i C

3
i
m
-
m
(Y]
7
=y

AFDELING INFORMATICA W 9/73

R. BOSCH, D. GRUNE and L. MEERTENS
ALEPH, A LANGUAGE ENCOURAGING PROGRAM HIERARCHY

amsterdam

e
+

stichting
mathematisch
centrum MC

AFDELING INFORMATICA W 9/73 SEPTEMBER

R. BOSCH, D. GRUNE and L. MEERTENS
ALEPH, A LANGUAGE ENCOURAGING PROGRAM HIERARCHY

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraot, Amsitendam.

M atical Centre, founded the 11-th of February 1946, 48 a non-
;ﬁggﬁﬂmmon aimingﬁa/t the promotion of pute mathematics and Aits
applications. 1t is sponsored by the Netherlands Government through Zhe
Netherlands Onganization forn the Advancmen,t'oﬁ Pure Research (Z.w.0),
by the Municipality of Amsterdam, by the University of Amstendam, by
the Free University at Amstendam, and by Andustries.

ACM - Computing Reviews - category: L.22

w9 ATEPH, A Language Encouraging Program Hierarchy 1

ATEPH, A Language Encouraging _P_’rogram Hierarchy

Rob Bosch, Dick Grune, Lambert Meertens
Mathematical Centre, Amsterdam, the Netherlands

published in Proceedings of the International Computing Symposium 1973 in
Davos, Switzerland

An AIEPH program consists of a set of grammar-like definitions of input,
actions to be performed and output, properly interrelated. The syntactic
and semantic simplicity of ALEPH has three important consequences: aspects
of the dynamic behavior of the program can be derived statically,
substantial optimization can be achieved through simple algorithms, and
portability is high. The aspescts of the dynamic behavior include a check on
the use of uninitialized variables and a consistency check on user—declared
dynamic properties of rules. The optimizability of ALEPH programs allows
the programmer to formulate algorithms with all the elegance inherent in a
top-down formulation and nevertheless obtaln good machine code.

1. Introduction.

ATEPH is a high-level programming language designed +to induce the user to
write his programs in a well—structured way. The language is suitable for
any problem that suggests top-down analysis (parsers, search algorithms 5
combinatorial problems, artificial intelligence problems etec.)

An ATEPH program is a top-down description of what is to be done: complex
actions are defined in terms of (usually) less complex ones, which in turn
are defined in terms of still simpler ones, and so on, until a level is
reached at which further decomposition is undesirable.

An ATEPH program coasists of a set of such definitions, in a notation not
unlike the rules of an affix grammar (Koster [1,2], Crowe [3]). In fact,
many of the ideas in ALEPH were derived from the theory of affix grammars;
for example, repetition is expressed, not by a goto or while statement but
by what in a grammar would be called ‘right recursion®.

The syntax aand semantics of ALEPH are so simple that it is possible to
statically derive interesting properties of the dynamic behavior of the
program. For example, the compiler can easily verify that no variable will
be used before obtaining a value. Thus the use of uninitialized variables
is prevented in a natural way, without resorting to the (dangerous)
trick of automatic initializabtion. Also, +the compiler can detect logical
constructions that imply what is generally called 'backtrack', and provide
a message. The signalling of inadverted backtrack appears to be a powerful
weapon agalunst messy programming.

W9 ATEPH, A Language Encoursging Program Hierarchy 2

The syntactic simplicity of ALEPH programs can be utilized for a different
purpose: optimization. The compiler can transform the program into a
directed graph and thereby readily detect recursion, thus permitting a
more efficient translation of non-recursive constructs. Furthermore, +this
directed graph can be used for storage optimization. Thus the programmer
can formulate algorithms with all the elegance inherent in a top-down
formulation and uevertheless obtain good machine code (probably even more
compact than he could have safely written himself).

Because the semantic primitives needed for the +translation are small
in number and simple in nature (‘pass parameter? 5 'call procedure
conditionally’, ete.), the transfer of the compiler from one machine
to another 1is quite straightforward. As, however, additional semantic
primitives may be defined by the programmer (e.g. , multilength arithmetic,
'convert to hash code', or whatever he thinks is a primitive of his
problem), the portability of the program (as opposed to that of the
compiler) is determined by the portability of these programmer—defined
primitives.

