4

Centrum voor Wiskunde en Informatica
. Centre for Mathematics and Computer Science

L.G.L.T. Meertens

An Abstracto reader
prepared for IFIP WG 2.1

Computer Science/Department of Algorithmics & Architecture Note CS-N8702 April

o b
. Y 3 o oi? "
Coantrunvor VW S0 indnravtiod

Attt

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim-
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by

the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

boy VWP

Copyright © Stichting Mathematisch Centrum, Amsterdam

COVER LETTER

"The thing can be done,” said the Butcher, "I think
The thing must be done, I am sure.

The thing shall be done! Bring me paper and ink,
The best there is time to procure.”

The purpose of this reader is to provide WG 2.1 members with a convenient
overview of my papers devoted to the Abstracto theme.

Not only have I included the papers that employ a notation that has face-
tiously been called "SQUIGOL", but also two earlier papers that, although
set in a quite different framework, shed some more light on the purpose
of the whole project, and also show something of the scientific trek I
have made before I came to the point where I am now. Between the papers
I have inserted some comments made in hindsight. I did not include any
of the (sizable) stack of presentations prepared for WG 2.1 meetings that
only exist in the form of overhead sheets, without connecting text.

For the WG 2.1 working documents I have tried to adapt the usage of sym-
bols to my current practice. The papers that have been published I have
left untouched.

The order in which the papers appear here is the chronological order in
which they were written. A better reading order may be:

-—- "Remarks on Abstracto®;

~— "Abstracto 84", Sections 1 - 4;

-— "Algorithmics™, Sections 1 - 3;

-- "Two exercises®;

-= "A Common Basis™;

-- "Algorithmics"™, remaining Sections;

-— "Some more examples®.

Amsterdam, April 1987 Lambert Meertens

Note CS-N8702
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

s R R R S S R e e R e IR e R s e S e

R G

An Abstracto Reader

prepared for IFIP WG 2.1

Lambert Meertens

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

&

| i G o i
et i o 4 o A e

5
0 mirt it i i i
AR i R SRS S

CONTENTS

REMARKS ON ABSTRACTO

Preliminary remarksSeieeecescnananas ceeeerasaan e ereasenanas

The paper itselfi.iiiiiiriinereeeacsnsnnsensnansaana ceesenan
ABSTRACTO 84--The next generation

Preliminary remarkscce0.. chceeaasas ceeee e is e -

The paper itselfcciiiiiitnncennns e, caeens

Erratacceceeae ceeeeeeaen ceeensenn B T T S T S .
ALGORITHMICS~-Towards programming as a mathematical activity

Preliminary remarkS ..:..eseeeessacccraccncnass cresecaesesennn oo

The paper itselfc0iiiincnns. et e aasresiescnesanean ceene
SOME MORE EXAMPLES OF ALGORITHMIC DEVELOPMENTS

Preliminary remarksiceeeenesinossosasseassacscnannasesceea -

The paper itselfcciiinirienesnnannnn Cemseaareeeas ceeenn
A COMMON BASIS FOR ALGORITHMIC SPECIFICATION AND DEVELOPMENT

Preliminary remarkScciseececennsssannnsccaasasaassansnss i aeas

The paper itselfceciiecionescsnnnsccarena Ceeaee e .ae
TWO EXERCISES FOUND IN A BOOK ON ALGORITHMICS

Preliminary remarkscccevevececas sasasesseiasainsaaas s

The paper itselfciciiiiiiennnn.. Chereverasse s cherees

fu

11
13
21

23
27

73
75

87
89

101
103

SREE R

N

e
AR

i

S

SR
SN

ARSI Gy
N

i

R

{5

it

o

R

REMARKS ON ABSTRACTO

He had bought a large map representing the sea,
Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

The first paper of this reader was prepared for the Oxford meeting of

WG 2.1 in December 1977. The term "Abstracto” must have been introduced
earlier in WG 2.1 circles, since there were two other presentations at
the meeting with that word in their titles.

One reason that I find this paper interesting is that it already impli-
citly identifies the "five unmistakable marks” by which we may know the
genuine article if we are to happen upon it during our explorations:

1. "Program transformation" is viewed as a mathematical activity of mani-
pulating algorithmic expressions, and a "transformation® as nothing
but the application of a theorem.

2. Abstracto is an open language, not developed with the aim of being
able to use a mechanical system.

3., No sharp distinction is made between an "algorithm"™ and a "problem
specification”, and executability (called "implementability" here) is
not required.

4. The real issue is the development of high-level concepts and nota-
tions.

5. There is already a clear emphasis on "iterators™, mirrored by the
current emphasis on homomorphisms, and even a genuine reduction (the
"OPT ... TPO" construction).

It is also interesting that a "textbook for an advanced course on algé—
rithmics™ is mentioned, an application area that has been giving guidance
to my thoughts until this day.

Also interesting to me is to look back at these first attempts to give
some concrete form to Abstracto. Reading this now gives me a feeling of
compassion for these authors who are pathetically groping around in pitch
darkness. It makes me wonder what I will think if I read my latest writ-
ings ten years from now.

A final point of interest is the appearance of this Bird character, who
is quoted with agreement several times (and again in the next few pa-
pers). It is clear that I must have recognized a kindred spirit in him,
but little did I suspect our fruitful future collaboration. I was to
meet Richard only four years later, at the Nijmegen meeting in 1981.

SR

s

S

]

e

S

si
i

i

i

s

&

e
&

i

i

5

e

ot
i
B

e
e

G

e

ALGOL Bull, 42 (1978), 56-63.

*
REMARKS ON ABSTRACTO

Leo Geurts
Lambert Meertens
Mathematisch Centrum, Amsterdam

1. ABSTRACTO LIVES

If an author wants to describe an algorithm, he has to choose a vehicle
to express himself. The "traditional™ way is to give a description in some
natural language, such as English. This vehicle has some obvious drawbacks.
The most striking one is that of the sloppyness of natural languages. Hill
[1] gives a convincing (and hilarious) exposition of ambiguities in
ordinary English, quoting many examples from actual texts for instructional
or similar purposes. The problem is oftem.not so much that of syntactical
ambiguities ("You would not recognise little Johnny now. He has grown
another foot.") as that of unintended possible interpretations ("How many
times can you take 6 away from a million? ({[,..] I can do this as many
times as you like."). A precise and unambiguous description may require
lengthy and repetitious phrases. The more precise the description, the more
difficult it is to understand for many, if not most, people. Another
drawback of natural languages is the inadequacy of referencing or grouping
methods (the latter for lack of non-parenthetical parentheses). This tends
to give rise to GOTO-like instructions.

With the advent of modern computing automata, programming languages
have been invented to communicate algorithms to these computers.
Programming languages are almost by definition precise and unambiguous.
Nevertheless, they do not provide an ideal vehicle for presenting
algorithms to human beings. The reason for this is that programming
languages require the specification of many details which are relevant for
the computing equipment but not for the algorithm proper. The primitives of
the programming language are on a much lower level than those of the
algorithm itself.

The evolution of high~level programming languages is one in which the
level of the available primitives increases towards the abstractions that
human beings use when thinking about algorithms. Still, the gap is very,
very large. Unfortunately, recent progress is not yet reflected in any
major, generally known programming language.

However, high-level programming languages have had a direct influence
on the presentation of algorithms in the literature. Many an author now
employs a kind of pidgin ALGOL to express himself. The pidgin
characteristics are all present: (a) the language is primarily a contact
language, used between persons who do not speak each other’s language;
although each "speaker" may have his own variant, there is mutual
understandability; (b) there is a limited vocabulary, and the syntax is
stripped down to the bare necessities, with elimination of the grammatical
subtleties that can only be mastered by a regular user; (c) the language is
not frozen but permits adaptation to various universes of discourse. The
main advantages to the author (and his audience) are that there is no need
for a preliminary and boring exposition of the algorithmic notation, that
mathematical notions and notations may freely be employed, and that the
resulting description is sufficiently precise to convey the algorithm

*
This paper is registered at the Mathematical Centre as IW 97.

3

without the deleterious burden of irrelevant detail.

This pidgin ALGOL is a language. It is not really a programming, nor a
natural language, but it has characteristics from both. It is not steady,
but evolving. How it will evolve we cannot know. But as any man-made thing,
its evolution can be influenced by our conscious effort. This language on-
its-way may be dubbed Abstracto. (The name "Abstracto" arose from a
misunderstanding. The first author, teaching a course in programming,
remarked that he would first present an algorithm "in abstracto'" (Dutch for
"in the abstract") before developing it in ALGOL 60. At the end of the
class, a student expressed his desire to learn more about this Abstracto
programming language.)

Abstracto ‘77 is a clumsy language, like any pidgin. Only when a pidgin
language becomes a mother tongue, which is not picked up in casual contacts
but is the primary language one learns and uses, can it become the
versatile tool that allows the expression of complicated thoughts in a
natural way. ’

There are at least two reasons for programming-linguists to study
Abstracto. The first is that we may hope to speed up the evolution of
Abstracto, by proposing and using suitable notations for important
concepts, either derived from existing programming languages, or newly
coined., (An excellent example are Dijkstra’s guarded commands.) The second
is that Abstracto may show us how to design better programming languages.

2. THE LANGUAGE OF MATHEMATICS

It is possible to draw a parallel with the language of mathematics.
Only a few centuries ago, the simplest algebraic equation could only be
described in an unbelievably clumsy way. This very clumsiness stood
directly in the way of mathematical progress.

Take, for example, Cardan’s description of the solution of the cubic
equation x” + px = q, as published in his Ars Magna (1545). The following
translation from Latin is as literal as possible, with some explanations
between square brackets that would have been obvious to the mathematically
educated sixteenth-~century reader:

RULE

Bring [Raise] the third part of the number [coefficient] of things [the
unknown] [i.e., p] to the cube, to which you add the square of half the
number [coefficient] of the equation [i.e., q], & take the root of the
whole [sum], namely the square one, and this you will [must] sow
[copyl, and to one [copy] you join [add] the half of the number
[coefficient] which [half] you have just brought in [multiplied by]
itself, from another [copy] you diminish [subtract] the same half, and
you will have the Binomium with its Apotome [respectivelyl, next, when
the cube root of the Apotome is taken away [subtracted] from the cube
root of its Binomium, the remainder that is left from this, is the
estimation [determined valuel of the thing [unknown].

Nowadays, there is a large basic arsenal of mathematical notions and
corresponding notations that may be freely used without further
explanation. Each specialism has, in addition, its own notations,
Nevertheless, each author is free to introduce new notations as the
circumstances require.

Which notations survive in the struggle for life is determined by
several factors, of which the ease of manipulating expressions is probably

4

the foremost one. Still, several notations may coexist, each with its own
advantages and disadvantages (like Newton’s versus Leibnitz’s notation for
derivatives). Generally, mathematicians do not bother too much about
syntactical ambiguity and do not even stoop down to indicate operator
priorities, as long as the intended meaning is conveyed to the gentle
reader. (How different from that adversary, the automaton!)

The wildgrowth of nctations in new fields can, under circumstances, be
effected beneficially by a wore or less authoritative body (possibly one
person). Donald Knuth’s proposal [2] for, among others, the use of a Greek
letter theta to denote the class of functions of some order, constitutes an
intervention for lack of an established notation. Such interventions are
not to be confused with standardization efforts! Only in a frozen field is
it possible to standardize, or else we have a case of death by premature
exposure to frost (hopefully of the standard).

It is difficult to characterize what constitutes good notational
practice. Not only is "elegant" vague, but where notation is concerned, it
is just a synonym for "good to use'". Some criteria are: conciseness,
similarity to notations for similar concepts, and relative independence of
context., There are, of course, enough dubious notations, such as lim f(x) =
a, where the equality sign has a subtly different meaning. (An extremely
bad case in ALGOL 60 is the switch declaration SWITCH s := 11, 12, 13.)

3. IN SEARCH OF ABSTRACTO 84

We expect that the introduction of better notations will prove as
important for the development of "algorithmics", as it has been - and still
is - for mathematics. One must, of course, first identify the concepts
before a notation can be developed. It seems unlikely that progress will
come from selecting mind-blowing concepts, if only because it is hard
enough to think about algorithms without having one“s mind blown. If the
parallel with mathematics is not deceptive, the important point is the
manipulation of "algorithmic expressions". From a paper by Bird [3],
describing a new technique of program transformation, we quote: "The
manipulations described in the present paper mirror very closely the style
of derivation of mathematical formulas [...] As the length of the
derivations testify, we still lack a convenient shorthand with which to
describe programs, but this will come with a deeper understanding about the
right sequencing mechanisms.”

At first sight it may seem attractive to view an algorithm as a
(constructive) solution satisfying a correctness formula

{r} X {q}.

One can develop a notation, like Schwarz’s generic command p = q [4], for a
solution (or the set of solutions) of the correctness formula. There must
be some constraint oun the variables that may be altered by the algorithm,
since it is hardly helpful to know that

X=Xy AY =yg=>X= GCD(xO,yO)
is solved by
X =X 1= 3,

Yo

0

1f v stands for the alterable variables, and we write q[v := e] for the
result of substituting e for v in g, then p = q can already be expressed in
Abstracto “77 by

v := € {e : pogqlv :i=e]l},
where "¢" denotes the (indeterminate) selection operator.
1f one interprets p = q at the same time as a formula expressing the
(proved) existence of a solution, some proof rules may be given. For
example, we have a proof rule

p ® qlv := e]

P=4q
(corresponding to the solution v := e), the proof rule

Pp=4q, q =r

p=r

(corresponding to p = q; q = r), and the proof rule

pl = ql, p2 =q2

pl v p2 = ql v q2

(corresponding to IF pl » pl = ql [} p2 » p2 = q2 FI). By turning a
derivation of p = q upside down, a solution is constructed. Unfortunately,
there is no suitable rule for a solution of the form

DOb>pAb=poOD.
(The rule

PADb=p

P=pA—b

does not express termination and allows the derivation of p = p A —b for
arbitrary p and b.)

There are several other courses one may follow to search for more
constructive elements of Abstracto. One is similar to the way high-level
programming language elements originate: consider existing (Abstracto)
programs, and find similar "code sequences" that appear to be the
expression of the same more abstract concept. Just like

Li: IF NOT condition GOTO L2
perform something
i GOTO L1
L2

may be expressed more clearly by

DO condition -+ perform something OD,

one might wish to express

DO IF okl (e)
THEN IF v < vopt
THEN eopt, vopt :
FI WHERE v = f1 (e)
ELIF ok2 (e)
THEN IF v < vopt
THEN eopt, vopt := e, v
FI WHERE v = £2 (e)
FI
oD

as

eopt, vopt := FOR e € s
OPT okl (e) » £1 (e)
0 ok2 (e) +~ £2 (e)
TPO.

(This is not a serious proposal, but neither is it a mere joke.)

Instead of this bottom-up approach a more analytical consideration of
the human way of thinking about algorithms may prove, in the long run, more
fruitful. In contrast to the process of developing a program, given an
algorithm, it appears that little is known about this subject. Descriptions
of algorithms in natural languages do not provide much insight, presumably
because of the poor expressiveness for algorithmic notions. (One tendency,
however, is very noticeable, and is maybe an indication that is worth
following up: what might be called the "and-so-on" descriptions, and the
"afterthoughts”. We surmise that this reflects the emergence of algorithms
as the jump to the limit of a sequence of approximations.)

Perhaps the best approach is the following. Suppose a textbook has to
be written for an advanced course in algorithmics. Which vehicle should be
chosen to express the algorithms? Clearly, one has the freedom to construct
a new language, not only without the restraint of efficiency
considerations, but without any considerations of implementability
whatsoever.

The following is an attempt to indicate some desiderata for Abstracto
84.

Orthogonality is a must. For a lingua franca without frozem and formal
description, exceptions are out of the question.

Abstracto 84 has an ALGOL flavor, but is certainly not committed to the
control structures or any other particular comstruct of any ALGOL
whatsoever.

With the exception of truth values, Abstracto 84 has no predefined
types, but only ways to construct new types from "application oriented"
types. Operations on objects are outside the realm of Abstracto 84 proper,
except-such operations as have a generic meaning for a class of types
constructed by means provided by Abstracto 84 (cf. Wilkes [5]).

Although there are variables for objects of any type, these variables

7

are not considered as new objects. There are no pointer values (except when
introduced for a specific application).

Similarly, procedures are not considered as objects which may be
assigned etcetera.

Conditions may contain defining identifiers which are also bound in the
controlled clause selected if the condition succeeds.

4, GLIMPSES OF ABSTRACTO 84

Due to our near-sightedness, it is difficult to discern more than some
outlines of Abstracto 84. Of some prominent features a glimpse may now and
then be caught. It should go without saying that all mathematical notation
remains welcome to Abstracto.

First of all, it is clearly settled, even in this early stage, that
Abstracto is rich in "iterators" (operators or other constructs that
operate on generators in an Alphard-like sense). For example, one may write
a condition

Je € s: ple),

and if this succeeds, then in the scope of the selected clause, if any, e
accesses some element from s satisfying the predicate p. Such constructions
may provide a clear and concise description that is quite close to the
algorithm originally conceived. Also, if it is immaterial for the algorithm
in which order elements are selected, it is important that this be
expressed.

The control structures of Abstracto 84 seem to be centered around
guarded command sets (Dijkstra ([6]) of the forms

G, » S] { 02 - S2 0 s] Cn -> Sn.

1
The basic meaning of such a form is: if at least one of the C, holds (where
the evaluation of a condition is supposed to have no side effects), then
some corresponding S, is selected (but not yet evaluated). In the
terminology of the AﬁGOL 68 Report, a scene is selected, composed from that
S, and an environ whose most recent locale may have been added because of
tﬁe declarative form of C,.

The meaning of IF ... FI and DO ... OD may now be defined easily. It
appears, however, that in Abstracto 84 several other control structures may
be defined with the guarded commands at their cores, as suggested by the
FOR +.. OPT ... TPO construct in the previous section. The basic simplicity
of the concept, in conjunction with its indeterminacy, should warrant ease
of manipulation.

Many types, specifically those that can be treated satisfactorily by
so~called axiomatic/algebraic specifications, can be defined in the way
exemplified below:

tree ::= nil | atom (val: item) | pair (left, right: tree).

(We write "::=" to stress the similarity with BNF, although this "syntax"
of objécts is more abstract than usual, since the nodes in the "parse tree
of an object are labelled; in the example, '"nil", "atom'" and "pair" are
node labels.) This notation is similar to Hoare’s notation for recursive

8

data structures [7]; it carries no other information than is relevant from
an abstract algorithmic point of view. There are three nice things about
this way of defining types. In the first place, it is easy to derive in a
straightforward way "axiomatic" specifications in the style of Guttag (8],
but the notation is much more compact. (For the above example, we would
obtain nine lines for the discernible functions and eighteen for the
axioms.) Secondly, this way of defining offers a unification of three
well-known concepts:

records, as in

complex ::= pair (re, iﬁ: real);
(disjoint) unions, as in

arithmetical ::= i (val: int) | r (val: real);
PASCAL scalars, as in

color ::= red | blue | green.

Finally, it is easy to instruct a compiler to handle such definitions.
The only drawback is the inefficiency, reason why such definitions are
maybe Abstracto rather than Concreto.

Objects of a thus defined type can now be subjected to a "conformity
condition”", as in

DO £ FITS
pair (tl, t2) > t := t2
OD.,

In this example, if the condition succeeds, t2 accesses the tree t.right.

5. A POSSIBLE PITFALL

Unless we are very mistaken, program development by successive "program
transformations'", i.e., a sequence of manipulations on expressions which
represent algorithms, has a promising future. Each transformation rule is a
theorem. To us, computer maniacs, the perspective is tempting to create a
data base of transformations to be applied mechanically. Since the
applicability of each transformation is also checked mechanically, we have
done away with all bugs (except for those in the original, pure, algorithm,
possibly a problem specification). What vista! Of course, we must invent
for our Abstracto language some syntactic notions to allow expression of
the applicability of transformations.

The last sentence should make it clear already that the pursuit of this
Utopian concept = unless one contents oneself with trivial transformations
that might as well be applied directly by a compiler - spoils the
simplicity of Abstracto. Worse yet, the coacept wholly ignores the fact
that in mathematics for none but the simplest theorems the applicability
may be checked by "syntactical' means. If computers would have dated back
to the inception of modern mathematical notation and only mechanizable
transformations would have been studied, the so-called special products
would,-presumably, still be among the high-lights of mathematical
knowledge.

To quote once more Bird [3]: "we did not start out, as no mathematician

9

ever does, with the preconception that such derivations should be described
with a view to immediate mechanization; such a view would severely limit
the many ways in which an algorithm can be simplified and polished."

REFERENCES

[1] Hill, I.D., Wouldn’t it be nice if we could write comput~r programs in
ordinary English - or would it?, Computer Bull. 12 (1972) 306-312..

{2] Knuth, D.E., Big omicron and big omega and big theta, SIGACT News 8
(1976) 2, 18-24,

{31 Bird, R.S., Improving programs by the introduction of recursion, Comm.
ACM 20 (1977) 856-863.

{4] Schwarz, J., Generic commands - a tool for partial correctness
formalisms, Computer J. 20 (1977) 151-155.

[5] Wilkes, M.V., The outer and inner syntax of a programming language,
Computer J. 11 (1968) 260-263.

[6] Dijkstra, E.W., Guarded commands, nondeterminacy and formal derivation
of programs, Comm. ACM 18 (1975) 453-457.

{7] Hoare, C.A.R., Recursive data structures, Stanford University Report
C5~73-400 (1973).

[8] Guttag, J.V., Abstract data types and the development of data
structures, Comm. ACM 20 (1977) 396-404.

10

O

ABSTRACTO 84

The last of the crew needs especial remark,
Though he looked an incredible dunce:

He had just one idea--but, that one being "Snark,"”
The good Bellman engaged him at once.

The following paper was written during a stay at New York University in
1979. It is not a paper I am particularly fond of, but it represents a
necessary stage I had to go through in my qguest. Also, the objectives of
Abstracto are formulated here more clearly (in Sections 3 and 4) than in
the first paper.

One specific reason why I do not like the paper is that the technical
part is full of bugs. I have appended a list of errata, just in case.

11

e

o

S

s

BB

i

S

RO

o

S

i

R

R
PR

i

i

A

A0

i

#

G

s

1

S

oss
i

i

e

iy
it

S

S

AR

Proc. of the 1979 Annual Conf.,
ACM, Detroit (1979)

33-39,

ABSTRACTO B4: THE NEXT GENERATION

Lambert Meertens
Mathematical Centre
Amsterdam

Abstract. Programming languages are not an ideal
vehicle for expressing algorithms. This paper
sketches how a language Abstractg might be
developed for "algorithmic expressions” that may be
maniifu ated by the rules of "algorithmics", quite
similar to the manipulation of mathematical expres-
sions in mathematics. Two examples are given of
"abstract" algorithmic expressions that are not ex-
ecutable in the ordinary sense, but may be used in
the derivation of programs. It apfears that the no-

tion of "refinement'" may be replaced by a weaker
notion for abstract " algorithmic exgressions,
corresponding also to a weaker notion of 'weakest

precondition”.

1. THE ABSTRACTO PROJECT

Since December 1977 IFIP Working Group 2.1 has
been working on the investigation of "the proper-
ties, feasibility and usefulness of a language
helping the specification and comstruction of good
algorithms". If this description seems vague (it is
so on purpose), it nevertheless describes 'some-
thing" that is almost tangible by its conspicuous
absence from the programmer’s tool kit.

A programmer who is writing a program is in
fact encoding an algorithm in a language for some
machine. This need not be a piece of hardware; it
can be '"the" abstract machine for FORTRAN or some
other high-level language. The development of an
algorithm down to the machine level takes many
steps, some of which require ingenuity, but the
larger part of which consists of clerical manipula-
tions and book-keeping. This is partly due to the
(not always unjustified) wish of writing an effi~
cient program, and partly to the fact that even the
highest-level languages require the specification
of details that are relevant to the machinery, but
not to the algorithm proper.

It would be good practice if the programmer
would first write down the algorithm before start-
ing to code it as a program. But now, in what way?
Some "algorithmic" language is needed. The avail-
able languages, however, are programming languages.
(Hil1{5] shows convincingly how unsuited npatural
language is for this purpose.) So we are back were
we started: to write an algorithm in a programming

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/ or specific permission.

©1979 ACM 0-89791-008-7/79/1000/0033 $00.75

F

13

language is to write a program.

In a nutshell, the aim of the Abstracto project
is to fill the gap by designing a language specifi-
cally for the purpose of describing algorithms. The
language should be a suitable vehicle for applying
established programming techniques, and thereby
also for teaching such techniques, without danger
of having to explain ideosyncracies.

The Abstracto project is still in its early
phase. There is not even an approximation of con-
sensus about the basics of Abstracto. In this paper
some ideas are presented; it should be stressed
that these represent solely my position and may not
be taken for opinions of WG 2.1. Although some log-
ical formalism is used in this paper, the reader
should be warned that this is only done for the
purpose of conveying a meaning; nothing is alleged
to be "proved" here.

2. ABSTRACTO AS A PIDGIN

When people who do not speak a common language
establish a regular contact and want to communi-
cate, an interesting phenomenon happens: they
develop a "pidgin" language, clumsy but effective.
A similar phenomenon has happened in Computer Sci-
ence literature: a kind of pidgin ALGOL has
developed there, from the need of authors to ad-
dress a broad audience without having to explain
over and over the meaning of all notations em-
ployed. This pidgin ALGOL is a language, although
it is not frozen, let alone formalized. In fact, it
has some of the characteristics from natural
languages.

A major similarity is the property that this
language is gradually evolving, to meet the needs
in communicating algorithms. One may (and 1 do)
take the position, thus mitigating the grimmess of
the situation sketched in the previous section,
that pidgin ALGOL covers to some extent the need
for an algorithmic language. Moreover, the "natur-
al" course of evolution will be to tune the
language to the requirements of developing program—
ming methodology. However, we are still far away
from what could be achieved even today. As long as
we are faced with the situation that the language
has to be mastered by picking it up from casual
contacts, it will of necessity drag along trails
that have been beaten ‘years before.

Viewed in this perspective, the Abstracto ef-
fort is aimed at speeding up evolution by proposing
and using suitable notations for important algo-
rithmic concepts. Of course, it will be possible

R

N

take a snapshot of
to clean up the

maybe desirable) to

(and
Abstracto at regular intervals,
picture and to present it as, say, Abstracto 84.
But this will not stop Abstracto from evolving on.

The obvious advantage of freezing an Abstracto
X is the possibility of referring to a "“standard"

when publishing an algorithm. Moreover, when a
language is formalized, it also becomes possible to
formalize proof rules and to prove their comsisten-—
cy and completeness. These are not, however, the
main reasons why I feel the effort of freezing a
version of Abstracto at some future time may prove
worth the trouble. It seems much more important to
me that this forces one to clarify issues that
still appear murky, thereby deepening the under-
standing of what is going on. Also, it may 'show us
how to design better programming languages.

3. ABSTRACTO AND TRANSFORMATIONAL PROGRAMMING

Unlike many fads in Computer Science, the rela-
tively recent technique of 'transformational pro-
gramming” appears to be quite promising. One should
of course not make the mistake to expect that it
opens up a royal road to program construction; no
technique ever will. But the basic idea 1s quite
simple and sound, its value has been demonstrated
on diverse, sometimes even mot trivial, examples,
and it provides a framework for expressing an ex-
panding body of knowledge about programming and for
developing new programming techniques (or applying
“old" programming techniques known under the col-
lective title of Structured Programming). In
essence, the method of transformational programming
consists of (a) writing an algorithm, as pure and
sinple as possible, to meet a given specification
as to correctness, and (b) next successively
transforming the algorithm, by relatively simple
correctness—preserving transformations, to meet
other requirements, such as those stemming from ef-
ficiency considerations.

