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Abstract. A polytypic function definition is a function definition that
is parametrised with a datatype. It embraces a class of algorithms. As
an example we define a simple polytypic “crush” combinator that can be
used to calculate polytypically. The ability to define functions polytyp-
ically adds another level of flexibility in the reusability of programming
idioms and in the design of libraries of interoperable components.

1 Introduction

Which is more exciting: to find yet another algorithm, or to discover that two
familiar algorithms are instances of one more abstract algorithm?

It is the latter that sparks new insight and opens the way for finding further
connections, that makes it possible to organise and systematise our knowledge
and eventually set as routine exercises problems that once were feats of scientific
discovery. Mathematics likewise gets its leverage from abstraction, by going from
the specific to the general. Essential to the expression of abstraction is the ability
to parametrise.

John Hughes argues in [15] that the ability to name and reuse — i.e., to
parametrise — is at the heart of the functional languages’ power. Standard com-
binators (higher-order functions) like map and foldr capture very general pro-
gramming idioms that are useful in almost any context. Polymorphic typing
enables us to use the same programming idiom to manipulate data of different
types.

The next step is the ability to parametrise a function definition with a type. A
function thus parametrised is called polytypic. The “derived” functions of Haskell
are all polytypic, as are catamorphisms and friends [24] [29] [31]. The standard
foldr combinator is just the instantiation of the cata combinator for the datatype
constructor List.

While a polymorphic function stands for one algorithm that happens to be
insensitive to what type the values in some structure are, a polytypic function
embraces a class of algorithms.

The ability to define functions polytypically adds another level of flexibility
in the reusability of programming idioms and in the design of libraries of interop-
erable components. This, I claim, is of tremendous importance. Yet the greatest
gain, I believe, is to come from the ability to reason polytypically in the process
of deriving programs, in particular by calculational methods.



2 So what is polytypy?

Here are a few datatype constructor definitions1:

data List a = cons a (List a) | nil

data Maybe a = one a | none

data Bin a = join (Bin a) (Bin a) | tip a

data Rose a = fork a (List(Rose a))

Each of these types has its own map combinator, for which we only give the
typings:

mapList ∈ (List a←List b)← (a← b)
mapMaybe ∈ (Maybe a←Maybe b)← (a← b)
mapBin ∈ (Bin a←Bin b)← (a← b)
mapRose ∈ (Rose a←Rose b)← (a← b)

Here are functions to test if a given value occurs in a data structure of one of
these types.

e∈List cons u x = eq e u ∨ e∈List x
e∈List nil = false

e∈Maybe one u = eq e u
e∈Maybe none = false

e∈Bin join x y = e∈Bin x ∨ e∈Bin y
e∈Bin tip u = eq e u

e∈Rose fork u xs = eq e u ∨ any (e∈Rose) xs

And here are functions to sum the elements in one of these structures — assuming
they are numbers.

sumList (cons u x) = u + sumList x
sumList nil = 0

sumMaybe (one u) = u
sumMaybe none = 0

1 Examples are in a pidgin based on functional languages like Haskell and Gofer. In
particular the lexemic restrictions on constructor functions of these languages are
not adhered to. To indicate the typing of a function, I write f ∈ a← b instead of
f : b→ a . The advantage of this convention is that this matches the “backwardness”
of composition, making it easier to assess the function typing of a composition.



sumBin (join x y) = sumBin x + sumBin y
sumBin (tip u) = u

sumRose (fork u xs) = u + sumList (mapList sumRose xs)

Polytypy, now, allows us to replace all these definitions by a single definition for
mapF , a single definition for ∈F and a single definition for sumF , each of which
can be specialised to any of the above datatype constructors and many more by
taking F to be List , Maybe , Bin , and so on.

Polytypy is orthogonal to polymorphism. The polytypic function mapF is
truly polymorphic — that is, each of its instantiations is. The polytypic func-
tions ∈F and sumF are as polymorphic as eq and + are, which is, respectively,
somewhat and hardly. However, eq is — or can be defined as — a polytypic
function; see e.g. Sheard [34].

Other terms that have been used for the same concept are “structural poly-
morphism” (Ruehr [33]), “generic programming” (de Moor [5], Bird, de Moor
and Hoogendijk [4]) and “type parametric programming” (Sheard [34]).

