
Least Fixpoints Calculationally

Lambert Meertens
∗

Department of Algorithmics and Architecture, CWI, Amsterdam, and

Department of Computing Science, Utrecht University, The Netherlands

http://www.cwi.nl/cwi/people/Lambert.Meertens.html

Printed April 30, 1998

1 Functions

Function application. The application of function F to argument x may
be denoted either as Fx or equivalently as F.x, where the purpose of the
latter notation is to improve readability. In FGx, the implied parsing is that
of F (Gx).

Unless the contrary is stated, the function typing F : A→B states that F
is total and has domain dom(F) = A, so that, for x ∈ A, we have Fx ∈ B.

If x 6∈ dom(F), we say that Fx is undefined, or equivalently that Fx does

not exist.

Two expressions are called synonymous if for all possible bindings of free
variables they are either both undefined, or they are both defined and have
the same value. Thus, if x is a free variable, Fx is synonymous with Gx

iff F = G. Synonymy is an equivalence relation. It is also substitutive: if

∗This work was performed while visiting Kestrel Institute, Palo Alto.

1

expressions E and E ′ are synonymous, then so are C[E] and C[E ′] for all
contexts C[].

Function restriction. If F is a function, and P a predicate such that
dom(P) = dom(F), the function restriction (P : F) means: the function F

restricted to arguments satisfying P . The parentheses are an obligatory part
of the notation.

We have the following rules for composing a function and a function restriction:

G ◦ (P : F) = (P : G ◦F)

(P : F) ◦G = (P ◦G : F ◦G)

Function comprehension. The function (P : F) can be written as a func-
tion comprehension, namely as (z : Pz : Fz). A more traditional notation
for the function (n : n ∈ N : 2n) is the lambda form λn∈N.2n. If there is no
range restriction, it is assumed to be inferred from the context. Thus, if n
may be assumed to be a natural-number dummy, we may write (n :: 2n). In
F = (x :: Fx), the implied range restriction is x ∈ dom(F). While function
restrictions have a single colon, function comprehensions sport two colons.

We have the application rule:

G (z : Pz : Fz) = (z : Pz : G.Fz)

The introduction or elimination of a dummy variable in a calculation step
will be done tacitly.

Lifting. A value a ∈ A can be lifted to a constant function aK : Z→A,
polymorphic in the type variable Z , so aK.x = a for any x. We have the
following composition rules:

F ◦ aK = (Fa)K

aK
◦F = aK

2

A binary operator ⊕ : X × Y →A can be lifted in three ways: left, right
and both, as follows. Let x ∈ X, y ∈ Y, F : Z→X,G : Z→Y . Then:

x
.
⊕G = (z :: x ⊕(Gz)) : Z→A

F
.
⊕ y = (z :: (Fz)⊕ y) : Z→A

F
.
⊕G = (z :: (Fz)⊕(Gz)) : Z→A

So the dot indicates where the function argument goes: left, right, or both.
Furthermore,

F
.
⊕ y = F

.
⊕ yK

x
.
⊕G = xK

.
⊕ G

(x⊕ y)K = xK
.
⊕ yK

We have the following composition rules:

H ◦F
.
⊕G = (H ◦F)

.
⊕ (H ◦G)

F
.
⊕G ◦H = (F ◦H)

.
⊕ (G ◦H)

As is well known, algebraic properties of an operator ⊕, like associativity,
symmetry and idempotence, are preserved by lifting it to

.
⊕. If ⊕ is a relation

(a binary predicate), properties like transitivity and reflexivity are likewise
preserved.

Conditional. For x, y ∈ A, the function x♦y : {0, 1}→A is defined by:

(x♦y) 0 = x

(x♦y) 1 = y

We have: F ◦ x♦y = (Fx)♦(Fy).

3

Definition by characterization. A function F may be defined by char-
acterization, for example in the form

y = Fx ≡ P (x, y)

This is an acceptable definition if P is such that

y = y′ ⇐ P (x, y) ∧ P (x, y′)

and then x ∈ dom(F) iff there exists y such that P (x, y). In general, the
characterization involves a proposition that has at most one solution in Fx.