Transformations may be global, replacing the
whole program under development by a new text, but
the typical transformation is local, effecting only
a small part. Ideally, the algorithm at the top
should be identical with the correctness specifica-
tion, but ‘we do not know in general how to go down
from that level by something in the spirit of a
transformation.

Well-known transformations are stepwise refine-
ment . and recursion removal. It may well happen,
however, that at some stage of development recur-
sion introduction (Bird{2}) is in order to prepare
for a more advantageous step.

The nature of transformational programming is
quite aptly described by Bird: "The manipulations
[+s.] mirror very closely the style of derivation
of mathematical formulas". He also remarks: "As the
length of the derivations testify, we still lack a
convenient shorthand with which to describe pro=
grams".

It is here that Abstracto should step in. It is
important to realize that the objects one manipu—
lates upon are not the algorithms themselves, but
are expressions: algorithmic expressions. In fact,
for most steps it is impossible to maintain that
there occurs a change in the algorithm (unless one
refuses to admit the existence of 'the” Euclidean
algorithm, or "the" sieve of Eratosthenes). For
these algorithmic expressions, we need notationms.

&

14

understandable to an automaton,

None of the existing programming languages has been
designed with a design objective as ease of manipu-

lation. On the contrary; if one would not know
better, ome would in many cases be tempted to be-
lieve they were designed on purpose to be transfor-
mation resistent: the semantic peculiarities often
make it devilishly hard to verify that a particular
step is applicable. Moreover, the verbosity of ex~
isting notations makes it aggravating to write down
the derivations and makes it hard to keep track of
what is happening. It is to be expected that the
introduction of better notations will prove as im-
portant for the development of "algorithmics" as it
has been for mathematics.

4. DESIGNING ABSTRACTO 84

To make Abstracto catch up with the state of
the art, it seems wise to go through the motions of
designing a language from scratch. One should have
the freedom of ignoring established but cumbersome
notations and conventions.

There is, however, a much more important degree
of freedom that should be explored and exploited:
unlike any programming language, Abstracto is ex-—
empt from the requirement that its texts should be
let alone that it
should be possible to coerce it to execute the pro-
cess described by an algorithmic expression from
Abstracto merely by proceeding to feed it the
source text. Rather than trying to extend the
machine to higher levels of abstraction by erecting
scaffolds from the hardware, we can start in the
blue sky and go down from there. It is nice, of
course, if we can reach solid ground, but this is
not a prerequisite.

Nevertheless, it should be possible to write
more or less conventional programs in Abstracto al-
s0. This means that a piece of program like

z:=1 § x1=2 § zi=zex

is fine. This leads to the question of types and
data structures in Abstracto 84.

It is desirable that the programmer can use ob-
jects of any type conceivable. Rather than creating
some heavy mechanism for adding user-defined types
to the language, it is far easier to allow the de-
finition of any new type, including the semantics
of the operations characterizing the type, as pre-
liminaries to the algorithm. If the type under con-
sideration is well established (e.g., integers),
there will often be no need to explain beforehand
the various operations used. So Abstracto 84 has no
predefined types (with the exception of truth
values, and maybe other types linked up with con-
trol structures). Operations on objects fall out=
side the realm of Abstracto 84 proper. Apart from
these "application oriented” types, there are types
constructed from existing types (e.g., sets).
Abstracto 84 may suggest some unification in the
notations for some classes of such types; the gques—
tion whether this "belongs" to Abstracto 84 or not
is not particularly relevant.

As a consequence, all of established mathe-
matical notation is welcome in an Abstracto 84 pro-
gram. The syntax of Abstracto 84 will not attempt
to define what may appear on the right-hand side of
an assignment. Remember that this is acceptable,
since Abstracto 84 texts are not required to be in-
terpretable by machine.

The same liberal attitude can be taken for the
whole of Abstracto 84, The rule would be: any nota-
tion or convention that is sufficiently clear may
be used, provided that its meaning, if not self-
evident, is explained in the preliminaries. The ef-
fort in designing Abstracto 84 should go in estab-
lishing which new, or not yet commonly accepted,
notations are sufficiently important to exempt them
from the requirement of preliminary explanation for
use in Abstracto 84 expressions. When designing a
language (especially by committee) it is often
quite hard to keep the language from being clogged
by a multitude of things, for none of which indivi-
dually there is a particularly compelling reason to
ban ‘it, Thus, the liberal rule may save many tears:
cherished notations may be used anyway, even if no
part of Abstracto 84 proper. In fact, it is my
feeling that this rule is essential for the viabil-
ity of the project. Just consider what would happen
to a language Mathematico 84 for mathematical ex-
pressions that took a rigid and exclusive attitude
as to what was allowed: the inevitable expressive
shortcomings would be as many reasons to shun it.

In the sequel, '"Abstracto 84" will refer to
Abstracto 84 proper, the core of an extensible
language - where the extension mechanism is not
part of the language. An "algorithmic expression”
(or, for short, "expression") is a piece of text
written in the, possibly extended, language. It may
be helpful to think of expressions as "statements",
since they describe a process to be executed. Some-
thing 1like "z.x", conventionally called an expres-
sion, will be called a "unit" in the sequel of this
paper. ‘

It is well known that many mathematical nota-
tions are potentially ambiguous. In ‘practice, this
is not harmful: if a given mathematical expression
turns out ambiguous, parentheses will do. Ambiguity
here does not mean that there is more than one
parse, but that there exist two or more plausible
parses with different meanings. Similarly, one
should not worry too much about potential ambigui-
ties for algorithmic expressions. If priority con-
ventions are established, their purpose is to save
the writing of parentheses, not to compel insertion
where the intended meaning is already clear enough.
So the syntax of Abstracto 84 is abstract rather
than concrete.

1f §; and S) are expressions, than so is $1;S;.
Expressed in operational semantics, the meaning is
sequential execution. By the above rule, since
(513527583 is clearly equivalent to S;;(53;53), we
may write 83359383, and so on. Other control
mechanisms in Abstracto 84 are given by the guarded
command constructs of Dijkstra[4]. However, for the
ease of manipulation, we write "..." and "*(...)"
rather than "IF ... FI" and "DO ... OD". So we have

b1—>sl 0 «os ubn~*sn,
meaning (operationally) that some i 1is selected
such that the guard bj holds, whereupon S; is exe-
cuted. If no such i exists, the meaning is unde-
fined (the same as that of an infinite loop). The
meaning of the loop expression

*(b—>S)

is the same as that of

b — S;%(b—»s)] —b — skip.

&

Although it is envisaged that more control
structures may be needed in Abstracto 84, it is
helpful if their meaning is defined in terms of
simpler expressions, so that an existing body of
transformations becomes automatically available,
For expressing concurrency (parallel execution),
however, this is impossible with the concepts given
so far. A possible notation is not hard to devise;
the problem is to select a proper synchromization
mechanism.

A basic type of algorithmic expression is the
assignment expression. Following Dijkstra again,
Abstracto 84 allows parallel assignment expressions
such as

XY i¥ <Y,X.

This is quite natural, since the assignment expres—
sion might result from transforming an assignment
expression

z = iz

using z = x + iy.

5. ABSTRACT ALGORITHMIC EXPRESSIONS AND REFINEMENT

So far we have seen nothing exciting. If it is
claimed that Abstracto 84 is of a higher level than
SETL, say, this is not because it usurps by exten-
sion the notations of SEIL. The reason is, rather,
that expressions in Abstracto 84 need not be exe-
cutable in the usual sense.

Let us consider for a moment what we mean by
"executable". It is the property of an expression
that makes it possible to have it executed by a
computer. Now, if we have a mathematical expression
like "21/7", we know that its meaning is: a number
x such that 7x = 21. So we can view "21/7" as a
concise problem specification: find a number x such
that 7x = 21. There exists a well-known algorithm
to solve this type of problem. In many computers it
is implemented in the hardware. High-level program-
ming languages allow for notations to invoke that
algorithm. The usual notation for that is "21/7".
This is a concise specification for the solution to
the above problem: divide 21 by 7; the result will
be the required number. Obviously, it is a matter
of viewpoint whether "21/7" specifies a problem or
a solution. We have almost forgotten that it may be
considered as a problem, although at some time in
our lives we have certainly done so. In general, a
problem specification for a problem that falls in a
class where there exist known algorithms to solve
the problem, may be considered simultaneously as a
solution specification. In mathematical practise,
the distinction between the two is very vague, a
matter of taste. This vagueness is in fact benefi~
cial.

Similarly, we need the same vagueness in
Abstracto 84. It may happen that a given expression
looks so suspiciously like a program that we may
successfully feed it to a compiler and have it rum.
Now consider the subset EA (Executable Abstracto)
of expressions for which this works. It is claimed
that EA is a fuzzy set. As time proceeds, more and
more algorithms may be incorporated in the seman-~
tics of programming languages to cover parts of
Abstracto that were, until then, deemed "unexecut-

15

able". By that act, EA grows. Thus, the experience
gained by using Abstracto may serve as a guideline
for the development of programming languages.

Abstracto 84 should provide expressive capabil-
ities for a broad range, covering very clearly
problem specifications on one end, and very clearly
solution specifications on the other. The notion of
“algorithmic expression" encompasses the whole
range. By applying the arts and techniques of Algo-
rithmics, these expressions may be manipulated. (To
my taste the term "algorithmics", by analogy to
“mathematics", 1is far better than the .usual
“Iransformational Programming". After all, mathe~
matics is more than 'Transformational Arithmetic”,
even though much mathematical effort is aimed at
evaluating expressions). The field of algorithmics
is still underdeveloped, of course; mathematics
could only take its flight when suitable notations
came to be developed.

It may prove that the most important part of
Abstracto 84 is the in-between range: no longer
clearly a problem, but not yet clearly a solution.
This is the part where notations are most lacking.

Even though the notion of "executability" is
fuzzy, it is useful to have some terminology to in-
dicate the concept. Since I prefer a more neutral
terminology, 1 propose to call an expression "con-
crete” if it is free of "unexecutable" notations,
and "abstract" otherwise. The task of a programmer
is to derive concrete expressions from abstract
ones.

It should be stressed that "abstract” does not
imply "vague". An abstract expression may have a
very precise meaning. But this meaning need not be
defined in terms of: first do this, next that, and
SO On.

In order to search for powerful abstract ex-
pressions, we must have an idea in what way we want
to use them. In mathematics, the central notion is
that of equality. In algorithmics, however, anoth-
er, asymmetric relationship plays a central role:
that of refinement. Speaking informally, an expres=~
sion § is refined by another expression S° if any
concrete realization of S is also a concrete real-
jzation of S. Note that this does not exclude the
possibility that § is concrete and S° is abstract.

It is necessary to define the meaning of re-
finement more formally. For p and q assertions, and
S an expression, let the correctness formula
{p}s{q} stand for: a concrete realization of §, ex-
ecuted with precondition p, will terminate and
result in the postcondition q. § is then refined by
S” if

for all p and g, if {p}S“{q}, then {p}S{q}.

This definition is, however, circular, since a con~
crete realization of S is a concrete expression C
such that S is refined by C. We need an independent
characterization of the semantics of abstract ex-
pressions. From the various, more or less
equivalent, methods for defining semantics, that of
weakest preconditions seems quite convenient, since
it allows in a natural way to express the indeter-—
minacy of the meaning of abstract expressions. Let
wp(S,q) stand for the weakest precondition of S en-
suring termination with q. Then S < 5 means:

for all g, wp(S,q) implies wp(S5q).

&

16

This notion of refinement is identical to that in

the work of Back[l], which provides a rigorous
mathematical foundation. It is obvious that the re-
lationship is reflexive and transitive:

5 <53

if § < 8§ and §” < S% then S < §"
A very important property is the following. Let
f(S) be an algorithmic expression, containing § as

a component expression. Then we have:
if § < 8% then £(S) < £(5°).

(This property crucially depends on the way the
meaning of expressions is defined in terms of the
meanings of their component expressions. A suffi-
cient condition is that the weakest precondition of
a composite expression is a positive monotone func-
tional of the weakest preconditions of its com-
ponents. This is certainly the case for all conven-
tional composition methods.)

It appears that the notion of <~refinement is
stronger than is necessary for abstract expres-
sions. Let C be restricted below to the set of con-
crete algorithmic expressions. Then we can define
§ <* 5" to mean:

for all €, if 8 < C, then § <C.

This corresponds to the original informal defini-
tion. Clearly, if S < §", then 8 < §°. The con—
verse need not hold. The important thing to notice,
however, is that § <° C implies 8 < C. In other
words, if it is possible to derive .a concrete ex-
pression for S5 using <’~refinement, this is also a
correct derivation under <~refinement. It may be
possible that the weaker type of refinement does
lead us into blind alleys, but in no way does it
lead to incorrect programs.

It is clear that we have lost some "guidance",
so a legitimate question is what we have gained.
First, one should realize that the original refine-
ment definition is no guarantee against blind al-
leys in the derivation process. In many cases, one
proceeds with a goal in mwind, knowing beforehand
that this road leads to success. The gain is know
that, hopefully, the weaker requirements for the
applicability of a refinement step are easier to
verify.

It is possible to define a corresponding type
of (weaker) weakest preconditions:

wp’(5,9) = A wp(C,q).
Then § <* §° is equivalent to
for all q, wp“(S,q) implies wp-(S%,q).

Unfortunately, it is not clear how a calculus
might be developed for wp’. A practical approach
may, however, be found along the following lines.
Let cr ("concretely realizable") stand for any
predicate over the expressions, chosen such as to
satisfy

(i) for all C, cr(C) holds, and
(ii) for all S, wp(S,true) implies cr(sS).

Take for wp* any predicate transformer satisfying

wp(S,q) = wp*(5,q) & cr(s).

Any wp* thus defined satisfies

wp(S,q) implies wp*(S,q), and
wp*(S,q) implies wp‘(S,q).

Now define § <* S” by:
for all q, wp*(S,q) implies wp*(S%q).

This <*-refinement has again all desirable proper-
ties, like reflexivity and transitivity. The free-
dom in choosing cr is quite large. One extreme is
to choose cr(S) identically true for all §; this
leads to wp* = wp. The other extreme is to consider
termination a prerequisite for concreteness, and to
choose cr(S) = wp(S,true). This allows the choice
for wp* of the weakest precondition for partial
correctness (without termination)., In general,
given a choice for cr, the range of choice for
wp*(5,q) has as extremes at the strong end wp(S,q),
and at the weak end cr(S)>wp(S,q). The freedom of
choice should be used to obtain manageable formulas
and rules.
It may appear that cr also has to satisfy

if 8 <* 5” and cr(S°), then cr(S).

In fact, this is not necessary. It is sufficient if
we have:

if § <* C, then § < C.
This is indeed the case, as is easily verified.

Dijkstra{4] gives rules for computing wp for
compound expressions. It is desirable that the same
rules go through for wp*, even if the component ex-
pressions are abstract. (However, for the loop ex-
pression we need the weaker precondition given by
Boom[3], because of the indeterminacy allowed in
abstract expressions.) Also, for an expression like
$1382, we want cr(S3;S7) to hold whenever cr(Sj)
and cr(Sp) both hold, and so on. This turns out
possible. If we choose

Cr(Sl;Sz) =
cr(S3) & (wp*(S;,true)owp*(Sy,cr(S;y)),

then it is straightforward to verify that
wp*(51352,9) = wp*(51,wp*(S3,q))

is acceptable as definition.
take

Similarly, one can

cr(b1—>51 0by—>53) =
(by ocr(81)) & (byocr(Sjy))

as definition and obtain the usuzl formula for wp*,
and so on.

6. EXAMPLES OF ABSTRACT ALGORITHMIC EXPRESSIONS

Before giving two examples of abstract expres-
sions, one notation has to be explained. Let A
stand for an algorithmic expression or an asser-
tion, v for a list of variables and u for a list
(of the same number of elements) of units. Them the
notation

17

Afvi=u}

stands for A with all free occurrences of v in A
replaced by u. A more conventional notation would
be Alu/v]. However, if other than simple variables
are allowed, the implied substitution should not be
performed literally. For example,

(al4] > 0)fal242]:=b] = (b > 0).

we can express the weakest
expressions quite

Using this notation,

precondition of assignment
elegantly:

wp(vi=u,q) = glvi=ul.

Let us start at a high point. Many problems can

be described as the task of going from a precondi-

tion p to a postcondition q. Thus, we are led to
consider problem descriptions of the form

{p}?{q}.

There is, however, something essential lacking.
This can be seen by looking at the description

{x=x0,y=y0}?{x=x0,y=y0, 2=CCD(x,y) }+
This has many presumably unintended solutions, like
X,X0s¥s¥0s2 = 1,1,1,1,1.

There should be a way of indicating the variables
that may be changed in the process. This leads to

{p)v:=2{q}.

This would do, but it is cumbersome. A better nota-
tion for this "problem expression" is

vi=[p=pq],
where v stands for a list of variables. (Warning:
[p=»q] 1is not a unit list, so a substitution

fvi=[p=+q}} is meaningless.) In pseudo-operational
semantics, the meéaning is: set v to some value such
that, if initially p held, then now q holds. If p
does not hold, any value will do. (One might also
not require termination in the latter case; the
merits of this variant definition have not been ex-
plored sufficiently.)
An example of a problem expression is

y:=[x>0 =» y2=x & y>01.
This could be realized by the concrete expression
ye=sqrt(x).

If we compute the precondition by transposing
this in the formalism of Back{l] and using his
rules, we obtain

wp (vi={p=>q],r) =
(po(3v:: qlvi=v-])) &
(Yv: g>r).
Clearly, we may take
er(vi=[p=>q]) = p2>(3v': qlvi=v’})

and

wp*(vi={p=pql,r) = vv: q > r.
In fact, cr(vi=[p=>gl]) = wp(v:i=[p=>ql,true).

Some properties of the new type of expression
are given by the following list of rules:
(a) If p implies p’ and q° implies q, then

vi={p=>q] <* vi=[p=>q’];
vi=[p=>q] <* v,v-:=[p=pq), where v’ is a fresh
list of variables;
vi={p=br] <* vi=[p=pql; vi=[q=>r];
vi=[pyvpy =* gl <*

p1—>v:i=[py=>ql I py—>vi=[py=>ql.

(b)

(c)
(d)

Rule (&) corresponds to the usual rule of conse-
quence. Rule (b) allows the introduction of auxili-
ary variables. As to (c) and (d), these correspond
to the usual rules for sequential and conditional
composition.

The verification is quite straightforward, but
is left as an exercise to the interested reader.

The next abstract expression is less of a prob-
lem specification, but still quite abstract. It is
the "bound expression"

Siv:p,

where v is a list of variables, p is an assertion
and § is another algorithmic expression not con-
taining elements of v in the left-hand side posi-
tion of an assignment expression, problem expres—
sion or otherwise (if more expressions with the na-
ture of an assignment are introduced). Informally,
its meaning is: execute 5 where v is chosen such
that p is satisfied. An example is given by

yi=v | vi x>0 o (vZ=x & v>0).

The variables in v are bound to the expression. The
semantics is given by computing wp:

wp(Slvip,q) = (3v: p) & (Vw: p o wp(5,9)).
We may take

cr(Slvip) = 3v: p
and

wp*(S]vip,q) = ¥v: p ® wp(S5,q).

some more rules, where

& S <* 8.

We can now express
§ =* §° stands for § <* §°

(e) vi=lp=pq] =* vi=vs | v’: p > qlvi=v-}, where v~
is a list of fresh variables of the same length
as v;
vi=[p => p&—b] =%

(b = vi=ys | v

p&b 5 pIvi=v‘] & 0(v’) < 0(V)),
where v’ is again a list of fresh variables of
the proper length, and O is a mapping from ob~-
jects of the type of v to the elements of some
well-ordered set {e.g.; the ordinals), which
may be chosen freely;
1f p- implies p, then Slv:ip <* S|v,v-:p”, where
v- is a (possibly empty) list of fresh vari-
ables;
Slvip <* SQvi=ul |[v/:pivi=ul, where u is a list
of units of the proper length and v’ is a list
&

(£)

(g)

(h)

18

of variables that are either fresh or an ele-
ment of v, sufficiently large to bind all vari-
ables of v that remain present after the step;

(i) Sle:true <* S (where ¢ stands for the empty
list).
Rules (e) and (f) allow the elimination of

problem expressions. If the variant definition
hinted at above is adopted, we would only have re-
finement in one direction. Rule (f) is probably the
most powerful one in practice. It corresponds to
rules in other proof systems that cover the WHILE
loop. The mapping O ensures termination. It can be
shown that mapping to the natural numbers (the ini-
tial segment of the ordinals) gives the same power,
but at the cost of introducing mappings that are
sometimes much more complicated than necessary (cf.
Boom[31). In (g) we find another application of the
rule of consequence. It might have been combined
with (h); for the sake of simplicity, this has not
been done. Rule (h) is also quite powerful. By ap-
plication of this rule one may arrive at (i), where
the bound expression is eliminated. One has to go
through this rule once for each abstract expression
introduced.

Again, the verification is left to the reader.
A simple proof of (f) is found by separating par-
tial correctness and termination.

7. AN EXAMPLE

The usefulness of the abstract expressions in~-
troduced in the previous section may not be obvi-
ous. The test can only be the application to prac-
tical examples. In fact, they have been used on a
variety of problems of diverse complexity, general-
ly reasonably succesfully. There are two aspects in
judging the measure of success. One is how natural-
ly the original problem may be expressed, and one
is how easy it is to massage the resulting expres-
sion in the intended direction of concreteness.
Note, however, that the expressions themselves give
no guidance as to what refinement steps are best
applied. The freedom of choosing u in rule (h) is
beneficial only if one has some expertise in pro-
gramming (or algorithmics).

No attempt has been made yet to apply the
present modest approximation of Abstracto to a
large-scale, real-life problem from the top to the
bottom. Therefore it is not known how well it will
stand up. In theory, any program may be derived
that can be written with WHILE loops, but the actu~-
al effort may be quite impractical. However, I have
some confidence that the situation will not be that
bad.

The use of algorithmic expressions will now be
demonstrated on a very simple example, treated by
Dijkstral4] and also by Back[l]. The problem is to
compute X', where Y is a natural number, without
using the exponentiation operator.

This problem can be specified by the abstract
expression

z:=[true => z=XY},
Using (b) and (c) of Lemma 1, we refine this to

(s1)

z,X,y = [true = z-xY=X¥1;
(S2) z,x,y 3

= [z-xV=X¥ = z=XY].

First we proceed with the easy part,
the refinements are given here in two steps, a
trained algorithmician would immediately jump to

(S1). Where

the final version, much like a mathematician is
used to do. From (e) we obtain

Z,X,Y 1= 25X5y7 I z5X%,y " Z"X’Y'=XY.

By using the unit list u = L1,X,Y in (h), this sim-
plifies to

z,X,y = 1,X,Y | €: true.

This gives us the final, concrete expression, since
now rule (i) is applicable:

z,%X,y = 1,X,Y.

As to (82), this fits (f) with the assertion
z+x¥=XY¥ for p and y#0 for b. For the mapping O we
can. simply take the identity, since the "goal" is
to get y to 0. We thus refine (S2) to

*(yF0 —> z,X,y i= 29%%y7 | 25%%y
zox¥ = XY & y#0 5 z%x Y =xY & yo<y).

Using (g), this may again be refined to

*(y#0 = z,x,y = z2%x%5y° | z9x%,y5r:
2= z+.x¥ & x’= Xex & y=2y’+r &
(r=0 v r=1)).

1f operations / and % are available, satisfying y =
2(y/2)+(y%2) and (y%2=0 v y%2=1), the use of the
unit list u = 2Z,x-x,y/2,y%2 in (d) of Lemma 2,
where ZZ is shorthand for (yZ2=0-»z [jyX2=1->z.x),
. allows to simplify this to

*(y$0 ~» z,x,y 1= ZZ,x-x,y/2).

Here (i) has also been applied.
shown that

It has now been

zi=[true =» z=XY) <
z,x,y = 1,X,Y;
*(y#0 ~» z,x,y 1= ZZ,x+x,y/2).

(Note that we may use "<" rather than "<*", since
the right-hand side is concrete.)

This proof 4s admittedly quite lengthy (and
boring) for the feat it performs. But this would
also be the case for attempts to determine an inde-
finite integral, say, by following the rules from
the calculus book step for step and displaying all
intermediate results. A more appropriate proof
might read: "this concretization is obtained by
keeping z+x¥=XY! invariant".

Acknowledgements
Many of the ideas presented here, and especially

the idea of Abstracto itself, have taken shape in
discussions with Leo Geurts. 1 am indebted to Jaco
de Bakker for drawing my attention to the connec-
tion between the present work and the work by Back.

19

REFERENCES

[1] Back, R.-J., On the Correctness of Refinement
Steps in Program Development, Report
A-1978-4, Department of Computer Science,
University of Helsinki, 1978.

[2] Bird, R.S., Improving programs by the introduc-
tion of recursion, Comm. ACM 20 (1977)
856-863.

[3) Boom, H.J., A weaker precondition for loops,
Report IW 104/78, Mathematical Centre, Am~
sterdam, 1978.

[4] Dijkstra, E.W., A Discipline of Programming,
Prentice-Hall, 1976.

{5} Hill, I1.D., Wouldn’t it be nice if we could
write computer programs in ordinary English
= or would it?, Computer Bull. 12 (1972)
306-312,

SR

G

S

S

A

&

R

s

AR

2

i

7
=z

i

i

Mm o]

i

i

#

ERRATA to ABSTRACTO 84

(L stands for left and R for right column.)

p.36L:

p.36R:

p.37L:

In
for all p and q, if {p}S’{q}, then {p}S{g}
swap "S’" and "3S".

It should be mentioned that £’ does not necessarily preserve
monotonicity. (Counterexample: let the set of abstract expres-
sions be the closure under ";" of {Up, Dn, Sk}, with the concrete
expressions being those not containing Dn. The semantics are
given by

wp(Up, q) = qli:=i+l],
wp(Dn, q) = qli:=i-1],
wp (Sk,) = J.

Then we find
wp’ (Up, q) = wp{(Up, Q).
wp’ (Dn, q) = TRUE,
wp’ (Sk, q) = wp(Sk, q).

So Up £’ Dn. Now take £(S) = (S; Up). Then wp’ (£(Up), q) =
gqfi:=i+2] and wp’ (£(Dn), q) = g. So £(Up) ¥ £(Dn).)

It should also have been pointed out that wp’ does not fully
satisfy Dijkstra’s healthiness criteria, since the Law of the Ex-
cluded Miracle does not hold--on purpose-—for "unconcretizable®
expressions (like Dn above).

The statement (near the top) "wp*(S,q) implies wp’ (S,q)" is
wrong. (Counterexample: let the set of abstract expressions be
the closure under ";" of {Ab, Ho}, and let the concrete expres-
sions be those not containing 2b. The semantics are given by

wp (Ab, q) = FALSE,
wp(Ho, q) = FALSE.

Then we find (since Ab < Ho)

wp’ (Ab, q) = FALSE,
wp’ (Ho, g) = FALSE.
Take cr(Ab) = FALSE, cr(Ho) = TRUE, and
wp* (Ab, q) = 4q,
wp* (Ho, gq) = FALSE.

21

Idem:

p.38L:

p.38R:

Idem:

p.39L:

Then wp* (Ab, TRUE) does not imply wp’ (Ab, TRUE).)

At the end of Section 5, the "and so on"™ is too optimistic; the
choice for cr(*(b—S)) is not obvious (the predicate must hold
whenever *(b—S) would terminate).

