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1 In the following (A, J) is some poset, and F': A — A denotes a monotonic
function.

2 A value x € A is a prefixpoint of F' when x J Fx.

3 Define T = [(false” : id) and 1L = [Tid. If A is [l-complete, both exist.
We show that T and I — in spite of the asymmetric definitions given —
are each other’s dual, i.e., T is synonymous with T’ = L/id.

Proof. We show that both T and T’ dominate all elements of A.

First,

m 3dz
{definition of T}

[(false” : id) 3 2
{T'-characterization}

V(false® : id 3 2)

= {shunting, propositional calculus}
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true

Next,
T3z
= {definition of T’}
Llid O =z
<= {U-instantiation}
true
So
T =T

{indirect equality}
V(z:T 3z = T'dz)
{just shown}

V(z :: true = true)

{propositional calculus}
true

End of proof.

4 If A is finite and M-complete (i.e., all binary IMs exist), then all non-empty
[s exist. If, moreover, T exists, A is [ l-complete.

5 If A is [l-complete, it is also p-complete, i.e., uF exists and equals
[1(id 3 F :id). In words, the least fixpoint of F' is the infimum of the set of
prefixpoints of F.

6 A stream z is a mapping = : N — B for some B. Instead of x.n we also
write, equivalently, x,,.

7 A stream x is finite when there exists a value x., and a natural s such
that V(n :: zs1, = o), and we say then that x is finished at s and has final

value x.,. If such an x,, and s exist, x,, is unique but s is not.

If x is finished at s, xoo = z,. It follows that x is finite iff there exists an s
such that ¥(n :: 25y, = ), or, equivalently, V(n :: Tsini1 = Tsin)-
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8 A stream x: N — A is called ascending when z is a monotonic mapping,
that is, z; Jx; < © > j.

If A is finite, each ascending stream is — non-constructively — finite.

Defining 7 = (n :: U(i : i < n:a;)), the stream T — if all ['ls involved exist
— is ascending for all . Moreover, x is ascending iff T = .

9 A finite ascending stream z has final value z,, = Uz.

10

Theorem 1: Let x be an ascending stream satisfying

(1) Fa, 3z, foralln
(tii) xpy1 3 2y V x, J Fx, foralln

Then:
(a) if there exists a natural s such that xy J Fzg, then x is finite
(b) wF 3 x, foralln
(c¢) if x is finite, zoo = pF

Proof. Denote P = id 2 F , i.e., the values satisfying P are the prefixpoints
of F.

For part (a), we only need — next to the ascent of x — assumption (7).
Define Q,, = x,41 = v, A Pz,. We will show that @) is ascending, but first
we show that ) = Poux:

Qn = Py
{definition of Q}

(xpy1 = xp A Pz,) = Pz,

= {propositional calculus}

Tpi1 =2, <= Px,



{zp41 D x,, J is antisymmetric}
Tpdxyy1 <= Pxy,

{definition of P}
Tp dTpy1 <= xp, 3 Fa,

{(#) Fz, Jx,q, Jis transitive}

true

Then @ is ascending, since:

Qn—i—l <~ Qn
{Q=Pox}
Pr,y1 <= Qy
{definition of Q}
Pz, < (xp41 =2 A Pxy)

{equational logic}

true

We are now ready to show that x finishes at s if s is such that z, J Fx:

V(N Tsint1 = Tsin)

= {definition of Q}
V(?’L - Qs+n)

{Q is ascending}
V(n - @s—l—n)

{definition of Q}
Vin:3(i:i<s+n:Q))
= {3-instantiation}

Qs

{@=P-a)
Pz,

{definition of P}
Ty I Fa,

For part (b) we use, in addition, assumption (7i), which provides the basis of
a proof by natural induction. For the step:
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MF J Tn+1
= {(?)) Fx, Jx,q, Jis transitive}
pwk 3J Fx,
{pF is fixpoint }
FuF 3 Fz,
= {F is monotonic}
k' 3 x,

For part (¢) we also use assumption (7iz). Assume x finishes at s with final
value x,. Instantiating n = s in (iii), and using z,,1 = T3 = T, We obtain

Too O Too V Too o Fas

which by the antisymmetry of 2 simplifies to
Too J Fzo

Then

Too = WF

{fixpoint properties}
Fro = 2o N pF J 2y

{Too I Fxs, 3 is antisymmetic}
Froo 32 N pF J xy

{To =25 =241}
Frzy 3 xgy A pF 3 xg

{left conjunct: (7); right conjunct: (b)}

true

End of proof.

11 Call (A, ) well-roofed if each ascending stream is finite. A sufficient
condition is finiteness of A.

The Theorem of item 10 gives a way to compute least fixpoints in well-roofed
posets.