3 Some historical remarks

In what I’ll refer to as “classic BMF” [28] [2], a.k.a. “Squiggol”, the focus was
on lists, with particular emphasis on a symmetric view in which lists are built
up from the empty-list constructor [ ], the singleton-list constructor [ ], and an
associative constructor ++. Catamorphisms on these symmetric lists were written,
in the most general case, in the form ⊕/ . f∗ (a “reduce” after a “map”), which
requires ⊕ to be an associative operator with some neutral element ν⊕. In other
words, (⊕, ν⊕) constitutes a monoid, just like (++, [ ]) does. The meaning is then
inductively defined by:

⊕/ . f∗ = h where

h (x++y) = h x ⊕ h y
h [u] = f u
h [ ] = ν⊕

It is possible to leave ν⊕ implicit since neutral elements — if they exist — are
unique.

These notations were devised with one purpose only: to facilitate the deriva-
tion of programs by calculation. In spite of the focus on lists, the intention, from
the start, has been to contribute to the development of “constructive algorith-
mics” as a discipline for calculational program construction encompassing much
more than the theory of lists, however fertile by itself.

Malcolm [24] [25] [26] showed how to generalise essential parts of the theory to
other initial datatypes, based on a categorical approach (Manes and Arbib [27],
Hagino [13]). Fokkinga [7] [8] [11] honed the categorically-inspired calculational
techniques to a fine edge.

While the theory developed by Malcolm and Fokkinga gave the basic tools
needed for polytypic definitions, its application to deriving actual programs by



calculation was initially largely confined to instantiations for, each time, one
specific datatype.

The first calculational derivation of an actual polytypic algorithm that I saw,
and an elegant one at that, was the one in Bird, de Moor and Hoogendijk [4].
Earlier work by Bird and de Moor on solving a variety of optimisation prob-
lems by calculation was polytypically unified by de Moor in [5]. Several further
examples of polytypic calculations can be found in Bird and de Moor [3].

The most impressive polytypic algorithms today are those developed by Jeur-
ing and his group, such as Jeuring’s polytypic pattern-matching algorithm [21].
Jansson [17] presents a polytypic unification algorithm (see also Jansson and
Jeuring [19]). Although not derived calculationally, these algorithms provide
strong evidence of the potential of polytypic definitions.

Huisman [16] defines a polytypic function unparser — rather like polytypic
flatten but with extra “hooks” for plugging in concrete syntax — and calculates a
polytypic parser from it by function inversion. By defining a suitable intermediate
abstract data type, the textual representation of a structured document can be
changed by a composition unparser . parser.

4 Notation and terminology

The notation (x :: e), in which the expression e may depend on the dummy
x, denotes the same as the lambda form (λx 7→ e). For any e, eK denotes the
constant function that maps all arguments to e. Function ida is the identity
function restricted to type a. The datatype 1 stands for some one-element type,
like that defined by:

data 1 = blob

Functor. An n-ary functor2 F is a combinator that maps an n-tuple of functions
f0, . . . , fn−1 to a function F f0 · · · fn−1 in such a way that composition and
identities are respected:

F (f0 . g0) · · · (fn−1 . gn−1) = F f0 · · · fn−1 . F g0 · · · gn−1

provided that fi ∈ ai← bi and gi ∈ bi← ci

F id · · · id = id

The clause concerning the typing serves to ensure the definedness of the compo-
sitions.

An example are the functionsmapF , since they satisfy the functional identities
map

F
(f . g) = map

F
f . map

F
g and map

F
id = id. So they are unary functors.

As is easily verified, idaK is also a functor. It is n-ary for all n. Further, each
extraction combinator

2 The terminology is borrowed from category theory, but no knowledge of category
theory is needed to follow the exposition here. Gentle introductions to category theory
that are inspired by its use for program calculation can be found in [9] and [30].



Ex
n

i f0 · · · fn−1 = fi, i = 0, . . . , n− 1

is an n-ary functor. We write Id for the unary functor Ex
1
0, and Exl and Exr for

the binary functors Ex20 and Ex
2
1.

An n-ary functor induces a mapping on n-tuples of types. Let, for fi ∈
ai← bi, i = 0, . . . , n− 1, the (most general) typing of F f0 · · · fn−1 be given
by

F f0 · · · fn−1 ∈ A←B

Then we denote these types A and B by

F a0 · · · an−1 = A
F b0 · · · bn−1 = B

So for unary functor F we have

F f ∈ F a←F b ⇐ f ∈ a← b

Looking at the typing of mapF :

mapF f ∈ F a←F b ⇐ f ∈ a← b

we see that the type mapping induced is F , i.e., (a :: F a). We shall from here
on use the same notation for the combinator and for its induced type mapping.
Moreover, when applicable, we use the name of the type mapping for that. So,
from here on, for function f , we write List f rather than mapList f . Likewise, we
write aK instead of ida

K.