At the bottom of the previous page, the "Clearly we may take..."
is by itself correct, but the choice for wp* here is not compati-

ble with (d) and (e} later on. The property (d) can be possibly
be saved by taking

wp* (vi=[p=ql,r) =
p & (Iv': qlvi=v’]) & (Vv': qv:=v'] D rlv:i=v’']),

but "=*" in (e) cannot hold then.

The remark concerning O: "It can be shown that mapping to the na-
tural numbers ..." is wrong. Just consider computing in the
domain of ordinals.

In the third line from the bottom, delete "of Lemma 17",

At about the middle, read "(h)" instead of "(d) of Lemma 2".

22

ALGORITHMICS

"What’s the good of Mercator’s North Poles and Equators,
Tropics, Zones, and Meridian Lines?"

So the Bellman would cry: and the crew would reply
"They are merely conventional signs!”

Using the framework sketched in the previous paper, I did most of the ex-
amples from the problem sets prepared for the Brussels meeting of WG 2.1
in December 1979 and the meeting in Wheeling, West Virginia, in August
1980.

On the whole, I was reasonably successful, but I nevertheless abandoned
the approach. The reasons for that are set forth in a note I wrote to
myself at about that time, and that I cannot resist quoting in length.
After mentioning some technical problems I ran across, I continue:

Most of these shortcomings can be overcome in an ad-ho¢ manner,
and this might possibly lead to insight how to extend the frame-
work. However, in using my approach it has gradually dawned upon
me that there is a much more basic shortcoming, not so much of a
technical, but more of a methodological character.

I tried to apply my "method"™ to the set of Brussels examples,
and found. that it did, on the whole of it, reasonably well (ad-
mittedly using some ad-hoc tricks). In fact, it turned out much
more applicable than I had expected. Paradoxically, this wvery
success made me suspicious. My attempts to understand the situa-
tion led to a strong dissatisfaction with the basic approach.
Although I still feel that the framework has an area of applica-
bility in which it is valuable, and further investigations in
this direction might be worthwile, I started thinking in a com-
pletely different direction. To explain the dissatisfaction, I
have to go into some detail. An expression (think of it as
"statement®™) in the 1979 framework is either basic, or composed
of other expressions. The composition methods are "sequencing”
(expressed, conventionally, with a semicolon operator), "condi-
tional choice"™ and "iteration". The basic expressions are as-
signment and two "abstract”™ expressions: the "problem expression”
and the "bound expression". For following the argument, it is
sufficient to know that the abstract expressions allow a great
deal of indeterminacy. The framework contains a number of
transformations, allowing to refine expressions of a given pat-
tern, subject to some conditions, by other expressions. The game
was to start with a problem expression and to transform it into a
"concrete? expression, i.e., not containing abstract dictions.
The verification of a derivation consists of (apart from some
routine pattern matching) proving a number of mathematical propo-
sitions. It was not hard to see that given an initial problem
expression P and an intended concrete expression C, a derivation
in the calculus would be possible if and only if the proposition

&

23

"P may be refined to C" was true. (I did not attempt to prove
this formally, and this "completeness claim™ may need some techn-
ical refinements.)

I observed, however, an unmistakable pattern in the deriva-
tions. The transformations steps could be categorized as belong-
ing roughly to one of the following two types:

(i) bound wvariable substitution ("VS") and

(ii) imposing control ("IC"), i.e., introducing one of the three
¢composition methods.

The VS steps may lead to the disappearance of bound variables al-
together, after which an abstract expression may be replaced by a
concrete expression. Their applicability reflects a mathematical
theorem. The IC steps may introduce bound variables and useful
invariants, but typically reflect no deep mathematical truth.
Now, in a typical derivation, an IC step introduces bound vari-
ables to be eliminated and invariants to be exploited in subse-
quent VS steps. They lay the ground for applying the theorems we
need. But in fact, they anticipate the VS steps. If I would not
know in advance which theorems I would be going to use further on
in the derivation, these steps would only lead to blind alleys.
Not only does the derivation exhibit the theorems used, but con-
versely, given the theorems, the derivation is as good as deter-
mined. So applying the transformation rules is only possible
after one knows which theorems to use, and is then further a
chore. Two substantially different implementations have deriva-
tions that diverge from their very starts. Instead, I had hoped
for situations where initial transformations would lead to semi-
abstract expressions that might still be refined in radically
different directions, or ways to transform radically different
semi-abstract formulations into each other.

What now? A cursory examination has convinced me that the
framework is, in fact, largely irrelevant: finding the theorems
to be applied is the key to the development. I had not realized
this before and plan to examine this more thoroughly to get a
better understanding of what is going on, and in particular the
framework—irrelevance aspect.

If the Abstracto dream is to come true, I need a radical
departure from the line of thinking I have followed until now. I
have no idea how to proceed. Really, the key "transformations"
are the mathematical theorems and not the boring blind-pattern-
match manipulations that I looked upon until now as being "the"
transformations. This should provide some clue to the direction
of research. Mimic mathematics not only in form, but also in
substance. Or is it all a pipedream?

The reason why all of this was not immediately clear to me is probably

that
ably
mer.
ndoll

I am—-next to being fond of doing formal manipulations with prefer-
as few symbols as possible-—-a very experienced and prolific program-
For virtually all examples it was immediately obvious to me how to

them in concrete program form, so that I knew all the time where I

was heading. One notable exception was the problem of the longest upse-
quence, and there it was painfully apparent that whatever guidance my

&

24

framework provided in the Pdiscovery” process was shallow or even trivi-
al. At some point in the "imperative" development of this problem it is
clear enough what you are looking for—-—-an extension of the obvious in-
variant that is still efficiently maintainable--and I found that all rea-
soning that leads to its construction had to take place completely out-
side the framework proper.

I then indeed started to examine the notion of transformations as being
applied theorems in the most general setting I could devise that could be
tied in with the notion of algorithm, which I called "pre-algorithmic
systems”. The first results of this examination had already been
presented in Wheeling. Further investigation convinced me that all known
transformations, and probably also all transformations yet to be
discovered, could be expressed as transformations of such systems. This
also included the mapping of imperative to applicative programs and vice
versa, and in fact even program execution. Also, the methodological
problem of having to see the theorems to be applied in advance did not
appear, or at least not in a comparable severity. (Whatever the ap-
proach, some foresight may always be helpful.)

Why, then, did I not pursue this framework? The reason for that is that
it was decidedly at the wrong level. My pre-algorithmic systems were to
algorithms as Turing Machines are to abstract machines in general, or as
first-order predicate calculus to mathematics. My motive in studying
these systems was only to gain more understanding. For a similar reason,
I did not want to embrace the applicative style, in spite of the apparent
success of Burstall and Darlington’s unfold/fold method. Consider that
there is a standard way of "compiling”™ imperative source programs, howev-
er spaghetti-like their structure, to applicative object code, and that
the best way to compile FOR and WHILE statements is by first expanding
them by way of a source-to-source transformation in GOTO form. Thus, the
whole advantage of having a notational embodiment for a higher-level con-
cept than GOTO is lost: applicative programming considered harmful.

Then came the Nijmegen meeting, in May 1981, at which Richard Bird en-~
tered the stage and presented a paper entitled "Some notational sugges-
tions for transformational programming”. It used an applicative (func-
tional) style, but the objections I had did not apply. There were nota-
tions for high-level concepts, and just the kind of manipulations, at the
right level, that you would want to see. This sure looked like the war-
ranted genuine article. Maybe a baby Snark, but still definitely worth
investigating. My main worry was the scope of applicability. Would I
find that I needed more and more primitive functions and corresponding
rules as I did more examples? So I started doing some problems this way.
First I found that I had indeed to invent new functions and laws all the
time, which was disappointing. I put it down for some time, but took it
up again while I was visiting NYU in 782/783, since it still looked like
the most promising avenue of research. Then I suddenly realized that
there was a pattern in the new functions and laws. Investigating this
led to a whole lot of other discoveries (the applicability to "generic®
structures; the relationship to fictitious values), and I was very excit-
ed ab?ut this.

25

L S A
B e R s

L
G

B

R

printed from: Math ics and Comp Sci Proc. CWI
Symp. November 1983, CWI Monographs Vol. 1 (J.W. de Bakker,
M. Hazewinkel and J. K. Lenstra, eds.). North-Holland, 1986.

Algorithmics
Towards programming as a mathematical activity

Lambert Meertens

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Of the various approaches to program correciness, that of “Transformational
Programming” appears to be the most helpful in constructing correct pro-
grams. The essence of the method is to start with an obviously correct—but
possibly hopelessly inefficient—algorithm, and to improve it by successively
applying correctness-preserving transformations. The manipulations involved
are akin to those used in mathematics. Two important impediments to this
method are the verbosity of algorithmic notations, making the process cumber-
some, and the semantic baroqueness of many primitives, making it hard to ver-
ify the validity of transformations. Computer Science can profit here from the
lessons taught by the history of Mathematics. Another major step, comparable
to one made long ago in Mathematics, is not to insist on the “executability” of
algorithmic descriptions. This makes it possible to treat initial high-level specifi-
cations in the same framework as the final programs. Just as Mathematics
evolved from “Transformational Arithmetic”, Transformational Programming
may come of age as “Algorithmics”.

Mathematical reasoning does play an essential role in all
areas of computer science which have developed or are
developing from an art to a science. Where such reason-
ing plays little or no role in an area of computer science,
that portion of our discipline is still in its infancy and
needs the support of mathematical thinking if it is to
mature. RALSTON and SHAW[25]

0. INTRODUCTION
The historical roots of Mathematics and Computing are intertwined. If we
ascertain the validity of a more efficient way of doing computations—more
generally, of constructing a result—, we are performing mathematics.
Nowadays, we are happy to leave the actual computing to automata. Qur
task is to prescribe the process, by means of a program. But however great the
speed of our automaton, our need for results is greater, and an important part
of the Art of Programming is finding efficient computational methods. Who-
ever thinks now that programming as it is practised implies routinely giving
mathematical justifications—albeit informal—of the “shortcuts” employed, is
deceived. This would not be an issue if making an error in programming were
exceptional. The current deplorable state of affairs can certainly be partially

27

ascribed to the ineptitude and ignorance of many programmers. But this is
not the full explanation. It is true that Computer Science has yielded a
number of results that make it possible to reason mathematically about pro-
gramming, i.e., constructing a program that satisfies a given specification. But
what is lacking is a manageable set of mathematical instruments to turn pro-
gramming into an activity that is mathematical in its methods. To make it
possible to discuss the—as yet hypothetical —discipline that would then be
practised, I shall use the term “Algorithmics™.

Mathematicians portrayed in cartoons are invariably staring at a black-
board covered with squiggles. To outsiders, mathematics = formulae. Insid-
ers know that this is only the surface. But, undeniably, mathematics has only
taken its high flight because of the development of algebraic notation, together
with concepts allowing algebraic identities!

The work reported on here has been motivated by the conviction that major
parts of the activities of algorithm specification and construction should and
can be performed in much the same way as that in which mathematicians ply
their trade, and that we can profit in this respect from studying the develop-
ment of Mathematics. FEarlier work, based on the same conviction, can be
found in GEURTS and MEERTENS[11] and MEERTENS[19]. In brief, the idea is
that algorithms are developed by manipulating “algorithmic expressions”. To
be able to do this, we need a language that is capable of encompassing both
specifications and programs. But, and this is important, this language should
not be the union of two different languages, one a specification language, and
the other a programming language. Rather, the language must be homogene-
ous: it must be possible to view all its expressions as specifications. Some of
these expressions may, however, suggest a construction process more readily
than others. Alternatively, all expressions can be viewed as abstract algo-
rithms. Some of these algorithms may be so abstract, however, that they do
not suggest an implementation.

The language should be comparable to the language used by mathemati-
cians. Its notations give a convenient way to express concepts and thus facili-
tate reasoning, and also sustain more “mechanical” modes of transformin§
expressions (in the sense in which a mathematician transforms x?—y
mechanically into (x +y)(x —y)).

In the long run, the development of algorithmics should give us “high-level”
theorems, compared to which the few transformations we have now will look
almost trivial. This is only possible through the growing development of
higher-level concepts and corresponding notations. To get an idea of what I
am dreaming of, compare the special product above with Cauchy’s Integral
Theorem, or with the Burnside Lemma.

1. The term “algebraic” is not used here in the technical modern sense (as in “algebraic data
type”), but with the imprecise older meaning of “pertaining to Algebra” (as in “high-school Alge-
bra”). The word “algebra” stems from the Arabic al-jebr, meaning “the [art of] recombining”, ori-
ginally used for bone setting. In the loose sense corresponding to that etymology, an identity like
sin(x+y) = sinxcosy + cosxsiny, in which the left-hand side is broken into constituents that are
recombined to form the right-hand side, is algebraic.

28

The reader should carefully distinguish between
(i) the conviction—if not belief—that it is possible to create a discipline of
“Algorithmics” that can be practised in the same style as Mathematics; in
particular, by creating algorithmic derivations, using algorithmic expres-
sions, with the same flavour as mathematical derivations and expressions;
(i) the general framework around which the current investigations are built;
namely a synthesis of an “algebraic” approach to data and to transforma-
tions (of data);
(iii) the concepts selected as worthy of a special notation in the language; and
(iv) the concrete notations and notational conventions chosen.

The program of research implied in (i) is closely related to the paradigm of
“Transformational Programming”; see further Section 2. It is becoming
increasingly clear (at least to me; I do not claim credit for the re-invention of
the wheel) that a nice algebraic structure is a prerequisite for obtaining
interesting results. Otherwise, no general laws can be stated, and so each step
has to be proved afresh. (In fact, this is a truism, for what is an algebraic
structure but a domain with operations, such that some general laws can be
formulated.) This is also a major thought underlying the work on an “algebra
of programs” of Backus[1]. A difference with the approach described here
can be found in his motivation to overcome the “von Neumann bottleneck”,
resulting in a determined attempt to eschew variables for values (data, objects)
even in their conventional mathematical roles, generally not considered harm-
ful. More important is that Backus’s “FP” framework is restricted to function
schemata, and has (currently?) no place for an integrated algebraic view on
data. (The approach described by GuTTAG, HORNING and WiLLIAMS[12]
allows algebraic specifications of data types but has more the nature of graft-
ing them on FP than of integration.) It is clear, however, that the results
obtained in his approach are valuable for the approach taken here, and that
the correspondence merits further study. Integration of the data algebra with -
the algebra of operations on data can be found in the work by
voN HeNKE[13]. The emphasis there is on concepts; no attention is paid to
notation.

The concepts and notations used here have grown out of my attempts to use.
the notations suggested by BIRD[4]. In trying to develop some small exam-
ples, I was struck by the similarity of many of the laws formulated in [4] (and
some more I had to invent myself). Investigating this intriguing phenomenon,
I discovered the higher-level algebraic framework underlying various similar
laws. This incited me to introduce modifications to the notation, aimed at
exhibiting similarities in the laws. These modifications have gone through vari-
ous stages; for example, the symbols for sequence concatenation and set union
were initially chosen to be similar; now they have been made identical.

The specific notational conventions, of all ideas presented here, should be
given the least weight. This is not to say that I feel that good conventions are
of secondary importance. It is obvious, however, that much work has still to
be done to strike the right balance between readability, terseness, and

29

dependability (freedom of surprises). Only through the use in actual algo-
rithmic developments, by a variety of people, can progress be made.

Two examples are included. They were chosen as being the first two not
completely trivial problems that I tried to do in the present framework.

1. MATHEMATICS FOR SHORTCUTS IN COMPUTATION

In the Introduction, it was claimed that to ascertain the validity of a more effi-
cient way of doing computations is to perform mathematics. This is still true
if the reasoning is informal: the important thing is that it could be formalized.
A beautiful example is the feat ascribed to Gauss as a young schoolboy.
Asked to compute the sum of an arithmetic progression, he astounded his
teacher by turning in the correct answer while the other pupils were still
labouring on their first additions. We cannot, of course, know with certainty
(if the story is true at all) what his reasoning was. But a plausible possibility
is the following. Assume, for concreteness, that the task was to sum the first
one-hundred terms of the arithmetic progression 534776, 5347766207 =
540983, 540983 +6207 = 547190, --- . Think of all those numbers, written
in a column, and the same numbers in a second column, but this time in
reverse order. So the first number in the second column is the number on the
last line of the first column, which is 534776+99x6207 = 1149269. Next,
add the numbers horizontally, giving a third column of one-hundred numbers.

534776 + 1149269 = 1684045
540983 + 1143062 = 1684045
547190 + 1136855 = 1684045

1136855 + 547190 = 1684045
1143062 + 540983 = 1684045
1149269 + 534776 = 1684045

S + § = 168404500

FIGURE 1. Reconstruction of young Gauss’s mathematical reasoning

Now we see a phenomenon that is not hard to explain. If we go down by
one line, the number in the first column will increase by 6207. The number in
the second column will decrease by the same amount. The sum of the two
numbers on each line will, therefore, remain constant. So the third column
will consist of 100 copies of the same number, namely 534776+1149269 =
1684045. Now, call the sum of the numbers of the first column S. (This is the
number to be determined.) The second column must have the same sum, for it
contains the same numbers. The sum of the numbers in the third column is
then 2S. This sum is easy to compute: it equals 100X 1684045 = 168404500.
So S =3-168404500 = 84202250. This “reconstruction” is rendered schemati-
cally in figure 1. It is noteworthy that the proof involves an intermediate con-
struction that, if actually performed, would double the effort. The method is

30

easily generalized: if a is the first term of the progression, b is the increment
and n is the number of terms to be added, we find a +(n —1)b for the last
term, and so § = in{2a-+(n—1)b}. The use of variables does not make the
reasoning any less informal, of course.

Now, this was just an example, but substantial parts of mathematics consist
of showing that two different construction methods will (or would) give the
same result. Often one of the two is the original formulation of a problem to
be solved, and the other one gives a construction that is much easier to per-
form.

It is also interesting to dwell for some time on the question of when we con-
sider a mathematical problem solved. In mathematics we make no sharp dis-
tinction between the problem space and the solution space: both “problems”
and “solutions” may have the form of construction methods. To call an
answer a “solution” requires in the first place that it have the form either of a
construction method, or of a problem for which we have, in our mathematical
repertoire, a standard method for solving it. This requirement is not sufficient.
For example, a mathematician will respond to the problem of determining the
larger root of x2—2x—4 = 0 by answering: 1+ V/5, and consider the prob-
lem to be thereby solved. But what is the meaning of V/5” but: “the larger
root of x>—5 = 0”? So the problem is “solved” by redu\c}_ng it to another
problem. It is true that we have methods to approximate V5 numerically—
for most -purposes the best one is the Newton-Raphson method—but such
methods will serve equally well to approximate the larger root of
x2—2x—4 = 0. Apparently, “to solve” does not simply mean: “to reduce to
a case that we know how to handle”. If that were the meaning, any quadratic
equation would be its own solution. Out of the possibly many candidates for
being solutions according to this requirement, mathematicians select one that
allows a concise, elegant, formulation. We shall return to this issue in a dis-
cussion of mathematical notation, in Section 3.

2. TRANSFORMATIONAL PROGRAMMING

The first published method for proving program correctness with mathematical
rigour is that of FLoYD[10]. Essentially the same method was suggested ear-
lier by NAur[21]. Better known is the (semantically related) axiomatic
approach of HOARE[14]. A technical objection to these methods is that they
require the formulation of “intermediate assertions”, i.., predicates whose
domain is the state space of an abstract machine; in more complicated cases,
these predicates may grow into veritable algorithms themselves, and the con-
ventional notations from predicate logic do not suffice to write them down.
What makes program proving especially unsatisfactory is the following. The
activity of programming, even in its present undisciplined form, already impli-
citly contains the essential ingredients for the construction of a correctness
proof. These ingredients are present in the programmer’s mind while develop-
ing the program. For example, a programmer may be heard muttering: “R
must be at least 1 here, otherwise this code would not be reached. So I can
omit this test and ...”. None of this, however, is recorded.

31

Program proving requires now that a unique implicit correctness proof be
made explicit after the fact. But such a reconstruction is in general much
harder than to invent some proof in the first place. Also, it would be
uneconomic to attempt to prove the correctness of a given program without
verifying first that it handles several test cases successfully. But it is unrealistic
to assume that programmers would go—unless forced—through the effort of
proving apparently “working” programs correct.

This objection does not apply to the constructive approach advocated by
DUKSTRA[8],{9] and WirTH[27],[28]. (The technmical objection mentioned,
however, does.) Here, the construction of the program is a result of the con-
struction of the proof. Typical to the practical use of this approach, however,
is that the program-under-construction is a hybrid, in which algorithmic nota-
tions are mixed with parts that are specified in natural language. For example,
if we look over the shoulder of a programmer using this method of “stepwise
refinement” or “top-down programming”, we might see first:

“ensure enough room for T in curbuf™
in one stage of development, and in the next stage

while “not enough room for T in curbuf™ do
“ensure nxtbuf # nil”;
curbuf, nxtbuf := nxtbuf, nxtbuf-succ
endwhile .
Although a big leap forward, the imprecision of the way the undeveloped parts
are specified is unsatisfactory. In the example, it is probably the case that the
task to “ensure enough room for T in curbuf” can be solved by emptying
curbuf, and the task to “ensure nxtbuf # mnil” by the assignment
nxtbuf : = curbuf. But this would, in all likelihood, be incorrect, because of
certain invariants to be maintained. It is, in principle, possible to attain the
desired degree of precision, but the method itself does not incite the program-
mer to do so.

The same problem is not present in the method of “Transformational
Programming” —at least, in its ideal form. In its essence, Transformational
Programming is simple: start with an evidently correct—but possibly hope-
lessly inefficient—program, and bring this into an acceptable form by a
sequence of “correctness-preserving” transformations. In contrast to
mathematics, where the symmetrical relation “="7, i.e., “is equal to”, plays a
central role, the central relation here is the asymmetnc ‘may be replaced by”!
denoted by “=>”. But at all stages, one has a correct program, with a pre-
cisely defined meaning. This way of manipulating a sequence of symbols

1. A simple example of this asymmetry is in the development of the task T = “Given a prime
number p, find a natural number n such that n? +n+p is composite”. The development step that
comes to mind (for a programmer) is to replace T by 77 = “Find the smallest such natural
number”. A mathematician would probably replace the task by T” = “Take n = p”. Then
T=T and T=T". But 7" and T” are not interchangeable; for example, if p = 2, then 7" finds
n = 1, and in fact, they do not produce the same value of n for any value of p.

32

brings us closer to the ideal of “Algorithmics™ aimed at. This is expressed in -
the following quote from a paper by BIRD[3], describing a new technique of
program transformation: “The manipulations described in the present paper
mirror very closely the style of derivation of mathematical formulas.” There
are several impediments to the application of this method. In the first place,
the more usual algorithmic notations in programming languages suffer from
verbosity. This makes manipulating an algorithmic description a cumbersome
and tiring process. To quote [3] again: “As the length of the derivations tes-
tify, we still lack a convenient shorthand with which to describe programs.”
Furthermore, most programming languages have unnecessarily baroque seman-
tics. In general, transformations are applicable only under certain conditions;
checking these applicability conditions is all too often far from simple. The
asymmetry of “=>"" makes these transformations also less general than is usual
in mathematics. The requirement that the initial form be a program already
(and “evidently correct”, at that), is not always trivial to satisfy. In this
respect, the method is a step backwards, compared to Dijkstra’s and Wirth’s
approach. Finally, there is a very important issue: which are the correctness-
preserving transformations? Can we give a “catalogue” of transformations?
Before going deeper into that question, it is instructive to give an example.

Take the following problem. We want to find the oldest inhabitant of the
Netherlands (disregarding the problem of there being two or more such
creatures). The data needed to find this out are kept by the Dutch municipali-
ties. Every inhabitant is registered at exactly one municipality. It is (theoreti-
cally) possible to lump all municipal registrations together into one gigantic
data base, and then to scan this data base for the oldest person registered, as
expressed in figure 2a in “pidgin ALGor”.

input dm, mr;
gdb:= 0;
for medm do
gdb := gdb U mr{m]

endfor;
aoi := —o0;
for i gdb do

if i-age > aoi then
oi, aoi 1= i, i-age
endif
endfor;
output ol.

FIGURE 2a. Program A for determining the oldest inhabitant

A different possibility is to determine the oldest inhabitant for each munici-
pality first. The oldest person in the set of local Methuselahs thus obtained is
the person sought. This is expressed in figure 2b.

Replacing (possibly within another program) program 4 by program B is
then a transformation. Were there no inhabitants of the Netherlands, both

33

input dm, mr;

sim .= 9;
for medm do
alm:= —o0;

for i e mrim] do
if i-age > alm then
Im, alm := i, i-age
endif
endfor;
sim := slm U {Im}
endfor;
aoi 1= —o0;
for i sim do
if i-age > aoi then
ol, aoi := i, i-age
endif
endfor;
output oi.

FIGURE 2b. Program B for determining the oldest inhabitant

programs would have an undefined result. This is generally not seen as affect-
ing the applicability of the transformation 4 = B. But if—assuming at least
one inhabitant in the country—some municipality had no registered inhabit-
ants, then program 4 would have a defined result, whereas the outcome of B
might be undefined. (The problem is that in the line “sim : = shm U {Im}” the
variable /m has no defined value if the empty municipality is the first one to be
selected by “for me dm do”.) So the transformation 4 = B has the following
applicability condition:

(Ymedm: mrlm] = 0) vV (Ymedm: mr[m] # 0).

We happen to know that for the given application this condition is satisfied,
but it is easy to think of applications of this transformation where it is less
obvious and has to be checked. Overlooking such conditions that are only
exceptionally not satisfied is a typical source of programming errors. Note
that a human interpreter of the original descriptions in natural language would
almost certainly handle exceptional cases reasonably.

How large must a catalogue of transformations be before it is reasonable to
expect it to contain this transformation? Obviously, unmanageably large. Itis
possible to have a manageable catalogue, and to require proofs of other
transformations that are not in the catalogue. But how do you prove such a
transformation? Hopefully, again with transformations, otherwise the practi-
tioner of Transformational Programming needs two proof techniques instead
of one. But what transformations will gradually transform A4 into B?

34

As another example, consider young Gauss’s “transformation”. This may be
expressed as

input a, b, n;
sum, t:= 0, a;
for i from 1 to n do - input a, b, n;
sum, t:= sum-+t, t +b output (n /2) X (2Xa+(n—1)Xb)
endfor;
output sum

Again, this is an unlikely transformation to be catalogued. Now compare this
to the mathematical derivation:

n

{a +(i —1)b} =%[2{a +@ —1)b} + ‘S'_"_‘{a +(i—1)b}] =

i=1 i=1

=1 i=1 i=1

>
i=1
%‘ﬁ{aﬂi—l)b} + é{a+(n-—i)b}} =13 Qa+(—1b) =

in{2a +(n—1)b}.

It is usual in presenting such derivations to omit obvious intermediate steps,
and this one is no exception. For example, the first step has the pattern
S =1(5+S); a complete derivation would have § = 1§ = G-2)S =
1(28) = 3(§+5). Nevertheless, the only step that possibly requires looking
twice to check it is the substitution of n+1—i for one of the two summation
variables i.

In what follows, an attempt is made to sketch an “algorithmic language” to
overcome the drawbacks mentioned. To give a taste of what will be presented
there, here, in that language, is the “transformation” 4 = B of the oldest-
inhabitant problem:

Tage/ T/mr=dm = age/ (age/ M) <dm .

Comparing this with figure 2a and 2b should explain my complaint about the
verbosity of algorithmic languages. And yet that pidgin is a terse language
when compared to those mountains of human achievement, from FORTRAN to
Ada® Note also the reinstatement of the symmetric “=", which will be
explained in Section 6.