Assume F' to be given. Let P be any procedure — possibly non-deterministic,
but effective — that, for given input x,,, produces output value x,, | satisfying:

Fxn ; Tn+1 ; T,
Fzp, =2, < 2,1 = 2,
So output x,.1 is bounded between Fz, and z,, and may only equal z,, if

x, is a fixpoint.

Then any stream starting with zo = 1L and generated by iterating P for
n=0,1,2,..., satisfies the conditions of the Theorem.

If the stream finishes — which is guaranteed under the assumption of well-
roofedness — its final value is the least fixpoint. Otherwise, an (infinite)
strictly ascending stream is produced.

12 A simple procedure is: take x,.1 = Fx,. To see that x is ascending, we
appeal to induction.

(Basis)
1 2 o

{definition of z¢}
ol 3 1

{1L-characterization}

true
(Step)

Lp42 ; Tnt1
{definition of z}
Fxn-‘rl ; Fxn

= {F is monotonic}

Ln+1 ; Ty,

13 Given two posets (A, J, ) and (B, Jdp ), the product ordering J, x Jp,
denoted below by I, , is a relation on Ax B defined by

(ag,bo) dx (a1,b1) = apdaar A bp Jpb



It is again a partial-order relation.

Proof. In the proof expressions we omit the subscripts _4 and _g since they
can be immediately reconstructed and play no essential role.

(Reflexive antisymmetry) We combine the conjunction of the reflexivity and
(weak) antisymmetry laws of relation R into the single reflexive-antisymmetry
law Ry ANyRx = x =y.

(ao,bo) 2« (a1,b1) A (a1,b1) Iy (ao, bo)
{definition of 3, }
agJar N bp by A ayJag A by Dby
{reshuffling, reflexive-antisymmetry of J, and Jp}

apg = aq /\b():bl

{equality of pairs}
(a0ab0) = (aflabl)

(Transitivity)

(ao, bo) I« (az,by)
{definition of 3, }
ag 3 az N by 2 by
= {transitivity of J,4 and Jp}
ap Jay A ay Jax A by Igby N by Dby
{reshuffling, definition of J, }
(ao,bo) 2« (a1,b1) A (a1,b1) I« (ag, bs)

End of proof.

14 The binary partial-order product can be generalized to the product of
any indexed collection of partial orders, at the same time generalizing lifted
relation .

To define it we use a notation for “I-tuples”, where I is the index set, that

generalizes function comprehension. Let V(i : i€l : a; € A;). Then (i : i€l :
a;) denotes the corresponding element of [](i : i€l : A;).
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Let a poset (A;, J;) be given for each i € I. Then [](i: i€l : J;), denoted
below by Jy, is a partial-order relation on [(i : i€l : A;) defined by

(1:9€l :a;) (i i€l b)) = V(i:i€l :a; J;b;)

The proof that this gives a partial order runs along the same lines as the
proof just given for the binary version.

15 If (i :4€l : a;) O (@ : i€l : b;), then there is some ¢ € I such that
a; _1; bl

Proof.

A i€l 2 a; 2;b;)
{definition of I}

(i€l ca; 3;0; A a; #b;)

= {V-instantiation}

(i€l V(i i€l ca; Jib) A a; £ by)
{A-3-distribution}

V(i:iel :a; J;b) A (i€l ra; #b;)
{definition of Jp, equality of tuples}

(t:9€l :a;) D (i€l 2 b;) A (i:0€l :a;) # (i i€l 2 b;)
{definition of I}

(1:49€l :a;) O (i i€l @ b;)

End of proof.

16 Given two posets (A, J4) and (B, Jp), the lexical ordering J4 x Jp,
denoted below by J | is a relation on Ax B defined by

(ag,bo) 2  (ar,b1) = agZJaar A (agJaar V by Ipbi)
It is again a partial-order relation, and a weakening of the product ordering.

Proof. (Reflexive antisymmetry)

(ao,bo) = % (alabl) N (alabl) 5 (ao,bo)
{definition of J  }



ap Ja; A (agJay V by Jby) A
a; Jag A (a3 Jag V by Jby)
{reshuffling, reflexive-antisymmetry of J, }
ag=a; N (agJay V by Iby) A (a1 Jag V by Jby)
{A-V-distribution, strong antisymmetry of 14}
ag =ay N bp 23by A by D)
{reflexive-antisymmetry of Jp}
ag=ai; N by = by
{equality of pairs}
(ao,bo) = (a1,b1)

(Transitivity)

(a0, bo) 2 « (az,ba)
{definition of 3 ,}
ap Jas A (ag Jas V by I by)
{order properties}
ag Jdaj ANap Jdag A
((ap Jay ANay Jas)V(ag Jay ANay Jag) V
(bo 2 b1 A by Dbg))
{propositional calculus}
ag Jay N (agJay V bg Jby) A
a; Jas A (ag Jag V by Jby)
{definition of 3 ,}
(a0,b0) 2 » (a1,b1) A (a1,01) 3 « (az, b2)

(Weakening)

(a0, b0) 2 « (a1,b1)
{definition of 3 }

ap Ja; A (agJay V by Jby)
{propositional calculus}

agp Ja; A by 3 b
{definition of 3, }



(a07 bO) ;X (ala bl)
End of proof.

