
Theorem-Proving by Resolution as a
Basis for Question-Answering Systems

Cordell Green
Stanford Research Institute

Menlo Park, California

ABSTRACT

This paper shows how a question-answering system can be constructed using first-order
logic as its language and a resolution-type theorem-prover as its deductive mechanism. A
working computer program, qa3, based on these ideas is described. The performance of
the program compares favorably with several other general question-answering systems.

1. QUESTION ANSWERING

A question-answering system accepts information about some subject areas and answers
questions by utilizing this information. The type of question-answering system consid-
ered in this paper is ideally one having the following features:

1. A language general enough to describe any reasonable question-answering subjects
and express desired questions and answers.

2. The ability to search efficiently the stored information and recognize items that
are relevant to a particular query.

3. The ability to derive an answer that is not stored explicitly, but that is derivable
by the use of moderate effort from the stored facts.

4. Interactions between subject areas; for example, if the system has facts about
Subject a and Subject b, then it should be able to answer a question that requires
the use of both sets of facts.

5. Capability of allowing the user to add new facts or replace old facts conveniently.

This paper argues the case for formal methods to achieve such a system and presents
one particular approach in detail. A natural language facility is not one of the properties
sought after or discussed (although Coles, 1968, has added to the program described
here a translator from a subset of English to first-order logic).

The name ‘question-answering system’ requires clarification. The system described
above might be named an ‘advice taker’ or a ‘multi-purpose problem-solving system’
or ‘general problem-solving system’. McCarthy (1958) proposed using formal languages
and deduction to construct such a system, and suggested allowing the user to give hints
or advice on how to answer a question; he referred to the proposed system as an ‘advice
taker’. Research on ‘multi-purpose’ or ‘general problem-solving’ tends to differ from
question-answering as described above by placing more emphasis on solving deeper, more
difficult problems and less emphasis on user interaction, formality, and efficient retrieval
of relevant facts from a large data base. The situation is further confused by the use
of ‘question-answering’ to refer sometimes to natural language systems, sometimes to
information retrieval systems having little deductive ability, and sometimes to systems
with deductive ability limited to the propositional calculus.

1

It is important to emphasize the distinction between general versus special-purpose
question-answering. If the class of questions asked of a system is small, completely
specified in advance, and concerned with a particular subject area, such as the question-
answering system of Green, Wolf, Chomsky, and Laughery (1963) concerned with base-
ball, or that of Lindsay (1963) concerned with family relations, then we shall call such
a system ‘special-purpose’. Frequently the goal in designing a special-purpose system
is to achieve good performance, measured in terms of running speed and memory uti-
lization. In this case the best approach may be first to construct a special data base or
memory that is optimized for that subject area and question class, and then to write
special question-answering subroutines that are optimized for the particular data base
and question class. On the other hand, a ‘general’ question-answering system is one that
allows arbitrary subject areas, arbitrary questions, and arbitrary interactions between
subject areas during the process of answering a question. This paper describes a rather
formal approach to designing a general question-answering system. A precise name for
our system is ‘a general, formal, deductive, question-answering system.’

2. THEOREM-PROVING

The use of a theorem-prover as a question-answerer can be explained very simply. The
question-answerer’s knowledge of the world is expressed as a set of axioms, and the
questions asked it are presented as theorems to be proved. The process of proving the
theorem is the process of deducing the answer to the question. For example, the fact
‘George is at home’, is presented as the axiom, AT(George, home). The question ‘Is
George at home?’ is presented as the conjectured theorem, AT(George, home). If
this theorem is proved true, the answer is yes. (In this simple example the theorem is
obviously true since the axiom is the theorem.) The theorem-prover can also be used
to find or construct an object satisfying some specified conditions. For example, the
question ‘Where is George?’ requires finding the place x satisfying AT(George, x). The
theorem-prover is embedded in a system that controls the theorem-prover, manages the
data base, and interacts with the user. These ideas are explained in more detail below.

Even though it is clear that theorem-proving can be used for question-answering, why
should one use these very formal methods? Theorem-proving may be a good approach
to the achievement of generality for several reasons:

1. The language is well defined, unambiguous, and rather general, so that one may
hope to describe many desired subjects, questions, or answers.

2. The proof procedure used allows all possible interaction among the axioms and is
logically ‘complete’ that is, if a theorem is a logical consequence of the axioms,
then this procedure will find a proof, given enough time and space. This com-
pleteness property is important since several general question-answering programs
have resulted in incomplete deductive systems, even in the practical sense of being
unable to answer some simple types of questions that are short, reasonable deduc-
tions from the stored facts – for example, the author’s qa1 (Green and Raphael
1968), Raphael’s sir (1964), Slagle’s deducom (1965), and Safier’s simple simon
(1965). (However, the fact that we use a first-order logic theorem-prover does
impose certain important restrictions discussed in section 5.)

3. The theorem-prover is subject-independent, so that to describe a new subject or
modify a previous description of a subject, only the axioms need to be changed,
and it is not necessary to make any changes in the program.

2

4. Formal techniques such as those developed here may be generally valuable to the
field of artificial intelligence. The use of a formal framework can lead to insights and
generalizations that are difficult to develop while working with an ad hoc system.
A common, well-defined framework facilitates communication between researchers,
and helps to unify and relate diverse results that are difficult to compare.

5. Theorem-provers are becoming more efficient. Even though the theorem-proving
method used is theoretically complete, in practice its ability to find proofs is lim-
ited by the availabiiity of computer time and storage space. However, the method
of ‘Resolution’ (Robinson 1965), used by the program described here, has been
developed to the point of having several good heuristics. Further improvements in
theorem-proving are very likely, and, hopefully, the improvements will carryover
into corresponding improvements in question-answering. It should be possible to
communicate precisely new theorem-proving results to other researchers, and it is
relatively easy to communicate precisely particular formalizations or axiomatiza-
tions of subjects.

3. EXTENDING THEOREM-PROVING TO QUESTION-ANSWERING

This section describes, in general, how questions can be asked in first-order logic, and
how answers can be generated. Examples illustrating these methods are presented. The
discussion in this section and the following two assumes that the reader is somewhat fa-
miliar with logic and automatic theorem-proving. An introduction to automatic theorem-
proving is given in Cooper (1966) and Davis (1963). The theorem-proving methods men-
tioned in this paper use the Resolution Principle proposed by J. A. Robinson (1965 and
1967). Additional strategies for using the Resolution principle are presented by Wos et
al. (1964, 1965 and 1967). This last paper defines terms the ‘Extended Set of Support’
strategy, ‘degree’, and ‘singly connectedness’, that are used in section 4.