The emphasis on the similarity with Mathematics creates a clear difference
with much of the work in the area of Transformational Programming, such as
that of the Munich CIP group (BAUER et al[2]). In that work, the emphasis
is on creating a tool for mechanical aid in, and the verification of, program
development. The prerequisite of mechanical verifiability puts its stamp on a
language. Note that the language of Mathematics has not been developed with
any regard to mechanical verifiability; the only important factor has been the
sustenance offered in reasoning and in manipulation of formulae. In this
respect, the approach of, e.g., BIRD[3] is much more closely related, even if its
framework is different. To quote that paper once more: “[...] we did not start

35

out, as no mathematician ever does, with the preconception that such deriva-
tions should be described with a view to immediate mechanization; such a
view would severely limit the many ways in which an algonthm can be simpli-
fied and pohshed ” The main point is, perhaps, that in my view the language
should be “open”, whereas mechanical verifiability requires a closed and frozen
language. To prevent misunderstanding of my position, I want to stress that I
sympathize with the thesis that systems for the complete verification of a
development are extremely valuable, and that research and development in
that area should be vigorously pursued. I hope—and, in more optimistic
moments, expect—that the different line of approach followed here will, in the
long run, contribute to better methods for program design and development,
and to better systems for mechanical assistance in these tasks.

3. THE ROLE OF NOTATION IN MATHEMATICS

When Cardan breached his pledge of secrecy to Tartaglia and published the
first general method for solving cublc equations in his Ars Magna (1545), he
described the solution of the case x> +px = g as follows [my translation]:

RULE

Raise the third part of the coefficient of the unknown to the cube, to
which you add the square of half the coefficient of the equation, & take
the root of the sum, namely the square one, and this you will copy, and
to one [copy] you add the half of the coefficient that you have just multi-
plied by itself, from another [copy] you subtract the same half, and you
will have the Binomium with its Apotome, next, when the cube root of
the Apotome is subtracted from the cube root of its Binomium, the
remainder that is left from this, is the determined value of the unknown.

This description strikes us as clumsy, but at the time, no better method was
available. This “clumsiness” stood directly in the way of mathematical pro-
gress. Take, in contrast, a description of the same solution in present-day
notation:

SOLUTION OF THE EQUATION x> +px =gq.

3 2
Let ¢ = \/;1_, where d = [L;-] +[-‘§I—] ,andletb:c+%anda=c—%.

Then x = Vb —Va is a root of the equation.

What are the advantages of this notation? Obviously, it allows for a more
concise description. Also, in Cardan’s description, there might be some doubt
whether “the half of the coefficient” itself, or its square, has to be added to
and subtracted from the copies. In present-day notation, there is (in this case)
no room for this doubt, and in general, parentheses will disambiguate (if
necessary) anything. Both of these advantages, however, are insignificant com-
pared to what I see as the major advantage of the “algebraic” notation used
now, namely that it is possible to manipulate the formula for x algebraically.

36

So we see readily that
x? = b—3Vb2a +3Vba® ~a
= (b—a)—3Vba (Vb —Va)
= g — (3Vba)x,

and since

a2 _q—_ 2 _ _P_ 3
ba=-(3] = (5]
we see that indeed x> +px = ¢. No more than high-school mathematics was
needed to verify the solution. A similar verification is impossible for the for-
mulation in natural language. If, at the time, our notations had been avail-
able, then the solution of the cubic equation would not have had such a
romantic history. A disadvantage of modern notation is its suggestion of
abstruseness, of being an esoteric code. Undeniably, people can only profit
substantially from the major advantage mentioned above if they not only know
the meaning of the diverse squiggles, but are intimately familiar with them,
which takes time and practice. I want to emphasize, however, that a descrip-
tion in natural language, as the one given by Cardan, is utter gibberish too to
the mathematically uneducated reader. This point would have been obvious,
had I chosen to use the “most literal” translation of the words in the Latin ori-
ginal, instead of present-day terminology. The rule would then have started:
“Bring the third part of the number of things to the cube, ...”.

In Section 1 I stated that a requirement for “solutions” is that their formula-
tion be “elegant”. This issue is connected to that of notation. It is matter of
context, taste, conventions and tacit agreement between mathematicians, what
constitutes “elegance”. It is hard for us to understand why the ancient Egyp-
tians were so keen on expressing fractions in terms of quantities 1, asin

41 11,1 1,1

=gttt = 7ttt
For some reason, forms like 3 did not belong to their solution space, but
quantities like + did. If we were to agree that, say, Q(p, g, 1> 5), denoting
the largest root of the equation x*+px®+gx”+rx+s = 0, belongs to our
solution space, then suddenly the general quintic equation becomes solvable
“algebraically”. There is a reason for mathematicians not to take this way out.
The squiggle approach is helpful only if mathematical practitioners can acquire
sufficient familiarity with the squiggles, which imposes a limit on their number.
Given this limitation, some criterion must determine which concepts are the
winners in the contention for a notational embodiment. Two aspects deter-
mine the viability of a proposed notation. One is the importance of the con-
cept: is it just applicable in some particular context, or does it come up again
and again? The other is the amenability to algebraic manipulation: are there
simple powerful algebraic identities expressible in terms of the notation con-
sidered? The Q-notation suggested above will be found lacking in both
respects.

37

4. NOTATIONAL CONVENTIONS FOR FUNCTIONS AND OPERATIONS

A program operates on input and produces output. Whether that input be a
“value”, a data base, or a stream of requests, say, is immaterial to this abstract
viewpoint. Similarly, it is immaterial if the output consists of values, modifica-
tions to a data base, or a stream of responses. In the usual approaches to pro-
gramming languages, the distinction is, unfortunately, paramount in the con-
crete embodiment of the program. This obscures the deeper similarities in
possible program development steps. So the first thing required is a uniform
notation, reflecting a unified conceptual framework. The notation used here is
that of a “function” operating on an “object”. The result is a style that may
be called “functional”. However, I feel that the cherished distinction between
a functional (or “applicative”) style of programming, and a procedural (or
“imperative’) one, is not as deep as supporters/opponents of one or the other
style would make it appear. A much deeper difference is the distinction
between viewing an algorithmic expression, be it denoted as a function defini-
tion or as a while program, as an operational prescription for an automaton, or
as an abstract specification determining a relationship between input and out-
put. The price paid for taking the latter viewpoint is that this abstraction may
make it hard to express some transformations that derive their relevance from
performance characteristics of certain types of architecture. Such a transfor-
mation makes sense only if we commit ourselves to a decision on how the
abstract specification is mapped to a process on a machine—although in due
time several natural “canonical” mappings for various architectures may
emerge. Moreover, if the inverse mapping is not defined, a low-level transfor-
mation may lack a high-level counterpart. (This problem occurs in high-level
programming languages as well: try to express in Pascal, say, the low-level
optimization that the storage for a global array variable that will no longer be
referenced can be used for other purposes.) Since computing resources will
always remain scarce—relative to our unsatiable need for processing— this is
not a minor inconvenience. Some consolation can be found in the thought
that many of these transformations are well understood and can be automated
relatively well (e.g., recursion elimination; tabulation techniques; low-level data
structure choice), possibly sustained by “implementation hints” added to the
program text.

The main ingredients of our language will be “objects”, (monadic, or unary)
“functions”, and (dyadic, or binary) “operations”. Functions always take an
object as argument, and return an object. Operations are written in infix nota-
tion, and may take an object, a function or an operation as left operand and
an object as right operand. They return an object. Function application is
(notationally) not treated as an operation (although, from a mathematical
point of view, it is one, of course). It is simply denoted by juxtaposition, usu-
ally leaving some white space for legibility or to delineate the boundary
between the lexical units involved. So, if fis a function and x is an object, fx
stands for the application of fto x. If g is then applied to fx, this may be
denoted by g fx. Function composition, usually written in mathematics in the
form gof, is also denoted by juxtaposition, without intervening operation.

38

Sl

This makes expressions such as hg f and g fx ambiguous. But semantically,
there is no ambiguity: the expressions specify the same, since (h g) f denotes
the same function as h(gf), and (gf)x the same object as g(fx). (The
reader should note that these identities are algebraic, and about the simplest
ones possible.) In fact, the wish to omit as many parentheses as possible
without depending on priority rules motivated this unconventional convention.
In particular, it removes the somewhat annoying disparity between an identity
expressed on the object level, as in

f () = g'(f (x),

and its expression as functional identity, as in

fog = gf.

A drawback is that this convention does not indicate how to denote the appli-
cation of a functional (higher-order function) to a function argument; in the
general case, a function may be so generic that it might both be composed
with and be applied to another function. An example is the identity function;
in that particular case, the distinction is semantically unimportant, but for
other functions it is not. So some operation will be needed to denote function
application in the general case. (Actually, it turns out possible to denote func-
tion application with the operations provided in the sequel, but only in a
clumsy way.)

If X is an operation, then x X y denotes the application of X to x and y. In
general, parentheses are needed to distinguish, e.g., f(xX) from (fx)X y.
The interpretation of fxX y in the absence of parentheses is f(xX y). In a
formula x X yXz, the absence of parentheses implies, likewise, the interpreta-
tion xX(yXz). This convention is similar to the right-to-left parsing conven-
tion of APL.

Note. In derivations, chains may occur like ¢; = e; = The connec-
tive signs (“=" etc.) in these chains are meta-signs, and are not to be con-
fused with operations (in particular, the operation =, which takes two

operands and delivers a truth value). They will always give precedence to the
operations in the expressions e;.

A further reduction of the number of parentheses is made possible by the
following convention. An expression of the form “a; B” stands for “(a) 8.
The—purely syntactic—operator “;” takes lower precedence than the seman-
tic operations. If several “;”s occur, they group from left to right: “a; B; v”
stands for “((a) B) v”.

An important convention is the following: If X is some operation, and x is
an acceptable left operand for X, then the notation “x X stands for the func-
tion Ay: xX y. Note that xX y is now syntactically, but not semantically,
ambiguous, since (xX) y denotes the same object as xX y. In the notation
SfxX the meaning is always f(xX), so it denotes a functional composition. If
the meaning (fx)X is intended, parentheses are required (or, equivalently, the
notation fx; X can be used). This convention makes it also possible to define
the meaning of an operation X in the following form:

39

Let x be Then xX denotes the function F, .

The meaning of xX y is then that of F, y.

Now, for example, 1+ V' is defined: its meaning is 1+; VvV o=
Ay: 14y; oV = Ax:1+Vx.

Finally, if X is an operation that takes two objects as operands, and fand g
are functions, then fXg stands for the function Ax: (fx; Xg x).

The aim of these conventions is only to increase the usability of the formal
language. The proof is therefore in the practical use. It will take time, and the
experience of a variety of practitioners of Algorithmics, to find the most help-
ful notational conventions. Note that the current mathematical practice of
using the sign “+” for addition and juxtaposition for multiplication, and to
give multiplication precedence, has taken its time to become universally
accepted—after the general idea of using an algebraic notation was already
commonly accepted. Also, if the language is as open as the language of
Mathematics, it is possible to adopt other conventions locally when this is
more helpful in dealing with the problem at hand.

To define functions and operations concisely, we use, in addition to lambda
forms, the convention of BURSTALL and DARLINGTON[6]. For example, the
following lines define the Fibonacci function:

Fib0 < 0
Fibl < 1;
Fibn+2 « Fibn; +Fibn+1.

The variables on the left-hand side of “ « ” are dummy variables for which
values are to be substituted such that the left-hand side matches the actual
function application; then the right-hand side, after applying the same substi-
tutions, is equal to the function application and may replace it in a formula.
This step is known as “Unfold”; the reverse operation as “Fold”. A canonical
evaluation can be defined by systematically unfolding, thus providing an
operational semantics. BURSTALL and DARLINGTON show that an amazingly
large number of transformations can be expressed as a sequence of
Unfold/Fold steps. As long as <« is interpreted as equality, this is generally
safe. If < is interpreted in terms of the canonical evaluation, then a Fold
step may introduce non-termination where it was not present.

5. STRUCTURES

In giving an algorithmic description, we are generally not only concerned with
elementary values, like numbers and characters. These are combined into
larger objects with a certain structure. For example, in some application we
may want to compute on polynomials, represented as a sequence of coeffi-
cients, or with a file of debtors. The usual algorithmic approach to such aggre-
gate structures has grown from the aim of obtaining an efficient mapping to
the architecture of concrete computational automata. For the purposes of
Algorithmics, we need a more algebraic approach. The domain of data on
which a program operates usually has some algebraic structure. This fact

40

underlies the work in the field of algebraic data types. However, since the
motivation there is not to obtain a simple algebra, but to achieve representation
abstraction, the types as specified by way of example in the papers in this field
are not usually algebraically (in the aljebr sense) manageable. If they are, as
for example the type of natural numbers, or the type of McCarthy’s S-
expressions, the structure of algorithms operating on objects of these types
tend to reflect the structure of the objects. In algebraic terms, the function
relating the input to the output is a homomorphism. This observation under-
lies the work by voN HENKE[13]. (The work by JACKSON[15]—best known
outside of Academia—can be viewed as based on the same idea, although the
term “homomorphism” is not used there.)

Let us start with algebraic structures that are about as simple as possible.
Using the notation of MCCARTHY[17], we have

SD = D@SDXSD.

This defines a domain of “D-structures”, each of which is either an element of
the (given) domain D (e.g., numbers, or sequences of characters), or is com-
posed of two other D-structures. To practitioners of computer science, it is
virtually impossible to think of these structures, McCarthy’s “S-expressions”,
without a mental picture of an implementation with car and cdr fields from
which arrows emerge. To mathematicians, however, this domain is simply a
free groupoid, about the poorest (ie., in algebraic laws) possible algebra, and
computer-scientists will have a hard time explaining to them how arrows enter
(or emerge from) their mental picture.

We need some notation for constructing such structures. We construct a D-
structure by using the function “"* and the operation “+”. If x is an element
of D, then "x will stand for the corresponding element of S,. The monadic
function * is, of course, an injection. It is a semantically rather uninteresting
function, and it could be left unwritten in many cases without ambiguity. Asa
compromise, the application of * to x is written as X if this is typographically
reasonable. If s and ¢ are D-structures, then s +¢ denotes the D-structure com-
posed of s and ¢. The set Sp consists then of all structures that can be built
from D by a finite number of applications of * and +. (It is also useful to
allow an infinite number of applications; this possibility will be ignored here to
keep the treatment simple.)

The diligent reader will have noticed an important difference between the
structures defined now, and the S-expressions as used for Lisp. The value nil
is missing. We can introduce it by writing (using “0” instead of “nil”):

SD = D@{O}@SDXSD.

Algebraically, however, this makes little difference; the domain obtained is iso-
morphic with Sp g (g), i.e., the one obtained by the previous construction if D
is first augmented with an element 0. It becomes more interesting if we
impose an algebraic law: s +0 = 0+s = 5. This gives about the poorest-but-
one possible algebra. Now we have a more dramatic deviation from the
S-expressions, for it is certainly not the case that, e.g., cons(s, nil) = s.

41

The previous law is known as the identity law, and an element 0 satisfying
this law is called an “identity (element)”. Note that an identity can always be
added, but that there is at most one identity in a groupoid.

We can go further and consider structures on which other algebraic laws are
imposed. Of particular interest are the laws of associativity: s +(t +u) =
(s +2)+u; of commutativity: s+t = t +s; and finally of idempotency: s +s =
s. The interesting thing now is that the structures obtained correspond to fam-
iliar data structures: we get, successively, sequences, bags,1 and sets. For sets, "
is the function Ax: {x} and + is the set union U . The identity law gives us
the empty sequence, bag or set. This relationship between familiar algebraic
laws and familiar data structures has been pointed out by BooMm[5].
Sequences correspond to what are known in algebra as monoids (or semi-
groups if there is no identity).

The usual way of characterizing sequences algebraically uses an operation
“append (or prepend) an element”. The choice between using “append” and
“prepend” as the primitive operation introduces an asymmetry. The introduc-
tion of sequences by imposing associativity is quite symmetric. This way of
introduction gives a uniform approach, exhibiting the essential and deep simi-
larity between binary labelled trees (the S-expressions), sequences, bags and
sets. This can be used to express laws that apply to all these kinds of struc-
tures. To stress the similarity, + will be used in all cases; a disadvantage is
that the type has then (at least in some cases) to be clear from the context.
The notation Sp, will likewise be used for all domains of such structures, and
not be reserved for the free S-expressions.

To prove laws, we can use the following lemma:

INDUCTION LEMMA. Let f and g be two functions defined on Sp, satisfying, for
all xe D and s and te Sp:
() f0 =g,
(i) fx = gx, and
(iii) fs+t = gs+1t, using the induction hypothesis
that fs = gsand ft = gt.
Then f=g

ProoF. By induction on the complexity of the function argument.

If Sp has no identity, then part (i) can of course be omitted. It is sometimes
easier, in particular for sequences, to replace (i) and (iii) together by
fs+x = gs+X, which gives the traditional induction on the length. The
advantage of the lemma as stated here is that it allows many laws to be proved
independently of the algebraic richness of S),.

To express interesting laws we first need some general operations, that also
play an important role in Backus’s FP. The notation used here for “applied-
to-all” has been taken from [4]; the APL notation is used for “inserted-in”.

1. Bags (or multi-sets), underrepresented in mathematics, are ubiquitous in computer science.
They differ from sequences in that the elements have no order, and from sets in that an element
can occur more than once.

42

e S

Applied-to-all. Let f be a function in D; —D,. Then f» stands
for the function in Sp — Sp, satisfying

® f-0=0,

() fex = "fx,and

@) fos+t = fos;+f+1.

So fis applied to each “member” (elementary component) of its argument,
and the result is a structure of the function values obtained. For example, if s
is the set of numbers 0 through 9, then 1+ s is the set 1 through 10. For f+
to be well defined, it is required that + on Sp, have at least the same alge-
braic richness as its counterpart on Sp,: if + on Sp, is associative, then so is
+ on Sp,, and so on. If Sp, has no identity, we can simply omit part (i) from
the definition. A similar remark can be made in most cases in the sequel: the

laws are presented for structures with identity, but can easily be amended to
cover identity-less structures.

Inserted-in. Let X be an operation in DXD->D. Then X/

stands for the function in Sp — D satisfying

() if X has an identity e (so that eXx = xXe = x), then
X/0=ce,

@@ X/x = x,and

(i) X/s+t = X/s;XX/¢t.

So if X stands for the conventional multiplication operation, I, s x is a
more familiar notation for X/s. However, inserting an operator X in a struc-
ture s is only meaningful if X has at least the same algebraic richness as the
operation + used to construct the structure. This means that if X is multipli-
cation, then the notation X/s is not allowed if s is a set, for (in general)
XXX # x. Otl}erwise,‘\ we would obtain contradictions like 2 = x/2 =
X/2+2 = X/2;XX/2 = 2X2 = 4. (Alternatively, we could define the
insertion as an indeterminate expression, depending on the choice of represen-
tatives from the congruence classes induced by the laws of +.)

The classes of functions f+ and X/ are special cases of the homomorphisms
definable on Sp. By combining them in the form X/f+, all such homomor-
phisms can be expressed. This can be stated in the form of another lemma:

HoMmOMORPHISM LEMMA. Let the function g€ Sp — D’ be a homomorphism, i.e.,
let there exist a function fe D—D’ and an operation X & D'XD’—> D’ with
identity X/, satisfying, for all xe D and s and t€ S):

(i) g0 = x/0,

(i) gx = fx,

(iii) gs+1t = gs; Xgt.

Then g = X/f-.

PROOF. By the induction lemma. For part (i), we have g0 = X/0 = X/f-0.
For part (ii), gx = fx = X/"fx = X/f-X. For part (iii), by the induction
hypothesis gs = X/f»s and gt = X/f+t. Then gs+t = gs;xgt =
X/fesy XX/ fot = X/fss+t.

43

SR b R

S

S

Note that this gives an algebraic formulation of the “Divide and Rule” para-
digm. For part (iii) tells us that to rule a structure s that is not atomic (i.e., to
compute g 5), we can divide s in two parts, rule these, and combine the results
appropriately.

The operations « and / give rise to three important new laws.

Law 1. Let fe D, > D3 andgeDy—>D,. Then (fg)+ = f+g+.

LAaw 2. Let fe D—>D’, Xe DXD —> D and X'e D'XD’— D’ satisfy
fxXy = fx;X'fyand fX/0 = X/0.
Then fX/ = XY/ f».

Law 3. Let Xe DXD— D and let + operate on Sp.
Then X/ +/ = X/ X/« (where these functions operate on Sg,).

Proor. The proof (by induction) of law 1 is straightforward. Law 2 is an
application of the homomorphism lemma, by taking f X/ for g and X’ for X.
Law 3 is an application of the same lemma, with X/ for fand X/+/ for g.

Each of these laws corresponds to a whole set of program transformations.
Since the law g«x +y = gsx; +g+y holds, and g+ +/0 = +/0 (since 0 is the
identity of +, we have +/0 = 0), we can apply law 2, with g« for f and +
for both X and X’, to obtain

COROLLARY. Letg+€Sp—>Sp. Then g«+/ = +/g==.

The importance of the corollary is that it has no condition to be verified, in
contrast to the complex applicability condition of the law from which it was
derived.

This game can be continued on more complicated algebras. The simple
cases dealt with above, however, already give rise to a surprisingly fruitful
range of identities. For example, the identity mentioned in Section 2, which in
functional form reads 1,/ +/mr+ = 145,/ (Tq0e/mr) », in which mr is used as a
function, is derived as follows

Tage/ T/ mrs = T/ Tage/ *mr+ (by law 3, using 1, for X)

= Tage/ (Tage/ mr) = (by law 1).

This identity applies then to trees, sequences, bags and sets. Indeed, the
transformation 4 = B is valid, irrespective of whether the inhabitants are
registered in orderly ledgers, or in bags. It is possible that 1,,./ is not mean-
ingful on the structures considered, but then both sides of the identity are
meaningless.

A particular type of structure is obtained by taking the point domain {¢},
containing one single element ¢. Assume + is at least commutative, and define
1 =& Then each member of Sy, except 0, can be written in the form
1+ ... +1. In this particular case, associativity implies commutativity, since
the 1s are indistinguishable. (This is not true if we allow infinite structures.)
If identity, associativity and commutativity are the only laws for +, so that,
e.g., 1+1 # 1, then Sy = N, the natural numbers, and + has the conven-

44

tional meaning of addition. If idempotency holds too, we obtain a set with
two elements, 0 and 1, which will be identified with “false” and “true”, respec-
tively. The meaning of + on this domain is that of V, the “logical or” opera-
tion.

6. FICTITIOUS VALUES

Since antiquity mathematicians have been confronted with equations that,
although not inconsistent, were nevertheless “impossible”. A simple example
is the equation s +8 = 5. If a shepherd adds eight sheep to his flock, it is
impossible that the result is that the flock contains five sheep. And yet,
discovered the mathematicians, it is possible to practise an internally consistent
mathematics with fictitious quantities such as “3 short”. In this way the
notion of “number” has been extended from natural to, successively, integral,
rational, algebraic, real and complex numbers. Today we are so familiar with
all this that it is hard to realize what triumph of intellect the invention must
have been to denote “nothing”, something “non-existent”, with a symbol like
“0”. Why has mathematics gone the way of accepting “fictitious values” on an
equal footing? The answer must be that for mathematical practice the simpli-
city of the algebraic laws prevailed over semantic doubts about the necessary
extensions of the notion of “value”. Nowadays, we feel no qualms in stating
that the set of primes that are also squares is empty, rather than that such a
set is “impossible”. Only one century ago, this was not so easy. The well-
known mathematician C.L. DoDGsON—well-known for other than his
mathematical writings—advocated that universal quantification over such an
“impossible” set would stand for a contradiction. Nobody could have worded
the arguments better than he, but nothing has stopped mathematics from going
the way of algebraic simplicity, in spite of all “common sense”, leading to the
currently universally accepted interpretation, which is just the reverse. So now
we have

(VxeS:p(x)) D (VxeS":p(x)) forallpiff S'CS.

The Carrollean definition would have required, instead of “iff S’ C S”, the
much more complicated “iff § = 0V §’ # 0 A §” CS”. Yet it is important
to realize that all this is a matter of convenience, and not of mathematical
necessity. If, for example, we define << between sets over an ordered domain

by
S<Tiff VseS:VteT:5s <1,

then under the present interpretation < is not transitive, whereas it would
have been so, had nineteenth-century “common sense” prevailed. So the
advantages of the current convention are not unequivocal.

The problem that arises in the oldest-inhabitant problem treated in Section 2
if some municipality is without inhabitants, can be solved by introducing the
fictitious value “Nobody”. In more mathematical terms, the domain of inhab-
itants forms a semi-lattice (disregarding inhabitants of equal age), and, as is
well known, it is always possible to add some bottom element to it. If we

45

denote the operation of the semi-lattice by Tage > then the oldest inhabitant of
a set s of inhabitants is given by 1,5/s, and so this “Nobody” is 1,,/0. If
Nobody is next compared to somebody, somebody will be chosen, since
$Tagelage/0 = 5. This explains why “=" could be replaced by “=". In gen-
eral, if some operation X has no identity in its domain, we can extend the
domain by adding X/0 as its identity. The properties of X/0 are completely
determined by the relevant algebraic laws. In particular, we see that it is an
identity of X from x X X/0 = X/X; XX/0 = X/X+0 = X/% = x. Sucha
fictitious value can drastically simplify an algorithmic description; for that rea-
son, it is not uncommon to find the notation co in algorithms described in
“pidgin ALGoL”. The important insight is that such a domain extension is, in
general, consistent. Inconsistencies can arise through additional laws, or
through interference between laws involving several operations in a domain.
To give an example of the possible pitfalls, let the operation < be defined by

XLy ex.

This operation is associative, since (x < y)<z = x<(y<z). The function
</ selects the first element of a sequence (or the leftmost element of a tree).
Now consider </0, where 0 is the empty sequence. Then </0; «x = x,
since </0 is the identity of <. But from the definition of <, we have
</0; «x = </0. So x = </0 for arbitrary x. The problem arises since
the law x < y = x has already assigned a value to a formula containing the
newly introduced identity. In fact, each element is a so-called right-identity of
< if a semi-group contains both a left- and a right-identity, then it is well
known that they must coincide. If, for algorithmic purposes, a fictitious ele-
ment </0 is desirable, we must choose between two possibilities to retain
consistency: either restrict the law x <y = x to x # </0, or use </0 as a
right-identity only (in which case the law </s+1 = </s; < </t requires,
of course, the restriction s # 0). Which solution is best depends on the con-
text.

For the applicability of the methods of “transformational programming”
and especially of “programming by stepwise refinement”, it is important that
algorithmic descriptions allow a certain amount of “indeterminacy”. We may
then find descriptions like “Let x be an element of s”. The correctness of the
algorithm does not depend on the element chosen, and so permits arbitrary
choice. This type of “arbitrariness” should not be confused with the intended
chaotic arbitrariness of pseudo-random generators. It only indicates a freedom
that is left in realizing the algorithm, and which can be used, e.g., to achieve a
simplification through a judicious choice of x. Now what if s = 0, the empty
structure? The usual approach is then that the meaning of “Let x be an ele-
ment of 5 is “undefined”, an entity that is loved by semanticists but best
avoided by programmers. Let us use the symbol [I to denote an unspecified
choice: the operation of making an arbitrary choice between two values. So
x[l y is a specification that is satisfied by any solution for x, but also by any
solution for y. The expression 102 may yield 1, but may as well yield 2 (but
not 3). The operation [is associative: (x[l y) Iz is equivalent to x[(y[z). It

46

is also commutative and idempotent. So [I/s stands for an “arbitrary” choice
from the structure s. Choosing from an empty structure can now be described
with the formula [I/0. But no choice is possible, so what is the meaning of
this formula? The answer is: “Nothing”. A more learned answer is that [/0
represents the unsatisfiable specification. In essence, the question is as
unanswerable as the question what it means to take the square root of —1.
The meaning of [J/0 is given by the algebraic laws it satlsﬁes, beyond that, it
has no inherent meaning, any more than o, V-1, \/5, 7 or, for that matter,
—3 have one. So, in particular, its meaning is that it satisfies x(1[/0 = x. In
words, if we may choose “freely” between x and Nothing, then we must
choose x.
An important identity for [] is

fxly = fx; 0 fy.