2 Quantifications

Definition. A quantifier on some domain A is a possibly partial function
❤ : (Z→A)→A, polymorphic in the type variable Z , that satisfies the
following three properties.

rearranging: ❤F = ❤(F ◦ J) for all bijections J

1-pt rule: ❤(id
.
= x : F) = Fx for all x ∈ dom(F)

range split: ❤(P
.
∨ Q : F) = ❤(P : F)⊕ ❤(Q : F) ⇐ P |∗Q

in which the binary operator ⊕ : A→A× A, called the binary version of ❤,
is defined by

x⊕ y = ❤(x♦y)

and P |∗Q means that the two predicates are mutually exclusive: no value
satisfies both P and Q. If ⊕ is idempotent, this condition may be dropped.

An example of a quantifier is
∑

. Its binary version is +. Another example
is ∀, with binary version ∧.

If ⊕ is the binary version of quantifier ❤, we also say that ❤is a quantifier
for ⊕. Only associative and symmetric operators can have quantifiers.

4

Definedness. The application of a quantifier to a function is called a quan-
tification. The definedness of the quantifications involved in the rules above
is to be understood as follows. In the rearranging rule, the two quanifi-
cations are either both defined or both undefined, so the two sides of the
equation are synonymous. A quantification as in the 1-pt rule is always de-
fined for x ∈ dom(F); again the two sides of the equation are synonymous.
In the range-split rule, the left-hand quantification is defined if both right-
hand quantifications are defined. If the left-hand quantification is defined
and both P and Q are satisfiable — i.e. not constantly false — then both
right-hand quantifications are defined. Together this ensures that at least all
non-empty finite quantifications — i.e., in which the argument function has
a non-empty and finite domain — are defined.

In the following it will be assumed, either explicitly or implicitly, that in
each use of a quantification the argument is in the definedness domain of the
quantifier — unless the contrary is stated.

Non-uniqueness. A given operator may have different quantifiers. For
example, defining ∀′ by

∀′F =











∀F if dom(F) is finite

false otherwise

∀′ is also a quantifier for ∧. So the quantifier properties do not guarantee
uniqueness. They do guarantee uniqueness for non-empty finite quantifica-
tions. Extra properties that may narrow the set of possible quantifiers ❤for
an operator ⊕ are:

empty quantification: ❤(falseK : id) = e

if e is a neutral element for ⊕

constant quantification: ❤(P : xK) = x ⇐ x⊕ x = x

for satisfiable P

(Together these two imply, for a neutral element e for ⊕, that ❤(P : eK) = e

for all P .) In general, though, quantifiers need an independent definition or
characterization.

5

∀-rules. In addition to the general quantification properties introduced
above, we use the following rules for ∀.

∀-specialization: ∀(P ◦F : Q ◦F) ⇐ ∀(P : Q)

∀-swap: ∀(x : Px : ∀(y : Qy : R(x, y))) ≡

∀(y : Qy : ∀(x : Px : R(x, y)))

∀-∧-distributivity: ∀(P : Q
.
∧ R) ≡ ∀(P : Q) ∧ ∀(P : R)

∀-shunting: ∀(P : Q) ≡ ∀(Q
.
⇐ P)

∀-true: ∀(P : trueK)

∀-reflexivity: ∀(P : P)

∀-monotonicity: (∀(P : Q) ⇐ ∀(P : R)) ⇐ ∀(R : Q)

∀-range widening: (∀(P : R) ⇐ ∀(Q : R)) ⇐ ∀(P : Q)

∀-instantiation: (Qz ⇐ ∀(P : Q)) ⇐ Pz

These rules are not independent. For example, the monotonicity and the
range-widening rule are different presentations of basically the same rule
and express the transitivity of

.
⇐ ; likewise, the ∀-instantiation rule is a 1-

pt version of range widening. These rules are given separately and as they
are because that is the form in which they are used in actual calculations.
Appeals to ∀-true and ∀-monotonicity will be made tacitly.

Furthermore, we use the traditional mathematical proof technique of intro-
ducing a fresh variable z and deriving Qz from Pz to obtain a proof of
∀(P : Q).