To introduce polytypic definitions, we need to abstract from the constructor
function names. Here are some basic functors that will be helpful, together with
some auxiliary functions.

The sum functor. The binary sum functor + is given by:

data a+ b = inl a | inr b

f + g = h where

h(inl u) = inl(f u)
h(inr v) = inl(g v)

f ▽ g = h where

h(inl u) = f u
h(inr v) = g v

The following typing rule will be used:

f ▽ g ∈ c←a+ b ⇐ f ∈ c←a ∧ g ∈ c← b



The product functor. The binary product functor × is given by:

data a× b = pair a b

f ×g = h where

h(pair u v) = pair (f u) (g v)
exl(pair u v) = u
exr(pair u v) = v

The following typing rules will be used:

exl ∈ a←a× b
exr ∈ b←a× b

Functor composition. If F is a k-ary functor, and G0, . . . , Gk−1 are all n-ary
functors, their composition F△ G0 · · · Gk−1 is an n-ary functor that maps an
n-tuple z to F (G0 z) · · · (Gk−1 z). Instead of +△ F G we write F + G, and
likewise for ×.

From k-ary F we can make a unary functor F ⋆ by defining F ⋆ = F△ Id · · · Id.
So F ⋆z = F z · · · z, with k “z”s. When F is unary, F ⋆ = F . Furthermore we
have a distribution property:

(F△ G0 · · · Gk−1)
⋆ = F△ G0

⋆ · · · Gk−1
⋆

In the expression (aK)⋆ the value of k is not determined, but since it is immaterial
to the result this shouldn’t be a problem.

5 Catamorphisms

We first look at a simple inductively defined datatype, that of the Peano naturals:

data Nat = succ Nat | zero

There is only one number zero, which we can make explicit by:

data Nat = succ Nat | zero 1

Instead of fancy constructor function names like succ and zero we now employ
boring standard ones:

data Nat = inl Nat | inr 1

The choice here is that afforded by sum, so we obtain, finally,

data Nat = in(Nat + 1)

in which there is one explicit constructor function left.
Now define the unary functor N by

N z = z + 1



Using the notations introduced earlier, this functor can also be expressed as
N = Id+ 1K. The functor N captures the pattern of the inductive formation of
the Peano naturals. The point is that we can use this to rewrite the definition of
Nat to

data Nat = in(N Nat)

Apparently, the pattern functor N uniquely determines the datatype Nat . A func-
tor built only from constants, extractions, sums, products and composition is
called a polynomial functor. Whenever F is a unary polynomial functor, a defini-
tion of the form data Z = in(F Z) uniquely determines Z. We need a notation
to denote the datatype Z that is obtained, and write Z = µF . So Nat = µN .
Replacing Z by µF in the datatype definition, and adding a subscript to the single
constructor function in in order to disambiguate it, we obtain:

data µF = inF (F µF )

Now inF is a polytypic function, with typing

inF ∈ µF ←F µF

Each datatype µF has its cata combinator, which we denote with Malcolm’s
banana brackets:

([f ])F ∈ a←µF ⇐ f ∈ a←F a

It is defined by:

([f ])F = h where

h (inF xs) = f ((F h) xs)

In words, when catamorphism ([f ])F is applied to a structure of type µF , this
means it is applied recursively to the components of the structure, and the results
are combined by applying its “body” f . The importance of catamorphisms is that
they embody a closed expression for a familiar inductive definition technique
(“canned induction”) and thereby allow the polytypic expression of important
program calculation rules, among which this fusion law (Malcolm):

h . ([f ])F = ([g])F ⇐ h . f = g .F h

6 Type functors

Playing the same game on the definition of List gives us:

data List a = in((a × List a) + 1)

Replacing the datatype being defined, List a, systematically by z, we obtain the
“equation”

data z = in((a× z) + 1)



Thus, we see that the pattern functor here is (z :: (a×z) + 1). It has a parameter
a, which we make explicit by putting

L a = (z :: (a× z) + 1)

