
Incremental Fixpoint Computation

Lambert Meertens
∗

Department of Algorithmics and Architecture, CWI, Amsterdam, and

Department of Computing Science, Utrecht University, The Netherlands

http://www.cwi.nl/cwi/people/Lambert.Meertens.html

Printed April 11, 2000

1 In the following (A, ⊒) is some poset, and F : A→A denotes a monotonic
function.

2 A value x ∈ A is a prefixpoint of F when x⊒ Fx.

3 Define ⊤⊤ = (falseK : id) and ⊥⊥ = id. If A is -complete, both exist.
We show that ⊤⊤ and ⊥⊥ — in spite of the asymmetric definitions given —
are each other’s dual, i.e., ⊤⊤ is synonymous with ⊤⊤′ = id.

Proof. We show that both ⊤⊤ and ⊤⊤′ dominate all elements of A.

First,

⊤⊤ ⊒ z

≡ {definition of ⊤⊤}

(falseK : id) ⊒ z

≡ { -characterization}

∀(falseK : id
.
⊒ z)

≡ {shunting, propositional calculus}

∗This work was performed while visiting Kestrel Institute, Palo Alto.

1



true

Next,

⊤⊤′ ⊒ z

≡ {definition of ⊤⊤′}

id ⊒ z

⇐ { -instantiation}

true

So

⊤⊤ = ⊤⊤′

≡ {indirect equality}

∀(z :: ⊤⊤ ⊒ z ≡ ⊤⊤′ ⊒ z)

≡ {just shown}

∀(z :: true ≡ true)

≡ {propositional calculus}

true

End of proof.

4 If A is finite and ⊓-complete (i.e., all binary ⊓s exist), then all non-empty

s exist. If, moreover, ⊤⊤ exists, A is -complete.

5 If A is -complete, it is also µ-complete, i.e., µF exists and equals

(id
.
⊒ F : id). In words, the least fixpoint of F is the infimum of the set of

prefixpoints of F .

6 A stream x is a mapping x : N→B for some B. Instead of x.n we also
write, equivalently, xn.

7 A stream x is finite when there exists a value x∞ and a natural s such
that ∀(n :: xs+n = x∞), and we say then that x is finished at s and has final
value x∞. If such an x∞ and s exist, x∞ is unique but s is not.

If x is finished at s, x∞ = xs. It follows that x is finite iff there exists an s

such that ∀(n :: xs+n = xs), or, equivalently, ∀(n :: xs+n+1 = xs+n).

2



8 A stream x : N→A is called ascending when x is a monotonic mapping,
that is, xi ⊒ xj ⇐ i ≥ j.

If A is finite, each ascending stream is — non-constructively — finite.

Defining x = (n :: (i : i ≤ n : xi)), the stream x — if all s involved exist
— is ascending for all x. Moreover, x is ascending iff x = x.

9 A finite ascending stream x has final value x∞ = x.

10

Theorem 1: Let x be an ascending stream satisfying

(i) F xn ⊒ xn+1 for all n

(ii) x0 = ⊥⊥

(iii) xn+1 ❂ xn ∨ xn ⊒ Fxn for all n

Then:

(a) if there exists a natural s such that xs ⊒ Fxs, then x is finite

(b) µF ⊒ xn for all n

(c) if x is finite, x∞ = µF

Proof. Denote P = id
.
⊒ F , i.e., the values satisfying P are the prefixpoints

of F .