The explanation of question-answering given in this section will be illustrated primar-
ily by the techniques used in a working question-answering program called qa3. It is
programmed in Lisp on the sds 940 computer, operating in the time-sharing mode. The
user works at a teletype, entering statements and questions, and receiving replies. The
notation in this paper is slightly different from the actual computer input and output, as
the character set available on the teletype does not contain the symbols we use here. qa3
is an outgrowth of qa2 (Green and Raphael 1968), an earlier system, but is somewhat
more sophisticated and practical, and is now being used for several applications.

1. Types of questions and answers

Facts are presented as statements of first-order logic. The statement is preceded by
statement to indicate to the program that it is a statement. These statements (ax-
ioms) are automatically converted to clauses and stored in the memory of the computer.
The memory is a list structure indexed by the predicate letters, function symbols, and
constant symbols occurring in each clause. A statement can be a very specific fact such
as

statement: COLOR(book, red)

corresponding to the common attribute-object-value triple. A statement can also be a
more general description of relations, such as:

statement: (∀x)(∀A)(∀B)[A ⊂ B ∧ x ∈ A⇒ x ∈ B]

meaning that if A is a subset of B and if x is an element of A, then x is an element of B.

3

Questions are also presented as statements of first-order logic. question: is typed
before the question. This question becomes a conjecture and qa3 attempts to prove
the conjecture in order to answer YES. If the conjecture is not proved, qa3 attempts to
prove the negation of this question in order to answer NO. The theorem-prover attempts
a proof by refutation. During the process of searching for a proof, clauses that may be
relevant to a proof are extracted from memory and utilized as axioms. If the question is
neither proved nor disproved, then a NO PROOF FOUND answer is returned. answer
indicates an answer.

We now present a very simple dialogue with qa3. The dialogue illustrates a ‘yes’
answer, a ‘no’ answer, and an ‘or’ answer. Questions 4, 7, and 8 below illustrate questions
where the answer is a term generated by the proof procedure. These kinds of answers
will be called ‘constructive’ answers.

1. The first fact is ‘Smith is a man.’
statement: MAN(Smith)
ok

The ok response from qa3 indicates that the statement is accepted, converted to a
clause, and stored in memory.

2. We ask the first question, ‘Is Smith a man?’
question: MAN(Smith)
answer: YES

3. We now state that ‘Man is an animal,’ or, more precisely, ‘If x is a man then x
is an animal.’
statement: (∀x)[MAN(x)⇒ ANIMAL(x)]
ok

4. We now ask ‘Who is an animal?’ This question can be restated as ‘Find some
y that is an animal’ or ‘Does there exist a y such that y is an animal? If so,
exhibit such a y.’
question: (∃y)ANIMAL(y)
answer: YES, y = Smith

The YES answer indicates that the conjecture (∃y)ANIMAL(y) has been proved (from
statements 1 and 3 above). ‘y = Smith’ indicates that ‘Smith’ is an instance of y
satisfying ANIMAL(y) – i.e., ANIMAL(Smith) is a theorem.

5. Fact: A robot is a machine.
statement: (∀x)[ROBOT (x)⇒MACHINE(x)]
ok

6. Fact: Rob is a robot.
statement: ROBOT (Rob)
ok

7. Fact: No machine is an animal.
statement: (∀x)[MACHINE(x)⇒ ∼ANIMAL(x)]
ok

4

8. The question ‘Is everything an animal?’ is answered NO. A counterexample is
exhibited – namely, Rob the robot.
question: (∀x)ANIMAL(x)
answer: NO, x = Rob

The answer indicates that ∼ANIMAL(Rob) is a theorem. Note that a NO answer
produces a counterexample for the universally quantified variable x. This is the dual
of the construction of a satisfying instance for an existentially quantified variable in a
question answered YES.

9. Fact: Either Smith is at work or Jones is at work.
statement: AT (Smith,work) ∨AT (Jones, work)
ok

10. Question: ‘Is anyone at work?’
question: (∃x)(AT (x,work))
answer: YES, x = Smith

or x = Jones

From the previous statement it is possible to prove that someone is at work, although it
is not possible to specify a unique individual.

Statements, questions, and answers can be more complex so that their corresponding
English form is not so simple. Statements and questions can have many quantifiers and
can contain functions. The answer can also contain functions. Consider the question
‘Is it true that for all x there exists a y such that P (x, y) is true?’, where P is some
predicate letter. Suppose qa3 is given the statement,

11. statement: (∀z)P (z, f(z))

Where f is some function. We ask the question

12. question: (∀x)(∃y)P (x, y)
answer: YES, y = f(x)

Notice that the instance of y found to answer the question is a function of x, indicating
the dependence of y on x. Suppose that instead of statement 11 above, qa3 has other
statements about P . An answer to question 12 might be

answer: NO, x = a

where a is some instance of x that is a counterexample.
The term(s) that is the answer can be either a constant, a function, a variable, or some

combination thereof. If the answer is a constant or a known function, then the meaning
of the answer is clear. However, the answer may be a Skolem function generated by
dropping existential quantifiers. In this case, the answer is an object asserted to exist by
the existential quantifier that generated the Skolem function. To know the meaning of
this Skolem function, the system must exhibit the original input statement that caused
the production of the Skolem function. Free variables in clauses correspond to universally
quantified variables, so if the answer is a free variable, then any term satisfies the formula
and thus answers the question.

Two more types of answers are NO PROOF FOUND and INSUFFICIENT INFOR-
MATION. Suppose the theorem-prover fails to prove some conjecture and also fails to
disprove the conjecture. If the theorem-prover runs out of time or space during either
the attempted ‘yes’ proof or the attempted ‘no’ proof, then there is the possibility that

5

some proof is possible if more time or space is available. The answer in this case is NO
PROOF FOUND.

Now suppose both proof attempts fail without exceeding any time or space limitations.
The theorem-proving strategy is complete so that if no time or space limitation halts
the search for a proof and the conjecture is a logical consequence of the axioms, then a
proof will be found. So we know that neither a ‘yes’ nor a ‘no’ answer is possible from
the given statements. The answer returned is INSUFFICIENT INFORMATION. For
example, suppose qa3 has no statements containing the predicate letter ‘R’:

question: (∃x)R(x)

The negated question is the clause {∼R(x)}, and no other clauses in the memory of qa3
can resolve with it. Thus the system will respond

answer: INSUFFICIENT INFORMATION.

2. Constructing answers

The Resolution method of proving theorems allows us to produce correct constructive
answers. This means that if, for example, (∃x)P (x) is a theorem then the proof procedure
can find terms t1, t2, · · · , tn such that P (t1) ∨ P (t2) ∨ · · · ∨ P (tn) is a theorem.