Abstracting from a and z, we can write: L = (×) + 1K. Now List a = µ(L a),
or, abstracting from a:

List = (a :: µ(L a))

In general, a parametrised functor F a gives rise to a new functor, like here List .
Such functors are called type functors. We introduce a notation:

τF = (a :: µ(F a))

so List = τL, with L as above. The parameter a may actually be an n-tuple if
functor F is (n + 1)-ary, and then τF is an n-ary functor. The “map” part of a
unary type functor can be expressed as a cata:

τF f = ([inF a
.F f id])F b for f ∈ a← b

Repeating this game for Rose , we find for its pattern functor R a z = a×List z,
or R = Exl × List△ Exr. This is not a polynomial functor, because of the
appearance of the type functor List. Yet τR is well defined. Incorporating type
functors into the ways of constructing functors extends the class of polynomial
functors to the class of regular functors.

7 Regular functors

The definition of Fokkinga [10] will be followed, with one minor modification. A
functor built only from constants, extractions, sums, products, composition and
τ is called a regular functor. A formal grammar for the n-ary regular functors is:

F(n) ::= tK n-ary constant functor, for each type t
| Exni n-ary extraction, i = 0, . . . , n− 1
| + | × (only if n = 2) binary sum and product functor

| F(k)△ F
(n)
0 · · · F

(n)
k−1 functor composition

| τF(n+1) the type functor induced by F(n+1)

The minor modification, now, is that in the constant functors we do not allow any
type t, but consider only the constant functor 1K. This has a technical background
that we cannot go into for space limitations.

Here is how the functor Rose is produced by this grammar:

Rose = τ (×△ Ex
2
0 ((τ (+

△ (×) 1K))
△
Ex

2
1))

Daunting as this may look, it was obtained by purely mechanical unfolding of
earlier definitions. The embedded τ corresponds to the type functor List .



8 Polytypic crush

The key to polytypic type definitions (given the present state of the art — no
Polyps From Outer Space yet but see Freyd [12], Meijer and Hutton [32], Sheard
and Fegaras [35] and Fegaras and Sheard [6] for possible extensions) is the formal
grammar for regular functions. The class of regular functors is itself like (and
can be modelled by) an inductive datatype, and so polytypic functions can be
defined by induction on the formation of a regular functor.

Let us see how we can define a polytypic crush combinator that, applied to
a suitable “body”, results in a function r[F ] with typing a←F ⋆a for all regular
F . We write r[F ] here rather than rF because, in this definition, F is the main
parameter. In the process we shall see what ingredients are needed for its “body”.
We shall make a concerted effort to minimise the number of ingredients that need
to be supplied to the combinator, and — also to stay as polymorphic as possible
— we let ourselves be guided by typing considerations to take whatever will do
when available “for free”.

So we consider all cases corresponding to the production rules of the grammar.
The inductive hypothesis is that we already have

r[F ] ∈ a←F ⋆a

for sufficiently simple F . For the case τF we assume, for the sake of simplicity,
that F is binary. We postpone the case 1K to the last.

Case Exn
i
: the requirement is r[Exn

i
] ∈ a←a .

(Recall that Exn
i
⋆a = Exn

i
a · · · a = a). The choice is obvious: r[Exn

i
] = id.

So this need not be supplied.

Case +: the requirement is r[+] ∈ a←a+ a .
Here there is one (and only one) polymorphic function that will do, namely id ▽ id.

Case ×: the requirement is r[×] ∈ a←a× a .
There are polymorphic possibilities, namely exl and exr, but fixing any choice
from these here would constitute an unacceptable discrimination against either
the Left or the Right. So some ingredient ⊕ ∈ a←a× a will have to be supplied.

Case F△ G0 · · · Gk−1: the requirement is
r[F△ G0 · · · Gk−1] ∈ a←F (G0

⋆ a) · · · (Gk−1
⋆ a) .

(The typing uses (F△ G0 · · · Gk−1)
⋆ = F△ G0

⋆ · · · Gk−1
⋆.) By the inductive

hypothesis we have

r[F ] ∈ a←F ⋆a

as well as r[Gi] ∈ a←Gi
⋆ a, so that, using the typing of functors,

F r[G0] · · · r[Gk−1] ∈ F ⋆a←F (G0
⋆ a) · · · (Gk−1

⋆ a)

By composing these two we obtain for free



r[F ] . F r[G0] · · · r[Gk−1]

as having the required typing.