For part (a), we only need — next to the ascent of x — assumption (i).
Define Qn ≡ xn+1 = xn ∧ Pxn. We will show that Q is ascending, but first
we show that Q = P ◦ x:

Qn ≡ Pxn

≡ {definition of Q}

(xn+1 = xn ∧ Pxn) ≡ Pxn

≡ {propositional calculus}

xn+1 = xn ⇐ Pxn

3



≡ {xn+1 ⊒ xn, ⊒ is antisymmetric}

xn ⊒ xn+1 ⇐ Pxn

≡ {definition of P}

xn ⊒ xn+1 ⇐ xn ⊒ Fxn

≡ {(i) Fxn ⊒ xn+1, ⊒ is transitive}

true

Then Q is ascending, since:

Qn+1 ⇐ Qn

≡ {Q = P ◦x}

Pxn+1 ⇐ Qn

≡ {definition of Q}

Pxn+1 ⇐ (xn+1 = xn ∧ Pxn)

≡ {equational logic}

true

We are now ready to show that x finishes at s if s is such that xs ⊒ Fxs :

∀(n :: xs+n+1 = xs+n)

⇐ {definition of Q}

∀(n :: Qs+n)

≡ {Q is ascending}

∀(n :: Qs+n)

≡ {definition of Q}

∀(n :: ∃(i : i ≤ s+ n : Qi))

⇐ {∃-instantiation}

Qs

≡ {Q = P ◦x}

Pxs

≡ {definition of P}

xs ⊒ Fxs

For part (b) we use, in addition, assumption (ii), which provides the basis of
a proof by natural induction. For the step:

4



µF ⊒ xn+1

⇐ {(i) Fxn ⊒ xn+1, ⊒ is transitive}

µF ⊒ Fxn

≡ {µF is fixpoint}

FµF ⊒ Fxn

⇐ {F is monotonic}

µF ⊒ xn

For part (c) we also use assumption (iii). Assume x finishes at s with final
value x∞. Instantiating n = s in (iii), and using xs+1 = xs = x∞, we obtain

x∞ ❂ x∞ ∨ x∞ ⊒ Fx∞

which by the antisymmetry of ⊒ simplifies to

x∞ ⊒ Fx∞

Then

x∞ = µF

≡ {fixpoint properties}

Fx∞ = x∞ ∧ µF ⊒ x∞

≡ {x∞ ⊒ Fx∞, ⊒ is antisymmetic}

Fx∞ ⊒ x∞ ∧ µF ⊒ x∞

≡ {x∞ = xs = xs+1}

Fxs ⊒ xs+1 ∧ µF ⊒ xs

≡ {left conjunct: (i); right conjunct: (b)}

true

End of proof.

11 Call (A, ⊒ ) well-roofed if each ascending stream is finite. A sufficient
condition is finiteness of A.

The Theorem of item 10 gives a way to compute least fixpoints in well-roofed
posets.

5



Assume F to be given. Let P be any procedure — possibly non-deterministic,
but effective — that, for given input xn, produces output value xn+1 satisfying:

F xn ⊒ xn+1 ⊒ xn

Fxn = xn ⇐ xn+1 = xn

So output xn+1 is bounded between Fxn and xn, and may only equal xn if
xn is a fixpoint.

Then any stream starting with x0 = ⊥⊥ and generated by iterating P for
n = 0, 1, 2, . . . , satisfies the conditions of the Theorem.

If the stream finishes — which is guaranteed under the assumption of well-
roofedness — its final value is the least fixpoint. Otherwise, an (infinite)
strictly ascending stream is produced.

12 A simple procedure is: take xn+1 = Fxn. To see that x is ascending, we
appeal to induction.

(Basis)

x1 ⊒ x0

≡ {definition of x0}

x1⊥⊥ ⊒ ⊥⊥

≡ {⊥⊥-characterization}

true

(Step)

xn+2 ⊒ xn+1

≡ {definition of x}

Fxn+1 ⊒ Fxn

⇐ {F is monotonic}

xn+1 ⊒ xn

13 Given two posets (A, ⊒A ) and (B, ⊒B ), the product ordering ⊒A×⊒B ,
denoted below by ⊒× , is a relation on A×B defined by

(a0, b0) ⊒× (a1, b1) ≡ a0 ⊒A a1 ∧ b0 ⊒B b1

6



It is again a partial-order relation.