The present work 1s a continuation of the research started by C.H.A.
Koster, which resulted in the development of CDL (Compiler Description
Language) [4]. His CDL—compiler gave us a great deal of experience with
affix—grammar-like languages, from which ALEPH has benefitted.

A two-pass compiler 1is available and an optimizing two—pass compiler is
under construction. These compilers, themselves written in ALEPH, are to a
large extent machine—independent. Our versions yield assenbly language code
for the CDC Cyber Computers.

ATEPH is presently being used for the construction of a machine—independent
ALGOL68 compiler.

It should be borne in mind that this paper is not an ALEPH manual: it does
not cover the complete language. Instead a motivated account of the most
salient points i1s given. An ALEPH manual is due to appear in a few months
at the Mathematical Centre, Amsterdam, The Netherlands.

2. Criteria.

2.1. Goals.

Our main goals in the design of ALEPH were the following:

a. It must allow good programming at a reasonable effort and a moderate
price.

b. Since ALEPH is a tool and not a goal in itself the compiler for it must

be simple.
c. To allow the application of the algorithms written in ALEPH on a wide
range of machines, the compiler must be portable (as far as possible).

The above requirements were augmented by two more requirements of a more
practical nature:

W9 ALEPH, A Language Encouraging Program Hierarchy 3

4. Since in our institute ALEPH is mainly intended for compiler
writing,sorting algorithms, text—editing, etc., emphasis is on facilitating
non—numeric symbolic programming. (Note: this text was Justified by a text
justifier written in ALEPH).

e, Since it was clear that we shall have to do for a long time to come with
early and mid third genereation computing equipment, the compiler must not
require any advanced hardware.

2.2. Good programming.

Two different approaches were taken for the effecting of such a vague
notion as "good programming". Firstly the literature contains ideas sbout
what constitutes good programming (Dahl [7], Dijkstra [5, 8], Wirth [9], to
mention a few); many of these ideas were incorporated. Secondly, we often
found it much easier to recognize bad programming and forbid it than to
recognize good programming and to promote it.

It is not generally possible to disallow bad programming: a language that
is powerful enough to formulate any algorithm in it i1s also powerful enough
to formulate it messily. Nevertheless, it 1is often possible 1o make the
"desirable" construction more convenient than an "undesirable" one: the
usage of a language does not so much depend on its possiblities (it's
a Turing machine anyway) as on the conveniency of these possibilities.
Although it 1is perfectly possible to write recursive routines in FORTRAN,
hardly anybody ever does so since the administration is just too cumbersome
and, conversely but analogously, it is perfectly possible to "jump all
over the place' in ALEPH but hardly anybody ever does so since the
administration is just too cumbersome.

It should be noted that, surprisingly, it is sometimes possible to forbid
bad programming: for example, most high—level languages effectively prevent
a jump to data.

2.3. Effort.

We require the "good programming" +to be available "at a reasonable
effort". Consequently, if a feabure that is normally present and useful
in programming languages i1s banished from ALEPH, an acceptable alternative
should be present.

2.4, Price.

We also require the "good programming" "at a reasonable price. Since the
only way to program a machine efficiently is in herd machine code, we
should be willing to accept certain losses for writing in a high-level
language. These losses, however, must not depend on the style of
programming in such a way as to foster bvad programming: for example, in
many high—level languages it 1s more efficient to pass information to
subroutines in global variables than in parameters. Consequently, the ALEPH
compiler will have to do thorough ophimization, and, for simplicty, the
constructions in the language should allow easy optimization.

2.5. Simplicity.

The required simplicity of the compiler conflicts with the tendency to
make ATEPH as high—level as possible and with the need for extensive
optimization. Some trade—off is to e expected here.

W9 ATEPH, A Language Encouraging Program Hierarchy 4

2.6. Portability.

The greatest problem in portability is the portability of the object code.
Our solution 1is to produce machine—independent object code of an extremely
simple nature. This code can be producsd internally and converted directly
to perbtinent machine code (for production) or can be produced externally
and then De converted separately by a simple ad-hoc program (during
half-bootstrapping).