Case τF : the requirement is r[τF ] ∈ a← τF a .
Using τF a = µ(F a), and pattern matching against

([f ])G ∈ a←µG ⇐ f ∈ a←G a

(replace here G by F a) we see that we can use a catamorphism

([f ])Fa ∈ a←µ(F a)

which has the required typing if

f ∈ a←F ⋆a

The latter requirement is solved by f = r[F ]. The free solution is therefore
r[τF ] = ([r[F ]])Fa.

Case 1K: the requirement is r[1K] ∈ a← 1 .
We need some value of type a. We solve this by imposing the requirement on the
ingredient ⊕ (needed for the case ×) that it have a neutral element ν⊕, and take
that.
✷

So, in summary, we only need to supply one ingredient: a binary operation ⊕ ∈
a← a× a that has a neutral element. We introduce the notation

〈〈⊕〉〉F ∈ a←F ⋆a

for this polytypic crush.

More flexibility. We make our crush more flexible by allowing an optional
second parameter f ∈ a← b and defining

〈〈⊕, f〉〉F ∈ a←F ⋆b
〈〈⊕, f〉〉F = 〈〈⊕〉〉F .F ⋆f

which generalises the one-parameter form since 〈〈⊕〉〉 = 〈〈⊕, id〉〉.

We also define a variant crush, actually just a useful abbreviation, designed
for duty under bad weather conditions. What if ⊕ has no neutral element, like,
for example, the operation ↓ selecting the lesser of two naturals? This was dealt
with in classic BMF by introducing so-called “fictitious values”. Here is a pre-
cise way of handling this. Given ⊕ ∈ a← a× a we construct a new operator
⊕M ∈ Maybe a←Maybe a×Maybe a which behaves like ⊕ on the range of one,
preserves associativity and symmetry, if any, also on the extended domain and
has none as a neutral element:



one u ⊕M one v = one(u ⊕ v)
one u ⊕M none = one u
none ⊕M one v = one v
none ⊕M none = none

We use this now to define the variant. To distinguish it from the normal one we
prepend a superscript M. With ⊕ and f typed as before,

M〈〈⊕, f〉〉
F
∈ Maybe a←F ⋆b

M〈〈⊕, f〉〉 = 〈〈⊕M, one . f〉〉

As for the normal crush we may omit the f-parameter when it is id.

9 Crush compared to cata

So isn’t this crush a cata? No, it is not. For one thing, we saw that every type
functor can be written as a catamorphism. Simple typing considerations show
that in general type functors can not be expressed in the form of a crush. In that
sense the crush combinator is less general. It is more general in the polytypic sense
that crushes apply to source type F ⋆a for any functor F , while catamorphisms
are only defined on source types of the form µG. (However, if G = F a, then
µG is τF a, and the crush for τF is indeed a catamorphism.)

An interesting connection to classic BMF is

〈〈⊕, f〉〉List = ⊕/ . f∗

when ⊕ is the operator of a monoid. So we see that the catamorphism combina-
tor ([ ]) introduced by Malcolm [24] [25] [26] and the present 〈〈 〉〉 are different,
incomparable, generalisations of Classic CataTM.

The most telling difference is the following. While ([ ]) itself is a polytypic
combinator, its application to a body does in general not result in a polytypic
function. In contrast, the application of 〈〈 〉〉 always gives a polytypic function.

10 Some examples of polytypic crush

Function sum from Section 2 can be defined polytypically as a crush:

sum = 〈〈+〉〉

in which “+” is addition on numbers. Using the flexibility afforded by the optional
parameter, we can modify this to define polytypic size, a function for counting
the number of elements in a structure:

size = 〈〈+, 1K〉〉

Polytypic membership is obtained by

e ∈ = 〈〈∨, eq e〉〉



Here is polytypic flatten:

flattenF ∈ List a←F ⋆a
flatten = 〈〈++, [ ]〉〉

Polytypic first returns the first element of its argument (first in in-order depth-
first traversal). Since there may be no first element, we use the weatherproof
variant:

firstF ∈ Maybe a←F ⋆a
first = M〈〈≪ 〉〉 where u≪ v = u

In all these examples the crush has the form 〈〈⊕, f〉〉 in which ⊕ is associative.
This is not a coincidence. Although not required for the well-definedness, the
associativity of the operation is suggested by the fact that modelling n-tuples
with pairs can be done from the left or from the right, corresponding to the
isomorphy of types (a × b) × c and a × (b × c). Since the choice is arbitrary, it
makes sense to require ⊕ to be associative.