This corresponds to what is known in Formal Semantics as the “monotonicity”
of f. We know then, from law 2 of Section 5, that f[I/ = [I/f+. A prere-
quisite for general applicability of this law here, is, however, that the function
be “strict”, i.e., that the identity f[I/0 = [1/0 be satisfied as well. (In Formal
Semantics, a function f'is called “(error-)strict” or “bottom preserving” if £ (x)
is “undefined” (or “the error value”) whenever x is. The pseudo-value {1/0 can
serve here, more or less, as a denotation of an “error value”.) Many other
identities require that the functions involved be strict. That a function is
indeed strict will sometimes follow from its definition. In other cases, such as
for the constant function 0<«, it does not; if strictness is not necessary, we
have to specify what we want. It is, of course, possible to take strictness of
functions as an immutable characteristic of the framework. But this is undesir-
able. In particular, if [I/0 is an identity of the operation [I, this gives simpler
algebraic laws. Since then x[1{l/0 = x, the function x[] cannot be strict for
satisfiable x, and so the identity x[1[/s = [/x0+s requires the restriction
s # 0. A reasonable convention appears to be that a function f is only strict
if the algebraic identities assign no other meaning to f[1/0, or, of course, if
strictness is explicitly specified. Then *, +, and all functions of the forms f-
and X/, are strict. Moreover, = must be strict, to prevent pathological para-
doxes as would be created by fx « if fx = [1/0 then x else /0.

We can now define the asymmetric relation => in terms of = and [, for
P = q has the same meaning as p = pllq. A consequence is that p = [I/0 for
each p; for that reason programmers are well advised not to interpret “=
too literally as “may be replaced by”: otherwise, “Nothing” would remain of
programming.

7. ABSTRACT ALGORITHMIC EXPRESSIONS

The expressions we have encountered until now are algorithms, in the sense
that we could conmstruct an automaton that accepts such expressions and—
provided that the value of all variables is known—produces a result in a finite
amount of time. The first mathematical formulae were, likewise, computa-
tional prescriptions. When we now manipulate formulae, it is the exception

47

rather than the rule that we are concerned with the efficiency of evaluating the
formula; whether we replace x2—y? by (x +y)(x —y), or prefer the replace-
ment in the opposite direction, depends on the context. Likewise, we must
abandon our fixation on efficiency if algorithmics is to enjoy a fruitful develop-
ment. In general, developing an efficient algorithm will require that we first
understand the problem, and for this we need simple algorithmic expressions;
but to simplify an expression we have to shed our old habits. In mathematics,
a formula like lim sup,.,, a," shows that the thought of a constructive
prescription has been abandoned. For algorithmics, it is similarly useful not to
cling to the idea that every algorithmic expression must be interpretable by an
automaton. An interesting step, that has not yet been explored, is to extend
the notion of “structure” to structures whose finite constructibility is not
guaranteed, or is even provably impossible. So, for example, the function
infrep defined by

infrep x < x +infrep x

would define an infinite structure of x’s.

For the time being, the primary purpose is to allow algorithmic expressions
that serve purely as specifications. An example of a possible specification is, in
natural language, “a counterexample to Fermat’s Last Theorem”. Even though
we do not know, at the time of writing, how to construct one, we can (in
theory) recognize one if it exists. But even the uncertainty about the existence
of a counterexample does not make the specification vague; it has a precise
and well-understood meaning. Allowing such “unexecutable” specifications to
be expressed in the language of algorithmics makes it possible to keep the
complete trajectory, from the inmitial (formal) specification to the final algo-
rithm, in one unified framework. Many transformational derivations start with
an expression that is theoretically executable, but not in practice; in particular,
they tend to take the form of “British Museum” algorithms, in which a finite
but exceedingly large search space is examined. An advantage is that one may
hope to run this initial “specification” for a very small example. A disadvan-
tage is that it is not always trivial to give an expression for the proper search
space; the requirement that it be finite may increase the distance from the true
specification. Also, it is not unthinkable that this step might introduce an
error (some relevant case not included in the search space); particularly so
since it precedes the formal development. It turns out that we can use one
particular “unexecutable” expression to denote a “sufficiently large” search
space. It will be denoted by “U”, and its meaning is, informally, the
“universe” of all possible objects that are meaningful, i.e., of the right type, in
the given context. The trick is that the notation P:s, where P is a predicate,
stands for the collection of elements of s that satisfy P. A more traditional
notation is {xes | P(x)}; however, “:” works also on structures other than
sets. The meaning of {xeU | P(x)} is then understood to be the same as that
of the common notation {x | P(x)}. So, if C is a predicate testing for the pro-
perty of being a counterexample to Fermat’s famous claim, then C: U specifies
all counterexamples, and [I/C: U specifies a counterexample.

48

8. SEMANTICS FOR ALGORITHMIC EXPRESSIONS

How important it is to have a formal semantics for algorithmic expressions
depends on the degree to which we want to place confidence in the meaning-
fulness of purely formal manipulations. My feeling is that in the current stage,
a requirement that each proposed construction be accompanied by a formal
definition of its meaning, so that each transformation could be formally justi-
fied, would be stifing. After all, great progress had been made in, eg.,
Analysis, before Cauchy developed a firm foundation, and the paradoxes
involved in summing divergent series have not led to disaster. Well-known
examples where theory followed the application are Heaviside’s “Operational
Calculus” and Dirac’s 8-notation. In due time, if the approach to Algorithm-
ics investigated here proves its worth, possible paradoxes can be resolved by
introducing higher-level concepts similar to, e.g., uniform convergence, to
tighten the conditions of some theorems.

Still, some form of semantics would help to reason about aspects of pro-
posed constructions. It is well known that we need extremely sophisticated
mathematical constructions to define denotational semantics for expressions
involving unbounded indeterminacy, and the desire also to allow infinite
objects in the domain of discourse will hardly simplify matters. This seems to
defeat the original motivation for defining semantics in a denotational way,
namely to define meanings in clearer terms (i.e., better amenable to formal rea-
soning) than possible under the usual operational approach. In our case, the
situation is even worse. For the intention is that the algorithmic expressions
serve equally well as specifications. But specifications requiring an inordinate
mathematical ability to understand them in the first place, are pretty useless.
An operational semantic definition is, of course, out of the question (but see
the next Section). A possible approach is the following.

Let & stand for the set of algorithmic expressions. It is assumed that, next
to the usual well-formedness criteria, other aspects, such as typability, are
prerequisites for acceptability as an expression of &. To simplify the treat-
ment, we assume that & is recursive, and that & contains a recursive subset
of expressions that are identified with “values” (e.g., “2”, or “Ax:x +1”)
Intuitively, we can interpret an expression e of & as “specifying” one, or more,
or possibly no, elements of V. Define ®(e) to be the set {veV | e “speci-
fies” v}. Alternatively, we can interpret e as a “task” to find or construct some
element of V. That task might have several solutions, or be impossible.
Define e =>¢’ to mean: the task e can be solved by solving the task e¢’. The
relation = is a subset of & X&. We can think of = as “may be transformed
to”. The relation = is reflexive and transitive (which may be ensured by tak-
ing the reflexive and transitive closure of some initial relation). Under the
interpretation of an expression e as specifying elements of Y, we would cer-
tainly expect e to specify a given ve Y whenever e =v. On the other hand, if
vE B(e) has been established, then v is a solution of the task e, so we have
e=v. It follows that B(e) = {veV | e=>v}. This gives a characterization of
® in terms of =. If we define the relation = C & X6 bye=e'iff e=e’
and e¢'=e, then = is an equivalence relation. We can, in the usual

49

way, step from & (and V) to the equivalence classes induced by = in these
sets. For convenience, the classes may still be denoted by some representative;
but where formerly we had to write e = ¢, now we have e = ¢’.

When may a task e be replaced by a task ¢’? A requirement is certainly that
any solution to e’ be a solution to the original task e. So e=>e’ requires
B(e’) C B(e). We take this as the characterization of = in terms of %,
replacing “requires” by “iff”. This has some consequences. Call an expres-
sion f “flat” if B(f) is the empty set. An example of a flat expression is [J/0
(assuming that we do not admit this pseudo-value in the distinguished com-
pany of the proper values). Then we find, for any ¢, e=>[/0. But [/0 can
hardly be considered a reasonable replacement for e, unless e happens to be
flat too. So, possibly, a more reasonable characterization of = in terms of B
might additionally require the “preservation of definedness”, meaning that a
non-flat expression may not be replaced by a flat one. This gives rise to rules
that are more complicated, which is a reason for rejecting this approach.
Instead, it is better to accept the validity of e = /0, with the consequence
that the meaning of => does not correspond exactly to the intuitive notion of
“may (as a task) be replaced by”. The preservation of definedness has then to
be proved separately for derivations involving =>. It is generally easier to do
this once than to check it for each individual derivation step.

There is another important difference between the usual formal treatment of
the refinement relation between algorithms (see, e.g.,, MEERTENS[19]), and the
relation =>. For, in the usual treatment, one has [I/0=>e for any e. This is
unacceptable here, since we would then find that each ¢ = /0. See, however,
the notion of “total variant” of a function defined below.

If we start with some definition of %, next derive = from that definition,
and use = then to find %, this will be the original function we started with.
If, however, we start with some definition of =, use that to define $ and use
this function to determine =>, the latter relation may be larger than the origi-
nal one. Next to transitivity and reflexivity, a “complete” relation => satisfies
a stronger closure property:

If eV |e'=v} C{peV|e=v}, thene=e'

In this way, a relation = can be specified by giving an initial subset, in the
form of rules like

ell]eg =e,I = 1, 2.

But this still does not give the full story. A pleasant property of expression-
forming constructions is monotonicity: if Cle] stands for an expression contain-
ing e as a constituent sub-expression, and e = ¢’, then we want to be able to
conclude that Cle]=> Cle’]. This property is postulated for all constructions
admitted to our language (and so ® is excluded).

It is necessary to give a meta-rule for = on functions, since equality of
functions is not in general decidable. (The notion of “function” includes here
our binary operations.) A reasonable rule appears to be:

50

R

META-RULE FOR = ON FUNCTIONS,
Let fand f'€ D — (where D C), and let fv=>f'v for all ve D U {[l/0}.
Then f=> f".

This rule makes a choice between several possibilities for defining = on func-
tions. The possibility chosen seems to be the more manageable rule. If func-
tionals (higher-order functions) can operate on functions involving indeter-
minacy, the meta-rule must be used with caution. For assuming the reason-
able identity flg;x = fx;llgx, we are led to conclude that
flg =Ax:(fx;0gx). Now take f = id (= Ax:x), g = 3< (= Ax: 3),
andlet h = Ax: x[13. Then s = fllg. Butif F = A¢: (¢1; +¢2), then we
find Ffllg = Ff;lFg = 1+2;13+3 = 306, whereas Fh = h1; +h2 =
103; +203 = 3040506.

The converse rule “If f=> f”, then fv = f’v” results if the monotonicity pos-
tulate is applied to function application. A consequence is that if f'is a partial
function, but f* is total (i.e., never yields [I/0), then f=> f’ cannot hold. How-
ever, it is often desirable to turn partial functions into total ones. For exam-
ple, a problem specification may prescribe that error messages be given if cer-
tain conditions are not met. It may then be preferable to treat these error
messages initially as “instances” of [I/0. Call f’ a “variant” of f if
Sv=>f'v # [l/0 whenever fv is not flat. A useful curiosity is that if f is
“determinate” (see below), then f’=>f. This is also a sufficient condition to
show that a determinate function f” is a variant of J- A “total variant”, finally,
is a variant that is a total function.

We also need rules for function applications. Unfortunately, the simple rule

(Ax: Clx])e = Cle]

is not enough. One counter-example is found by considering f1012, where
f=Ax:x—x. Mechanical textual substitution gives 102;—102 =
—1; 001, which, together with the above meta-rule, would lead to the conclu-
sion that function application is not monotonic (or, worse, that 0=> 1).
Another problem is given by taking h[l/0, where & = Ax: x[I3 is—for the
moment—taken to be a strict function. Textual substitution results in
0/0; 03 = 3, which is inconsistent with the identity characterizing strictness,
namely A[/0 = [I/0. Therefore, the rule for function application needs the
condition that the expression for the argument is “determinate” (see below)
and non-flat if the function is specified to be strict. This corresponds, roughly,
to what is known as “call-by-value” semantics. Note, however, that it is not
required to evaluate the argument; all that is needed is that we exhibit certain
properties, for which some sufficiency conditions can even be given in terms of
syntactic criteria. If the function definition does not involve more than a sin-
gle occurrence of the argument, then indeterminacy of the argument is no
problem. The reason that functions are non-strict by default should now be
apparent: this choice simplifies the applicability condition of the rule. Note
that for strict functions it is always safe to use the rule in the “Fold” direction,
namely Cle]=(Ax: C[x]e.

51

An expression e is determinate if, for any two values v, and v, such that
e=>v, and e=>v,, we have v, = v,. It seems reasonable to require all values
to be determinate, which implies that = and = coincide on . All values
are, by definition, non-flat. The function-application rule could then be stated
by restricting the argument to values (as was already done for the meta-rule),
with the advantage that the notions of “determinacy” and “flatness” need not
be used. A problem arises, however, if we want to define B (h), where h is as
above (but not strict). Since 4 is obviously indeterminate (we have both h = id
and h = 3<), we do not want to allow Ax: x[13 as element of V. No enumer-
able collection of determinate lambda forms, however, can capture the mean-
ing of A. This is related to the problem mentioned above for equality of func-
tions.

A function definition may contain several occurrences of the argument, as in

abs x <= if x<<0 then —x else x.
Suppose we want to show the equality

abs 2Xe = 2Xabs e.
This is easily proved by the Unfold/Fold method:

abs 2Xe = if (2Xe)< 0 then —(2xe) else (2Xe) =
if e<O then 2X —e else 2Xe = 2Xif e<<0 then —e else e —
2Xabs e.

Unfortunately, the condition for the function-application rule is not satisfied if
e is indeterminate. And yet, it is easy to see that in this particular case no
harm is done. This insight can be generalized to the following meta-rule:

META-RULE FOR INDETERMINATE UNFOLD/FOLD.

Let Cle] and C’[e] be expressions containing e as a constituent expression, and
let e occur at most once in C’[e).

If there is a derivation Cle]=> C’[e] for determinate e, and e is uninterpreted in
that derivation, then Cle]= C’|e] is also valid Jor indeterminate expressions e.

This allows one to use, e.g, e —e=> 0 or l-e = e, the latter by applying the
meta-rule in both directions. This meta-rule is a corollary of the rules given
above, as the following derivation shows:

Clel = (Ax: C[x])e = (Ax: C’'[x])e = C'[].

The middle step is an application of the meta-rule for = on functions,
together with the monotonicity property.

9. EXECUTABLE EXPRESSIONS

In going from specification to implementation, we can stop the development
when we have an expression that has an obvious translation in terms of a pro-
gram (i.e., it belongs to the “solution space”). If that translation is so obvious,
then we can wonder if it could not be delegated to a machine. If that is possi-
ble at all (and it is certainly possible for some subset of the language & of

52

algorithmic expressions), then we effectively have a machine for executing
some expressions. This would eliminate an uninteresting step that might easily
introduce clerical errors. It also opens the possibility of having the machine
apply certain optimizations that are hard to express without spoiling the clarity
of the expressions, but that are nevertheless obvious (e.g., replacing recursion
by iteration, or eliminating redundant computations).

In the current stage of this work, a serious effort to define an “executable

2t

subset” of the algorithmic expressions is still out of the question. We may
wonder, however, what properties we would require of a hypothetical machine
for executing expressions. Let &, V and = be as in the previous section. A
possible approach is that the machine tries to mimic =», going through a
sequence e} =>e; => - .., hopefully ending up in a member of V. To the
machine, the forms it operates on are states, rather than expressions. It is real-
istic to assume that the machine may have to attach some bookkeeping infor-
mation to the expressions. To simplify the discussion, this possibility will be
ignored. Obviously, we may not assume that the machine is capable of accept-
ing all expressions of & as states. ,

Let @ be a subset of &, standing for the “executable” expressions, i.e., the
expressions that the machine is designed to cope with. (The letter & has been
chosen here because to us these expressions are programs for the machine.)
We assume that 9 and 9 NV are recursive sets. Now we define p —p’ to
mean: if the machine is in the state p, it can, possibly, switch next to the state
P’- So — is a subset of #XP. There is no reason to require that the machine
be deterministic, but it makes sense to assume that — is at least recursively
enumerable. There must be some halting condition for the machine. A simple
criterion is to have the machine halt if its state is a value, i.e., a member of V.
This is then the output. For the sake of simplicity, we require all values to be
“dead-end states”, where p is a dead-end state if no state is reachable via —
from p. Now we have two requirements:

Soundness. Let — * stand for the transitive and reflexive closure
of —. Then, forallpeP and ve YV, if p — *v, then p = v.

Preservation of Definedness. Let p be an arbitrary non-flat member
of @ (where the non-flatness is with respect to &). Then (a) if
P —>*p’, and p’ is a dead-end state, then it is a value; and (b)
there does not exist an infinite sequence of states py, py, - - -
such that p = pg—p; = - ...

The first requirement is simply that the machine produce no wrong answers.
The second one requires that if the program p, viewed as an expression, speci-
fies a result (some value), then the machine will output a value when started in
state p. Part (a) prohibits the machine from reaching a dead end without pro-
ducing output (which, if it can be detected, can be interpreted as abortion of
the program), whereas part (b) forbids infinite loops. It is, of course, in gen-
eral undecidable whether the machine will halt if started in a given state p, so
the proof would depend heavily on properties of =», such as monotonicity,
and possibly of 9.

53

A relation — satisfying the requirements for soundness and for preservation
of definedness, may be called an “operational semantics” for ¢. Note that
different machines may correspond to different executable subsets of &, and
even that two machines operating on the same set ¥ may differ in their opera-
tional semantics. So there is no such thing as the subset of executable expres-
sions. In fact, let 9 be any executable subset, with operational semantics — .
Then it is always possible—provided that & is sufficiently expressive—to find
some pair {e, V)€ & XV such that e¢ ? and e=>v. Then P U {e, v} is also an
executable subset, with operational semantics — U {{e, v)}. So there do not
even exist maximal executable subsets of &.

The “canonical evaluation” of programs in the style of BURSTALL and DaARr-
LINGTON|[6] is one prime candidate for being an operational semantics. Some
expressions have obvious translations into an imperative style, like
Tage/ +/mr+dm into the program of figure2a of Section 2. @ could be res-
tricted to such programs, which could then be “compiled” into “pidgin
ALGor”. Yet another possibility is translation into FP.

A problematic aspect is the evaluation of expressions such as x[Jy. It is
easy to imagine a machine that would always go to a state x’ [l y if x —x’ for
some x’. Note, however, that the machine is forced, by virtue of the require-
ment of preservation of definedness, to try the other choice if the preferred
choice leads to a dead end without output. This corresponds, in a limited
sense, to what is sometimes called “angelic nondeterminism”. Operationally,
however, no “nondeterminism” need be involved in this. But the same is also
required if the first choice may lead to an infinite loop. Fortunately, the
machine need not decide beforehand if this undecidable contingency will arise;
it is sufficient if the evaluations of the alternatives are “dovetailed” (inter-
leaved) in a fair way, ie., not excluding some alternative indefinitely. In the
context of a recursive function definition, this provides “automatic backtrack-
ing”, where [I/0 takes the role of “Fail”. To give a stronger example, consider

fx « if x = 0 then fO[1 else 1.

It is then guaranteed that f0 = 1, since f0=>f001=f1=1, and no other
value than 1 could be a possible outcome. Although this may not be the most
pleasant thing to implement, neither is it prohibitively difficult or expensive,
and certainly not if occurrences of [l in “executable code” are the exception
rather than the rule. It will often be possible to exhibit the non-flatness of
expressions by a static analysis. If x is known to be non-flat, then the step
x[y—x is allowed.

10. SOME MORE BASIC OPERATIONS

If x and y denote two objects, <x, y) denotes an object that is a pair consist-
ing of those two objects. The functions ; and =, allow the retrieval of the
components from the pair, so, e.g., m<x, y» = y. If xeD; and ye D,, the
pair <x, y)€D;XD,. If orderings are defined on the component domains,
then the product domain is assumed to be ordered lexicographically, unless a
different order is specified.

54

We have already encountered the operation <, which selects its left
operand: x <y = x. An important application is that x < denotes the con-
stant function Ay: x. The operation > selects its right operand (and so x>
is, for each x, the identity function id).

If x is a determinate object (meaning that no choice of the type [l is
involved), then P?x, where P is a predicate (i.c., a function returning a truth
value), stands for x <«Px. This formulation has probably no immediately
obvious meaning to the reader. Remember that “false” and “true” are identi-
fied with 0 and 1 = &, respectively. So, if Px is false, P?x = x<+0 = 0. If
Px is true, P?x = x<+] = X<+t = "x<t = x. We see now that P?x
means “if Px then X else 0”. The operation ? is mainly (but not only) useful
as auxiliary operation to define other operations. An important application is
in the definition of a “filter”: a function to “extract” all members of a struc-
ture satisfying a given property. The function +/P?» returns the structure of
all P-satisfying members of its argument. For example, if Px holds, but P y
does not, we obtain +/P?+x+y = +/("P?x;+"P?y) = +/5+0 =
+/% ++/0 = x+0 = x. It is important enough to merit a shorter nota-
tion; for this, we use P:, which we have already encountered. For example,
the filter x= : extracts all elements equal to x. We can then define

x€e & 0# x=:

to test for membership of x.
Some laws that use : are:

P:+/ = +/P:s;

x=:U _ X;

P:f« = f«(P f):, provided that f is determinate;

P:Q: = PAQ;: (remember that PAQ;x = Px; AQx).

The proof of the first, least obvious, law, is P:+/ = +/P?+«+/ =
t/+/P?+«+« = +/P:+, in which the middle step is an application of the
corollary of Section 5. The second law cannot be proved from previous laws,
since no previous law involves U; instead, it can be viewed as a (partial?)
characterization of U. The derivation of the third law is left as an exercise to
the interested reader. (Hint: use the meta-rule for = on functions from Sec-
tion 8 to show first that fx; < = fx <, and next that P?7f = f+(Pf)?.)
The last law is most easily proved by proving it first for determinate predicates
P and Q (by considering all possibilities of assigning truth values to Px and
0 x), and then using the last meta-rule of Section 8.
An example of the use of these laws is given by

XeP:U = 0#x=:P:U = 0#£P:x=:U = 0£P:x =
0#£AP?x = Px.

Another important property connected with : needs some terminology. Call
an operation Xe€DXD —D “selective” if [= X, ie, for all x and y e D,

55

x[y=xXy. Examples of selective operations are [itself, <, >, and I and
1> to be defined below. The property is then:

If X is selective and X/P:s=>x # [I/0 for some structure s, then
Px=1.

The crucial step in the proof is [/ P:s = X/P:s.

Another useful application of ? is in the definition of —>, where the predi-
cate p — is defined by [I/p < ?, in which p is a proposition, i.e., an expression
whose value belongs to the domain of truth values. (Since the operation ?
requires a predicate as first operand, the operation < is used to turn the pro-
position p into a predicate.) Then p — x; [lg — y specifies, indeterminately, x
or y, but x is only specified if p can be satisfied, and y if ¢ can be. For exam-
ple, assume that p holds and ¢ does not. Then we find p —x; lg—y=
I/p<x;00/g<?y = I/ x;00/0 = x00/0 = x. So the combination of
—> with | gives “guarded expressions”, whose meaning is not primitive but is
obtained by composing the meanings of the individual operations. Note that
001; »x = x,since 0011; > x = 0—>x;[1—x.

An important law for — is: '

fp— = p—> f, provided that f is strict.

Since p — is obviously strict, we havep >¢g— = g—p— (= p Ag;).

If x and y are elements of a semi-lattice with greatest lower bounds, then
x|y stands for the preatest lower bound of x and y. The expression /0
stands then for the top of the semi-lattice. If it has no top already, it can be
extended with one in a consistency-preserving way. It is often profitable to
identify |/0 with [/0. The operation 1 is defined similarly. Although it is like-
wise often useful to define 1/0 = [/0 if the (semi-)lattice has no bottom, it is
generally unsafe to use this device for both | and 1 if they can appear mixed in
a formula.

On structures, we can define a default partial ordering

s<t iff 0L <=5,

So s <t if 5 can be obtained by omitting some (possibly none) of the members
of 2. For sequences, < corresponds then to “is a (possibly non-contiguous)
subsequence of”. For sets, natural numbers, and truth values, we find as
meanings, respectively, “ C”, the traditional “<”, and implication. Structures
for which the construction operation + is associative and commutative form
now a lattice, and | gives, e.g., “N” for sets and “A” for truth values. The
operation 1 is then defined as well. Note that {/0 = 0, since 0 is an identity of
the operation 1.
The operation <, where fis a determinate function, is defined by

x<fy¢=fx; <fy,
and =, > 1> etc., are defined similarly.

The operation y, for a determinate function f whose range is a domain with
a total ordering, is defined by

56

Xy = (x<py; >0 0(y <7x; = y).

An identity relating I; to | is fl;/ = I/ f-. The operation s is defined simi-
larly. It is again often helpful to define {;/0 = [/0 or 1,/0 = [/0, with the
same caveat for mixed use.

Finally, we need a function # to count the number of elements of a struc-
ture. This can be done by mapping each element to ¢, so #x+ y = i+i =
1+1 = 2. So we can define # as ¢<». There is a surprise, though: on sets
(and more generally, on all structures with idempotency) this # refuses to
count properly. The problem is that #, as defined, is a homomorphism. But
the number-of-elements function on sets is not. That “number of elements”
cannot be defined as a homomorphism on sets follows from the breakdown of
the law # +/ = +/#+ (an application of the corollary of Section 5) for sets;
in particular, #s; +#s for a non-empty set s differs from #s+s = #s. The
function ¢ <+ is only defined on sets as a mapping to the set S, which is the
domain of truth values, and it tests then for non-emptiness.

11. FIRsT EXAMPLE: A TEXT-FORMATTER

The following problem specification, copied from BAUER et al.[2], is a refor-
mulation (under the heading “Text editor”) of the original specification (under
the heading “Line editing problem™) given in NAUR[22].

“A text, i.e. a non-empty sequence of words separated by blanks

(BL) or new line characters (NL), is to be re-structured according to

the following rules:

(1) every two words are separated by exactly one BL or NL;

(2) the first word is preceded by NL; the last character is neither
BL nor NL;

(3) each line is at most MAX characters long (not counting NL);
within this range, it contains as many words as possible.

The input line is required to start with NL; further, no word must

contain more than MaX characters.”