First, we shall present some examples of answer construction. After these examples
we shall show how a proof by resolution can be used to generate an answer.

Examples of answer construction will be explained by means of the answer predicate
used by qa3 to keep track of instantiations. Consider the question

question: (∃y)ANIMAL(y)

which is negated to produce the clause

{∼ANIMAL(y)}.
The special literal, ANSWER(y), is added to this clause to give

{∼ANIMAL(y) ∨ANSWER(y)}.
The proof process begins with this clause. When the literal ANIMAL(x) is resolved
against the literal ∼ANIMAL(y), the term y is instantiated to yield the term x. In
the new clause resulting from this resolution, the argument of answer is then x. In the
next resolution the argument of answer becomes Smith. We list the complete modified
proof that terminates with the clause

{ANSWER(Smith)}.
1. {∼ANIMAL(y) ∨ANSWER(y)} Modified negation of the question.

2. {∼MAN(x) ∨ANIMAL(x)} Axiom fetched from memory.

3. {∼MAN(x) ∨ANSWER(x)} From resolving 1 and 2.

4. {MAN(Smith)} Axiom fetched from memory.

5. {ANSWER(Smith)} ‘Contradiction’ from 3 and 4 for y = Smith.

The argument of the answer predicate is the instance of y – namely, Smith – that
answers the question. qa3 returns

answer: YES, y = Smith.

This answer means, as will be explained later, that

ANIMAL(Smith)

6

is a theorem.
The answer literal is added to each clause in the negation of the question. The

arguments of answer are the existentially quantified variables in the question. When
a new clause is created, each answer literal in the new clause is instantiated in the
same manner as any other literal from the parent clause. However, the answer literal
is treated specially; it is considered to be invisible to resolution in the sense that no
literal is resolved against it and it does not contribute to the length (size) of the clause
containing it. We call a clause containing only answer literals an ‘answer clause.’ The
search for an answer (proof) successfully terminates when an answer clause is generated.
The addition of the answer predicate to the clauses representing the negation of the
theorem does not affect the completeness of this modified proof procedure. The theorem-
prover generates the same clauses, except for the answer predicate, as the conventional
theorem-prover. Thus in this system an answer clause is equivalent to the empty clause
that establishes a contradiction in a conventional system.

An answer clause specifies the sets of values that the existentially quantified variables
in the question may take in order to preserve the provability of the question. The precise
meaning of the answer will be specified in terms of a question Q that is proved from a
set of axioms B = {B1, B2, · · · , Bb}. As an example illustrating some difficulties with
Skolem functions, let the axioms B consist of a single statement,

statement: (∀z)(∃w)P (z, w)

Suppose this is converted to the clause

{P (z, f(z))},
where f(z) is the Skolem function due to the elimination of the quantifier (∃w). We ask
the question Q,

question: (∀y)(∃x)P (y, x).

The negation of the question is ∼Q,

(∃y)(∀x)∼P (y, x).

The clause representing ∼Q is

{∼P (b, x)},
where b is the constant (function of no variables) introduced by the elimination of (∃y).
The proof, obtained by resolving these two clauses, yields the answer clause

{ANSWER(f(b))}.
The Skolem Function b is replaced by y, and the answer printed out is

answer: YES, x = f(y). (1)

At present in qa3 the Skolem function f(y) is left in the answer. To help see the meaning
of some Skolem function in the answer, the user can ask the system to display the original
statement that, when converted to clauses, caused the generation of the Skolem function.

As an illustration, consider the following interpretation of the statement and question
of this example. Let P (u, v) be true if u is a person at work and v is this person’s desk.
Then the statement (∀z)(∃w)P (z, w) asserts that every person at work has a desk, but
the statement does not name the desk. The Skolem function f(z) is created internally
by the program during the process of converting the statement (∀z)(∃w)P (z, w) into
the clause {P (z, f(z))}. The function f(z) may be thought of as the program’s internal
name for z’s desk. (The term f(z) could perhaps be written more meaningfully in terms
of the descriptive operator i as ‘iw.P (z, w),’ i.e., ‘the w such that P (z, w)’, although w

7

is not necessarily unique.)
The question (∀y)(∃x)P (y, x) asks if for every person y there exists a corresponding

desk. The denial of the question, (∃y)(∀x)∼P (y, x), postulates that there exists a person
such that for all x, it is not the case that x is his desk. The Skolem function of no
arguments, b, is also created internally by the program as it generates the clause {∼
P (b, x)}. The function b is thus the program’s internal name for the hypothetical person
who has no desk.

The one-step proof merely finds that b does have a desk, namely f(b). The user of the
system does not normally see the internal clause representations unless he specifically
requests such information. If the term f(b) that appears in the answer clause were given
to the user as the answer, e.g. YES, x = f(b), the symbols f and b would be meaningless
to him. But the program remembers that b corresponds to y, so b is replaced by y, yielding
a slightly more meaningful answer, YES, x = f(y). The user then knows that y is the
same y he used in the question. The significance of the Skolem function f is slightly more
difficult to express. The program must tell the user where f came from. This is done by
returning the original statement (∀z)P (z, f(z)) to the user (alternatively, the descriptive
operator could be used to specify that f(z) is iw.P (z, w)). As a rule, the user remembers,
or has before his eyes, the question, but the specific form of the statements (axioms) is
forgotten. In this very simple example the meaning of f is specified completely in terms
of the question predicate P, but in general the meanings of Skolem functions will be
expressed in terms of other predicates, constants, etc.

We will now show how to construct an ‘answer statement’, and then we will prove
that the answer statement is a logical consequence of the axiom clauses. The user
may require that an answer statement be exhibited, in order better to understand a
complicated answer.

Consider a proof of question Q from the set of axioms B = {B1, B2, · · · , Bb}. B
logically implies Q if and only if B ∧ ∼Q is unsatisfiable. The statement B ∧ ∼Q can
be written in prenex form PM(Y,X), where P is the quantifier prefix, M(Y,X) is the
matrix, Y = {y1, y2, · · · , yu} is the set of existentially quantified variables in P , and
X = {x1, x2, · · · , xe} is the set of universally quantified variables in P .

Eliminating the quantifier prefix P by introducing Skolem functions to replace exis-
tential quantifiers and dropping the universal quantifiers produces the formula M(U,X).
Here U is the set of terms {u1, u2, · · · , uu}, such that for each existentially quantified
variable yi in P , ui is the corresponding Skolem function applied to all the universally
quantified variables in P preceding yi. Let M(U,X) be called S. The statement B∧ ∼Q
is unsatisfiable if and only if the corresponding statement S is unsatisfiable. Associated
with S is a Herbrand Universe of terms H that includes X, the set of free variables of S.
If φ = {t1/x1, t2/x2, · · · , tn/xn} represents a substitution of terms t1, t2, · · · , tn from H
for the variables x1, x2, · · · , xn then Sφ denotes the instance of S over H formed by sub-
stituting the terms t1, t2, · · · , tn from H for the corresponding variables x1, x2, · · · , xn
in S.

