does a member of the set of all persons exist? The theorem prover must have used
two statements: John is a boy, and every boy is a person.

14



UNWIND

SUMMARY

1 IN(JOHN,BOY) AXIOM

2 IN(X,PERSON) NEG OF THM

3 IN(X,BOY)

IN(X,PERSON) AXIOM

4 IN(X,BOY) FROM 2,3

(CONTRADICTION FROM CLAUSES 1 AND 4)

(5 CLAUSES GENERATED)

The command UNWIND caused the proof to be printed. Each numbered line cor-
responds to one clause. Each clause is the disjunction (logical “or”) of the literals it
contains. In this example, all clauses contain only one literal except clause 3 which con-
tains two literals. (Clause 3 may be read, “either x is not a boy or x is a person.”) A
clause may come from three sources:

AXIOM – retrieved from memory

NEG OF THM – the negation of the question

FROM N,M – the result of resolving together clauses N and M.

The number of clauses generated represents the size of the proof tree upon generating
the empty clause; this is a measure of the amount of effort involved in completing the
proof.

S (FA(X) (IF (IN X PERSON) (IN X HUMAN)))
OK

It unquestioningly believes that all persons are human.

Q (EX(X) (IN X HUMAN))
YES WHEN X = JOHN

S (FA(X) (IF (IN X HUMAN) (HP X ARM 2)))
OK

Q (HP JOHN ARM 2)
YES

(HP JOHN ARM 2) means that John has-as-parts two elements of the set of all arms.

S (FA(Y) (IF (IN Y ARM) (HP Y HAND 1)))
OK

Q (EX(X) (HP JOHN HAND X))
NO PROOF FOUND

The crucial axiom, given next, was missing.

S (FA(X Y Z M N) (IF (AND (HP X Y M)
(FA(U) (IF (IN U Y) (HP U Z N))) )
(HP X Z (TIMES M N))) )
OK

Q (EX(N) (HP JOHN HAND Y))
YES WHEN Y = TIMES(2, 1)

TIMES(2,1) represents the product of 2 and 1 (=2).

15



UNWIND

SUMMARY

1 IN(JOHN,BOY) AXIOM

2 HP(JOHN,HAND,N) NEG OF THM

3 IN(SK8(N,M,Z,Y,X),Y)

HP(X,Y,M)

HP(X,Z,TIM ES(M ,N)) AXIOM

4 HP(JOHN,Y,M)

IN(SK8(N,M,HAND,Y,JOHN),Y) FROM 2, 3

5 IN(Y,ARM)

HP(Y,HAND,1) AXIOM

6 HP(JOHN,ARM,M)

HP(SK8(N,M,HAND,ARM,JOHN),HAND,1) FROM 4, 5

7 HP(SK8(N,M,Z,Y,X),Z,N)

HP(X,Y,M)

HP(X,Z,TIMES(M,N)) AXIOM

8 HP(JOHN,Y,M)

HP(SK8(N,M,HAND,Y,JOHN),HAND,N) FROM 2, 7

9 HP(JOHN,ARM,M) FROM 6,8

10 IN(X,HUMAN)

HP(X,ARM,2) AXIOM

11 IN(JOHN,HUMAN) FROM 9, 10

12 IN(X,PERSON)

IN(X,HUMAN) AXIOM

13 IN(JOHN,PERSON) FROM 11, 12

14 IN(X,BOY)

IN(X,PERSON) AXIOM

15 IN(JOHN,BOY) FROM 13, 14

(CONTRADICTION FROM CLAUSES 1 and 15)

(27 CLAUSES GENERATED)

This required an eight-step proof. SK8 is the name generated by the program for
a Skolem function24 used to eliminate an existential quantifier. This elimination of
quantifiers is part of the process of converting input statements into standard form for
use of the theorem prover.

S (OR (AT JOHN HOME) (AT JOHN SRI) (AT JOHN AIRPORT))
OK

Q (EX(X) (AT JOHN X))
YES WHEN X = SRI
OR WHEN X = AIRPORT
OR WHEN X = HOME

Here the system could determine that x has one of a specified set of values; it could
not determine precisely which one. In this case, any of the three alternatives is possible.
In general, the theorem prover narrows down alternative variable assignments just far
enough to establish the truth of the theorem. The resulting list might occasionally
contain extraneous alternatives.