Proof. In the proof expressions we omit the subscripts A and B since they
can be immediately reconstructed and play no essential role.

(Reflexive antisymmetry) We combine the conjunction of the reflexivity and
(weak) antisymmetry laws of relationR into the single reflexive-antisymmetry

law xRy ∧ yRx ≡ x = y.

(a0, b0)⊒× (a1, b1) ∧ (a1, b1)⊒× (a0, b0)

≡ {definition of ⊒× }

a0 ⊒ a1 ∧ b0 ⊒ b1 ∧ a1 ⊒ a0 ∧ b1 ⊒ b0

≡ {reshuffling, reflexive-antisymmetry of ⊒A and ⊒B }

a0 = a1 ∧ b0 = b1

≡ {equality of pairs}

(a0, b0) = (a1, b1)

(Transitivity)

(a0, b0)⊒× (a2, b2)

≡ {definition of ⊒× }

a0 ⊒ a2 ∧ b0 ⊒ b2

⇐ {transitivity of ⊒A and ⊒B }

a0 ⊒ a1 ∧ a1 ⊒ a2 ∧ b0 ⊒B b1 ∧ b1 ⊒B b2

≡ {reshuffling, definition of ⊒× }

(a0, b0)⊒× (a1, b1) ∧ (a1, b1)⊒× (a2, b2)

End of proof.

14 The binary partial-order product can be generalized to the product of
any indexed collection of partial orders, at the same time generalizing lifted

relation
.
⊒.

To define it we use a notation for “I-tuples”, where I is the index set, that
generalizes function comprehension. Let ∀(i : i∈I : ai ∈ Ai). Then (i : i∈I :
ai) denotes the corresponding element of

∏
(i : i∈I : Ai).

7



Let a poset (Ai, ⊒i ) be given for each i ∈ I . Then
∏
(i : i∈I : ⊒i ), denoted

below by ⊒Π , is a partial-order relation on
∏
(i : i∈I : Ai) defined by

(i : i∈I : ai) ⊒Π (i : i∈I : bi) ≡ ∀(i : i∈I : ai ⊒i bi)

The proof that this gives a partial order runs along the same lines as the
proof just given for the binary version.

15 If (i : i∈I : ai) ❂Π (i : i∈I : bi), then there is some i ∈ I such that
ai ❂i bi.

Proof.

∃(i : i∈I : ai ❂i bi)

≡ {definition of ❂ }

∃(i : i∈I : ai ⊒i bi ∧ ai 6= bi)

⇐ {∀-instantiation}

∃(i : i∈I : ∀(i : i∈I : ai ⊒i bi) ∧ ai 6= bi)

≡ {∧-∃-distribution}

∀(i : i∈I : ai ⊒i bi) ∧ ∃(i : i∈I : ai 6= bi)

≡ {definition of ⊒Π , equality of tuples}

(i : i∈I : ai)⊒Π (i : i∈I : bi) ∧ (i : i∈I : ai) 6= (i : i∈I : bi)

≡ {definition of ❂ }

(i : i∈I : ai)❂Π (i : i∈I : bi)

End of proof.

16 Given two posets (A, ⊒A ) and (B, ⊒B ), the lexical ordering ⊒A ×⊒B ,
denoted below by ⊒

×
, is a relation on A×B defined by

(a0, b0) ⊒
×
(a1, b1) ≡ a0 ⊒A a1 ∧ (a0 ❂A a1 ∨ b0 ⊒B b1)

It is again a partial-order relation, and a weakening of the product ordering.