2.7. Haxrdware.

Fancy hardware like virtual memory, hardware stack or microprogramming is
not supposed available. Consequently, some fairly elaborate optimizations,
like check on non—recursivity, are worth while. DNevertheless +the object
code could still make good usage of the above advanced features.

3. The Languasge.

3.1. The grammar form,

It is well known that a grammar is an excellent means for specifying
clearly and transparently the input to a program. With the same ease with
which we specify a list of numbers separated by commas:

input: number, rest numbers option.

rest numbers option:
comma symbol, number, rest numbers option;
empty.

(or, in Backus Normal Form,

<input>: := <number><rest numbers option>

<rest numbers option>::=
<comma symbol><number><rest numbers optiorn> I
<empty>)

w2 specify a (seeming.ly mich more complicated) parenthesized tree in infix
notation:

tree: item;
opsn symbol, tree, item, tree, close symbol.
item: letter.

It is also well known that uader a wide variety of circumstances such a
grammar can be considered as a program to read the input described: for
reading "input", read a "number" and then read a "rest numbers option". For
reading a "rest numbers option", either if there is a comma read it, read a
"number" and resd a "rest numbers option", or you're done.

Of course there is no reason why a grammar should only be used for the
definition of input instructions. The grammar

sort: split into two lists, sort first list,
sort second list, merge.

sort first list: is ordered; sort.

sort second list: is ordered; sort.

IW9 ALEPH, A Language Encouraging Program Hierarchy 5

describes a widely—used sorting technique, or rather a family of these.
Here the great value of grammars as a programming device becomes prominent:
we are forced Tfirst to define +the general skeleton of the program in a
clear way and then to refine the algorithm by filling in the details in a
hierarchical descent. After the above definition the actual forms of "split
into two lists", "merge" and "is ordered" are still open. The rule for
"is ordered" could decide that only one element is ordered, or even that
up to three elements are ordered by straightforward rearrangement, without
affecting the basic workings of the algorithm. "split into two lists" could
Just cut the list 1n the middle and then "merge" would have to be fairly
complicated, or it could split the list inbo two lists in such a way that
all the elements in the first 1list are smaller than those in the second
%is”]c,) "merge" would then be empty and we would obtain Quicksort (Hoare
101).

The formulation of algorithms in the form of a grammar has, in the three
years of our expsrience, proven to be an excellent technique for enhancing
their well—structuredness.

Once having decided +that the grammar-form will be the Dbasis of our
language we must answer three fundamental questions. What is the exact
flow—of—control? How do rules communicate? And how 1is the semantics
specified for rules that are not further decomposable (terminal symbols)?
Furthermore we shall have to provide data types and some input—output, and
for the benefit of the user we shall have to add some syntactic sugar.

3.2. The flow—of—control,

From a formal point of view the rule for "tree" mentioned above should be
read as: there is a tree either if there is an item or if there is an
open—symbol, followed by a Tree, an item, another tree and a close—symbol.
The flow—of—control suggested by this is obvious: check for the presence of
an item and, 1f that fails, check for a succession of opsn—symbol, tree,
item, +tree and close-symbol and if these are not all present then there
is no tree. This interpretation 1s unacceptable since it can only be
implemented through the use of automatic backtracking. Moreover, it is not
even adequate. Suppose we want to inspect two objects, if they are both
integer add them and if they are both character concatenate them:

combine:
is first integer, is second integer, add;
is first char, is second char, concatenate.