Let Si represent a variant of S, i.e., a copy of S with the free variables renamed.
Let the free variables be renamed in such a way that no two variants Si and Sj have
variables in common. By the Skolem-Löwenheim-Gödel theorem (Robinson 1967), S is
unsatisfiable if and only if there exists an instance of a finite conjunction of variants of S
that is truth-functionally unsatisfiable. A resolution theorem prover can be interpreted
as proving S unsatisfiable by finding such a finite conjunction.

Suppose the proof of Q from B finds the conjunction S1 ∧ S2 ∧ · · · ∧ Sk and the
substitution θ such that

8

(S1 ∧ S2 ∧ · · · ∧ Sk)θ

is truth-functionally unsatisfiable. Let F0 denote the formula (S1 ∧S2 ∧ · · · ∧Sk)θ Let L
be the conjunction of variants of M(Y,X),

L = M(Y1, X1) ∧M(Y2, X2) ∧ · · · ∧M(Yk, Xk)

and let λ be the substitution of Skolem function terms for variables such that

Lλ = M(U1, X1) ∧M(U2, X2) ∧ · · · ∧M(Uk, Xk)
= S1 ∧ S2 ∧ · · · ∧ Sk.

Thus Lλθ = F0.
Before constructing the answer statement, observe that the Skolem functions of F0

can be removed as follows. Consider the set U = {u1, u2, · · · , uu} of Skolem-function
terms in S. Find in F0 one instance, say u′i, of a term in U . Select a symbol, z1, that
does not occur in F0. Replace every occurrence of u′i in F0 by z1, producing statement
F1. Now again apply this procedure to F1, substituting a new variable throughout F1

for each occurrence of some remaining instance of a Skolem-function term in F1, yielding
F2. This process can be continued until no further instances of terms from U are left in
Fn, for some n.

The statement Fi for 0 6 i 6 n is also truth-functionally unsatisfiable for the following
reasons. Consider any two occurrences of atomic formulae, say ma and mb, in F0. If
ma and mb in F0 are identical, then the corresponding two transformed atomic formulae
ma1 and mb1 in F2 are identical. If ma and mb are not identical, then ma1 and mb1

are not identical. Thus, F1 must have the same truth table, hence truth value, as F0.
This property holds at each step in the construction, so F0, F1, · · · , Fn must each be
truth-functionally unsatisfiable.

This term replacement operation can be carried out directly on the substitutions, i.e.,
for each statement Fi, 0 6 i 6 n, there exists a substitution σi such that Fi = Lσi. We
prove this by showing how such a σi is constructed. Let σ0 = λθ = {t1/v1, t2/v2, · · · , tp/vp}.

By definition, F0 = Lσ0. Let t′j denote the term formed by replacing every occurrence
of u′1 in tj by z1. The substitution σ1 = {t′1/v1, t′2/v2, · · · , t′p/vp} applied to L yields
F1, i.e., F1 = Lσ1. Similarly one constructs σi and shows, by induction, Fi = Lσi, for
0 6 i 6 n.

Now let us examine some of the internal structure of F0. Assume that S = M(U,X)
is formed as follows. The axioms may be represented as PBB(YB , XB), where PB is the
quantifier prefix, YB is the set of universally-quantified variables, and XB is the set of
existentially-quantified variables. These axioms are converted to a set of clauses denoted
by B(YB , UB), where UB is the set of Skolem-function terms created by eliminating XB .

The question may be represented as PQQ(YQ, XQ), where PQ is the quantifier pre-
fix, YQ is the set of universally-quantified variables, and XQ is the set of existentially-
quantified variables. Assume that the variables of the question are distinct from the
variables of the axioms. The negation of the question is converted into a set of clauses
denoted by ∼Q(UQ, XQ), where UQ is the set of Skolem-function terms created by elim-
inating YQ. The function symbols in UQ are distinct from the function symbols in
UB . Thus M(U,X) = [B(YB , UB) ∧ ∼Q(UQ, XQ)]. Now let LB = [B(YB1, XB1) ∧
B(YB2, XB2) ∧ · · · ∧ B(YBk, XBk)] and let ∼LQ = [∼Q(YQ1, XQ1) ∧ ∼Q(YQ2, XQ2) ∧
· · · ∧ ∼Q(YQk, XQk)]. Thus L = LB ∧ ∼LQ.

Observe that one can construct a sequence of statements F0, F
′
1, · · · , F ′

m similar to
F0, F1, · · · , Fn in which the only terms replaced by variables are instances of terms in
UQ. This construction terminates when for some m the set of clauses F ′

m contains no

9

further instances of terms in UQ. By the same argument given earlier for the formulas
Fi, each formula F ′

i is truth-functionally unsatisfiable. Similarly one can construct a
sequence of substitutions σ0, σ

′
1, · · · , σ′

m such that Lσ′
i = F ′

i for 0 6 i 6 m. Substitute
σ into LQ,forming

LQσ = [Q(YQ1, XQ1)σ ∨Q(YQ2, XQ2)σ ∨ · · · ∨Q(YQk, XQk)σ].

Since σ replaces the elements of YQj by variables, let the set of variables ZQj denote
YQjσ. Thus

LQσ = [Q(ZQ1, XQ1σ) ∨Q(ZQ2, XQ2σ) ∨ · · · ∨Q(ZQk, XQkσ)].

Now, let Z be the set of all variables occurring in LQσ. The answer statement is defined
to be (∀Z)LQσ. In its expanded form the answer statement is

(∀Z)[Q(ZQ1, XQ1σ) ∨Q(ZQ2, XQ2σ) ∨ · · · ∨Q(ZQk, XQkσ)]. (2)

We now prove that the answer statement is a logical consequence of the axioms in their
clausal form. Suppose not, then B(YB , UB)∧ ∼(∀Z)LQσ is satisfiable, thus B(UB , XB)∧
(∃Z)∼LQσ is satisfiable, implying that the conjunction of its instances LBλ∧(∃Z)∼LQσ
is satisfiable. Now drop the existential quantifiers (∃Z). Letting the elements of Z
in ∼LQσ denote a set of constant symbols or Skolem functions of no arguments, the
resulting formula LBλ ∧ LQσ is also satisfiable.