16



S (FA(X) (EQUALS X X))
OK

S (FA(X Y) (IF (EQUALS X Y) (EQUALS Y X)))
OK

S (FA(X Y Z) (IF (AND (EQUALS X Y)(EQUALS Y Z)) (EQUALS X Z)))
OK

S (FA(X Y Z) (IF (AND (AT X Y)(AT X Z)) (EQUALS Y Z)))
OK

S (NOT (EQUALS SRI AIRPORT))
OK

S (NOT (EQUALS AIRPORT HOME))
OK

Q (EX(X) (IF (NOT (AT JOHN AIRPORT)) (AT JOHN X)))
YES WHEN X = HOME
OR WHEN X = SRI

S (AT JOHN SRI)
OK

Q (NOT (AT JOHN AIRPORT))
YES

S (IF (AT JOHN AIRPORT) (WITH JOHN BILL))
OK

S (FA(X Y Z) (IF (AND (AT X Y)(WITH Z X)) (AT Z Y)))
OK

Q (EX(X) (IF (AT JOHN AIRPORT) (AT BILL X)))
NO PROOF FOUND

S (FA(X Y) (IF (WITH X Y) (WITH Y X)))
OK

Q (EX(X) (IF (AT JOHN AIRPORT) (AT BILL X)))
YES WHEN X = AIRPORT

S (FA(X Y) (IFF (DISJOINT X Y) (FA(U) (IF (IN U X) (NOT (IN U Y))))))
OK

Q (FA(X Y) (IF (DISJOINT X Y) (DISJOINT Y X)))
YES

S (DISJOINT BOY GIRL)
OK

S (IN JOHN BOY)
OK

Q (NOT (IN JOHN GIRL))
YES

S (IN JUDY GIRL)
OK

S (FA(X Y Z) (IF (AND (IN X Y)(INCLUDE Y Z)) (IN X Z)))
OK

S (INCLUDE BOY PERSON)
OK

17



Q (EX(X) (IN X PERSON))
YES WHEN X = JOHN

S (INCLUDE GIRL PERSON)
OK

Q (EX(X) (AND (NOT (IN X BOY))(IN X PERSON)))
YES WHEN X =JUDY

UNWIND

SUMMARY

1 DISJOINT(BOY,GIRL) AXIOM

2 INCLUDE(GIRL,PERSON) AXIOM

3 IN(JUDY,GIRL) AXIOM

4 IN(X,BOY)

IN(X,PERSON) NEG OF THM

5 INCLUDE(Y,Z)

IN(X,Y) IN(X,Z) AXIOM

6 IN(X,BOY) IN(X,Y)

INCLUDE(Y,PERSON) FROM 4, 5

7 INCLUDE(GIRL,PERSON)

IN(JUDY,BOY) FROM 3, 6

8 IN(JUDY,BOY) FROM 2, 7

9 DISJOINT(X,Y)

IN(U,X)

IN(U,Y) AXIOM

l0 IN(JUDY,Y)

DISJOINT(BOY,Y) FROM 8, 9

11 IN(JUDY,GIRL) FROM 1, 10

(CONTRADICTION FROM CLAUSES 11 AND 3)

(92 CLAUSES GENERATED)

CONCLUSIONS

Effective automatic question answering requires significant logical deductive ability.
The programs QA1 and QA2 described above represent our attempts to pin down this
relationship between question answering and logic. Mathematicians such as Robinson
have recently made significant progress toward automating formal logical procedures.
The QA2 system demonstrates how a question-answering system can take advantage of
the new theorem-proving techniques. The organization of QA2 represents a novel de-
parture from previous comparable systems. In most systems (including SIR and QA1)
memory organization and data-retrieval procedures were established first, and then log-
ical deduction procedures were “tacked on” almost as an afterthought. For QA2 we first
decided to use the most powerful logical tools available, and then structured the memory
and the retrieval procedures for the convenience of the theorem prover.

The results have been most promising. The nature of the inference rules in the theorem
prover has determined an effective criterion for choosing “relevant” facts from memory.
Question-answering power has so far been insensitive to the particular organization of
clauses (“facts”) in memory. As the amount of information in the data store grows and
the complexity of questions increases, we expect to need better criteria of relevance and
more elaborately indexed data; however, the nature of the criteria and the index scheme

18



will have to evolve in conjunction with more effective search heuristics for the theorem
prover.

A major advantage of a theorem-proving question answerer is its generality. It can an-
swer questions about any domain while using the same basic deductive program, provided
the nature of the domain is suitably described by a set of axioms. Of course, this ap-
proach is not as efficient for answering questions about particular domain as an approach
based upon special subroutines and models for that domain. We are currently imple-
menting the ability of the theorem prover to regain the efficiency of a special-purpose
program by evaluating specified functions that appeal to “outside” information about
the semantics of a subject domain when convenient. The ability to evaluate arithmetic
functions and predicates without having to derive the answers from an axiomatization
of arithmetic is first step in this direction.