If "is first integer" now succeeds and "is second integer" fails, then we
are not at all interested in the second alternative and “combine" should
fail right away. In our experience the best programs are those in which
in all rules the first members of the alternatives succeed under mutually
exclusive circumstances. The first member of an alternative can then be
considered as the key +to that alternative: if the key fits, the other
alternatives are no longer of interest. There is a strong analogy here with
IL(1)—grammars (Knuth [11]). In an LL(1)—gramar, if the first symbol is
present (the first member succeeds) the rest of the alternative is known to
be present (further members cannot fail) , thereby completely removing the
problem of backtrack. The above example, however, shows that this is too

w9 ALEPH, A Language Encouraging Program Hierarchy 6

stringent a requirement for a computer language since it would effectively
forbid the logical conjunction. So we arrive at the following rule for the
flow of control: the first member selects the pertaining alternative, if
any; the rule succeeds if all members in the pertaining alternative succeed
and it fails if one of these members fails or 1if no alterngbive was

selected.

As an important consequence there is only one way to reach a given member
M in a given alternative A: all first members of alternatives preceding A
must have failled and all members in A preceding M must have succeeded. This
simple rule is often wused in deriving assertions about the program, both
mechanically (e.g., check on status in 3.3. and check on left—recursivity)

and by hand.

The above interpretation reintroduces +the problem of backtrack. However,
not all "two guestions in a row' give rise to backtrack: in the simple

comparison of three numbers:
equal a b and c: equal a and b,equal b and c.

the first member may succeed and the second fail, without requiring
backtrack. Therefore rules are divided into two groups, those that effect
global changes ("have side—effects") and those that do not. The rule for
constructing alternatives is then: once a rule with side—effects has been
called, the rest of the alternative must be guaranteed to succeed.

Although the compiler could itself determine whether a rule has
side—effects, this is not done. Instead, this information is given by
the user and checked by the compiler, as a form of useful redundancy.
Often a conceptual error results in a rdle that was thought to be free of
side—effects having side—effects.

In the gbove, rules are used to decide the presence of the desribed
constructs, e.g., trees (and, possibly, to process them). In many cases,
however, the programmer knows that the construct is present: the tree must
be present or something is wrong:

tree: item;
opan symbol, tree, item, tree, close symbol;
erroxr message.

Rules are again divided into +two groups: those that can fail and those
that always succeed. As before, the compiler could find this out, but for
reasons explained above the programmer specifies his opinion on the rule,
which opinion 1is then checked by the compiler. And again, this form of
redundancy proves to be very useful.

W9 ALEPH, A Language Encouraging Program Hierarchy 7

The two division criteria can be combined, yielding four groups:

can fail, has side—effects: "predicate’
can fail, has no side—effects: 'question’
cannot fail, has side—effects: faction!

cannot fail, has no side—effects: 'function!®

In this terminology "tree" should be an Yactioa'. Now the item between the
two trees may be missing, so a programmer might write:

taction?! tree: items
open symbol, tree, rest tree;
error message.
faction' rest tree:
item, tree, close symbol; error message.

The compiler would find two errors (given suitable definitions for the
missing rules). "Rest tree" is not an 'action', and the "close symbol"
causes backtrack (over tree and item). These two errors, admittedly
simple as they are, would probably not be detected in most conventional
programming languages and would be called by many people "conceptual
errors" rather than "syntactic errors".

3.3. The parameter mechanism.

A1l the zbove grammars are conbtext—free and as such they are inadequate to
express actual algorithms. What is needed is a way of communication between
the notions in a rule. Formally such a way is provided by the affixes in an
affix—grammar (Koster [2]): AILEPH uses a parameter mechanism that is very

much akin.

All formal variables (parameters) are local to the rule they belong to,
as are the local wvariables. Some formal variables are prefilled at
call entry with the values of the actual parameters (corresponding to
1 —bound—affixes), some formal variables are still uninitialized at call
entry but their values will be used by the calling rule (corresponding to
§ —bound—affixes), and some are both (not corresponding to an affix type).
A1l local variables are uninitialized at call entry. The rule is obliged to
give values to those parameters that will be used by the caller. However,
if the rule fails, the caller will never need these values: they will
not even be passed back at call exlt, so that in that case the rule
does not have to provide them. This "copy—maybe—restore” mechanism has
the advantages of the standard “copy—restore" (transparency, efficiency of
parameter access, no machine addresses on the stack) and moreover provides
a one—level backtrack free of charge: a rule may tentabively mess up its
parameters, and if it then descides to fail, mnothing needs to be restored
(since only copies were spoiled).