Note that LBσ is an instance of LBλ. To see this, let λB be the restriction of λ to
variables in LB . Thus, LBλ = LBλB . Suppose θ = {r1/w1, r2/w2, · · · , rn/wn}. Recall
that σ is formed from λθ by replacing in the terms of λθ occurrences of instances u′q
of ‘question’ Skolem terms by appropriate variables. (The ‘axiom’ Skolem functions are
distinct from question Skolem functions and occur only in the terms of λB .) Thus no
such u′q is an instance of an axiom Skolem term, therefore each occurrence of each such
u′q in λBθ must arise from an occurrence of u′q in some rj in θ. It follows then that
LBσ = LBλBφ where φ = {r′1/w1, r

′
2/w2, · · · , r′n/wn} is formed from θ by replacing

each u′q in each rj by an appropriate variable. Since LBλ = LBλB , LBλφ = LBσ. Since
the only free variables of LBλ ∧ LQσ occur in LBλ, [LBλ ∧ ∼LQσ]φ = LBλφ ∧ ∼LQσ.

The formula LBλ ∧ ∼LQσ logically implies all of its instances, in particular the in-
stance LBλφ ∧ ∼LQσ. Thus, if LBλ ∧ ∼LQσ is satisfiable, its instance LBλφ ∧ ∼LQσ
is satisfiable. Since [LBλφ ∧ ∼LQσ] = [LBσ ∧ ∼LQσ] = [LB ∧ ∼LQ]σ = Lσ = F ′

m

for some m, F ′
m must be satisfiable. This contradicts our earlier result that F ′

m is
truth-functionally unsatisfiable, and thus proves that the answer statement is a logical
consequence of the axioms.

We make one further refinement of the answer statement (2). It is unnecessary to
include the jth disjunct if XQjσ = XQj , i.e., if σ does not instantiate XQj . Without loss
of generality, we can assume that for r 6 k, the last k− r disjuncts are not instantiated,
i.e.,

XQr+1σ = XQr+1, XQr+2σ = XQr+2, · · · , XQkσ = XQk.

Then the stronger answer statement

(∀Z)[Q(ZQ1, XQ1σ) ∨Q(ZQ2, XQ2σ) ∨ · · · ∨Q(ZQr, XQrσ)] (3)

is logically equivalent to (2). (Since the matrix of (3) is a sub-disjunct of (2), (3) implies
(2). If j 6 r, the jth disjunct of (2) implies the jth disjunct of (3). If r < j 6 k, the jth
disjunct of (2) implies all of its instances, in particular all disjuncts of (3).)

The answer predicate provides a simple means of finding the instances of Q in (3).
Before the proof attempt begins, the literal ANSWER(XQ) is added to each clause
in ∼Q(UQ, XQ). The normal resolution proof procedure then has the effect of creat-

10

ing new variants of XQ as needed. The jth variant, answer(XQj), thus receives the
instantiations of ∼Q(UQj , XQj). When a proof is found, the answer clause will be

{ANSWER(XQ1θ) ∨ANSWER(XQ2θ) ∨ · · · ∨ANSWER(XQrθ)}.
Variables are then substituted for the appropriate Skolem functions to yield

{ANSWER(XQ1σ) ∨ANSWER(XQ2σ) ∨ · · · ∨ANSWER(XQrσ)}.
Let XQj = {xj1, xj2, · · · , xjm}.
Let σ restricted to XQj be {tj1/xj1, tj2/xj2, · · · , tjm/xjm}.
The answer terms printed out by qa3 are

[x11 = t11 and x12 = t12 · · · and x1m = t1m]
or [x21 = t21 and x22 = t22 · · · and x2m = t2m]

...
or [xr1 = tr1 and xr2 = tr2 · · · and xrm = trm].

(4)

According to (3), all the free variables in the set Z that appear in the answer are
universally quantified. Thus any two occurrences of some free variable in two terms
must take on the same value in any interpretation of the answer.

In the example given above, whose answer (1) had the single answer term f(y), the
complete answer statement is

(∀y)P (y, f(y)).

In section 3.3 we present two more examples. The answer in the second example has
four answer terms, illustrating the subcase of (4),

[x11 = t11 and x12 = t12]
or [x21 = t21 and x22 = t22].

The answer statement proved can sometimes be simplified. For example, consider

question: (∃x)P (x)
answer: YES, x = a

or x = b,

meaning that the answer statement proved is

[P (a) ∨ P (b)].

Suppose it is possible to prove ∼P (b) from other axioms. Then a simpler answer is
provable, namely

answer: YES, x = a.

3. Processes described as a state transformation

In some of the applications of qa3 mentioned in section 5 it is necessary to solve problems
of the kind: ‘Find a sequence of actions that will achieve some goal.’ One method for
solving this type of problem is to use the notion of transformations of states. We show
here how processes involving changes of state can be described in first-order logic and
how this formalism is used. The process of finding the values of existentially quantified
variables by theorem-proving can be used to find the sequence of actions necessary to
reach a goal.

The basic mechanism is very simple. A first-order logic function corresponds to an
action or operator. This function maps states into new states. An axiom takes the

11

following form:

P (s1) ∧ (f(s1) = s2)⇒ Q(s2)

where

s1 is the initial state

P (s1) is a predicate describing the initial state

f(s1) is a function (corresponding to an action)

s2 is the value of the function, the new state

Q(s2) is a predicate describing the new state.

The equality can be eliminated, giving

P (s1)⇒ Q(f(s1)).

As an example, consider how one might describe the movements of a robot. Each state
will correspond to one possible position of the robot. Consider the statement ‘If the
robot is at point a in some state s1, and performs the action of moving from a to b, then
the robot will be at position b in some resulting state s2.’ The axiom is

(∀s1)(∀s2)[AT (a, s1) ∧ (move(a, b, s1) = s2 ⇒ AT (b, s2)].

The function move(a, b, s1) is the action corresponding to moving from a to b. The
predicate AT (a, s1) is true if and only if the robot is at point a in state s1. The predicate
AT (b, s2) is true if and only if the robot is at point b in state s2.

c

start a

b

goal

d

Figure 1

Now consider an example showing how the theorem-prover can be used to find a
sequence of actions that reach a goal. The robot starts at position a in initial state s0.
From a he can move either to b or d. From b he can move to c. From d he can move to
b. The allowed moves are shown in figure 1.
The axioms are:

A1. AT (a, s0)

A2. (∀s1)[AT (a, s1)⇒ AT (b,move(a, b, s1))]

A3. (∀s2)[AT (a, s2)⇒ AT (d,move(a, d, s2))]

A4. (∀s3)[AT (b, s3)⇒ AT (c,move(b, c, s3))]

A5. (∀s4)[AT (d, s4)⇒ AT (b,move(d, b, s4))]

Axiom A1 states that the robot starts at position a in State s0. Axioms A2, A3, A4, and
A5 describe the allowed moves.

