
1 In t roduct ion

A tribute to attributes

Lambert Meertens J a a p van der Woude

February 28, 1991

A common phenomenon in programming is "flushing of results", the ingredients of which
are built up in some structure (e.g. a stack). In many simple problems those ingredients
are plain values and recipes to combine them (operators). This structure depends on the
structure of the given data and it may be viewed as an instance of an attribute-decorated
parse tree.
We shall give another example of this phenomenon where the values may be functions.
The example is a stepping stone towards catamorphising attribute grammar problems in
general. Two aspects of this example are especially worth mentioning:
• Parameterised algebras and their catamorphisms; we propose a general expression.
• Lifting of operators, or rather algebras. Too bad, but we have to postpone that subject.

This note depends heavily on notation and calculation techniques that can be found for
instance in [21 and, in a slightly different setting, in M. The reader is advised to consult
these references (not merely as references, they are atleast as interesting as the note here).

A remark on the priorities of the occurring operators may be in order. The general rule is
that the precedence of the operator is antipmportional to its size. In weakening order we
have for instance:

1 • I 0 1 { X 1 4 6 o) I (+ 1 V) 1 '
.
1
0

2 D e p t h in the leaves
The example we address may be formulated losely as follows: Given a tree, replace the
values in the leaves by the depth of the given tree.
For a brief sketch of the setting of the problem:
Let t be the type functor for trees over A . Its unary leftsection A t is given by:

AtX = A + X x X a n d M I = i d A + l x f

10

We fix (Atree , 'A v -H-) to he the initial At-algebra, i.e.
. T A V * : A + Atree x Atree —+ Atree

The two concerns, depth and replacement, are given by the At-catamorphism

(I) 5 = (1 v +It : Atree —a IN where + . (m , n) = 1 + m I n
and the parameterised At-catamorphism p : IN —4 (Atree —4 INtree)
(2) p m = ((T
N v *)
• (n •
+ /
x
I))
=
h
i
•
n I
1
1
7
-
I f
)

In both (1) and (2) v i denotes the constant v function. The function we are to express
in terms of catamorphisms is l i t = p.(5.t).t . One could defend that by (1) and (2) we
are done; however, what we want as a solution is the equivalent of a one pass algorithm.
In order to reformulate the requested function slightly, we need the usual apply (0) and
the argument-swap" " , defined by
(
3
)
-
i
-
7
-
z
=
0
-
t
•
P
Y

For fl we calculate
a t

= 1 def. I I)
p.(5.0.t

= { (3) } .
p.t.(8.t)— { 0 }
co.(T2-.t , 61)

= { A }
(0 • (7 iti, 6)).t

Hence we are looking for 11 = 0 • (Ts• A 5)
. Since 0 is considered to be "simple", we may reformulate our aim as: express i i A 5
as a catamorphism. With the tupling construction (111) in mind, knowing that 6 is a
catamorphism, it is sufficient to express T) as a catamorphism (but we want more: an
explicit expression). Is there any chance of p being expressable as a catamorphism? By
(2) and (3), the type is right

T): Atree —
4 O N
• " • 4
N t r
e e)

So if -
fi
—
(0
)
,
w
e
k
n
o
w
t
h
a
t
t
i
)
s
h
o
u
l
d
h
a
v
e
t
h
e
t
y
p
e

ip = a v fi : A + (IN —a Ntree) x ON —a Ntree) —a (IN n"
, I N t r e e)where a : A —p ON •-• INtree) and /3 : (IN --• INtree) x ON N t r e e) —a (IN •

—
b I N t r e e) .

Indeed so, in the next section we show that (don't mind the notation)
(4) P - (T
. v T OLet us calculate p A 6 using (4) and the tupling construction in [11:

1
1

p ati 5
= f (4) , (1) , [1] 1

11(7
.
v
T
O
0
A
t
<
A
(
1
.
v
4
-
)
•
A
t
>
1

- { t) v 4- -I- calc }
(f r
.
v
:
I
I
o
(
<
x
<
1
1
A
O
.
v
+
o
(
>

= { v and a abide }
((r • A i l
v
(- 1 1 -
-
• (<
x
<) /
1 4
• •
(>

= (x 4-•aca1c. ,00:=(< x <) / N (>
((re ix 11 v CAT x +) • oo 1

Indeed, this is the form we expected and it is sufficiently neat. The solution for "catamor-
phising" 0 being:

0= 0 • 1 (r • A l i
v
n i
-
x +) y o o l

Where oo denotes the "centre-swap" (< x <) ii (> x >) .
We still have to substantiate our claim (4). Knowing it is a useful claim, we roll up our
sleeves.