W9 ALEPH, A Language Encouraging Program Hierarchy 8

Since the status (initialized or not) of all formal and local variables is
known at call entry; since +this status before the execution of a member,
together with the parameter description of that member, dJdetermines the
status after the execution; and since there 1is only one way to reach a
certain point 1in a rule, +the compiler can readily construct the status
at all points and perform a reliable check on the use of uninitialized

variables.
This again proves 10 be very helpful in detecting (logical) errors.

For an example we return to the list of numbers separated by commas
mentioned in 3.1., and we suppose that we want to read them, add them and

print the sum:

Taction! input — res:
number + res, rest numbers option + res,
result + res.
faction! rest numbers option + >res> — nmb:
comma symbol, number + nmb, sum + nmb + res,
rest numbers option + res;
+.
'action® number + res>:
get int + input file + res;
error + bad number, O —=> res.
faction? sum + >x + >y>:
add + x +y + y3 error + overflow.

The pluses affix the affixes to the rules. Co-ordering with pluses is used
rather than sub—ordering with parentheses. The use of parentheses would
have implied the possibility of nesting: +this nesting, however, is not
allowed. DMoreover, parentheses are already being used extensively in a
different way (see 3.6.1.).

The minus signals a local variable. The right arrow—head in froat of "res"
indicates that "res" will be prefilled, the one at the back of "res"
indicates that after the call the value will be returned to the caller.

The local variable "res" is uninitialized at the colon in "input", from the
declaration of "nuuber" it follows that it will not use the value of “res"
(which would have been illegal) but will retura a value to it. So, at
the first comma "res" is initialised and may be affixed to "rest numbers
opsion" which uses its value.

The above notation precludes the Introduction of operators and type
procedures in ALEPH, and in fact they do not exist in ALEPH. Although
we readily concede that operators and typs procedures often allow a very
elegant formulation of an algorithm, we also feel that they tend to lead
to unjustifiable simplifications. By the nature of it, an operator or type
procedure yields only one result (if we disregard messy tricks). Now, it is
doubtful if, e.g., the result of the inversion of a matrix can be expressed
in one mabtrix, and it is simply not true that the result of the addition
of two integers can be expressed in one integer (since overflow may
occur). Espacially the latter fact 1s poorly appreciabed both in
high—-level languages and in hardware. In the worst case what is called the
"add—instruction" is in fact a bit—shuffler that happens to yield the sum
in sbout 75 percent of the cases. In a slightly better case the program

w9 ATFEPH, A Language Encouraging Program Hierarchy 9

comes to a grinding halt or some pre—attached program is called, with all
the misery inherent in interrupts. In fact there is no add instruction: all
there is is an add request, which, 1ike any other request, can fail to
be satisfied and which 1is a 'question® in the sense of the gbove. This is
correctly recognized by that hardware that sets an overflow bit, which bit
is then, more often than not, boldly ignored by the high—level language.

There are a few requests that can always be fulfilled: e.g., it is always
possible to set one variable equal +to the value of the other. Indeed the
assignment is written with the aid of an operator: "0 — res" in the
example above. Note that this instruction is necessary to sustain the claim
that "number" always assign a value to its formal variable “"res>": we are
not allowed to let the program carry on with a "ghost" value, even after an

error-message.

3.4, Primitive rules.

Rules are spescified by their decomposition into other rules. This process
must end somewhere; it can end in one of three ways:

a. The required action is a primitive of ALEPH, e.g., assigament.

b. The required action is known +to the compiler under a standaxd nane,
e.g., the 'predicate’ "get int" and the 'question' "add" in the example
above.

c. The required action 1is part of the problem but cannot be decomposed
(e.g., the activation of particular hardware) or must be described on a
lower level for reasons of efficiency (e.g., the calculation of a hash

address from a given string).

In cases a) and b) there is no problem for the user and only a one~time
problem in transferring to another machine: the primitives must be
reprogrammed. Case c) is exceedingly rare but must be catered for. Rules
can be declared ‘external! in ALEPH under specification of the parameters
and the coacertniing semantics must Dbe supplied by external means, e.g.,
at the level of machine code (in which case, of course, there is no
portability).