We now ask for a sequence of actions that will move the robot to position c. We present

12

this question in the form ‘Does there exist a state in which the robot is at position c?’

question: (∃s)AT (c, s)
answer: YES, s = move(b, c,move(a, b, s0))

By executing this resulting function move(b, c,move(a, b, s0)) our hypothetical robot
could effect the desired sequence of actions. The normal order of evaluating functions,
starting with the innermost and working outward, gives the order of performing the
actions: move from a to b and then move from b to c. In general, this technique of
function composition can be used to specify sequences of actions.

The proof of the answer by resolution is given below, with comments. The negation
of the question is (∀s)∼AT (c, s), and the refutation process finds, by instantiation, the
value of s that leads to a contradiction. The successive instantiations of s appear as
arguments of the special predicate, answer. The constants are a, b, c, and s0. The free
variables are s, s1, s2, s3, and s4.

Proof
1. {∼AT (c, s) ∨ANSWER(s)} Negation of question

2. {∼AT (b, s3) ∨AT (c,move(b, c, s3))} Axiom A4

3. {∼AT (b, s3) ∨ANSWER(move(b, c, s3))} From resolving 1 and 2

4. {∼AT (a, s1) ∨AT (b,move(a, b, s1))} Axiom A2

5. {∼AT (a, s1) ∨ANSWER(move(b, c,move(a, b, s1)))} From resolving 3 and 4

6. {AT (a, s0)} Axiom A1

7. {ANSWER(move(b, c,move(a, b, s0)))} From resolving 5 and 6

Note that the process of proving the theorem corresponds to starting at the goal node c
and finding a path back to the initial node a.

Consider a second example. Two players p1 and p2 play a game. In some state s1,
player p1 is either at position a or position b.

B1. AT (p1, a, s1) ∨AT (p1, b, s1).

If in state s1, player p2 can move anywhere.

B2. (∀y)AT (p2, y,move(p2, y, s1))

The position of player p1 is not affected by p2’s movement.

B3. (∀x)(∀y)(∀s)[AT (p1, x, s)⇒ AT (p1, x,move(p2, y, s))]

Does there exist some state (sequence) such that p1 and p2 are together?

question: (∃x)(∃s)[AT (p1, x, s) ∧AT (p2, x, s)]
answer: YES, [x = a and s = move(p2, a, s1)]

or
[x = b and s = move(p2, b, s1)]

This answer indicates that two meeting possibilities exist; either (1) player p1 is at
position a and player p2 moves to a, meeting p1 at a, or (2) player p1 is at position b
and player p2 moves to b, meeting p1 at b. However, the ‘or’ answer indicates that we
do not know which one move will lead to a meeting. The ‘or’ answer is due to the fact
that Axiom B1 did not specify player p1’s position. The answer statement that has been
proved is

13

[AT (p1, a,move(p2, a, s1)) ∧AT (p2, a,move(p2, a, s1))]
∨[AT (p1, b,move(p2, b, s1)) ∧AT (p2, b,move(p2, b, s1))].

Proof
1. {∼AT (p1, x, s) ∨ ∼AT (p2, x, s) ∨ANSWER(x, s)} Negation of question

2. {AT (p2, y,move(p2, y, s))} Axiom B2

3. {∼AT (p1, x,move(p2, x, s1)) ∨ANSWER(x,move(p2, x, s1))} From 1, 2

4. {∼AT (p1, x, s) ∨AT (p1, x,move(p2, y, s))} Axiom B3

5. {∼AT (p1, y, s1) ∨ANSWER(y,move(p2, y, s1))} From 3, 4

6. {AT (p1, a, s1) ∨AT (p1, b, s1)} Axiom B1

7. {AT (p1, b, s1) ∨ANSWER(a,move(p2, a, s1))} From 5, 6

8. {ANSWER(a,move(p2, a, s1)) ∨ANSWER(b,move(p2, b, s1))} From 5, 7

It is possible to formalize other general problem-solving tasks in first-order logic, so
that theorem-proving methods can be used to produce solutions. For a discussion of
formalizations of several general concepts including cause, ‘can’, knowledge, time, and
situations, see McCarthy and Hayes (1969).

4. PROGRAM ORGANIZATION

The organization of the question-answering program qa3 differs from that of a ‘pure’
theorem-proving program in some of the capabilities it emphasizes: a proof strategy
intended for the quick answering of easy questions even with a large data base of axioms,
a high level of interaction between the user and both the question-answering program
and the data base in a suitable command language, and some flexibility in the question-
answering process so that the program can be fitted to various applications. In this
section we describe the principal features of the system.

1. Program control

The user can control the proof process in several ways.

1. The user can request a search for just a ‘yes’ answer, instead of both ‘yes’ and ‘no’.

2. The user can request the program to keep trying, by increasing its effort if no proof
is found within preset limits. This lets qa3 search for a more difficult proof.

3. When a proof is found it can be printed out. Included with the proof are statistics
on the search: the number of clauses generated, the number of clauses subsumed
out of the number attempted, the number of successful resolutions out of the num-
ber attempted, and the number of successful factors generated out of the number
attempted.

4. The user can request that the course of the search be exhibited as it is in progress
by printing out each new clause as it is generated or selected from memory, along
with specified information about the clause.

5. The user can request that existentially quantified variables in the question be not
traced.

6. The user can designate predicates and functions that are to be evaluated by Lisp
programs. For example, the predicate 1 6 2 might be evaluated by Lisp to yield

14

the truth value T . This feature also allows the transfer of control to peripheral
devices.

7. Parameters controlling the proof strategy, such as degree and set of support are
accessible to the more knowledgeable user.

8. A number of editing facilities on the clauses in memory are useful:
(a) A new axiom can be entered into memory,
(b) An axiom in memory can be deleted, and
(c) The axioms containing any predicate letter can be listed.

2. Special uses of the theorem-prover

‘The theorem-prover’ refers to a collection of Lisp functions used during the theorem-
proving process - e.g. resolve, factor, prove, prenex, checksubsumption, etc.

The management of the data in memory is aided by the theorem-prover. A statement
is stored in memory only if it is neither a tautology nor a contradiction. A new clause is
not stored in memory if there already exists in memory another clause of equal length
or shorter length that subsumes the new clause. Two other acceptance tests are possible
although they are not now implemented. A statement given the system can be checked
for consistency with the current data base by attempting to prove the negation of the
statement. If the statement is proved inconsistent, it would not be stored. As another
possible test, the theorem-prover could attempt to prove a new statement in only 1 or 2
steps. If the proof is sufficiently easy, the new statement could be considered redundant
and could be rejected.