3 Indirect (in)equality

Let (A, ⊒) be a poset. A useful rule for deriving inequations of the form
x⊒ y is:

indirect inequality: x ⊒ y ≡ ∀(y
.
⊒ id : x

.
⊒ id)

6

or, equivalently, using ∀-shunting and introducing a dummy:

indirect inequality: x ⊒ y ≡ ∀(z :: x⊒ z ⇐ y ⊒ z)

The rule is useful in particular when y has a form for which y ⊒ z is readily
rewritten. In using the rule to prove an inequation x ⊒ y, we usually jump
ahead and derive x ⊒ z from y ⊒ z for “arbitrary” z without bothering to
introduce z.

Proof. By transitivity of ⊒ the right-hand side follows from the left-hand
side. For the other way around,

x⊒ y

≡ {⊒ is reflexive, propositional calculus}

x⊒ y ⇐ y ⊒ y

⇐ {∀-instantiation}

∀(z :: x⊒ z ⇐ y ⊒ z)

End of proof.

Using the rule twice, once for x⊒y and once for y⊒x, we obtain the following
rule:

indirect equality: x = y ≡ ∀(z :: x⊒ z ≡ y ⊒ z)

Dual rules. By duality we also have:

indirect inequality: y ⊒ x ≡ ∀(z :: z ⊒ x ⇐ z ⊒ y)

indirect equality: y = x ≡ ∀(z :: z ⊒ x ≡ z ⊒ y)

4 Infima

-characterization. Let (A, ⊒) be a poset. Define on A by

-characterization: F ⊒ z ≡ ∀(F
.
⊒ z) for all z ∈ A

7

whenever this has a solution in F ; for other F , the expression F is not
defined.

The function is uniquely determined by the -characterization rule. This is

shown as follows: Suppose there is another function
′
satisfying

′
F⊒z ≡ ∀(F

.
⊒

z) for all z ∈ A whenever this has a solution. Then

′
F = F

≡ {indirect equality}

∀(z ::
′
F ⊒ z ≡ F ⊒ z)

≡ {property of
′
, -characterization}

∀(z :: ∀(F
.
⊒ z) ≡ ∀(F

.
⊒ z))

≡ {≡ is reflexive}

true

is a quantifier. We show that is a quantifier by establishing the
three quantifier properties. For rearranging, under the assumption that J is
a bijection:

F = (F ◦ J)

≡ {indirect equality}

F ⊒ z ≡ (F ◦ J)⊒ z

≡ { -characterization}

∀(F
.
⊒ z) ≡ ∀((F ◦ J)

.
⊒ z)

≡ {rearranging}

true

For the 1-pt rule, under the assumption that x ∈ dom(F):

(id
.
= x : F) = Fx

≡ {indirect equality}

(id
.
= x : F)⊒ z ≡ Fx⊒ z

≡ { -characterization}

∀(id
.
= x : F

.
⊒ z) ≡ Fx⊒ z

≡ {1-pt rule}

8

true

Before proceeding, we prove an important rule:

⊓-characterization: x ⊓ y ⊒ z ≡ x⊒ z ∧ y ⊒ z

in which ⊓ denotes the binary version of .

x ⊓ y ⊒ z

≡ {definition of ⊓}

(x♦y)⊒ z

≡ { -characterization}

∀((x⊒ z)♦(y ⊒ z))

≡ {∧ is the binary version of ∀}

x⊒ z ∧ y ⊒ z

For range split, we calculate now:

(P
.
∨ Q : F) = (P : F) ⊓ (Q : F)

≡ {indirect equality}

(P
.
∨ Q : F)⊒ z ≡ ((P : F) ⊓ (Q : F))⊒ z

≡ {⊓-characterization}

(P
.
∨ Q : F)⊒ z ≡ (P : F)⊒ z ∧ (Q : F)⊒ z

≡ { -characterization}

∀(P
.
∨ Q : F

.
⊒ z) ≡ ∀(P : F

.
⊒ z) ∧ ∀(Q : F

.
⊒ z)

≡ {range split}

true

Note that we did not need the assumption that P |∗Q. In fact, it is obvious
from ⊓-characterization that ⊓ is idempotent.

9

5 Properties of

-range widening and -instantiation. Since the truth values form a
lattice, all rules for and ⊓ are valid under the replacements

❀ ∀

⊓ ❀ ∧

⊒ ❀ ⇐

We now derive two general -rules that are generalizations of ∀-rules we saw
before:

-range widening: (P : F) ⊒ (Q : F) ⇐ ∀(P : Q)

-instantiation: Fx ⊒ (P : F) ⇐ Px

The rules are given in this form because it is the form that we tend to use
in actual calculations.