3.5. Daba types.

The language defined so far does not rely in any way on the propsrties of
the data types (except perhaps that rules as data would be inconvenient and
would violate simplicity requirements). We are still at liberty to define
the data typss we need. For our applications and for reasons of simplicity
we have resticted ourselves to integer data (already introduced above) and
stacks of these. The latter have the usual property that top slements may
be added, dinspscted and removed. In addition, they have the following
properties:

a. All elements can Dbe reached, thus the stack can act as an arrsgy.
Arrays in the standard sense cannot be allowed since they may contain mixed
initialized =nd uninitialized variables.

w9 ALEPH, A Language Encouraging Program Hierarchy 10

b. Bottom elements can be removed, thus the stack can act as a queue. If
the queue walks out of physical memory it is simply pushed back by the
runtime system and since all references 1to 2 stack go through its base
address only this base address needs to be updated. Bottom elements camot
be added: a deque (Knuth [12]) is much more complicated to implement, is
hardly ever useful and in emergencies can be simulated by two queues.

¢c. Each stack has its own private piece of the virtual address space
(which in total extends from minus the maximum integer to plus the
maximm integer), so that if an integer is used as an index to a stack,
it identifies that stack. Thus dynamically complicated objects can be
efficiently unraveled by extracting stack identification from the given
index.

The sbove data types are easy to implement and constitute very convenient
tools for data handling that have proved their value in opractice,
especially in combination with data—description—like rules for the
processing of data. For example, a list (in "list stack") whose elements
consist of items (called "item") and indices to the next element (called
"next") is processed by:

Taction® list + >handle:
process + itemxlist stack[handlel,
rest list + nextXlist stacklhandle].
faction! rest list + >handle:
was + list sback + handle, 1list + handle; +.

where "process" must be given by the user and "was" is a 'question' known
to the compiler which tests whether "handle" is an index to "list stack"
(if it fails there are no more elements).

Although these data types are safer than the wusual data types in
languages (all reachable variables have a value and most logical errors
are caught immediately by indices being applied to the wrong stack))
they unfortuantely lack the rigour and relisbility of the flow—of—coantrol
explained in 3.2. and 3.3. (runtime checking is still necessary and the
"dangling referencs" problem is not solved). The reason is simply that the
state of the art in grammars and in hierarchical programming is much more
advanced than that in data structures. Even the presently most advanced
data structures, those of ALGOL 68 (van Wijngaarden [13]) cannot be grafted
in a simple way to ALEPH: we would 1lose the advantages mentioned above
the AIGOL 68 solution to the "dangling reference" problem (scops checking3
still needs dynamic checking and 1is not readily applicable to ALEPH, and
indices can still be out of bounds. We hops and expect that many of these
trouble—spots can be mended in the near future.

3.6. Syntactic sugar.
In 3.6.1. and 3.6.2. some examples are given of features solely intended to
make the language more coavenlent to use.

w9 ALEPH, A Language Encouraging Program Hierarchy 11

3.6.1. Flow—of—control.

When we read the short program given din 3.3, we can easily see that it
is overly recursive. The recursive call of "rest numbers option" in “"rest
numbers option" puts a copy "res™ of "res" on the stack, works on "res'
and then restores 'res" to "res'™: it could as well have worked on "res"
directly. Moreover, the said call puts a reburn 1link on the return link
stack that points directly to a "return over return link stack" instruction
(since "res" mneeds no longer be restored and the present call is the last
one in an alternative) so it could as well be left out. All that is left
of the call is the (re)-activation of "rest numbers option" and as such it
corresponds to a simple and clean jump. The user is allowed to write:

faction! rest numbers option + >res> — nmb:
comma, symbol, number + nmb, sum + nmb + res,
trest numbers ophtion; +.

Coaversely, he may use the jump only as a last member of an alternative
in an 'actioa! or 'function! and it is then coasidered shorthand for a
recursive call with the same parameters as the original.