The theorem-prover can also be used to simplify the answer, as described in section 3.

3. Strategy

The theorem-proving strategy used in qa3 is similar to the unit-preference strategy,
using an extended set-of-support and subsumption.

The principal modification for the purposes of the question-answering system is to have
two sets of clauses during an attempted proof. The first set, called ‘Memory’, contains
all the statements (axioms) given the system. The second set, called ‘Clauselist’ is the
active set of clauses containing only the axioms being used in the current proof attempt
and the new clauses being generated. Clauselist is intended to contain only the clauses
most relevant to the question.

There is a high cost, in computer time and space, for each clause actively associated
with the theorem-prover. The cost is due to the search time spent when the clause is
considered as a candidate for resolution, factoring, or subsumption, and the extra space
necessary for book-keeping on the clause. Since most clauses in Memory are irrelevant to
the current proof, it is undesirable to have them in Clauselist, unnecessarily consuming
this time and space. So the basic strategy is to work only on the clauses in Clause list,
periodically transferring new, possibly relevant clauses from Memory into Clauselist. If
a clause that cannot lead to a proof is brought into Clauselist, this clause can generate
many unusable clauses. To help avoid this problem the strategy is reluctant to enter a
non-unit clause into Clauselist.

The proof strategy of the program is modified frequently, but we shall present an
approximate overview of the proof strategy. When a question is asked, Clauselist will
initially contain only the negation of the question, which is the set-of-support. A mod-
ified unit preference strategy is followed on Clauselist, using a bound on degree. As

15

this strategy is being carried out, clauses from Memory that resolve with clauses in
Clauselist are added to Clauselist. This strategy is carried out on Clauselist until no
more resolutions are possible for a given degree bound.

Finally, the bound is reached. Clauselist, with all of its book-keeping, is temporar-
ily saved. If the theorem-prover was attempting a ‘yes’ answer, it now attempts a ‘no’
answer. If attempting a ‘no’ answer, it also saves the ‘no’ Clauselist, and returns a
NO PROOF F0UND answer. The user may then continue the search requesting con-
tinue. If the bound is not reached in either the yes or no case, the INSUFFICIENT
INFORMATION answer is returned. The strategy has the following refinements:

1. After a newly created unit fails to resolve with any units in Clauselist, it is checked
against the units in Memory for a contradiction. This helps to find short proofs
quickly.

2. Frequently, in the question-answering applications being studied, a proof consists
of a chain of applications of two-clauses, i.e., clauses of length two. Semantically
it usually means that set-membership of some element is being found by chaining
through successive supersets or subsets. To speed up this process, a special fast
section is included that resolves units in Clauselist with two-clauses in Memory.
Our experience so far is that this heuristic is worthwhile.

3. Each new clause generated is checked to see if it is subsumed by another shorter
clause in Clauselist. All longer clauses in Clauselist are checked to see if they are
subsumed by the new clause. The longer subsumed clauses are deleted.

4. Hart’s theorem (1965) shows how binary resolution can generate redundant equiv-
alent proofs. Equivalent proofs are eliminated from the unit section. Wos terms
this property, ‘Singly-connectedness’. Currently this has not yet been implemented
for the non-unit section.

5. An extended set-of-support is used, allowing pairs of clauses in Clauselist but not
in the set-of-support to resolve with one another up to a level of 2.

6. The sets, Memory and Clauselist, are indexed to facilitate search. The clauses
in Memory are indexed by predicate letters and, under each predicate letter, by
length. The clauses in Clauselist are indexed by length.

In searching Memory for relevant clauses to add to Clauselist, clauses already in
Clauselist are not considered. The clauses of each length are kept on a list, with
new clauses being added at the end of the list. Pointers, or place-keepers, are kept
for these lists, and are used to prevent reconsidering resolving two clauses and also
to prevent generating equivalent proofs.

The strategy is ‘complete’ in the sense that it will eventually find any proof that
exists within the degree and space bound.

5. PERFORMANCE OF QA3

1. Applications

The program has been tested on several question sets used by earlier questionanswering
programs. In addition, qa3 is now being used in other applications. The subjects for the

16

first question set given qa2, reported in Green and Raphael (1968), consisted of some
set-membership, set-inclusion, part-whole relationship and similar problems.

Raphael’s sir (1964b) program gave a similar but larger problem set also having the
interesting feature of requiring facts or axioms from several subjects to interact in an-
swering a question. sir used a different subroutine to answer each type of question, and
when a new relation was added to the system, not only was a new subroutine required to
deal with that relation but also changes throughout the system were usually necessary
to handle the interaction of the new relation with the previous relations. This program-
ming difficulty was the basic obstacle in enlarging sir. Raphael proposed a ‘formalized
question-answerer’ as the solution. qa3 was tested on the sir problem set with the fol-
lowing results: in two hours of sitting at the teletype all the facts programmed into or told
to sir were entered into the qa3 memory as axioms of first-order logic and qa3 answered
essentially all the questions answered by sir. The questions skipped used the special sir
heuristic, the ‘exception principle’. It was possible to translate, as they were read, ques-
tions and facts stated in sir’s restricted English into first-order logic. Slagle, in his
paper on deducom, a question-answering system (1965), presented a broader, though
less interactive, problem set consisting of gathered questions either answered by pro-
grams of, or else proposed by, Raphael (1964a), Black (1964), Safier (1963), McCarthy
(1963), Cooper (1964), and Simon (1963). Included in this set were several examples of
sequential processes, including one of McCarthy’s End Game Questions (1963), Safier’s
Mikado Question (1963), McCarthy’s Monkey-and-Bananas Question (1963), and one of
Simon’s State Description Compiler Questions (1963). Using the technique discussed in
section 3.3 to describe processes, it was possible to axiomatize all the facts and answer
all the questions printed in Slagle’s paper. Furthermore, qa3 overcame some of the de-
fects of deducom: qa3 could answer all answerable questions, the order of presenting
the axioms did not affect its ability to answer questions, and no redundant facts were
required. qa3 was then tested on the entire set of twenty-three questions presented in
Cooper (1964). qa3 correctly answered all the questions, including four not answered
by Cooper’s program and sixteen not answered by deducom.

qa3 also solved the Wolf, Goat, and Cabbage puzzle in which a farmer must transport
the wolf, goat, and cabbage across the river in a boat that can hold only himself and
one other. The wolf cannot be left alone with the goat and the goat cannot be left alone
with the cabbage.