17 Let (A, J) = ([1(z : i€l : A;),T1(i : i€l = 3J;)), where (A;, J;) is a
poset for all 7 € I. Below we omit the subscripts on the order relations ;.

To select the element indexed by i from I-tuple x € [[(i : i€1 : A;) we write
.1, SO

x=(:1€l:a) = V(i:i€l:zi=a;)
The tuple-update notation x[.j—u|, for j € J,u € A; is then defined by:
V(iiel Ni#j:x[j—uli=xi) N\ z[.j—ulj=u
Let further F': A— A be a monotonic function, and assume A is well-roofed.
We give a procedure as in 11 for the iterative computation of pF'.

Given input x,,, output x, 1 is computed non-deterministically as follows:

Putting y, = F.a,,
(Case A)  F(j: 7€l i yng Jxn.j): Tpi1 = Tpl-J—Yn-J]
(Case B)  otherwise : Tpt1 = Tp

The procedure is non-deterministic by its freedom to pick j. Note that,
possibly, not all components of the I-tuple y,, have to be computed, but only
as many as are needed to find an “infraction” of the form y,.; Jx,.j.

We have to show that the conditions imposed in 11 on x,,; are fulfilled,
which, given the definition of y,,, are:

Yn g Tn+1 ; Ln,

Yn = Tp <= Tpil = Tp

Proof. Various parts of the proof proceed by case analysis. In the scope of a
“Case A” clause, j is the index of some infraction y,,.7 3 x,.J.
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First we prove an auxiliary lemma, namely
Yn ; Tn+1 <~ Un ; Tn
(Case A)

Yn = Tpi1
{definition of z,; (Case A)}

Yn 3 Tnl-JYn.J]
{definition of Jy }

V(i:i€l s ypd J xp[.j—Yn.j].0)
{range split, 1-pt rule}

V(i €I NG % ynd D T[jrsyng]i) A

Yn-J 2 Tn[JYn-jlJ

{definition of _[._.—_]}

Vi€l Ni# 5 ypd I Tp8) A Yp.j 3 YnoJ
{3 is reflexive}

V(i i€l ANi# j : ynd D Tnid)

= {constriction}

V(i:i€l : ypi 3 ,.9)
{definition of Jp }

Yn = Zp

(Case B)

Yn ; xn—i—l
{definition of z, 41 (Case B)}

Yn =2 Tp

Now we deal with the components of the conditions on x, 1.
For part “x,,1 2 x,,” the proof proceeds by case analysis.
(Case A)
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Tpy1 2 Ty

{definition of z,,; (Case A)}
Tpl-J=Yn-d] 3 zp

{definition of Iy}
V(i:i€l : xp].jyn.jli 3 x,.0)

{range split, 1-pt rule}
V(i i€l Ni# j:xplj=yngli 3 xp0) A zpj—yn.gld 3 xp.g
{definition of _[._.—_|}
V(i:i€lNi#j xpd I xy0) A Ypj 2 Tp.J
{3 is reflexive}
<~ {definition of 1}
Yn-] I Tp.J
{Case A}

true
(Case B)

Tnt1 ; T
{definition of z,; (Case B)}

T, 4 T,

= {3 is reflexive}

true

For part “y, 3 x,.1” the proof proceeds by induction.

(Basis)
Yo 2 1
= {auxiliary lemma}
Yo =2 Zo
= {definition of z¢}
Yol I AL

{1L-characterization}
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true
(Step)

Yn+1 - Tn42
= {auxiliary lemma}

Ynt1 = Tpia
= {3 is transitive}
Yn+1 = Yn N Yn 2 Tnpa
{definition of y,}
Fa,, JFz, N\ Yy, 3 Tpiq

= {zp41 D x, (proved above), F' is monotonic}
Un ; Tn+1

Remark. Since we now have proved both y, J x,,1 and z,,1 3 x,, by the
transitivity of 2 we also have y,, J x,.

For part “y, =z, < z,.1 =1," the proof proceeds again by case analysis.
(Case A)

Yn = Tp
= {propositional calculus}
false
{definition of I}
Yn-J = Tn.J N Yp.J 3 Tp.J
{Case A}
{definition of _[._—_|}
{definition of z,; (Case A)}
xn—i—l'j = Tpn.J
= {Leibniz}

Tn+1 = Tn
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(Case B)

Yn = Tn
{definition of 1}

Yo 2 T A Yn D T
{remark above}

Yn 2 T

= {by contraposition of 15}
—3(j : JEL 1 yn-g T T )

= {Case B}

true

End of proof.
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