Although the compiler would have found this optimization, the user, by
indicating this simplification himself, has gained something: "rest numbers
option" is aow only called in one place, in "input", and can be substituted
there. The same holds for "sum", so that the program reduces to:

Taction® input — res: number + res,
rest numbers option — nmb:
(comma symbhol, number + nmb,
sums:
(add + nmb + res + res;
error + overflow),
: rest numbers option;
+),
result + res.

taction! number + res>:
get int + input file + res;
error + bad number, 0 -—=> res.

3.6.2. Data types.

Tn addition to formal and lozal variables ALEPH allows global variables.
Although we are aware of their undesirability and of +the great
opprotunities they afford in bad programming (Wulf, Shaw [6]), we do not
see a way to do without them in the present framework. Some informstion

(Like, e.g., a character counter on the input in a compiler) must
eventually be available to virtually all rudles (since, again in a compiler,
virtually all rules can cause a call to the error—routine which prints a
diagnostic message including sald character counter). Coasequently, this
information must be passed as a parameter to all these rules. The same in
essence applies to all I/ 0 information. By way of experiment we rewrote a
fair—sized ALEPH progzram (concerning mode-handling in ALGOL 68) under the
elimination of global variables (except I/O information) and found that the
average number of affixes per rule went up from 1.5 to 4.5. We consider

w9 ALEPH, A Language Encouraging Program Hierarchy 12

this too high a price: oaly a profoundly different approach to data types
may yileld a solution.

It should be noted, however, that the misuse of global variables is limited
by their tendency to cause backtrack errors upon careless handling.

Global variables must be initialized upon decalration. Their values can be
changed by any rule. It is also possible to declare initislized constants
whose values cannot be changed. Aslde from the coavenience of this feature
it also aids in good programming. It appears that the occurrence of a
hard integer denotabion in a rule is generally unjustified. Tallying hard
integers in some sample programs has taught us that oanly roughly 1 in 50
integers 1s used in its integer meaning. For the rest they were either
variasbles of the problem that happened to be constant most of the time
(1ike linewidth of the printer, number of bits in a character, etc.)
or terminators in data structures where "nil" should have been used. We
seriously contemplate disallowing hard integers in rules and only allowing
them in initializations.

L, References.

[1] Koster, C.H.A., Oa the construcbtion of ALGOL~procedures for generating,
analysing and translating sentences 1in natural languages, MR 72,
Mathematical Centre, Amsterdam (1965).

[2] Koster, C.H.A., Affix—grammars, in ALGOL 68 Implementation, ed. J.E.L.
Peck, North-Holland Publ. Co., Amsterdam (1971).

[3] Crowe, D., Generatbing Parsers for Affix Grammars, Comm. ACM 15, 728-734
(1972). -

[4] Koster, C.H.A., A Compiler Compiler, MR 127/71, Mathematical Centre,
Amsterdam (1971).

[5] Dijkstra, E.W., Notes on Structured Programming, Rep 70 Wsk 03, Math.
Dept. Technical University, Eindhoven (1970).

[6] Wulf, W., “Global Variable Considered Harmful", SIGPLAN Notices 8 (2),
28-34 (1972). -

[7] Danl, O0O-J., Dijkstra, E.W., Hoare, C.A.R., Structured Programming,
Academic Press, London (1972).

[8]]zijks’ora, E.W., Go To Statement Considered Harmful, Comm. ACM 11(3),
7 (1958). —

[9] V(\T:i.r“c,h3 N., Program development by stepwise refinement, Comm. ACM 14(L),
221 (1971). -

) ATEPH, A Language Encouraging Program Hierarchy 13

[10]Hoare, C.A.R., "Quicksort", Computer J. 5 (1), 10-15 (1962).

E‘I‘I]Kx;ut—h, D.E., Top-down syntactic analysis, Acta Informatica 1, 7T79-110
1971). -

[12]Knuth, D.E., The Art of Computer Programming, Vol I, pp. 235-239,
Addison-Wesley, London (1959).

[13]van Wijngaarden, A. (ed.), Report oa the Algorithmic Langauge ALGOL 68,
Numer. Math. 14, 79218 (19693.