Why, then, not require it to be associative? Well, here are some interesting
applications with a non-associative operator.

Polytypic depth (or height, if you prefer), returns the depth of the deepest
element, if any:

depth = M〈〈⊙, 0K〉〉 where m⊙ n = (m ↑ n) + 1

Function binned returns a Maybe
△
Bin value preserving the tree shape (if any)

while converting type F ⋆a to Bin a:

binnedF ∈ Maybe(Bin a)←F ⋆a
binned = M〈〈join, tip〉〉

11 Calculating with polytypic functions

Polytypic crush captures one particular — although rather common — pattern
of polytypic definition. For instantiations to specific datatypes, the calculation
rules are well known. For example, if h = 〈〈⊕, f〉〉Bin ,

h . join = ⊕ . h× h
h . tip = f

But we can go further. Not only can “canned” polytypy be put to good use to
save a lot of work in writing polytypic programs, it can also be used to “calculate
polytypically”, giving identities that are polytypically valid.

As an illustration, we give, without proof, a polytypic fusion law for crushes,
analogous to the fusion law for catamorphisms.



Crush fusion. If the following three equations are satisfied:

h .⊕ = ⊗ . h× h
h ν⊕ = ν⊗
h . f = g

then

h . 〈〈⊕, f〉〉 = 〈〈⊗, g〉〉

✷

This is basically the “free theorem” (Wadler [37]) for polytypic crush, but a bit
of fudging with the type is needed to handle the neutral elements. Jeuring and
Jansson [22] show how to derive these for polytypic functions in general.

We can use this fusion law to find a condition under which

〈〈⊕, f〉〉List . flatten = 〈〈⊕, f〉〉

Using flatten = 〈〈++, [ ]〉〉 and putting h = 〈〈⊕, f〉〉List , crush fusion gives the
conditions:

h .++ = ⊕ . h× h
h [ ] = ν⊕
h . [ ] = f

From the theory of lists [2] we know that these are satisfied when h = ⊕/ . f∗,
that is, when ⊕ is associative. This shows that for associative ⊕ the crush 〈〈⊕〉〉
disregards any tree structure of the argument; it might as well have been a linear
list.

For bad weather we have:

Corollary. If the following two equations are satisfied:

h .⊕ = ⊗ . h× h
h . f = g

then

Maybe h . M〈〈⊕, f〉〉 = M〈〈⊗, g〉〉

✷

An application is:

Maybe 〈〈⊕, f〉〉Bin . binnedF = M〈〈⊕, f〉〉
F



12 Some futuristic remarks

Suppose we need a function to swap two naturals, with the typing swap ∈
Nat × Nat←Nat × Nat. That is not a hard task, but somehow it is in the nature
of programming that it consists of easy tasks, only there are so many of them.
The hard thing is to combine all the easy solutions to the little easy tasks in
the right way, and anything helpful in that is helpful in programming. A good
typing discipline is helpful. No decent functional programmer would define swap

specialised to the naturals, but instead use a polymorphic function

swap ∈ a× b← b× a

In fact, giving this typing, you just can’t get it wrong or else the type checking
will tell you.

Similarly, even when — for all we know — a function may be needed for only
one specific datatype, it may be helpful to define it polytypically. The possibili-
ties to get it wrong but type correct are, if not crushed, then at least definitely
reduced. Hindley-Milner style type inference for polytypic functions is described
by Jansson and Jeuring [20]. Also, the polytypic version may be genuinely sim-
pler. Just compare the polytypic definitions of e∈ and sum with the versions
specialised for Rose from Section 2.

I started the Introduction with a question. Finding a new algorithm may
be exciting, but coding yet another specialisation of a generic algorithm is not.
Polytypy may prove to be the key to the level of flexibility needed to achieve inter-
operability by structural (as opposed to ad hoc) techniques. To facilitate poly-
morphic definition, we need elementary polytypic building blocks. Backhouse,
Doornbos and Hoogendijk define, in a relational setting, a doubly polytypic and
polymorphic zip. Jeuring [21] and Jeuring and Jansson [22] give many examples
of further building blocks. More research is needed on “canned” polytypy, ob-
viating the need of explicit induction on the formation of a regular functor. The
crush combinator defined above is just a start.
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