Mescal

Requirements and Architecture

LLambert Meertens

CWI
Utrecht University
Kestrel Institute

Why?

e A piece of a typical calculation:

Can the Flipflop Lemma be applied to
hsh(f,g)? Try to express this in the

form of £((E71f) ® (£ 1g)) for some &:

hsh(/f, g)
= { definition of hsh }

(Lf®g) ©(f®Rg)
= { definition of ® }

Cl{r Xy | z€Lfdyg, ye€ fORg}

Program calculation

e [his style of calculation is used
to derive programs from specifications,
typically by “massaging” them into a form
so that some theorem applies

e Usually this involves “solving for unknowns”
while checking applicability conditions

e Often this only succeeds by creating a
local “minitheory” with its own definitions
and lemmas

Problems ...

e Finding the minitheory that works
may involve much trial and error

e With each revision many earlier steps
must be rechecked for validity

e [he expressions involved quickly
become fairly large

e [he resulting program is supposed
to be ‘‘correct by construction”, but
trivial calculation errors easily sneak in,
in particular when revising an earlier
calculation

Using pencil and paper

e Pencil and paper is flexible: notations
can be optimized for calculation;
compare

d _ dF dG
&FG = @G+F@
with

diff (times(F,G) ,x) =
plus(times(diff (F,x),G),
times(F,diff(G,x)))

e NO safeguards against errors
e Most revisions require tedious copying

e Easy to loose track of what still
must be proved

Using a prover

e Notationally typically more rigid

e Creating theories is more work than
you want to spend on disposable
Mminitheories

e Not always easy to postpone proof
obligations

e Easy to loose track of what you are
doing

e Revision is still cumbersome

Primary aim of Mescal

e Reduce tedium and chance of
Clerical errors

e Wwhile retaining as much as
possible of the flexibility
and “lightness” of working
with pencil and paper

Some non-requirements

e Mescal finds the proofs for you
e A Mescal- “verified” proof is correct

e Mescal compels its users to follow good
mathematical standards

Primary requirements

e WYSIWYG editing™®
e Users can define their own notations>l<

e Notation can be changed on the 1°Iy>l<
e Non-formal and formal text can be
freely mixed, just as in a research paper>l<

e [he formal parts may come from multiple
formalisms, and may be heterogeneous

e Users can define their own formalisms

e Validity can be checked to the level desired
by the user (from not-at-all to fully)

e Validity checking uses ‘“spreadsheet
evaluation” : once turned on, it is
automatically rechecked upon changes
to the text

* Features of Mathspad

Some possible formalisms

e Allegorical calculus
(Algebra of Programming)

e Category theory

e Relational calculus

e [attice theory

e Polymorphic lambda calculus
e Haskaell

e Java

e Analysis, Algebra, Geometry

Mescal as a kernel system

e Mescal has no built-in theories
but a meta-formalism that allows
the definition of formalisms

e | everage will have to come from
the accumulated creation of libraries
of theories

e Mescal has only rudimentary
theorem-proving capabilities, but
will offer facilities for hooking
up to “external engines” (provers,
type-checkers, compilers, interpreters,
computer-algebra systems, ...)

e Mescal has roughly the native
proof-checking power of Automath

Formalisms

e Forms are generated by formation rules
of a multi-sorted algebra

e Each form belongs to a formalism
e Forms appear in some context

e [he context may impose additional
requirements on the forms

e Forms may carry certificates
iIssued by some formalism

e Certificates are again forms

Examples of certificates

FORM .. CERTIFICATE
e EXxpression I :: has type 7
e Proposition P :: holds
e Proof f :: is constructive
e Program p :: is type-correct
e Program p .. implements spec S

e Function f :: is uniformly continuous

Certificates

e are created by certification rules
(which are like logic inference rules, but
may involve arbitrary computations)

e identify “assumptions” used from the
context

e usually identify a witness (or the
information needed to reconstruct it)

Live constraints

X —(R— Y
Objects X and Y are “linked” by constraint R:

e At all times X (R) Y holds

e \When X changes, Y is made to change
(if necessary) as well, so that the validity
of X (R) Y is restored.

e Likewise when Y changes

Example: X (<) —Y

° é indicates “spontaneous’” change

e | indicates constraint-restoring change

A r
3 4
7
2 4
i]
1 1
7
1 4

Constraints may form a network

e Example: X (<) —Y —(SQ)r— 7

A r z
3 < 16
: 17 i
5 5 25
i] :
4.09 4.09 22

Constraints may involve structure

e Example: X —(MAP(SQ))— Y

X Y
1,3] [1,9]
A
2,3 4,9

Implementation of constraints

o Let R: A~ B be a ditotal relation

e A maintainer of R is a pair of functions

4:AxB—= A
>:AxB —=B

such that for all z € A and ye B

(x<ay)(R)y and z(R)(z>y)

e After a changetoy, z:=x <y
IS executed, and likewise for zx

e In addition, the change should be
“as small as possible”

The certification rules

are embodied in “edit steps”
which may be performed on forms

An edit step takes zero or more
forms as parameters and then
computes (if possible) a new
form as result

The edit step may use the parameters,
as well as any certificates they carry,
to compute a certificate for the new
form

The computation procedure is expressed
as and recorded in the form of a
constraint network

Example edit step in calculation

e Edit focus is on:

fx) < fy)
o Apply command “MONOTONICITY”

e Result:

flz) < [(y)

= { f is monotonic }
Ty

Edit step “MONOTONICITY”

e take term XRY where R is an order

e determine Isg (C[_], z,y)
such that X = C[z], Y = C[y]

e determine appropriate domain order r

e cCreate proof obligation
7= "is-monotonic(C)"

e produce new term XRY < {n} zry
e sSet up the constraint network

o if OK, replace term by new term

Resulting term with constraints

e [he term:

XRY
= A7}
Ty

e [he constraints:

(X,Y) —ALsG)y— (Cl]zuy)
(Cl_],z,y) —(ADO)— r
(C[_],R,r) —(PrObipg)}—

Specifying the edit step

e Can fully be done by supplying
— template terms for source/result
— the constraint network in symbolic form
— constraint definitions

o ADO = Appropriate Domain Order

— use knowledge about C|_]
and/or type of z and y

— oObtain from prover or use heuristic

Discharging proof obligations

e In principle the task of the user

e Dispatch lazily to some prover
(represented as a constraint)

— “internal” prover
— external prover(s)
— the user

e Internal prover for trivial cases:
(if f has attribute “is-monotonic”
this counts as a proof)
and maybe less trivial ones:
(if f and g are monotonic,

so is f(g(-)))

e Edit step in theorems/lemmas:
add obligation to the assumptions

Other views

e [he approach is not specific

to the calculational proof style:
the term:

XRY
= A7y

rriy

may also be presented thus:

(i rry

XRY

Major open issues

e A convenient ‘“scripting language’ for
giving constraint definitions

e A convenient “scripting language” for
specifying hook-up to external engines
(protocol!)

e Facilities for formal diagrams