-range widening is established by indirect inequality:

(P : F)⊒ z ⇐ (Q : F)⊒ z

≡ { -characterization}

∀(P : F
.
⊒ z) ⇐ ∀(Q : F

.
⊒ z)

⇐ {∀-range widening}

∀(P : Q)

For -instantiation we now have:

Fx

= {1-pt rule}

(id
.
= x : F)

⊒ {• Px, -range widening}

(P : F)

10

6 The least x satisfying P

Let P be a predicate whose domain is the carrier A of some partial order
(A, ⊒). Then λP denotes the least value x in A — if such a value exists —
such that x satisfies P . Otherwise, λP is undefined. There is not necessarily
a least x in A satisfying P . There may be no x at all such that Px holds; or
if there is, there may always be a smaller one, or the minimal solutions may
be incomparable.

λ-characterization. x = λP if the following two properties hold:

satisfaction: Px

limitation: ∀(P : id
.
⊒ x)

(If we replace “id
.
⊒ x” by “x

.
6⊒ id”, we get minimality , which is not sufficient

to characterize the solution, if any.)

We show by mutual inequation that these properties together imply x =
(P : id), thereby establishing the uniqueness of λP :

x⊒ (P : id)

⇐ { -instantiation}

Px

and

(P : id)⊒ x

≡ { -characterization}

∀(P : id
.
⊒ x)

So each of the two properties supplies one inequation. The last part also
shows that the equation (P : id)⊒x already establishes the property called

“limitation”. The full equation x = (P : id) is obviously not strong enough

to establish the other property, x satisfies P . Still, the expression (P : id)
— assuming that the quantifier application is defined — defines “something”,
only it is not necessarily λP .

11

The situation can be summed up as follows. Abbreviating π = λP and
π̂ = (P : id):

π exists ∧ π̂ exists ∧ π = π̂

⇐

π̂ exists ∧ P π̂

⇐

π exists

By elementary propositional calculus we obtain as a corollary the λ- -
synonymy rule:

π is synonymous with π̂ ≡ (P π̂ ⇐ π̂ exists)

-closed predicates. We would like to have additional conditions on P

that allow us to conclude to Px from x = (P : id), thereby establishing

that λP and (P : id) are synonymous. Here is one. Define a predicate P

to be ❤-closed whenever for any restriction (Q : P) of P we have: P ❤(Q :
id) ⇐ ∀(Q : P). Then

P ❤(P : id) ⇐ P is ❤-closed

Proof.

P ❤(P : id)

⇐ {• P is ❤-closed}

∀(P : P)

≡ {∀-reflexivity}

true

End of proof.

So if P is -closed, λP is synonymous with (P : id).

12

-completeness implies -completeness. A poset (A, ⊒) is called -

complete if for all functions F whose target is A the quantification F is
defined.

We define as the dual of . More precisely, is defined on a poset (A, ⊒)
by:

-characterization: z ⊒ F ≡ ∀(z
.
⊒ F) for all z ∈ A

Putting x = F and Pz = ∀(z
.
⊒ F), we rewrite this as:

z ⊒ x ≡ Pz for all z ∈ A

We show that this implies that x = λP . To establish satisfaction is easy:

Px

≡ { -characterization}

x ⊒ x

≡ {⊒ is reflexive}

true

To show limitation:

∀(P : id
.
⊒ x)

≡ {definition of P}

∀(P : P)

≡ {∀-reflexivity}

true

We saw that λP — when defined — equals (P : id). So if F exists, it can

be defined in terms of , namely by:

F = (z : ∀(z
.
⊒ F) : z)

We prove that F , thus defined, satisfies -characterization, thereby estab-
lishing its existence under the assumption of -completeness. We use x and
P as before to keep the formulas simple, and establish z⊒x ≡ Pz. The proof
proceeds by mutual implication.