Proof. (Reflexive antisymmetry)

(a0, b0)⊒ ×
(a1, b1) ∧ (a1, b1)⊒ ×

(a0, b0)

≡ {definition of ⊒
×
}

8



a0 ⊒ a1 ∧ (a0 ❂ a1 ∨ b0 ⊒ b1) ∧

a1 ⊒ a0 ∧ (a1 ❂ a0 ∨ b1 ⊒ b0)

≡ {reshuffling, reflexive-antisymmetry of ⊒A }

a0 = a1 ∧ (a0 ❂ a1 ∨ b0 ⊒ b1) ∧ (a1 ❂ a0 ∨ b1 ⊒ b0)

≡ {∧-∨-distribution, strong antisymmetry of ❂A }

a0 = a1 ∧ b0 ⊒ b1 ∧ b1 ⊒ b0)

≡ {reflexive-antisymmetry of ⊒B }

a0 = a1 ∧ b0 = b1

≡ {equality of pairs}

(a0, b0) = (a1, b1)

(Transitivity)

(a0, b0)⊒ ×
(a2, b2)

≡ {definition of ⊒
×
}

a0 ⊒ a2 ∧ (a0 ❂ a2 ∨ b0 ⊒ b2)

⇐ {order properties}

a0 ⊒ a1 ∧ a1 ⊒ a2 ∧

((a0 ⊒ a1 ∧ a1 ❂ a2) ∨ (a0 ❂ a1 ∧ a1 ⊒ a2) ∨

(b0 ⊒ b1 ∧ b1 ⊒ b2))

⇐ {propositional calculus}

a0 ⊒ a1 ∧ (a0 ❂ a1 ∨ b0 ⊒ b1) ∧

a1 ⊒ a2 ∧ (a1 ❂ a2 ∨ b1 ⊒ b2)

≡ {definition of ⊒
×
}

(a0, b0)⊒ ×
(a1, b1) ∧ (a1, b1)⊒ ×

(a2, b2)

(Weakening)

(a0, b0)⊒ ×
(a1, b1)

≡ {definition of ⊒
×
}

a0 ⊒ a1 ∧ (a0 ❂ a1 ∨ b0 ⊒ b1)

⇐ {propositional calculus}

a0 ⊒ a1 ∧ b0 ⊒ b1

≡ {definition of ⊒× }

9



(a0, b0)⊒× (a1, b1)

End of proof.

17 Let (A, ⊒ ) = (
∏
(i : i∈I : Ai),

∏
(i : i∈I : ⊒i )), where (Ai, ⊒i ) is a

poset for all i ∈ I . Below we omit the subscripts on the order relations ⊒ i .

To select the element indexed by i from I-tuple x ∈
∏
(i : i∈I : Ai) we write

x.i, so

x = (i : i∈I : ai) ≡ ∀(i : i∈I : x.i = ai)

The tuple-update notation x[.j 7→u], for j ∈ J, u ∈ Aj is then defined by:

∀(i : i∈I ∧ i 6= j : x[.j 7→u].i = x.i) ∧ x[.j 7→u].j = u

Let further F : A→A be a monotonic function, and assume A is well-roofed.

We give a procedure as in 11 for the iterative computation of µF .

Given input xn, output xn+1 is computed non-deterministically as follows:

Putting yn = F.xn,

(Case A) ∃(j : j∈I : yn.j ❂ xn.j) : xn+1 = xn[.j 7→yn.j]

(Case B) otherwise : xn+1 = xn

The procedure is non-deterministic by its freedom to pick j. Note that,
possibly, not all components of the I-tuple yn have to be computed, but only
as many as are needed to find an “infraction” of the form yn.j ❂ xn.j.

We have to show that the conditions imposed in 11 on xn+1 are fulfilled,
which, given the definition of yn, are:

yn ⊒ xn+1 ⊒ xn

yn = xn ⇐ xn+1 = xn

Proof. Various parts of the proof proceed by case analysis. In the scope of a
“Case A” clause, j is the index of some infraction yn.j ❂ xn.j.