As a first step, we aim at more abstraction. This can be done by assuming
that a type “word” is already given, and that the function #, applied to a
word, will give its length (some natural number). Then the input can be
viewed as a single “line”, ie., a sequence of words, whereas the output is a
sequence of lines. This abstract view makes requirements (1) and (2), the clar-
ification “(not counting NL)” of (3) and the first part of the last sentence
irrelevant, since they deal with the concrete representation of sequences of
lines in terms of some character code. More important is that it guarantees
that the algorithmic development will work for different representations. (If
more concreteness is nevertheless required, it is still advantageous to split the
problem into a more algorithmic part, and the treatment of the concrete
representation. For the latter, mappings from the types “sequence of words”
and “sequence of lines” to the type “sequence of (character or ‘BL’ or ‘NL’)”
have to be defined, and the abstract algorithm obtained has to be transformed

57

to work on this new concrete representation. Techniques for effecting a
change of representation are given in BURSTALL and DARLINGTON[6] and
MEERTENS[18]. Hopefully, it will be possible in some future to leave such
low-level transformations to an automated system.)

Next we have to make the natural-language specification more precise. The
meaning of “A text ... is to be re-structured” is best expressed as a requirement
on the relationship between the input and the output:

(0) the output, “unstructured”, is the original input.
Furthermore, requirement (3) is best split into two parts: A

(3a) each line of the output is at most of length Max;
(3b) each line of the output contains as many words as is possible
within the constraints imposed by (0) and (3a).

An observation can now be made: the specification is symmetric with respect
to the directions left-to-right and right-to-left. More precisely, let rev be a

function that takes a sequence as argument and returns the reverse sequence as
result. Then we have:

If a function f “solves” (0), (3a) and (3b) (i.e., for each acceptable
input line i, fi is acceptable output), then so does revs rev frev
(= rev rev« f rev).

From (3b) we can derive the following requirement:

No line of the output starts with a word that would have fit at the
end of the previous line.

For, otherwise, that line contains fewer words than possible. Expressed very
informally, this means: lines are “eager” to accommodate words as long as
there is enough room. Because of the symmetry, a solution must then also
satisfy the mirror-image “reluctant” requirement:

No line of the output ends with a word that would have fit at the
start of the following line.

But it is not hard to give input for which the “eager” and the “reluctant”
requirements are, together, impossible to satisfy. An example, if MAX = 13, is
the input “Impossible.to.satisfy.in.both.ways!”. The unique
“eager” solution is then

Impossible.to
satisfy.in...
both.ways!...

The “reluctant” solution is different:

Impossible...
to.satisfy...
in.both.ways!

58

iR

Something is wrong. The “reluctant” approach tends to leave as much white
space on the first line as possible. This is, by application of real-world
knowledge, typographically undesirable. The “eager” approach, in contrast,
leaves the last line unfilled. This is, if not typographically desirable, then at
least neutral. This suggests to us replacing (3b) by:

(3b’) each line but the last, if any, of the output contains as many
words as is possible within the constraints imposed by (0)
and (3a).

However, this still does not solve the “eager” vs. “reluctant” problem: just
add a 13-character “word” (e.g., “Exasperating!”) to the end of the exam-
ple input given above. The problem with the specification seems to reflect our
conditioning to think in terms of left-to-right. Whereas (0) and (3a) are
“boundary conditions”, (3b) is an “objective”, namely, “Do not waste more
space than necessary”; more precisely:

(3b”) minimize the total white space on the output, not counting
the last line. -

This approach was suggested to me by Robert Dewar. There is still a tiny
problem left: if the last line is completely filled, then another empty line may
be added without penalty in terms of the white-space objective. So a second
objective, subordinate to the previous one, is to minimize the number of lines
of the output.

Now we are ready to start giving a formal treatment of the problem. This
will be done in an unusually detailed way, comparable to the minuteness of
the steps in § = 1S = G-2)S = 1(28) = 3(S+S). We use the letter r for
the input (“raw”), and ¢ for the output (“cooked”). The proposition that the
input/output constraints are satisfied, is denoted by r~c. If, furthermore, obj
denotes the objective function, then the problem is to determine, for given
input 7,

Jr <= lgy/r~:U.

In words: take any obj-minimizing object ¢ such that r~c. We put
dopi/0 = [I/0. We must define ~ and obj. If len is a function giving the
length of a single line, then ~, expressing that the two constraints (0) and (3a)
are satisfied, can be defined as:

r~c & +/c = r; Ni/len+c < MaAX.

The len of a line is the sum of the lengths of its words, plus 1 for each space
between a pair of words. A simple way to obtain this result, is to add 1 to the
length of each word before summing, and to subtract 1 from the sum. For an
empty line, we have to define its length separately:

len0 < 0;

lenl+w < —1; + +/(1+#)I+w.

59

S

For a line conmsisting of a single word, we have, of course, lenw =
—1; ++/(1+#)sw = —1; +(1+#)w = #w. The objective function is
defined by

objc < (wsec, #c),

where the “white-space” function ws gives the white space on its argument (not
counting the last line). The white space left on a single line is given by the
function ws; = MAX—len. This quantity has to be summed over all lines but
the last. This gives us the definition:

wsc'+1 +/wsy=c’.
To make the function total, we also define
ws() < 0.

We turn now first to the question whether it is possible to satisfy the con-
straints, not bothering about the objective. One extreme approach to satisfy
(0) is to have a one-line page, or ¢ = 7. This is likely to violate constraint
(3a). Since the white space does not matter, we can try the other extreme: use
a separate line for each word. This would give us ¢ = “+~. Then (0) is, of
course, satisfied, but what about (3a)? Since len” = #, we find

Viensc =1/len+"«r =1/ (len")+sr =1/ #er.

So, if 1/ #+r < MAX, i.e., each word on the input is at most MAX long, we
have r~ " +r, so the problem posed is solvable. Next, we show that this condi-
tion is not only sufficient, but also necessary. If I # 0,

lenl = =1; + +/(1+#):1 = —1; + /(1 +#)+l =
=1 + 1+ 1/ = 1/ #-1.

In the given context, 1/0 = 0, since line lengths are natural numbers. Then, if
I =0,lenl =0 = 1/ #+l, so no condition / # 0 is necessary for the inequal-
ity lenl = 1/ #+I. Now we have

Viensc = 1/1/ #esc = 1/ #++/c.
If r~c is satisfied, +/c = r and {/len+c < MAX, so
WV #er =1/ #«+/c < V/lensc < MAX.
In conclusion,
Sr # /0 if and only if 1/ #.r < MaAX.

To “synthesize” f, we must derive some properties of ~ and obj. In the first
place, empty lines can be deleted from the output without violating the con-
straints. For

+/e1+0+e, = (H/e))+(+/0)+(+/cy) =
(H/e)H0+(H/cy) = (H/e))+H(H/cy) = /¢y +c,.

Also, 1/len+0 = 1/"len 0 = 1/0 = 0, so

60

T/Ien»c1+6+c2 = (T/Ien-c;)T(T/Ientﬁ)T(T/lemcz) =
(/len+c))101(1/len<c,) = (/lensc1)1(V/lenscy) =
Vlenscy+ec, .

Combining these two gives
r~c;+c;, if and only if r~c¢, +6+c2.

Next, we show that empty lines are always disadvantageous in terms of the
objective. To show this, we have to distinguish several cases, because of the
form of the definition of ws. First, we treat the case where the empty line con-
sidered is not the last line. Since

+/ws1'6 = +/"ws; 0 = ws; 0 = MAX—Ien 0 = MAX,

we have

wsc1+6+c2+’i = +/ws1=cy; T MAX+ +/ws scy = .
+/wsyscy; +t/wsec; = +/wsyscitey = wseytep+Hl.

If the empty line is the last, but not the only one, we find

ws e +I+0 = +/wsec, 1 = +/wsyecy; ++/ws o] =
+/wsy=c; = wscy+l.

Finally, if the whole document consists of just one empty line,
ws0 = ws0+0 = +/ws1»0 = +/0 = 0 = ws 0.
So in all cases
ws c1+6+c2 = wsc;te,.
Since
#c1+0+c, = (Fe))+H(#0)+(#cy) = (#e))+H1+(#cy) >
(#c))tH(#cy) = #c¢y+cy,
we have
objc1+6+c2 > objcy+cy.

We may conclude that it is mever helpful to consider output containing
empty lines. This can be expressed formally by inserting a filter that sifts out
pages with empty lines, e.g., by replacing U in the definition of f by 0e: U.
On the set of pages without empty lines, obj has the same ordering as ws, so
we can replace l,;; in the definition of f by l,,. We can now also use for the
len function the uniform definition

lenl = —1;, + +/(1+#) -1,

since we know that the function is not applied to an argument 0. This allows
us to do some elementary mathematics. If ¢ # 0, we can putc = ¢’+1, so

61

wsc = wsc'+l = +/ws)+¢’ = +/(MAX—len)s¢’ =
+/(MAX— (1) + +/(1+#))¢’ =

+/(MAX+1; — +/(1+#)s) e’ =

MAX+1; X#c, — +/+/(1+#)ssc’ =

MAX+1; X#c'; — +/(1+#)=+/c’.

If, furthermore, r~c, then r = +/c, so

lenr = len +/c = len +/c'+1 = —1; + +/(1+#) - +/c'+1 =
H/ (U #) /e’ + (1) + +/(1+#)] =
+/(1+#) e +/c’s + len,

so that we have
+/(A+#)«+/c’ = lenr; —lenl.
Combining these two gives us: if 7~c and ¢ = c'+;,
ws¢ = MAX+1; X#c"; ~(lenr; — lenl).

In using this formula to compare the outcome of ws on two different non-
empty pages that both meet the constraints, we can replace the part
“—(lenr; —lenl)” by “+lenl”, since r, and therefore len r, is fixed. Since
then, moreover, len! < MAX+1, the quantity #c’ prevails over lenl in the
comparison. This leads us to consider the simpler function

Iposc’+2 < (#c, lenl).

On non-empty pages, the ordering of ws is that of jpos. If we also define
Ipos 0 <= (0, 0),

we may even drop the restriction to non-empty pages.
If we combine the above findings, we obtain the following definition for S

Jr <= lpoy/r~:0¢:U.

This formulation makes it possible to find solutions of fr+w in terms of solu-
tions of fr. The effect, as we will see, is that of following the “eager” strategy.
We may thereby lose some other, equally optimal, solutions. Expressed in
words, the crucial idea is the following. Suppose c is the result of formatting a
given input text . We can “truncate” ¢ by “erasing” the last word on its last
line, and the last line itself if it then becomes empty. Then the two data c-
truncated and w, together with the knowledge that c-truncated was obtained
by erasing w from an optimal solution c, suffice to reconstruct ¢ uniquely. (It
is assumed that the value of MAX is known.) Moreover, c-truncated is then an
acceptable way of formatting r-truncated, and although it need not be an
optimal solution, there is no harm done by replacing it by an optimal one. It
follows then that an optimal solution for r (since we know it to exist) can be
formed from an optimal solution for r-truncated. This will now be shown
more formally. We define

62

Trnec'+714+w < (I £ 0; >/ +1)1(= 0; >¢');

Trncr'+w < 1.

(Note that the function Trac is “overloaded” here: the two definitions operate
on arguments from different domains.) So suppose r~c, and among all possi-
ble solutions the lpos of c¢ is minimal. Suppose, moreover, ¢ # 0, so
r = +/c # 0 (remember that empty lines are excluded), and we can put

c =c'++wy;

r=r+w,.
From r~c we have r'+w, = +/c'+"+w, = +/c¢; +1+w,, so r =
+/c¢’; +1 and w; = w,. (Note that we used the knowledge that +" is injec-

tive here. The conclusion would be unwarranted if + were commutative or
idempotent.) We can now drop the subscripts on w. Let ¢y = Trncc. Then

cr = Trnec’+14+w = (I #0; —>c’+;)[](1 =0;—>c¢),
in which ¢’ and / are still to be determined. We see that ¢’ and / satisfy

(#0;>cr = '+D101 = 0; > = ¢).
If ¢r = 0, the first alternative cannot apply (since o+l # 0), so then / = 0.
Otherwise, we can put ¢y = cr+lr, and so

(cr # 0; AL #0; =4, D) = (cp, i)l

(=0;-¢, D = <p, 0,

or

&, b =(er # 0, N1 #0; =h, IDU = 0; =, 0)).

The conditions on / have now lost their significance, since they are satisfied by
both possible choices. If we put

Cc; = C%'+AIT+;1\’, Cy = CT+l§’,
we find that ¢ = ¢’+"/+w has to satisfy
¢ =(r #0;—>c))lles.

Since ¢ has to satisfy 1/len-c < MAX, the first choice is open only if, moreover,
len Ir+w < MAX, and the second one if lenw = #w < Max. The remaining
indeterminacy has to be resolved using the minimality of Jposc. If both
choices are still open, c; has to be chosen, since

posc; = (#chp, lenlp+w)y < (1+#ch, lenw) =
(#cr, lenw) = Iposc, .
The choice is now determinate, and ¢ = cr Hw, where + is defined by
0Hw < #w; < MAX; > W;
crtip; Hw < (lenlp+w; < Max; —¢)) 1l
(lenlr+w; > MAX; A (#w; < MAX); —=¢,).

63

It has to be verified next that Trnc r~Trncc. In the first place,

+/Trce = +/Trncc’+1+w =

/(1 #£0; >+ = 0; >¢) =
F#0;>+/+HM1 =0; > +/¢) =
#£0;>(H/cHHDUI=0; > +/cy= +/e; H =71 =
Trncr'+w = Tmcr.

It is intuitively obvious that erasing words cannot increase line lengths, so that
1/len+c < MAX implies 1/len+Trnc c < MAX. However, we will derive this
also formally, just to show how this is done We reinstate—temporarily—
len0 = 0. Then

T/lentc'+0 = 1/(len+c")+"len 0 = T/(Ien*c’)-l-a =

Vlen+c';11/0 = Y/len«c’;10 = 1/len=c’;11/0 = 1/lensc’.
So

Viensc = Ylensc’+"1+w = V/(lensc’)+ lenl+w =

Viensc’;Venl+w = V/len+c";Vlenl =

T/ (lensc’s +"lenl) = 1/lensc’ +1 =

(#0;>Vien<c’'+H0 (I = 0; —1/lenxc’ +O)

(#0; =>Vienc'+D0(= 0; > 1Vlen+c’) =

Vien+(I # 0; »c'+D)1(= 0; =) = V/lensTrnce.
We have now Trnc r~Trncc.

Finally, it must be shown that replacing Trncc in ¢ = Trncc; #+w by an
arbitrary realization of f Trnc r does no harm to the minimality of jpos c. (The
verification that the result still satisfies r~c is straightforward and is omitted
here.) If Trncr = 0, there is no choice but taking ¢ = 0-+w. Otherwise, put-
ting ¢ = crHw = cr+lip; Hw, we have

lpos ¢ = lpos c’T+?T; Hw =
Ipos (len Ir+w; < MAX; = ¢q)[I (len Ir+w; > MAX; —¢,) =
(len Ip+w; < MaX; —>lpos ;) [(len Ip+w; > MAX; — [posc,).

If we define

{m, ny = lposcr,
we find #c¢4 = mand lenly = n. Then

lenlp+w = lenlp; +1+#w = n+1+#w,
and so

lposc), = (#ch, lenlp+w) = (m, n+1+#w);

lposc; = (#cp, lenw) = (#c'r+?r, lenw) =
(e 41, lenw) = (m+1, #w).

We can now simplify the expression for Jpos ¢ to

(n+1+#w; < MaX; = (m, n+1+#w)) [l
(n+1+#w; > Max; = m+1, #w)).

64

This expression is non-strictly monotonic in <m, n) = Ipos cr, so taking cr to
be a realization of f7rncr, which minimizes lpos, guarantees that lposc is
minimized too. Summing up, we have

10 = 0;
fr+w = Tnc fr+w; #w= fTmcr+w; Hw = fr;H#w.

After these lengthy preparations (but remember that most of the derivations
were aimed at exhibiting obvious facts), we can now formulate an “implemen-
tation” of f: :

Fo<=0;
Friw <fr, #w.

This function satisfies f=> ff and it preserves the definedness of f; ie., if
fr # 0/0, then ffr # [/0. The standard technique of recursion elimination
gives the obvious iterative “eager” algorithm. Note also that fr = [/0
implies ff » = [I/0. This is a consequence of = f, since then [/0 = fr =
fir=>10/0. It is easy to define a total variant of ff by making + total, e.g.
by removing the conditions “#w; < MAX” from its definition.

Some final remarks to this example: The length of the derivation is mainly
due to the small steps taken, but also to some degree to the presentation,
which emphasized the algorithmic analysis and synthesis. If one were to
“guess” the definition of ff, then the verification is somewhat shorter. Note, in
particular, that the need to handle U did not arise.

The final development phase was an example of “Formal Differentiation”
(or “Finite Differencing”) (PAIGE[23], PAIGE and KOENIG[24]). This term
stands for a widely applicable technique for improving algorithms. It is of
special interest here because it is often especially fit to the improvement of
high-level algorithms that have been (semi-)automatically synthesized. The
essential idea is that of “incremental” computation. Let x’ be the result of
applying a “small” variation to x. For many functions f; it is more efficient to
compute the value of fx’ from the result of fx and the variation, than to com-
pute it afresh. It can be seen that this is a special case of the “Divide and
Rule” paradigm. If x is the result of sequentially making small variations,
then fx can also be computed sequentially. A challenging problem, not
addressed here, is to develop general algebraic techniques for deriving expres-
sions for “formal derivatives”. For a not very general but interesting algebraic
technique, see SHARIR [26].

The eager strategy (also known as “greedy” strategy) is a special case of for-
mal differentiation in the context of optimization problems. A higher-level
derivation would have run, schematically: (i) show that f satisfies the condi-
tions of some “eagerness” theorem; (ii) apply the theorem to give ff as imple-
mentation. There appears to be a relationship with matroid theory here
(KorTE and LovAsz[16]). It remains to be investigated if this can be
expressed conveniently in the framework pursued here. If so, it would be a
good example of the “higher-level” theorems aimed at. A different choice for

65

the objective function (e.g., minimize the sum of the squares of the white space
on each line) would have invalidated its applicability. Still, an important gain
in efficiency is possible for many other objective functions (e.g., for the least-
squares objective), namely by applying the technique of dynamic program-
ming. An algebraic approach to this technique can be found in
CUNINGHAME-GREEN([7], and a specific application of this approach in an
algorithmic development in MEERTENS and VAN VLIET[20].

12. SECOND EXAMPLE: THE AMOEBA FIGHT SHOW

The following problem is of interest because it is the first problem that 1 tried
to tackle algebraically without already knowing a reasonable algorithm for
it—or seeing one immediately. It was passed on to me by Richard Bird. Its
origin is, as far as I know, a qualifying exam question from CMU. Since I do
not know the original formulation of the problem, it is given here in a setting
of my own devising.

What with the rising prices of poultry, a certain showman has modernized
his Amazing Life-and-Death Rooster Fight Show, and replaced his run of prize-
fighting cocks by a barrel of cannibalistic amoebae. As is well known, amoe-
bae have an engrossing way of tackling an opponent: it is simply swallowed,
hide and hair! It follows from the Law of Conservation of Mass that the
weight of the winner then increases by that of the loser. Each show stages a
tournament between n amoebae (where n is some positive natural number),
consisting of a sequence of n—1 duels (two amoebae staged against each
other). At the end of the tournament, all that remains is the final victor
(although it encompasses, in some sense, all losers). The showman wishes to
maximize the throughput of his enterprise by minimizing the time taken by
one show. The time needed for a single duel, he has found experimentally, is
proportional to the weight of the lighter contestant (about one minute for each
picogram). At the start of a show, the amoebae are lined up in a microscopic
furrow. Each two adjacent fighters are kept apart by a removable partition.
(This set-up has been chosen thus because of limitations in the state of the art
of micro-manipulation. For similar reasons, the initial arrangement cannot be
controlled.) Each time a partition is removed, the two amoebae now confront-
ing each other engage in a life-and-death duel.

FIGURE 3. Five amoebae lined up before the tournament (magnification: 500 X)

1. For amoebae, this terminology is not entirely appropriate. The hapless victim is, in fact,

engulfed by the attacker’s bulging around and completely enveloping it, membrane and pseudopo-
dia.

66

The showman thinks the best strategy is to have, each time, the lightest
amocba fight against its heaviest neighbour. His assistant suspects that it is
better to choose the pair whose weight difference is largest. In the situation
sketched in figure 3, these two strategies give rise to the same sequence of
duels. First, the showman removes partition 4, and Delta and Echo fight.
After 3 minutes, Echo has consumed Delta. Next, partition 3 is lifted, and
Charlie enters the arena against Echo. The unequal battle takes 4 more
minutes. Echo weighs now, after having feasted on Delta and Charlie,
15+3+4 = 22 picograms. The next step is the removal of partition 1. It
takes Bravo 5 minutes to gobble up Alpha. When the last partition is taken
away, the battle of the champions starts. In spite of Bravo’s putting up a
heroic resistance, pseudopod after pseudopod wraps around its body, and after
19 exciting minutes the last visible part disappears into Echo’s innards. The
whole tournament has taken 3+4+5+19 = 31 minutes. Unaware of the fact
that a different sequence of duels would have required less than half an hour,
the showman and his assistant start clearing the house for the next show.

Let us see if we can do better. The process of amoeba fusion in a tourna-
ment creates a tree structure on top of the original sequence of amoebae. For
the example, that tree is A +B; +C+D+E, where 4 stands for Alpha, etc.
Each node corresponds to a sub-tournament. Since the structure of the tree
gives sufficient information to determine the tournament, even if the elements
are not amoebae, it is simplest to work directly with the sequence of the
weights of the amoebae. Let wt, for a given tournament tree 7, stand for the
final weight of the champion of ¢, d¢ for its duration, and wd ¢ for the pair
(wt, dty. For the trivial case of a one-amoeba “tournament” we have

wdw = wdyw < (w, 0).
Then we find
wdt, iz = wdity; Xwdtg,
where the operation X is given by
W, dp) X wg, dg) <= (wytwg, dp+dg+wilwg).

(The operation X is commutative, but, of course, not associative.) So, by the
homomorphism lemma, we can express wd by

wd = X/wdy .

The function d can be re-defined as 7, wd. If T's is the set of all possible tour-
nament trees that can be put on top of an initial configuration s, the problem
can be specified as: Determine |,/ T's. The property characterizing a member
tof Tsis s = +/"«t, in which the inserted operation + introduces associa-
tivity. Then

Ts e (s = +/"): .

It would be possible, of course, to develop an algorithm for determining 7,
after which we would have an algorithm for the whole problem. But

67

computing T's for large values of #s is very inefficient; the number of binary
trees with n endpoints is of the order @(4"7~>2). It will turn out, moreover,
that we do not need an explicit construction of T's in the derivation. It is also
obvious that dynamic programming gives us a polynomial algorithm. In such
cases it is generally easy to transform an algorithm for a function of the form
Y f+ (= fl/) to an algorithm for {s/. Therefore, we concentrate first on
simplifying i/ d- T.

Let us first try some simple cases. In minimization problems such as the
present one, it often pays off to switch to a seemingly more conventional alge-
braic notation that exploits the algebraic properties of the two operations { and
+ (CuNINGHAME-GREEN([7]). For not only are both associative and commu-
tative, but together they are also distributive: x +ylz = x + Vilx+z. If we
denote the operation + the way a multiplicative operator is usually written in
mathematical formulae, namely by juxtaposition of its operands (so we write
“xy” instead of “x+»”), and we use then the—now free—symbol “+” to
denote the operation I, then the distributive property referred to above is writ-
ten as x(y+z) = xy+xz, in which “multiplication” takes precedence over
“addition”. This is purely a notational convention, but the advantage is that
we can apply our experience in handling and simplifying formulae of this kind.
Unconventional identities, however, are x0 = Ox = x (since the meaning is
still addition) and x+0 = 0+x = 0 (in which it is assumed that all numbers
involved are non-negative; a property preserved by the two operations). So we
have, in particular, x +xy = x0+xp = x(0+y) = x0 = x: a term cancels
other terms of which it is a factor. The special case x +x = x of the identity
x+xy = x expresses the fact (which we knew already, of course) that the
operation + is idempotent. The expression for X in this new notation
becomes now:

{wp, dL) X {wg, dR) = {Wrwg, deR(WL""WR)) .

If the initial amoeba weight configuration is w,, the duration of the (trivial)
tournament is, of course, 0. For a configuration s = w;+w,, the only
member of T's is w; +Ww,, and we find a duration of w, +w,. For a config-
uration s = w; +w, +ws, the set T's contains two trees: 1, = (W, +wy) +ws
and t; = W;+(wy+ws3). By computing m, x/wd, + for ¢, and ty, we find
dt; = (wy+w, Ywywy +w;) and dity, = (wy +ws)(w; +wyw3). So the short-
est tournament takes time (W] +W2)(W1W2 +W3) + (Wz +W3)(W1 +W2W3).
After distribution, we obtain the formula

w%wz +wiw, +w1w% +waws +wiw, +w§w3 +wiws +w2w§.

This simplifies to wyw, +w w3 +w,w;. We see a pattern emerging: the next
formula should be w wows +wiwywy +w wsws+wowsw,. The hypothesis is
that we obtain, for a general configuration of n weights, the “sum” of all
“products” of the members of each subset of size n —1 of the set of amoebae.
First, we return to the notation using “+” for addition, and “|” for taking the
minimum. An expression like (w; +w,){(w; +ws3)i(w, +w3) can be rewrit-
ten thus:

68

(w1 +w2))l(wi +widl(wy +ws) =
(witwyt+ws; —wi)l(wy+wy+ws; —wr))l(w +wy+ws; —wy) =
wi +W2 +W3; "‘WITWZTWE;.

In the general case, we expect to find
Yd«Ts = +/s;—Vs.

A moment’s reflection will show why this is a lower bound for the duration of
any tournament on s. For in a tournament, each contestant but one is eaten,
and its weight is then counted at least once. So the best possible is that each
weight of the less fortunate contestants is counted exactly once, and that the
one contestant not counted is as heavy as they come. The next question is if
we can prove that this formula is correct (and not only a lower bound) for the
general case. For this, we do not need the full-fledged expression for T's, but
only a simple property:

The tree ¢, +tge T's if and only if there exist configurations s;
and sg such that s = s;+sg, € Tsy and tze T sz.

First we prove, by induction, that we have indeed a lower bound. Let
t =13/Ts =1t;,+tg, and so (by the induction hypothesis) d¢; =
+/sp; —my and ditg = +/sg; —mp, where 5; = +/"+t; and m; = 1/s; for
i = L, R. Then

dt = (+/sp; —mp)+(+/sg; —mg)+(+/s.;1 +/s8) =
+/5; —mptmp; +(+/s1;1 +/sR) =
t/s; —mptmg; tmplmg = +/s; —mptmg = +/s; —1/s.

Next, we must show that this lower bound is attainable (which is trivial for a
single amoeba). The method is again by induction. Write s = w;+s5'+W,.
If we take for tg a d-minimizing member of T's’+w,, we find for d w; +1z, by
using the hypothesized formula for d tg, the expression

wiH (/s W, =5 +w,) = Hs; =1/ +w,.
Similarly, taking #; = l;/Tw, +s’, we find

dt+tw, = (H/Wy+s; =YW +s')+w, = +/s; —t/w, +s'.
So

‘l/d‘TS <d ;1\’1+tR;1zd tL+{1\)" =

(/55 =" +w) L (+/s; —Y/wi +s') =

+/5; —(/s" W 1Y wi +5') = +/s5;5 —1/s.

The proof shows that it is possible to organize the tournament such that (a)
an amoeba of (initially) maximum weight will emerge as champion and (b) the
loser of each duel is putting up its first appearance (and so is not burdened by
the weight of any fellow amoebae it has devoured). It follows immediately

from (a) and (b) that each amoeba, except the one destined to be champion,
enters the stage only against the future champion. Conversely, it is now

69

obvious that any tournament with this property is optimal. The step from
here to a linear-time algorithm is simple, if not trivial. One possible algo-
rithmic formulation is

ly/ Ts=>ts,
where ¢ is defined recursively by
twew;

twy+s'+w, « (W <mpg; = W, +tR) [(w,<my; — 1 L; +w,),
where L = w,+s, my = /L, R = s'+w,, mg = /R.