13

Proof.

z ⊒ x

≡ {definition of x}

z ⊒ (P : id)

⇐ { -instantiation}

Pz

≡ {definition of P}

∀(z
.
⊒ F)

≡ {non-restriction}

∀(trueK : z
.
⊒ F)

⇐ { -range widening (see below)}

∀(x
.
⊒ F : z

.
⊒ F)

≡ {composition rules}

∀(x
.
⊒ id ◦F : z

.
⊒ id ◦F)

⇐ {∀-specialization}

∀(x
.
⊒ id : z

.
⊒ id)

≡ {indirect inequality}

z ⊒ x

For the range-widening step we have the following proof obligation: ∀(trueK :

x
.
⊒ F) or, equivalently, ∀(x

.
⊒ F). For this we argue:

∀(x
.
⊒ F)

≡ {definition of x}

∀((P : id)
.
⊒ F)

≡ { -characterization}

∀(y :: ∀(z : Pz : z ⊒ Fy))

≡ {∀-swap}

∀(z : Pz : ∀(y :: z ⊒ Fy))

≡ {definition of P}

∀(z : Pz : Pz)

≡ {∀-reflexivity}

true

14

End of proof.

7 Adjoints

Let (A, ⊒) and (B, ⊒) be two posets, and let F : A→B. Function
F ♭ : B→A is called a lower adjoint of F if, for all x ∈ A and y ∈ B :

x ⊒ F ♭y ≡ Fx ⊒ y

Dually, function F ♯ : B→A is called an upper adjoint of F if for all x ∈ A

and y ∈ B :

F ♯y ⊒ x ≡ y ⊒ Fx

Clearly, G = F ♭ ≡ F = G♯.

Adjoints imply monotonicity. If a function has a lower adjoint, it is
unique, justifying the ♭ notation. To see this, assume that both G and H

are lower adjoints of F . We show by indirect equality that then Gy = Hy

for all y ∈ B :

z ⊒Gy ≡ z ⊒Hy

≡ {adjoints}

Fz ⊒ y ≡ Fz ⊒ y

≡ {≡ is reflexive}

true

Dually, upper adjoints are unique.

Further, if F has a lower adjoint, F is monotonic.

Proof.

Fx ⊒ Fy

⇐ {transitivity of ⊒ }

15

Fx⊒ Fy ⇐ Fy ⊒ Fy

≡ {• F has a lower adjoint}

x⊒ F ♭.F y ⇐ y ⊒ F ♭.F y

⇐ {transitivity of ⊒ }

x ⊒ y

End of proof.

Dually, functions having an upper adjoint are monotonic. Since lower ad-
joints have upper adjoints and vice versa, adjoints are monotonic as well.

F ♭y expressed as λP . We show that F ♭y = λ(F
.
⊒ y) for monotonic F ,

or, more precisely,

F : A→B has a lower adjoint iff

F is monotonic and λ(F
.
⊒ y) exists for all y ∈ B

and then F ♭y = λ(F
.
⊒ y).

Proof. For brevity, put, with implicit argument y, P = F
.
⊒ y.

(If part) Assume that λP is defined for all y ∈ B, and let function F ♭ be
defined by F ♭y = λP . First we derive the auxiliary result that F ◦F ♭ is
augmenting, or, F.F ♭y ⊒ y:

F.F ♭y ⊒ y

≡ {definition of P}

P.F ♭y

≡ {definition of F ♭}

P.λP

≡ {• λP is defined, satisfaction}

true

Using this, we show that for monotonic F , the function F ♭ satisfies the lower-
adjoint characterization. The equivalence is shown by mutual implication.

16

x ⊒ F ♭y

≡ {definition of F ♭}

x ⊒ λP

≡ {• λP is defined, so λP = (P : id)}

x ⊒ (P : id)

⇐ { -instantiation}

Px

≡ {definition of P}

Fx ⊒ y

⇐ {F ◦F ♭ is augmenting, ⊒ is transitive}

Fx ⊒ F.F ♭y

⇐ {• F is monotonic}

x ⊒ F ♭y

(Only-if part) Assume that F has a lower adjoint F ♭. It was shown before
that then F is monotonic. We first establish the existence of (P : id) by
showing that, taking (P : id) to be F ♭y, -characterization is satisfied:

(P : id) ⊒ x

≡ { (P : id) = F ♭y}

F ♭y ⊒ x

≡ {indirect inequality}

∀(id
.
⊒ F ♭y : id

.
⊒ x)