The formal mathematical nature of the input to our systems–predicate calculus–is
an obstacle to free conversational experimentation by an untrained user. Fortunately,
the output from the natural language processing system developed by Coles11 is almost
precisely the appropriate language for input to QA2. We are presently coupling these
two systems.

Finally, a major goal for our current work is to apply QA2 to problem solving, in
addition to question answering, tasks. If permissable actions are suitably axiomatized,
then the steps in a proof of the assertion that a problem’s goal is achievable can be
used to indicate the sequence of actions that must be taken to achieve it. We have
hand-simulated solutions to such diverse problems as writing a computer program and
“reaching the bananas,” with encouraging preliminary results.

ACKNOWLEDGEMENT

The research reported here was supported at Stanford Research Institute by Contract
AF 19(628)-5919 Project 4641, Air Force Cambridge Research Laboratories, Electronic
Systems Division, Air Force System Command, USAF, but the report does not neces-
sarily reflect endorsement by the sponsor.

The authors are indebted to Robert A. Yates for his substantial contributions to the
design and programming of system QA2.

REFERENCES

1 R F SIMMONS
Answering english questions by computer: a survey
Comm ACM Vol 8 No 1 January 1965

2 K M COLBY H ENEA
Heuristic methods for computer understanding of natural language in context-restricted
on-line dialogue
Dept of Computer Sciences Stanford University 196?

3 J A CRAIG et al
DEACON: direct english access and control
AFIPS Proc FJCC Vol 29 1966

4 R E LEVIEN M E MARON
A computer system for inference, execution and data retrieval
Comm ACM Vol 10 No 11 pp 715-721 November 1967

5 J McCARTHY
Situations, actions and casual laws

19



Memo No 2 Stanford Artificial Intelligence Project
Stanford University July 1963

6 R QUILLIAN
AFIPS Proc SJCC Vol 30 1967

7 R F SIMMONS
An approach toward answering english questions from text
AFIPS Proc FJCC Vol 29 1966

8 J R SLAGLE
Experiments with a deductive Q-A program
Comm ACM Vol 8 No 12 December 1965

9 F B THOMPSON
English for computer
AFIPS Proc FJCC Vol 29 1966

10 J W WEIZENBAUM
ELIZA—a computer program for the study of natural language communication be-
tween man and machine
Comm ACM Vol 9 No 1 January 1966

11 L S COLES
An on-line question-answering system with natural language and pictorial input
(Paper to be presented at the ACM Conference August 1968)

12 J L DARLINGTON
Machine methods for improving logical arguments expressed in english
Mechanical Translation Vol 8 Nos 3 and 4 pp 41-47 June and October 1965

13 J McCARTHY
Programs with common sense
Memo No 7 Stanford Artificial Intelligence Project
Stanford University September 1963

14 B RAPHAEL
A computer program which ‘understands’
AFIPS Proc FJCC Vol 26 1964

15 B RAPHAEL
SIR: A computer program for semantic information retrieval
MAC-TR2 Project MAC MIT June 1964

16 J A ROBINSON
A machine-oriented logic based on the resolution principle
J ACM Vol 12 No 1 January 1965

17 A NEWELL
Unpublished seminar talk

18 B RAPHAEL
Aspects and applications of symbol manipulation
Proc 1966 National Conference ACM 1966

20



19 A NEWELL J C SHAW H A SIMON
Empirical explorations of the logic theory machine: a case study in heuristics
Paper presented at the Western Joint Computer Conference
Los Angeles February 28 1957

20 F BLACK
A deductive question-answering system
Harvard University Ph D Thesis 1964

21 D C COOPER
Theorem proving in computers
Advances in Programming and Non-Numerical Computation L FOX ed Pergamon
Press 1966

22 J A ROBINSON
A review of automatic theorem-proving
American Mathematical Society Symposia on Applied Mathematics XIX 1967 Rice
University (to be published)

23 E MENDELSON
Introduction to mathematical logic
van Nostrand 1964

24 KALISH and MONTAGUE
Logic: techniques of formal reasoning
Harcourt Brace and World 1964

25 L WOS et al
The unit preference strategy in theorem proving
AFIPS Proc FJCC Vol 26 1964

26 T P HART
A useful algebraic property of Robinson’s unification algorithm
Memo No 91 AI Project Project MAC MIT 1965

27 J R SLAGLE
Automatic theorem-proving with renameable and semantic resolution
J ACM Vol 14 No 4 October 1967

21