The correctness follows directly from the preceding proof, since it has been
shown that dts = |/d-Ts.

Our showman is probably more interested in a simple method that tells him
when to lift which partition, than in determining a tree. It should be obvious
that we can advise him to remove, each time, any partition keeping the heavi-
est amoeba apart from a neighbour. It is not hard to derive this formally from
the given expression for ¢.

13. CoNCLUSION

An attempt has been made here to convince the reader that the ideal of a dis-
cipline of “Algorithmics” can be realized. If the account was possibly uncon-
vincing, then, I suspect, a major culprit is perhaps the shock of being exposed
to a set of unfamiliar squiggles. In my first endeavours, exploring the sugges-
tions of BIRD[4], I found that the only way to proceed was to translate the
formulae continually into familiar “operational” concepts. Now, after having
played with these notations for some time, I find myself applying transforma-
tions without being conscious of an operational meaning. The reader is invited
to try and undergo the same experience. A good starting point is to derive

#$P:+/ = +/+/ (K PT)ss.

This is a meaningful and useful transformation; the two formulae are readily
translated into “pidgin ALGOL”, and the resulting programs are each about 10
lines long.

Much work has to be done to develop the current set of concepts and nota-
tions beyond the initial attempts presented here. Important points are the
discovery and formulation of “algebraic” versions of higher-level programming
paradigms and strategies, and the development of techniques to assess some-
thing like the concrete “complexity” of an expression in the absence of an
operational model in which time and space are meaningful notions. Other
issues to be investigated are the introduction of infinite objects, of ways to
express some form of concurrency, and of suitable notations for handling alge-
braically more complex structures than the ones dealt with here.

70

| W'r!('z_ih" Nt
TS0
S{RN'5E
F=24ND

“Personally, I think he’s trying to cover up a shaky theory”’

ACKNOWLEDGEMENTS

The cartoon by Bud Grace, Copyright © 1984, B. Grace, is reprinted here by
the kind permission of the artist. I am indebted to Steven Pemberton of CWI
and to Norman Shulman of NYU for scrutinizing earlier versions and suggest-
ing many improvements.

REFERENCES

L.

J. Backus (1978). Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Comm. ACM 21,
613-641.

F.L. BAUER et al. (1981). Programming in a wide-spectrum language: a
collection of examples. Science of Computer Programming 1, 73114,

R.S. Birp (1977). Improving programs by the introduction of recursion.
Comm. ACM 20, 151-155.

R.S. BIRD (1981). Some Notational Suggestions for Transformational Pro-
gramming. WG 2.1 working paper NIJ-3 (unpublished).

H.J. BooM (1981). Further Thoughts on Abstracto. WG 2.1 working paper
ELC-9 (unpublished).

R.M. BuUrsTALL, J. DARLINGTON (1977). A transformation system for
developing recursive programs. J. ACM 24, 44—67.

R. CUNINGHAME-GREEN (1979). Minimax Algebra. Lecture Notes in
Economics & Mathematical Systems 166, Springer, Berlin, 1979.

E.W. DUksSTRA (1968). A constructive approach to the problem of pro-
gram correctness. BIT 8, 174-186.

71

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.
22,
23.
24.
25.

26.

27.

28

E.W. DuksTrA (1971). Notes on structured programming. O.-J. DAHL,
E.W. DUKSTRA, C.A.R. HOARE. Structured Programming, Academic
Press.

R.W. FLoYD (1967). Assigning meanings to programs. J.T. SCHWARTZ
(ed.). Proc. Symp. Appl. Math., Vol. 19, Mathematical Aspects of Comp.
Science 19-32, AMS, Providence, RI.

L. GEurTs, L. MEERTENS (1978). Remarks on Abstracto. ALGOL Bull. 42,
56—63.

J. GUTTAG, J. HORNING, J. WiLLIAMS (1981). FP with data abstraction
and strong typing. Proc. 1981 Conf. on Functional Programming Languages
and Computer Architecture 11-24, ACM.

F.W. voN HENKE (1976). An algebraic approach to data types, program
verification, and program synthesis. Proc. Math. Foundations of Comp. Sci-
ence °76, Lecture Notes in Comp. Science 45, 330-336, Springer, Berlin.
C.A.R. HOARE (1969). An axiomatic basis for programming language
constructs. Comm. ACM 12, 576—580. .

M. A. JAcksON (1975). Principles of Program Design. A.P.1.C. Studies in
Data Processing 12, Academic Press. '

B. KORTE, L. LovAsz (1981). Mathematical structures underlying greedy
algorithms. F. GECSEG (ed.). Fundamentals of Computation Theory, Lec-
ture Notes in Comp. Science 117, 205-209, Springer, Berlin,

J. MCCARTHY (1963). A basis for a mathematical theory of computation.
P.BRAFFORT, D. HIRSCHBERG (eds.). Computer Programming and Formal
Systems 33—70, North-Holland.

L. MEERTENS (1977). From abstract variable to concrete representation.
S.A.SCHUMAN (ed.). New Directions in Algorithmic Languages 1976
107-133, IRIA, Rocquencourt.

L. MEERTENS (1979). Abstracto 84: the next generation. Proc. of the 1979
Annual Conf. 33-39, ACM.

L. MEERTENS, J.C. VAN VLIET (1976). Repairing the parenthesis skeleton
of ALGOL 68 programs: proof of correctness. G.E.HEDRICK (ed.). Proc.
of the 1975 Int. Conf. on ALGOL 68 99-117, Oklahoma State University,
Stillwater.

P.NAUR (1966). Proof of algorithms by general snapshots. BIT 6, 310-316.
P. NAUR (1969). Programming by action clusters. BIT 9, 250-258.

R. PAIGE (1981). Formal Differentiation. UMI Research Press.

R. PAIGE, S. KoENIG (1982). Finite differencing of computable expres-
sions. ACM Trans. on Programming Languages and Systems 4, 402-454.

A. RALSTON, M. SHAW (1980). Curriculum *78—Is Computer Science
really that unmathematical? Comm. ACM 23, 67-70.

M. SHARIR (1982). Some observations concerning formal differentiation of
set theoretic expressions. ACM Trans. on Programming Languages and
Systems 4, 196—225. :

N. WIRTH (1971). Program development by stepwise refinement. Comm.
ACM 14, 221-227.

. N. WIrTH (1973). Systematic Programming. Prentice-Hall.

72

SOME MORE EXAMPLES OF ALGORITHMIC DEVELOPMENTS

"The method employed I would gladly explain,
While T had it so clear in my head,

If I had but the time and you had but the brain--
But much yet remains to be said.”

You can perhaps imagine my disappointment when I heard from Richard that
he had dropped this whole approach because he found it was generally
ununderstandable to audiences. Subsequent presentations of the Algo-
rithmics paper at WG 2.1 meetings strongly suggested the same to me: I
have presented basically the same talk three times at three consecutive
meetings (that is, once per meeting), mainly with the effect of drawing
blank stares or questions like if I thought "ordinary programmers" would
ever be able to understand this. Still, I stubbornly refused to believe
that this was due to something else than lack of familiarity, and, of
course, my way of presentation, which tends to be a bit dense. After
all, most of it is not harder than much of high-school mathematics.

So I plodded on undaunted, and continued to present examples. This paper
was presented at the meeting in Pont-a-Mousson, held in September 1984.

I have "modernized” the notation (mainly by not using the generic ~ and +
for structures, but [-] and # for sequences, and so on), and inserted
many more parentheses than are strictly needed given my conventions.

With these changes it still does not make for easy reading. Next to the
fact that the information density is of course a lot higher than in most
other styles, I think that this is mainly so because the development as
given is just as it occurred to me (which is also the case for the algo-
rithmics paper). The development is a mixture of parts that are specific
to the problem at hand, and parts of a much wider applicability but where
some necessary theory is developed as it were on the fly, and then not
even in a general form but tailored to the specific problem. (Note, in
particular, the similarity between the development of the "smallest
upravel™ here and the text-formatter problem in the Algorithmics paper.)
As a consequence, the structure of the derivation is obscured. It is
possible to give a much clearer exposition if a modicum of theory is
developed first. Richard Bird has done exactly that for some of these
kind of problems, and by applying the notions and theorems from his
"Theory of Lists" my developments, or at least substantial parts, can be
dramatically simplified, while making the proof obligations much clearer.
Even without this, the use of the "directed reduce”™ notation would al-
ready have helped to structure the presentation (in fact, for both prob-
lems) .

Other parts where some standard theory is waiting to be developed are the
constructive inversion of certain types of functions and the linearizing
of call trees, as in the "longest common subsequence” problem, by col-
lecting arguments from different calls together. A much nicer way than
that gsed here is to recognize the fact that if the basic recursion pat-

73

tern of some function £ is

f x=&® / £ * children x

{(in which the "leaves"” are omitted for the sake of simplicity), then we
can express f as hocall tree, where

~call_tree x = call tree * children x
and h is a homomorphism satisfying

ht =@ /h*¢t.
If @ is now, for example, associative and idempoteént, then we may per-
form rotations in the tree and cut away some duplicate branches. The ad-

vantage is that we do not have to think in terms of dynamic structures,
but are on the familiar ground of homomorphisms on data structures.

74

IFIP WG2.1 Working paper ADP-7, 1984.

Some more examples of algorithmic developments

Lambert Meertens

Centrum voor Wiskunde en Informatica
Amsterdam

0. PRELIMINARY
This paper is not self-contained. The notations and concepts used are explained in reference [3]. It
has been prepared as a working paper for WG 2.1.

A new addition is the B function. It is the functional inverse of the function I/ and expresses on
the language level the meta-level breadth function %. In [3] it was stated that this function could not
be admitted to the language, since this destroys monotonicity. However, B is a useful acquisition, and
since refinement steps e =» e’ are rare, it is better to allow one exception to monotonicity. Refinement
of expressions involving B is possible, as long as it does not happen inside an argument of B. It turns
out possible to give a simple calculus for juggling with, and in particular, eliminating B. The major
rule is of course

Beille; = Be;; U Bey.

If e is determinate, Be = {e}. I have not yet gotten around to produce a readable write-up of this
calculus. Rules of the B-calculus will nevertheless be freely applied. Usually their justification will be
intuitively obvious. (But some seemingly obvious transformations are unsound, as I have noticed, so
beware.)

1. LONGEST COMMON SUBSEQUENCE :

A subsequence of a given sequence is a sequence that can be obtained by deleting any number of ele-
ments from the original sequence. The remaining elements need not be contiguous in the original
sequence. So the sequence

scarecrouw
has a subsequence
ar row.

The problem is: given two sequences s and ¢, to determine the longest common subsequence of s and
t. So, if s = “scarecrow” and ¢t = “tarrytown”, the answer is “arrow”. Note that there may
be different common subsequences of the maximum length, as between “bathtub” and
“perturbate”, namely “bat” and “tub”. In such a case, any of these is an equally acceptable
result. So the result to be determined is in general indeterminate.

There is an obvious dynamic-programming solution that will run in time © (#s-#¢). This is also
the worst-case running time of the best known methods, but on the average “practical” case they may
do much better. The problem has been treated by (among others) HUNT & MCcILLROY[1], who wrote
a widely used program for finding a minimal set of differences between two files—which is an
equivalent problem. A linear-space algorithm was given by HIRSCHBERG [2]. The purpose of treating

75

2

this example is not to find better solutions, but simply to examine how well the method can deal with
it. The problem of determining the longest upsequence is a special, simpler case of the current prob-
lem.

Let slt denote the longest common subsequence of s and 7. (The operation | is not defined on
sequences in [3], so we can freely use this symbol. However, the choice of this symbol is not just a
whim, for | on two sets returns the largest common subset.) Then

sit = 1./s Nt,

where s /X ¢ stands for the set of all common subsequences of s and ¢. The property of being a subse-
quence of s is expressed by the predicate s=, so we have

SNt =t=as=zaU.
Then
[(Int =t=<[]Z<U = =< {[]} = {[1};

(Ix]4s) Mt =tz a([x]Hs)=2<U = =2 (=< W) U ([x]H)ws=<) =
(=zasza) Urza([x]H)s=2<aU = X)) Utz < ([x]H)s=a U.

Remark. Whether we “recurse” through s or ¢, or through the beginning or end of an argument, is of
lesser importance, because of the symmetry of the problem. A choice is made, however, in not using
“(s1Hs2) /A t” for the development. This would give a more complicated expression, since we then
have to consider subsequences of two parts of ¢ simultaneously. The price is that we hereby lose the
possible interpretation that we are determining the largest common subtree.

If we look at the second term of the last form, a sequence of the form [x]+#s, can only be a subse-
quence of ¢ if ¢ can be written as #oH[x]+41t;, where 5, is a subsequence of ¢, and so, if 5, is a
subsequence of s, [x]4s; is an element of ([x]#)ss A ¢t,. If Post,t stands for the set of all such
tails 7, of ¢ following an occurrence of x, we have

t=za(x]H)s=< U = ([x]4H) U/(s A\)=Post,t.
Then

([x]Hs)le = 1,./(s A) U ([x]H)= U /(s N)=Post, t =

(1/s M) 1, 1. /([x]H)e U /(s /N)+ Post t = (sit) 1, ([x]H)+1,/(si)=Post,t.
Now | is weakly monotonic in its arguments, SO

14/ (s4)=Post,t = sl1,/Post,t.

Here, 1,/ Post, t is the longest element of the tails of ¢ following an occurrence of x, so it is simply the
tail of ¢ following the first occurrence of x, if any, in ¢, and the (fictitious) value [I/[] if no x occurs in
t, where we put

r+sill/[1=0/[1 =1,/1] forallr and 5.
If we denote that longest tail by post, t, we have

e =11
([x]Hs)it = (sie) 1, ([x]+H-sipost).

If we replace here “ =" by “ « ”, we have an effective (“executable”) specification, provided post, is
effectively defined. Some practical remarks: the two arguments of | are always, respectively, an initial
part of the original sequence s and a final part of the original sequence ¢. In a practical implementa-
tion, s and 7 could be globally available and the arguments passed could just be indices of s and ¢.
The function Post, can be partially precomputed, by storing a table mapping indices of s to sets of
indices of 7. With the canonical evaluation scheme, however, this is still inefficient: we find an
exponential number of nodes in the computation tree. We do much better if we recognize the fact

&

76

e

3

that many sub-applications of | will have the same arguments, and do not recompute these, e.g. by
using a table to store previous results. With this simple change we have (a slight improvement on) the
obvious dynamic-programming method. To do still better in a “practical” case, we have to look how
the applications of ! unfold into a tree. For this we use a brief notation, in which, e.g., “a(elrbr)”>
stands for “la]H (o ([r, b]H7))”. Then we have, e.g,,

abolgarbr
belgarbr a(bairbs)
olgarbr b(olr) a(olrbr) ab(ol7)
™) ** ***

Here (***) is superior to (*), and (**) is at least as good. This can be used to prune the tree by snip-
ping (*) off. Another example is shown by

obalabsorbr
bolabsorbr o(bolrbr)

olabsorbr b(elsorbr) o(olrbr) ob(olT)
™ **
In this case, (*) is at least as good as (**). Finally, in

aclar

olat a(oir)

* **)
(**) is at least as good as (*). This is intuitively obvious: in two sequences that start with identical
elements, we may pair these off. Curiously, this case is the hardest to prove formally.

In the general case, the nodes of the tree have the pattern (still using the brief notation) y,(sir;),
where all nodes on the same depth have the same value for s. Non-competitive nodes can be dis-
carded. To express this optimization, we must replace the recursion pattern by one carrying a collec-
tion of “candidates”, being pairs (y, 7). We define

sxC «1,/f;+C, where
(1, 7) &= yisin.
If we can compute o, we can also compute |, using
s {(I1,0} = %/f-{(11, 0} = ({1, 0) = siz.
Since
fur,n) =y [Nr =y =my, 1,
we have
[HeC =1/fy*C = /m-C.
For f[x]:H we find

77

Siws(v> 7) = yH([x]Hs;dr) = yH(sim 1, [x] Hsipost,7) =
yHsin 1, yHIx]Hsipost,t = fi(y, 7); 1, fi(y #[x], post,7) = 1,/ f+succe(y, 7),

where
succy(y, 7) <= {(v,7), (v H[x], post,7)}
gives the two possible ways in which an application of { can develop. We must define then

/D =W/0=1%/0,

and admit [I/[] in structures. This can be circumvented by replacing “{(y+([x], post,7)}” in the
definition of succ, by “B(xer —(yH#[x], post,7))”. (Since p — x stands for “if p then x else [J/{}”,
B(p — x), for determinate p and x, stands for “if p then {x} else {}”). Then

([x]Hs) < C =1,/ fixgus*C = /(/fsucc,) =C = 1,/ f;+ U /suce,»C =
s U /suce,+C.

We have now an effective definition of o, not depending on {.

This was only a standard exercise in replacing a recursion pattern that spreads out into a tree by a
linear-branch pattern, in which, instead, the argument spreads out. The non-competitive candidates
have to be weeded out still. In particular, we would like to define a function weed, such that

sxC=sxweedC.

We can look for a definition of the form
weed {} < {};
weed (C U {c}) « (weed C) &c.

- The necessary conditions can be derived by starting to prove (by induction) that C may be replaced
by weed C. We write, for brevity, W for weed C. So, assume s < C=s5 o W. Then

sc(CU{c}) = (sx O fic=>(@Ex W, fic = s (WU {c}).
So @ must be such that

s (WU {c})=s xc(Weoc).
We can safely start to define

{}oc < {c}.
The next step is to try something like

WU {w}ec < WU ce(w,c),

in which cc gives the competitive candidates between w and ¢. Now we choose to represent W as a
sequence, and then succ, must return a sequence too. (Representing W as a set will give a correct,
but probably inefficient, final program.) The correctness criterion for cc is

soc(W[w,c]) = s W) (s [w, c])=s < (WHce(w, c)) = (s x W), (s x<ce(w, c)).
So a sufficient condition is

s« fw, c]= s < ce(w, ©).
Now

s w,cl =1,/fow, el = filur/Iw, el = ff(Wlafpo).
Similarly

socce(w, €) = fi T4y /cc(w,).

78

So it is sufficient if

wlerc=>T4p /ccw, c).
An immediate solution is given by
ce(w, ¢) = [wlycl,

but this is not too helpful, since the definition of f; involves {, which is what we are trying to define in
a computationally better way. Each method that always replaces w and c together by just one candi-
date must take s into account and will require substantial effort. If we do not want to consider the
particular current value of s, the correctness criterion for cc is

Wlapc="T4r /cc(w,c) foralls.
This can be rephrased as:
cc(w, c) <[w, c];
if, for some s, w>,, 1.¢, then we cc(w, c);
if, for some 5, w<<,c, then ce cc(w, c).

Putw = (vw, 1) and ¢ = (v, 7). If v, <.y, and 7,, <1, then, because of the weak monotonicity of
'

ws<y,cc foralls,

so w need not be included then. In the reverse case, ¢ need not be included (but we must include at
least one of the two, since we do not want to loose definedness). Moreover, if, for some £,
Yw €& = v, and 7, = {41, then w can be discarded. This can be seen as follows. Every realiza-
tion of sl(§+7.) can be written as a realization of the form (s,{£)+#(s,ir.), where s = 5, Hs5,.
Then

Sw = Y sl (EHr) = v, H (511§ (s2dr) <y v, HEHsplT,. <, Yw HEHsin, =
fic

This last optimization is of interest if £ consists of one element. It is then best expressed as a
modification to the succ, function, namely by replacing “{(y,7)}” in the definition of succ, by
“B(x # firstT —(y,7))”, in which it is understood that first[] is some fictitious value such that
x # first[] for all proper values x.

The efficiency improvement aimed at is certainly obtained, for the weeding ensures that the y-
components of W have strictly increasing lengths, so # W is bounded by #s. In a practical impera-
tive implementation, the computations of weed and of H/succ,+ can be merged. Such mergings can
be obtained by a simple unfold/fold, but this is somewhat boring and yields no further simplification.
Also, on non-Von architectures this is possibly no improvement anyway. To sum up the findings, we
have

stt=sa’[([1,0],
where
[1<'W <= mlast W,
([x]Hs) <’ W < s < weed (H/succ,~W');
succ(y, 7) <= B(x # firstt = (y,7); # B(xer = (y#[x], post,7);
post, ([ylH1) = (x = y —>1lx # y >post,7);
weed[] <= [1];
weed (W +-[c]) & (weed W) eac;

&

79

[lec «[c];

(Wiiw]) ec « WHcc(w, ¢);

ce(w,c) = (b =[] = [wlec]lb #[]1—0),
where b = B((Yw >4 Ye; V7w >>,7) 2wl >, 7 VT, >, Ty) —>C).

I have not eliminated B here, mainly since this would mess up a clear specification, but note that it is
supposed to return a sequence in this context. Note also a final optimization in the definition of
[l W.

2. SMALLEST UPRAVEL

A ravel of a given sequence is a bag of subsequences that “shuffled” together can give the original
sequence back. For example, the sequence “accompany” can be raveled into “am”, “copy” and
“can”, as follows: .

accompany

a m

c o p Y
c an

A ravel is an upravel if all its elements are upsequences, i.e., strictly increasing. The above ravel is not
an upravel, since “can” is not increasing. (For the examples, we have a < b < ---.) An upravel
is given by “an”, “acm” and “copy”. Each sequence has of course at least one upravel, by turning
each of its elements into a one-element sequence. Of all the possible upravels, we want to determine
one with the least number of elements.

A possible application is in sorting sequences that are almost in order already, or that have been
formed by catenating a small number of (almost) sorted sequences or by merging such sequences
according to some irrelevant criterion. In such a case, one can sort a sequence by merging the ele-
ments of an upravel. The condition “strictly increasing” should then of course be replaced by
“weakly increasing”. This makes only a marginal difference.

To proceed with a formal development, we first define what it means to shuffle two sequences s and
t:

[1x=t <1,
s2[]es;
x]Hts; = [yl < x]H (= ([y]+H) O [y]H+(([x]H5)3%1).

So the first element of a shuffle of s and ¢ (unless s and ¢ are both empty) is the first element of at
least one of s and ¢, and the rest of the shuffle is then a shuffle of s and ¢ but with that first element
removed from one of the two. The operation 3% is obviously commutative, and (somewhat less obvi-
ous) associative. A shuffle of a whole bag of sequences u is then given by 3</u. If we want to have
all possible shuffles, we can use the B function. I just give the results of applying the B-elimination
calculus:

shufffesu < B 3/u = 3/Bsu = 35/ (-} su.
S=T « U/(m3Egm)SXT;

[1%at < B([]32) = Bt = {1};
s3g[]l = B(s3¢[]) = Bs = {s};

&

80

([x]4s) =g ([y] 1) < B([x]4s) 52 ([y]41) =
B([x]+ (s =([y]H0) D [y]H ([x]Hs)520) =
B(lxIHG=([y]Hn0); U B(IylH(([x]+s)=1) =
(Ix]#)=B(s = ([y]40); U ([y]H)-B(([x]+s)31) =
(Ix]H)=(s=p ([y]H0); U ([y]H)=(([x]4#5) 325 1).

Here, S XT is the Cartesian product of S and T. Since S X {x} = (id, x <)-S,
S ([} = U/(m=am)(d,[1<)-S = U/(dxg[] <)-S = U/{}=s =5,

so the singleton set {[]}, consisting of an empty sequence, is an identity of this operation 3%, and we
have 32/¢() = {[1}.

A bag u is a ravel of a sequence s if s € shufffes u. The property of being an upsequence is tested by
up [1<=T;
up ([x]Hs) = (x <firsts) A\ up s.
Here we put first[] = |/[], which is larger than all proper values. The smallest upravel is now
sus & 4,/(N\/up+)<(s € shuffles)aU.

If u is an upravel of s, then so is ([]J#)<u. Since, moreover, ([]#)<u =<, u, we can insert a filter
([J€)< in the definition of su in front of U to sift out ravels containing the empty sequence. An
arbitrary upravel that does not contain the empty sequence is now given by

upravel s < [I/(N\ /up+)<(se shuffles)<([]&¢)<U,

A general paradigm for synthesizing an effective definition of su is the incremental strategy. Note
the formal resemblance to the text-formatter problem. Some informal reasoning shows that a prop-
erly truncated smallest upravel of some sequence is a smallest upravel of the truncated sequence, so
there is hope. Truncation is here the removal of the first element of a sequence, and proper trunca-
tion requires the removal of sequences of an upravel that become empty through truncation. How-
ever, a problem is that in general the smallest upravel of a given sequence cannot be formed by
extending just any smallest upravel of the truncated sequence. For example, although “at” and “e”
form a smallest upravel of “ate”, it cannot be extended to form the (unique) smallest upravel “ft”
with “ae” of “fate”. Whether an upravel u can be extended with an element x without increasing
its size, depends on the collection first+u of the first elements of the sequences of u. The extension is
possible if (and only if) (x<<)< first~u is not empty. In constructing u, we do not want to “look
ahead”, i.e., take the value of x into consideration. (This is the essence of the incremental strategy.)
So we can try to apply a selection among the possibly many upravels of the smallest possible size to
keep first+u in some sense as “large” as possible, so that the widest possible range of x’s can be
accommodated in a size-preserving extension. If this ordering would be total, we could just refine the
operation |, in the definition of su to take the new ordering as a subordinate criterion in the selec-
tion.

So we try

sus=su’s,
where su’s is the function realizing the restricted selection process:
su's <= Y, firsr)/(N\/up=)<(s € shuffles)< ([]¢)< U,

in which the ordering on the codomain of first+ is still to be-determined. For u to satisfy
[1€ shuffles u, [1 = [/ shuffles u must be satisfiable. (A property p is “satisfiable” if p = 1.) So

[1= 0/shufflesu = 0/B3=/u = 35/u

must be satisfiable. From here on I will not repeat “must be satisfiable”. It is easy to see from the
definition of 3% that s3%7 = [] if and only if s and ¢ are both empty. So 3£/u = [] if and only

81

8

HA/([1=)+u. If u satisfies [J& u too, 35/u = []if and only if A /(F)=y, i.e., u = ¢). Since () is,
trivially, a bag of upsequences, we can define

su' () «1T].
We can try to find an incremental development by putting
su'[x]Hs & xosu’'s,

in which @ has to be determined. Let us first treat the simpler case as though the part
“U, firsey/ (/N /up+)<” above simply read “[l/”. We want to have then

/(x4 s ; € shuffles)<([1€)<U = xeg [/ (s € shuffles)<([]&)< U.
Proceeding as above, we want to determine u’ satisfying
[x]Hs = =/u,

where u such that s = 32/u and []€ u is known. (This is the constructive counterpart of the usual
inductive hypothesis, so we may dub it the “constructive hypothesis”). We can rewrite 3¢/ in such a
way that it becomes explicit which elements can go to the front, by “computing” split 35/, where

split = (first, tail).

(The function tail is, of course, defined as tail [x]+5s < s5.) We can push split inwards, provided we
can find an operation 3% such that ‘

split s 32t = splits; 3= splitt.
We find (by unfolding 2<) for non-empty sequences:
(%, 9)32(, 1) & (x, s =YD, ([x]H5)3=0).

Since split is ill-defined on empty sequences, we cannot hope to extend 3% to accept empty operands.
(Actually, this can be done, but this requires much ado about “Nothings” with magical properties.)
Fortunately, [] is the identity of 3%, so we can insert, without change of meaning, a filter to suppress
empty sequences in u.