In all of the problems mentioned above, qa3 was given the facts and questions in
first-order logic. Raphael’s program and Cooper’s program used a restricted English
input.

Using the English-to-logic translator developed by Coles (1968), Coles and Raphael
have begun studying some medical question-answering applications of qa3.

qa3 is being tested in the Stanford Research Institute Automaton (robot) on problem-
solving tasks.

2. Limitations

A few limitations should be emphasized. Firstly, qa3 is still not a finished system. One
very important feature that is missing is the automatic handling of the equality relation,
and this is not a trivial problem. Without an automatic equality capability, qa3 is very
awkward on certain problems that are conveniently stated in terms of equality. The
equality relation is but one instance of other ‘higher-order’ concepts (e.g. set theory)
that either (i) cannot be described in first-order logic, or (ii) require some meta-level
operations such as an axiom schema, or (iii) are awkward and impractical in first-order

17

logic. However, it is not yet clear just what are the practical limitations of a first-order
logic system having suitable ‘tricks’.

One of the virtues of qa3 is that relatively subject-independent heuristics are used.
All subject dependence comes from the particular axioms stored in memory, the theorem
being proved, and the particular representation chosen for each statement. This adds
elegance and generality, yet yields a reasonably powerful system. However, for harder
problems it may be necessary to be able to add subject-dependent search heuristics, or
‘advice’ for particular problems. Such an advice-taking capability will require a flexible
and easily modifiable search strategy.

The particular heuristics used in qa3 are experimental and have not been thoroughly
tested in question-answering applications (although the changes and heuristics added
appear to have improved the system). As each modification of the strategy was added,
the performance did improve on a particular class of problems. To help remedy some
of this uncertainty several measures of performance are now automatically printed out
after each question and will be used to evaluate questionable heuristics.

Another qualification is that the questions and subjects investigated were chosen from
conjectured test problems or else from test problems used by other question-answering or
problem-solving systems. This facilitates comparison, but does not necessarily indicate
performance on more practical problems.

The new and more difficult applications being considered might lead to a better under-
standing of the exact limitations of qa3, or of theorem-proving techniques, for question-
answering.

3. Performance

To answer any of the questions mentioned above, qa3 requires from a few seconds to
a few minutes. We can roughly measure the problem-solving capacity of qa3 by giving
the depth of search allowed and the free space available for storing clauses produced in
searching for a proof. The space available for storing clauses produced during a proof
typically allows a few hundred clauses to be stored. The depth of search is given by
degree bound, normally set at 10. It is interesting to note that the many ‘common
sense’ reasoning problems mentioned herein were within these bounds of qa3, and thus
were not difficult proofs, compared to some of the mathematical proofs attempted by
theorem-provers.

Acknowledgements

I would like to acknowledge the advice and guidance of Dr Bertram Raphael and Professor John
McCarthy, as well as help from Mr. R. Kowalski in correcting an earlier draft of section 3; also
the programming and ideas of Robert A. Yates.

The work reported here was supported under Contract af 30(602)-4147, Rome Air Develop-

ment Center, and the Advanced Research Projects Agency, Advanced Sensors Group; and also

under Contract No. af 19(628)-5919, Air Force Cambridge Research Laboratories.

REFERENCES

Black, F.S. (1964) A deductive question-answering system. Ph.D. thesis, Harvard.
Coles, L. S. (1968) An on-line question-answering system with natural language and

pictorial input. Proceedings 23rd ACM National Conference.
Cooper, D. C. (1966) Theorem proving in computers, Advances in programming and

nonnumerical computation (ed. Fox, L.). London: Pergamon Press.
Cooper, W. S. (1964) Fact retrieval and deductive question answering information re-

18

trieval systems, J. Ass. comput. Mach., 11, 117-37.
Davis, M. (1963) Eliminating the irrelevant from mechanical proofs. Annual symposia in

applied mathematics XIX. Providence, Rhode Island: American Mathematical Society.
Green, B.F., Jr., Wolf, A.K., Chomsky, C. & Laughery, K. (1963) baseball: an auto-

matic question answerer. Computers and thought (eds Feigenbaum, E. A., & Feldman,
J.). New York: McGraw-Hill.

Green, C. c., & Raphael, B. (1968) The use of theorem-proving techniques in question-
answering systems. Proceedings 23rd A C M National Conference.

Hart, T. P. (1965) A useful algebraic property of Robinson’s Unification Algorithm.
Memo No. 91, ai Project, Project mac, mit.

Lindsay, R. K. (1963) Inferential memory as the basis of machines which understand
natural language. Computers and thought (eds Feigenbaum, E. A. & Feldman, J.).
New York: McGraw-Hill.

McCarthy, J. (1958) Programs with common sense. Symposium mechanization of thought
processes. Teddington: Nat. Physical Lab.

McCarthy, J. (1963) Situations, actions & causal laws. Stanford artificial intelligence
project memorandum, NO.2.

McCarthy, J. & Hayes, P. (1969) Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, p. 463-502 (eds Meltzer, B. & Michie,
D.). Edinburgh: Edinburgh University Press.

Raphael, B. (1964a) A computer program which ‘understands’. Proc. FJCC Washington,
D.C.: Spartan Books.

Raphael, B. (1964b) SIR: a computer program for semantic information retrieval. mac-
tr2, Project mac, mit.

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle. J.
Ass. comput. Mach., 12, 23-41.

Robinson, J. A. (1967) A review of automatic theorem-proving. Annual symposia in ap-
plied mathematics XIX. Providence, Rhode Island : American Mathematical Society.

Safier, F. (1963) The Mikado as an advice taker problem. Stanford artificial intelligence
project memorandum, no. 3.

Safier, F. (1965) Simple Simon. Stanford artificial intelligence project memorandum, no.
35.

Simon, H. (1963) Experiments with a heuristic compiler, J. Ass. comput. Mach., 10,
493-50

Slagle, J.R. (1965) Experiments with a deductive, question-answering program. Com-
munications of the ACM 8,792- 8.

Wos, L., Carson, D. F. & Robinson, G. A. (1964) The unit preference strategy in theorem
proving. AFIPS 26,615- 21, Fall, J.C.C. Washington, D.C.: Spartan Books.

Wos, L. T., Carson, D. F. & Robinson, G.A. (1965) Efficiency and completeness of the
set-of-support strategy in theorem-proving. J. Ass. comput. Mach., 12, 536- 41.

Wos, L. T., Robinson, G.A., Carson, D.F. & Shalla, L. (1967) The concept of demodu-
lation in theorem-proving. J. Ass. comput. Mach., 14,698- 709.

19