≡ {F ♭ is lower adjoint}

∀(F
.
⊒ y : id

.
⊒ x)

≡ {definition of P}

∀(P : id
.
⊒ x)

To establish now the existence of λP , all that is left to do is to show that P
is -closed:

P. (Q : id)

≡ {definition of P}

F. (Q : id) ⊒ y

≡ {• F ♭ is lower adjoint}

17

(Q : id) ⊒ F ♭y

≡ { -characterization}

∀(Q : id
.
⊒ F ♭y)

≡ {• F ♭ is lower adjoint}

∀(Q : F
.
⊒ y)

≡ {definition of P}

∀(Q : P)

End of proof.

8 Least fixpoints

The least fixpoint µF of a monotonic function F : A→A on a poset (A, ⊒),
if it exists, is given by µF = λ(id

.
= F). A definition that is more convenient

in proofs, is its expression as the quantification:

µF = (id
.
⊒ F : id)

We will show that the two definitions are synonymous. In fact, introducing
the abbreviations

ϕ = λ(id
.
= F)

ϕ̂ = (id
.
= F : id)

π = λ(id
.
⊒ F)

π̂ = (id
.
⊒ F : id)

we show that all four are synonymous.

Proof. Introduce the abbreviation P = id
.
⊒ F .

First we show the synonymy of π and π̂, which, by the λ- -synonymy rule,
amounts to showing that π̂, if defined, satisfies P . As we saw, it suffices to
show that P is -closed, or, P. (Q : id) ⇐ ∀(Q : P) for all Q. This is
established as follows:

18

P. (Q : id)

≡ {definition of P}

(Q : id) ⊒ F. (Q : id)

≡ { -characterization}

∀(Q : id
.
⊒ F. (Q : id))

≡ {lifting}

∀(Q : id
.
⊒ F ◦ ((Q : id))

K

)

⇐ {
.
⊒ is transitive}

∀(Q : id
.
⊒ F

.
∧ F

.
⊒ F ◦ ((Q : id))

K

)

≡ {definition of P}

∀(Q : P
.
∧ F

.
⊒ F ◦ ((Q : id))

K

)

⇐ {F is monotonic}

∀(Q : P
.
∧ id

.
⊒ ((Q : id))

K

)

≡ {∀-∧-distributivity}

∀(Q : P) ∧ ∀(Q : id
.
⊒ ((Q : id))

K

)

≡ {see below}

∀(Q : P)

For the last step we must show the validity of ∀(Q : id
.
⊒ ((Q : id))

K

):

∀(Q : id
.
⊒ ((Q : id))

K

)

≡ {shunting}

∀(z :: z ⊒ (Q : id) ⇐ Qz)

≡ { -instantiation}

true

Next, we show by mutual inequation that ϕ̂ and π̂ are synonymous. First,

ϕ̂ ⊒ π̂

≡ {definition of ϕ̂ and π̂}

(id
.
= F : id) ⊒ (id

.
⊒ F : id)

⇐ { -range widening}

∀(id
.
= F : id

.
⊒ F)

≡ { ⊒ is reflexive}

19

true

Next,

π̂ ⊒ ϕ̂

≡ {definition of ϕ̂}

π̂ ⊒ (id
.
= F : id)

⇐ { -instantiation}

π̂ = F π̂

≡ {proved above}

true

We have now established the synonymy of ϕ̂, π and π̂.

Finally, we show that ϕ and ϕ̂ are synonymous, thus establishing the syn-
onymy of all four. By the λ- -synonymy rule this amounts to showing, under
the assumption that ϕ̂ exists, that ϕ̂ a fixpoint of F . Because of the syn-
onymy of π̂ and ϕ̂, this is equivalent to showing that π̂, if defined, is a fixpoint
of F . We have already proved that π̂ satisfies P , which, by the definition of
P , means that π̂ ⊒ F π̂, so the only thing that remains to be shown is the
validity of the inequation F π̂ ⊒ π̂:

F π̂ ⊒ π̂

≡ {definition of π̂}

F π̂ ⊒ (id
.
⊒ F : id)

⇐ { -instantiation}

F π̂ ⊒ F.F π̂

⇐ {F is monotonic}

π̂ ⊒ F π̂

≡ {just shown}

true

End of proof.

20