10



First we prove an auxiliary lemma, namely

yn ⊒ xn+1 ⇐ yn ⊒ xn

(Case A)

yn ⊒ xn+1

≡ {definition of xn+1 (Case A)}

yn ⊒ xn[.j 7→yn.j]

≡ {definition of ⊒Π }

∀(i : i∈I : yn.i ⊒ xn[.j 7→yn.j].i)

≡ {range split, 1-pt rule}

∀(i : i∈I ∧ i 6= j : yn.i ⊒ xn[.j 7→yn.j].i) ∧

yn.j ⊒ xn[.j 7→yn.j].j

≡ {definition of [. 7→ ]}

∀(i : i∈I ∧ i 6= j : yn.i ⊒ xn.i) ∧ yn.j ⊒ yn.j

≡ {⊒ is reflexive}

∀(i : i∈I ∧ i 6= j : yn.i ⊒ xn.i)

⇐ {constriction}

∀(i : i∈I : yn.i ⊒ xn.i)

≡ {definition of ⊒Π }

yn ⊒ xn

(Case B)

yn ⊒ xn+1

≡ {definition of xn+1 (Case B)}

yn ⊒ xn

Now we deal with the components of the conditions on xn+1.

For part “xn+1 ⊒ xn” the proof proceeds by case analysis.

(Case A)

11



xn+1 ⊒ xn

≡ {definition of xn+1 (Case A)}

xn[.j 7→yn.j] ⊒ xn

≡ {definition of ⊒Π }

∀(i : i∈I : xn[.j 7→yn.j].i ⊒ xn.i)

≡ {range split, 1-pt rule}

∀(i : i∈I ∧ i 6= j : xn[.j 7→yn.j].i ⊒ xn.i) ∧ xn[.j 7→yn.j].j ⊒ xn.j

≡ {definition of [. 7→ ]}

∀(i : i∈I ∧ i 6= j : xn.i ⊒ xn.i) ∧ yn.j ⊒ xn.j

≡ {⊒ is reflexive}

yn.j ⊒ xn.j

⇐ {definition of ❂ }

yn.j ❂ xn.j

≡ {Case A}

true

(Case B)

xn+1 ⊒ xn

≡ {definition of xn+1 (Case B)}

xn ⊒ xn

≡ {⊒ is reflexive}

true

For part “yn ⊒ xn+1” the proof proceeds by induction.

(Basis)

y0 ⊒ x1

⇐ {auxiliary lemma}

y0 ⊒ x0

≡ {definition of x0}

y0⊥⊥ ⊒ ⊥⊥

≡ {⊥⊥-characterization}

12



true

(Step)

yn+1 ⊒ xn+2

⇐ {auxiliary lemma}

yn+1 ⊒ xn+1

⇐ {⊒ is transitive}

yn+1 ⊒ yn ∧ yn ⊒ xn+1

≡ {definition of yn}

F.xn+1 ⊒ F.xn ∧ yn ⊒ xn+1

≡ {xn+1 ⊒ xn (proved above), F is monotonic}

yn ⊒ xn+1

Remark. Since we now have proved both yn ⊒ xn+1 and xn+1 ⊒ xn, by the
transitivity of ⊒ we also have yn ⊒ xn.

For part “yn = xn ⇐ xn+1 = xn” the proof proceeds again by case analysis.

(Case A)

yn = xn

⇐ {propositional calculus}

false

≡ {definition of ❂ }

yn.j = xn.j ∧ yn.j ❂ xn.j

≡ {Case A}

yn.j = xn.j

≡ {definition of [. 7→ ]}

xn[.j 7→yn.j].j = xn.j

≡ {definition of xn+1 (Case A)}

xn+1.j = xn.j

⇐ {Leibniz}

xn+1 = xn

13



(Case B)

yn = xn

≡ {definition of ❂ }

yn ⊒ xn ∧ yn 6❂ xn

≡ {remark above}

yn 6❂ xn

⇐ {by contraposition of 15}

¬∃(j : j∈I : yn.j ❂ xn.j)

≡ {Case B}

true

End of proof.

14