3 Calculation of V)
In the calculation to follow we use the polymorphic evaluation e (a curried form of the
apply function 0 , which in the literature is called evaluation frequently; so, be warned!):

E : X --- ((X -
4 Y)
— ,
Y)

defined by (e.z).7 = 0 (7 , z) = 7.z ; or, equivalently, E = 7 .
There is a link between the evaluation and the argument-swap, as follows

(
5
)
Assume tit : AWN ---, INtree) (I N —, INtree) such that i3

P = 1
1
5

(intro n , heading for fusion)
p.n = Wi .n

= I (
2
) I
(
5
)
)

(r • le v -H- 1 = e.n • 1101
4= { fusion)

(r • re v -H-) • At(e.n) = e.n • tp
= { 1
-
, v 4
- 4 -
1 -
c a l
c .
}

r • n• v -
H
- •
(e .
n
x
e i
n)
=
e
s
t
•
1
1
1

(I)

• . 1 1 1
, 1 1
• • • • • •

0.z = e.z • 9

Let us try to express the operands in the LHS of 1 as

r • n• e . n • a a n d -
H
- • (e . n
x
e . n)
—
c . 1 1
•
1 3

12

= NI or rather p = 111)) •

Indeed, (7
- •
n ') .
7
=
r .
n
=
r
s
.
7
.
1
1
(
E
.
n
•
r
)
.
7

More involved is the other one:

Hence

• (e.n x
= (7 E (IN —P Ntree) x (IN —P Ntree) , say

41- .((e.n).7
0
,
(e . n)
. 7
1
)

—{ def. e , * as infix operator }
70•
11
-
H
-
7
1
.
n

— i s lifted version of -H- 1
(110 7 1) •
7 1
,

— {def. E , 41- as prefix operator }
(e.n • -11-
-) . 7

(I)
I above I

(c.n • r) v (e.n • IR: . n • vb
= { distribution }

e.n • (r• v e . n •
{ exit n

IP

13

•

(?)•0:Z—)(1i- - tA)

7 — (70,70

This completes the proof of our claim (4).
Two intriguing questions are

• Can we give a generic solution for the catamorphisation of parametrised catamor-
phisms? Given a suitable setting we can, as will be demonstrated in the next section.

• We used -Tr , the lifted version of - I f D o there exist a setting and a theory for
lifting in general? Indeed, they do; but we don't feel it is in a presentable form yet.
(Coming next in this theatre?)

Parametrised algebras and catamorphisms
A parametrised f-algebra for some (unary) functor t is a map

: (A t —
A)

A)

i.e. for every z E Z , (k.z : At A is a f-algebra. Such a 0.z induces a t-catamorphism
10.4 : , where (L, in) denotes a fixed initial t-algebra. I n other words, 4)
induces a parametrised catamorphism

Using the argument-swap" " we see that1
stl • — o — o

has the right type for it to be a catamorphism, say It? • = 1Tb) , where
: (Z A) t —0 (Z --o A)

Let us try and calculate tk as we did in the former sections:
(1 • =- {

i
n
t
r
o
z
,
(
5
)
)

(OA = O M
I fusion

(i i) i 6 . , z • (c.z)t = E.Z o

Here we are stuck! How do we reformulate the LHS of (11) such that we may "exit" z ?
In our example t was polynomial and we had an expresion for it, so we could express
(e.z)f explicitly. Le. there was a map t such that, for every f , t . f = f t . This seems
a strange identity: a functor always has an arrow-part, why denote it differently? The
question is: are we allowed to calculate with it inside the given category; or, is the arrow-
part internalisable? A functor with the property that its arrow-part may be represented as
an arrow itself is sometimes called strong, the theatre of operations should be a Cartesian
Closed Category. For a discussion of strong functors and examples see 131. Assuming we
have such a setting and a strong functor, we resume our calculation

t 4 -
0
{
(
5
)
}

O a • (t • E).Z =
Let (:).(f,g) f o g } l a

(C) • (0 A t • e))-z = 1
1 - zt exit z "

- 1
'
i s
a n
i n v
e r s
i o n
}

© • (0 A t e) =
This means that we have a general expression for 6 , provided that the functor is strong
and assuming that i s an entity inside our categorical calculational system (strongness
of the exponent functor!). The argument swap in the express! -n may be pushed inside,
albeit (for the moment) using pointwise arguments:

• (10 a • c) = o • (0
1
' t •
c)

here Ô is the lifted version of 0 : x) . z 0 . (0 . z , x.z) T h e pointwise proof is
left as an easy exercise for the reader.
The extra fun of this expression is that the leftover swapped arrow t • c i s a natural
transformation that arises from a formalisation of lifting. Lifting is all over the place!
Although we didn't need this general expression in our example, it might be useful for a
general theory on attribute grammar problems still to be developed.

14

Acknowledgements
The depth in leaves exercise, though standard, revived after a catalyzing talk on recursion of
Norbert Volker on a Wednesday meeting at the Utrecht University. The material presented
here benefitted from many inspiring discussions with Maarten Fokkinga and Johan Jeuring,
especially with respect to catamorphising parametrised catamorphisms.

References
[0] Backhouse, R.C. and many others, A relational theory of datatypes, Notes workshop

constructive algorithmics, Hollum, 1990.

[1] Fokkinga, M.M., 'Dipling and mutumorphisms, Squiggolist 1, vol 4, 81-82, 1990.

[2] Fokkinga, MM. and E. Meijer, Program calculation properties of continuous algebras,
preprint 1990. •

[3] Verwer, N., Categorical semantics as a basis for program transformations, in: A.J. van
de Goor(ed), Proc. SION CSN90, deel 2, 539-554, 1990.

15