It is easy to see that

m 355 /split= = first=.
If we define
Trnc,u <= mll/(x = m)aBs=;/split=u,

we obtain (or should obtain; I must confess that I have not attempted to do this in detail for lack of
time and interest) by unfold/fold:

shuffle u < shuf ([1#)<u;

shufu =u = O =[]0 u # O —>f0/firstvu;
Jfux = xHshuffle Trnc, u;

Trnc, (x> Uu) =u;

Trnc, {fx]Hv) Uu) < vy Uu.

The last two line gives an indeterminate definition, since both left-hand sides match if v = [-]. More-
over, in both lines the argument is a bag, and there may be several ways to bring a member starting
with x in front. Now 2£/u = shuffleu. Now we see that 4’ must be such that x e first=u’ and
Trncyu’ = u. So u’ = ext, u, where ext, is the functional inverse of Trnc,, so by simply “swapping”
the argument with the right-hand side, we have

ext,u” <« (x> uu”;

82

ext, (M Uuw") < ([x]+Hv)Uu”.

This definition is again indeterminate, and this is essential. We see that x € first+u’ is automatically
satisfied. Also, if []1¢ u, then []e «’. So we have now

X®gU < ext, u.

This would be fine for determining arbitrary ravels.- To get an upravel, we define
xX®; u < ifup (xey u);
ifupu = N/upru —u.

It is understood here that if there are several choices in matching an application to the left-hand side
of an indeterminate definition, only choices should be made whose right-hand sides are not flat, if
possible. The definition is sufficiently effective, since there is only a finite number of possible match-
ings in the definition of ext, for any given actual argument, so an automaton could simply try these
one by one until one is found that does not lead to a dead end. We could, if we wanted to, rewrite
the definition in such a way that no dead end could be encountered in the canonical evaluation.
Instead, we will only simplify matters somewhat. After some unfolding of ifup (x@, u), we run into
the formulae:

ANJup=({[xP Uu”) =[x Uu";
Aups(([x]Hv) Liu”) = ([x]Hv) Uu”.

By the constructive hypothesis, A /up-u” is satisfied for the first formula, so its guard is satisfied as
well. For the second formula, we know that A /up«(<v) U u"), so its guard can be simplified to
x < first v. We redefine ext, now as

ext,u” « ([x]» Uu”;

ext, (W Uu") e x < firstv — ([x]Hv) Lu”.
Then

X® U = extu.

Now for the hard part. The u’ to be determined has also to be (#, first +)-minimizing, where we may
use the constructive hypothesis that ¥ minimizes that same function. We start by defining a partial
ordering on collections of first elements of the sequences of an upravel that captures as much as we
can summon of the ability to accommodate prospective x’s to be prepended. The lower in the order-
ing, the more accommodating. It is assumed here that first+, applied to a bag, yields another bag (for
reasons that will become apparent), so the domain of the partial ordering to be defined consists of
pairs of bags. We use the symbol <t for the partial-ordering relation. Then we require:

()<b;
(D uUb)=sWxhUe) if b<c;
dxD =«[yD if x=y (sic).

Of the three properties that are needed for a relation to be a partial ordering, namely (i) s <ts, (ii) if
s<tand t<s, then s = ¢, and (iii) << is transitive, parts (i) and (ii) follow from the requirements.
Part (iii) does not, so < is defined as the transitive closure of the initial relation satisfying the require-
ments. Note that if we can find a minimum in a set of values according to this partial ordering, then
the function # will be minimized as well. So if we accomplish what we are trying to do, we can for-
get about # and simply take | 4., .

Once we start comparing according to <¢, we hope to be comparing values of the form first-ext, u.
It is then helpful to have a function repl, such that

firsteext, u = repl, first<u.

83

10

By the usual method (unfold/fold), we find a solution:
repl, b <= (x> Ub;
repl, ([yDUb)=x<y—-([x]>Ub.
If < captures indeed accommodatingness, we must now find
If repl, b= b,0b,, where b, and b, are both determinate, then by <b, or b, <b,.

The proof is left to the indefatigable reader. It follows that <t is total, if restricted to pairs of
operands from Brepl, b, so the meaning of |/Brepl, b is defined, where it is understood that a
minimal element is selected according to the <<-ordering. Furthermore, we have

Ifby <b,, theni/Brepl, b; < |/Brepl, b,.

Again, I leave the burden of proof to the undefeatable peruser, to whom I might as well dedicate the
paper. (Seriously, I am interested in a snappy proof; one in the style of that of the 4CT I can gen-
erate myself.)

If we put

H = first««(\/up+)<(s€ shuffles)<([]&)aU
= first«+Bupravels,
the constructive hypothesis is
firsts=u = l/H.

We want to show that u’ = l4,. /Bext, u, where u is treated as fixed (determinate), is a first«-
minimizing element of Bupravel ([x]-+-s) then. For arbitrary fixed u”, we have

Sirstelgg. /Bextyu” = {/first-+Bext,u” = |/B firstvext, u"” = |/Brepl, first=u”.
So

Sirsteu' = first=lgy. /Bext,u = 1/Brepl firstsu = |/Brepll/H <
\/Brepl, [/ first«+Bupravel s = |/Brepl,[|/B first«upravel s = 1/Brepl, first+upravel s =
Sirstelgy. /Bext, upravel s = first»lg. /Bupravel ([x]s).

This is what we wanted to show.
The bottom line is that we can define ¢ in the definition of su’ by

X0u < gy /Bext u.
Remember that ext, was defined by
ext.u = ([xUu;
ext, (VYU u) & x <firsty = ([x]H» Uu.

If (x <)< first=u = (), then the second part does not apply, so xeu = ([x]» U u. Otherwise, the
first part is not of interest, since it extends the size of the upravel and so certainly does not yield a
first «-minimizing result. If there are several matchings to the second part, it is easy to see that one
yielding a first«-minimizing outcome is the one with a minimal choice for y, the replacee in repl,.
This makes it possible to define ® so that it directly realizes a first »-minimizing extension.

In conclusion, the “program” is ‘

sus=>su's;
su'[le ()

su’ ([x]H5s) = xosu's ;

&

84

11

xouesx<r—=>(xpPpUullx=r—-xo,u,
where r = |/ first=u;

xo,([r]H vy Uu) < (x, r]Hv) Uu.

REFERENCES

1. J.W. Hunt, M. D. MCILLROY, An Algorithm for Differential File Comparison. CS Report TR 41,
Bell Laboratories, Murray Hill, NJ, 1976.

2. D.S. HIRsCHBERG, A linear space algorithm for computing maximal common subsequences.
Comm. ACM 18 (1975) 341-343.

3. L. MEERTENS, Algorithmics—Towards programming as a mathematical activity. Mathematics and

Computer Science, CWI Monographs Vol. 1 (J. W. de Bakker, M. Hazewinkel and J.K. Lenstra,
eds.), North-Holland, [I/(1984<)< U.

85

vy
AR

i

S

semai ey

S

s

R

29

S

i

G

oo

S

S

2
i

i

S

i

o
R

g

.
e

Gt

A COMMON BASIS

The Boots and the Broker were sharpening a spade-~
Each working the grindstone in turn:)

But the Beaver went on making lace, and displayed
No interest in the concern.

Somehow or other Richard picked up interest in my "squiggles” again
{(really his, if he had not disowned them). It cannot have been the gen-
eral acclaim they met with at my presentations that made him do so.
Maybe it was the ease with which I kept pulling functions and operators
to the left or pushing them to the right (while writing the formulas
upside-down) over a beer, even after many beers, that convinced him of
the continued value of this approach.

Anyway, at the Pont-3a-Mousson meeting a task force was set up to try and
agree on a common notation, in which Richard and I were joined by David
Wile. Way back in 1973, David had worked on a closely related approach
to language design, using finite and infinite sequences (streams) as the
semantic basis. (I was aware of his work all the time; I can remember
that I was disappointed, when visiting CMU in 1975, to find him no longer
there.)

Due to the fact that David could "join" us only by electronic mail,
whereas Richard and I met in person for altogether a fair amount of time,
his influence on the report as delivered by the task force has probably
been much less than it otherwise would have been.

The paper was discussed in a quite fitting context: on a boat (going down
the Amsterdam-Rhine Canal, and passing Breukelen during the presentation;
fortunately, the rudder and the bowsprite did not become entangled during
the voyage). This was in April 1985.

Next to correcting typographical and other silly errors, I have also up-
dated the notation for filter here from ":" to "4 ", and given the
directed reduces a real arrow, instead of only an arrowhead.

87

A A A S S R . o BN
R R R e R e S R

O
S

L

fedtna

IFIP WGZ2.1 Working paper ARK-3, 1985.

A common basis for algorithmic

specification and development

Richard Bird
Lambert Meertens
David Wile

1. INTRODUCTION

This report, prepared for members of Working Group WG 2.1, summarises the results of two meet-
ings between Lambert Meertens (LM) and Richard Bird (RB) held in Amsterdam on Jan 5-11, 1985
and in Oxford on Feb 15-25, 1985. David Wile (DW) was kept informed of the progress of these dis-
cussions by electronic mail, but due to difficulties with that medium, not all his contributions were
received in time to incorporate into this summary.

Our initial objective in holding these meetings was to try to agree on a common basis, formulate
general concepts, and suggest concrete notations for a—as yet unborn—Science of Algorithmics
based on transformational programming. Not surprisingly, this ambitious programme of work was
not realised. Although there was mutual agreement about the general importance and philosophy of
the approach, there were differences of attitude about notational style and many areas where no firm
conclusions could be reached in the time available. Indeed, it was felt early on that a reformulated
objective would be more appropriate, namely to present to the Working Group concrete issues for
further discussion, elaboration and refinement. By focusing attention on certain key areas, from
semantic foundations to specific notations, we hope to provide input to WG 2.1 to continue its work.

2. BACKGROUND

There is a style of algorithmic specification and derivation with the following commonly observed
characteristics: it is based on simple notions of function definition and application, the functions are
homomorphisms on structures, and derivations proceed, in part, by using general algebraic identities.
Several people are actively pursuing transformational developments in this style. They feel that a
more traditional ‘mathematical’ style of manipulation is appropriate for many steps in the treatment
of algorithmic problems by transformations. We do not know yet how widely applicable such a style
is; in particular whether it is only really suitable for small problems of a highly algorithmic flavour.
However, for these kinds of problems at least it is certainly a valuable tool. One can express intricate
transformations succinctly and substantial transformations precisely.

In spite of the observed similarities of approach mentioned above, there are also differences. There
are variations in the concepts used, differences in notation for identical concepts, and wide divergence
in general syntactical conventions. Since familiarity with notation is essential for ready comprehen-
sion of any transformational treatment of a problem, this disparity is a severe hindrance, and means
must be sought to alleviate it.

Naturally, before one can discuss specific notations, one has to agree on a common framework and
what predefined concepts are chosen for emphasis. These two aspects are closely related and mutu-
ally dependent, but for the purposes of organisation we have divided the rest of the report into four
sections: Framework, Specific concepts, Notation and Laws.

89

SRS

2

3. FRAMEWORK
Broadly speaking, the syntactic framework we envisage is an equational language of expressions
involving functions, primitive objects and structures of various kinds. Certain equations between
expressions are to be regarded, in a suitable sense, as the definition of new objects, functions, or struc-
tures. Possibilities for a concrete syntax are discussed in Section 5. The semantic framework is more
problematic. One major candidate is a fixed-point semantics for a core language, together with
transformational semantics for extensions. This is the CIP-L approach, at least in part. Alternatives
are a purely algebraic semantics, or an axiomatic semantics based on some formal proof system.

The choice of a suitable semantics is dominated by two major considerations: the question of
indeterminate values and the means of defining new generic structures, including infinitary structures
such as is provided in a number of current functional languages. We deal with these in turn.

3.1. INDETERMINACY ,

A long time was spent discussing the question of whether some notion of indeterminacy should be

allowed in the expression language. For the purposes of discussion it was agreed to confine attention

to the desirability or otherwise of using one or more types of choice operator in the specification and
derivation of algorithmic expressions. In particular, we did not consider the problem of using indeter-
minacy to model concepts of concurrency. It was certainly felt that some form of indeterminacy
enabled a number of derivations to be expressed more naturally at the element level rather than the
set level. The importance of avoiding over-specification, allowing one to postpone design decisions
until a suitable stage in the development process, was also recognised. However, it was also appreci-
ated that any attempt to incorporate indeterminacy involves more or less severe problems of semantic
description. Three possible approaches to indeterminacy were identified for future discussion by the

Working Group:

(1) Avoid it altogether and encapsulate indeterminacy through the medium of set constructions alone.
In this approach, exemplified in the treatment of the text formatter problem (Bird[2]), one just
formulates the set of all solutions to the problem under consideration, and then selects a particu-
lar member of it by some further synthesis step. Questions of indeterminacy are resolved at the
transformational level, and no notion of arbitrary choice is present in the expression language.
The main advantage of this method is that the semantics of the expression language are simpler.
On the other hand, it then becomes necessary to extend the definitional requirements for the func-
tions and objects involved in the specification beyond the purely equational into general predi-
cates about set membership. Also, the synthesis of the one-element-of step does tend to duplicate
much of the reasoning about the all-elements-of solution.

(2) Allow an indeterminate-choice operator [into the notation, but let it always denote some
definite, though as yet unspecified, operator. The only property of (I one is allowed to assume is
that it is selective. In other words

xly = sel(x, y)

for some suitable function se/ that selects one of its arguments (the smallest, or the left-most, or
the funniest). The advantage of this method is again semantic simplicity, but once one realises
that different occurrences of [I must all be given the same eventual interpretation, certain laws
that one might deem desirable are no longer valid. For instance, the laws

x0y = ylx
and

fxly) = (f)0(f»)

cannot be both valid. (Take f, x and y such that x # y, fx = y and fy = x.) Different uses
of [I must be given different colours to ensure consistency. Also the notion of refinement = is
more problematic in this context. Nevertheless we believe it is possible to turn this device into a
useful vehicle, and RB is currently attempting a clean treatment of the formatter problem based

&

90

on the approach.

(3) Allow [] in the notation as denoting arbitrary choice, as recommended by LM. There are various
subdivisions of such an approach: angelic versus demonic indeterminacy, the decision as to how
to model functions (as single functions from objects to sets of objects, or sets of object to object
functions), among others. The advantages of arbitrary choice have been illustrated in Meer-'
tens[3], but there are definite complications in giving a denotational semantics of higher-order
functions and infinitary structures (both involving non-flat domains) based on fixed points.

Developing point (3), we considered what properties one would like of a choice operator. The follow-

ing properties of [] seem desirable, but are mutually incompatible:

(a) A well-defined notion of refinement (=) which is reflexive and transitive and such that all con-
structs are monotonic with respect to = .

(b) The property that x = y iff (x[ly) = x. ,

(c) The laws that [| is commutative, associative and idempotent; note that this, together with (b),
implies reflexivity and transitivity of =>, whereas, conversely, (b) together with reflexivity of =
would imply idempotence of [I.

(d) The law x[] y=> x, which would follow from (b) and (c).

(e) The requirement of referential transparency. This is closely related to the validity of unrestricted
unfolding of definitions. The difficulty in maintaining referential transparency is illustrated by the
failure of such assertions as (x{l y)—(x0y) = 0. Approach (2) above keeps this property.

(f”")The law f(x[y) = (fx)U(fy), or its weaker counterpart in which = is replaced by =>. Note
that the latter would follow from (a) and (b).

(g) The law (x = y) A\ (x =z) implies x = (y[lz). This would follow from (b) and (c).

(h) The law V x: fx = g x implies f=>g. The other direction would follow from monotonicity. This
law concerning the extensionality of refinement would seem particularly important.

The mutual incompatibility, even if (¢) is dropped, is shown by the following example. Define

Fé = (¢1D)+(¢2);
fx = 3+x;
gx = 6—x;
hx = (fx)0(gx).
We first show that (F f) 0 (Fg) = 9.
Ff = (f1)+(f2) (by the definition of F)
= 445 (by the definition of f)
= 9 (by elementary computation).
Similarly,
So
(FAHDFg =909
= 9 (by c: idempotence).
On the other hand, we show that (F f) [l (Fg)=8. To show this, we need an auxiliary lemma:

flg=f (byd).
(f0g)x=>fx (by the above and a: monotonicity).
(flg)x=gx (similarly, also using ¢: commutativity).

91

(flg)x=(fx)0(gx) (from the above by g)
=hx (by the definition of A).
fllg=~h (from the above by h).

Now we proceed:
(FD(Fg)=F(flg) (by f: strong version)
= Fh (by the lemma and a: monotonicity)
=(h 1)+(h2) (by the definition of F)
=(f1)+(g2) (by the definition of # and ¢ and d)
=4+4 (by the definitions of fand g)
=8 (by elementary computation).

So the combination of (a—d) and (f-h) leads to the consequence that 9= 8, which is unacceptable, and
at least one more desirable property must be dropped.

3.2. THE DEFINITION OF STRUCTURES

We obviously need a coherent and simple way of combining old structures to make new ones. For

the sake of simplicity we confined our attention to the single example of the tree-sequence-bag-set

hierarchy of LM [3] and considered one possible approach to defining these structures. There are two
points to bear in mind about the example:

(1) Unlike the data type constructors of, say, HOPE and Miranda, the structures form a hierarchy in
which the associative, commutative and idempotent laws are introduced one by one. These laws
thus ensure that each structure in the hierarchy is a refinement of the next higher one. Modulo
these laws, each element structure is a free structure. Since free structures are not capable of
further refinement by the imposition of new identities, any decision to make a structure free must
be made explicit in the notation.

(2) Operations such as map and filter are not only polymorphic, they are also structure-generic, to
coin a word. For example, map can be applied to sets, sequences, trees and bags. A major objec-
tive in trying to describe type hierarchies is to be able to introduce such generic operations at the
right level of abstraction. An alternative approach was noted here but not pursued in any detail.
Since map and reduce are examples of homomorphisms, it may prove possible to treat the
specification of homomorphisms of structures as a primitive means of definition. We would like
to see further discussion of this approach.

The particular line we investigated was the following. We define a ‘system’ to be a tuple (possibly a
singleton) consisting of some (possibly none) types and some (possibly none) operations involving
these types. As well as constant types, type variables are also allowed. A ‘module’ (for want of a
better word) is a static function which may take a system as argument and returns a system as result.
Thus module definitions are just like function definitions, and conform to the same general principles
of syntax, except they are statically rather than dynamically evaluated. For example:

module groupoid(A) = (S, ": A—>S, op +: S—>5—75)

defines a structure for each type A (itself a singleton system), providing a new type S, a function " for
injecting into the new type and + as a binary operation on the type. - (The type S — S — S used here,
to be parsed as S —> (S —), is the ‘Curry’d type corresponding to (S XS)— S. Notation and other
matters of concrete syntax are still open questions; in particular, how one is to denote operators
rather than prefix functions in the signature.)

A system can be built from another system by taking quotients modulo given laws. We suppose
these laws might have to be restricted in some way—to positive conditional equations for instance—

92

but do not want to pursue this. As examples of the kind of refinements we have:

law assoc(op +: A >4 —=A4) = (Vx,y,z€A: (x+y)+z = x+(y+2))
module sequences(A) = free((S, ", +) modulo assoc(+)
where (S, °, +) = groupoid(A))
module bags(4) = free((S, ", +) modulo assoc(+), comm(+)
where (S, *, +) = groupoid(A4))
and so on. A type constructor, Seq say, can now be specified by a definition
(Seq(A), [-],) = sequences(A4).

This device allows one to choose different symbols for the operations of a type in different contexts.
We can now give system-generic definitions of operators. For instance

module reduce(groupoid(4)) = (op/: (A >A —>A)—>S—>4)
modulo (W 8€d >4 -4, x4, s,teS:
8/ x =x A
8/(s+1) = (8/5)8(8/1))
where (S, *, +) = groupoid(4)
Ina particular context we Iﬁight have something like
-/ -+ - where / = reduce(sequences(A))
or even
-/ - - where / = reduce(Seq(A), [-], +)

which is allowed since sequences are a groupoid.

We now list some queries about such an approach:

(1) Do we need final as well as initial (= free) models? (In an initial model, ground terms are

unequal unless they are, by the laws, provably the same. In a final model, ground terms are equal
unless they are provably different.)
(2) Should one allow restrictions on parameters? Are such restrictions part of the type? (Note that
there is a problem in the definition of reduce: if, say, ®/ is applied to a sequence, the laws given
imply that ® is associative on the range of ®/. The laws suggest, however, that the function ®/
also exists for sequences if ® is mnot associativee. @We could possibly have
v (@ modulo assoc(®)) € A —> A — A’ in the definition of reduce, but then it would no longer be
system-generic.) '

(3) How is one to generalise the above to infinite structures, and how should one annotate the

definitions to obtain all desirable combinations (finite alone, finite and infinite, or just infinite)?
The question is related to the problem of which semantic framework is proposed for the concepts.
(4) Can one give other useful examples of this kind of structure hierarchy?

(5) In the examples, the structures have been defined without identity law for +, which would intro-
duce the empty structure ‘0’. A generic definition of ‘map’ must have a law f- 0 = 0, but this
would make » unusable for structures without identity. In LM’s approach to algorithmics, ‘ficti-
tious values’ play an important role, such as {/0, the least element of an empty structure, which is
an identity element for the operation |, corresponding to oo. These are explained by domain
extensions. Is it possible to have such extensions in the approach under discussion without

tremendous fuss?
(6) In general, we must deal with partial functions and therefore with ‘error values’. What is a

93

pleasant way of doing this?

(7) What are the ramifications of allowing other than equational laws? Note that “free’ introduces
other laws already, so that the problem can even occur if all explicit laws are equational.
Assume, for example, that a free system natural has been defined for natural numbers. Now con-
sider: :

module natlet = (smallish:N)
modulo (V ne N:
ppred(0) =0 A
ppred(suc(n)) = n A
ppred(smallish) = 0)
where (N, 0, suc) = natural

In each model smallish is either 0 or 1, and presumably derivations are only valid if they are valid
for both possibilities. But what are the exact semantics?

(8) The algebraic model of finitely generated terms breaks down for functions, whereas in the exam-
ple of reduce the ®, although a function, was treated as an object. Intuitively, the meaning seems
sufficiently clear. Is there some way of giving a precise semantic definition?

4. SpecIFIC CONCEPTS :

To a large extent the idioms of a language are dominated by what concepts one chooses to emphasise,
even though others are easily definable. Below we suggest—in no particular order of importance—a
number of specific concepts to be included in any framework for Algorithmics. Concrete notations
are also suggested, but formal definitions within the expression language are avoided in many cases,
basically because this would involve commitment to a particular syntactic style about which we would
prefer to postpone discussion until the next section.

The list of concepts with ‘predefined’ notations should, preferably, be small and be confined to
functions and operators that come up again and again in diverse derivations. If a function is less ubi-
quitous but still rather general and useful, and not easily expressible in terms of other predefined
functions and operators, its inclusion may also be warranted. An important criterion is also whether
there are associated laws that are helpful in derivations.

Whereas RB and LM feel that the predefined infix operators should preferably be single symbols,
DW prefers longer operator names. Moreover, LM does not like predefined names that are English
words.

(a) Map: (4 — B) — Struct A — Struct B.
An infix operator ‘«’. For example

f+la, b, ¢} = [fa, fb, fcl.

(Note: the type given for ‘map’ is the ‘Curry’d version of ((4 — B) X Struct 4) — Struct B.)
LM’s notation ‘c” was rejected because it is likely to be concretely represented as ‘. Since it will
often occur at the end of a clause, it is too easily confused with the full stop. Remark: the map
operator can be generalised to accept other structures built from one carrier type as right
operand.

(b) Filter: (4 — Bool) — Struct A — Struct A4.
An infix operator ‘<’. As examples

even<{l,2,3} = {2},
odd<[1,2,1,3] = [1,1, 3].
(c) Reduce: (4 - 4 — A) = Struct 4 — A.

&

94

(d)

O]

(®

An infix operator ‘/’. For instance

®/la, b, c] = asbac.

See [3] for further details.

Left accumulate: (D - R —>R)—> R —> Seq D — R.
Right accumulate: (R > D - R) > R - Seq D — R.
Infix operators /’ and ‘4”. For instance

®se [a, b, c] = av(ba(c®e)),
®4e [a, b, c] = ((e®a)®b)ec.

We do not particularly like the notations but cannot think of better alternatives. The ‘starting
element’ e can be placed in subscript position whenever convenient, that is, one can write 4, and
#.- These operators give ‘asymmetric forms’ of ‘reduce’. In particular, if ®/s and e = ®/[] are
defined, then ® 4,5 = ®¢/.s = ®/s.

Specific structure building operations.

Suppose (0, ", +) = groupoid(A).

generic name 0 - +
sets {}y {} U
bags O O L
sequences 1 1

There are two reasons for having structure-specific names next to the generic names. One is that
frequent dictions like +/"s or 1+2+3 are ambiguous if the result type of " is not specified. In
unambiguous cases the additional redundancy may aid the interpretation. The second is that
writing 1+2+3 is more awkward than writing [1, 2, 3]. The generic names can be used instead of
the structure-specific names if one wishes no commitment as to the specific structure, or if no con-
fusion can arise.

We would have liked a notation in which there is a simple relationship between the graphic
symbols for the brackets and those for U etc. We could, however, not find a nice set of symbols
with such properties. The best we could come up with is the set

)
[}

<EC

This would have meant giving up using the round parentheses for normal grouping, which we

deemed unacceptable. It would also be nice if symbols for structure inclusion could be derived

from the structure-specific forms of +. Whereas the relationship between the signs ‘ U’ and ‘C’

suggests a notation for bag inclusion too, an extension to sequences based on ‘+ is impossible.
RB also suggests ‘;’ as the Lisp conms, i€. a;x = [a]+4x. Although LM is not averse to

predefining an operator for this oft-occurring diction, he feels that we must then also supply a

notation for x[a], and that the graphics for the two operators should be each other’s mirror

image. Moreover, he is loathe to give up his parenthesis-dispelling use of ;’.

Repeat: (4 — B) —> 4 — Seq B.

A prefix function. For instance

repeat fx = [x, fx, f(fx), ---]

This function makes it possible to build infinite sequences. An infinite sequence of 1’s, e.g., is
given by repeat id 1. The result of the ‘program’

&

95

(®

()

dopx—x:= fxod; x

can be written as first (— p)< repeat fx, in which first gives the first element of a sequence.

However, the equivalence becomes dubious if f becomes undefined for arguments for which p

does not hold. '
LM would prefer ‘rep’ to ‘repeat’, and DW would prefer an infix operator.

While: (4 — Bool) —> Seq A — Seq 4.

A prefix function. For instance,

while even [2,4,2,1,2] = [2, 4, 2].

If p is total, while p s can be expressed, using the function a (see (1)), as last=((A/)o(p+))<as.
Meertens doesn’t like ‘while’, while Wile would prefer an infix operator. This is also reasonable

because of the resemblance to the filter; see (b).

Tuples (elements of Cartesian product).

We suggest “,” as a syntactic n-ary infix operator, where n = 2. There are no specific tuple brack-

ets (the ‘¢ and)’ have already been given to bags), but this syntactic operator has a very low

priority, so that one is forced to write parentheses in almost all positions, and certainly between

structure-parentheses like ‘{” and ‘}. Thus (g, b, ¢) is a triple, and (g, b, ¢, d) a quadruple. As

projection functions we can think of no better notation than my, m, etc., or just ‘fst’, ‘snd’, etc.

(i) Zip: Seq A — Seq B — Seq (4 XB).
An infix operator, notation not decided. For example,
la, b, ¢] zip [x, y, z] = [(a, x), (b,), (c, 2)].
The operands must have equal length. Alternatively, the length of the result might be that of the
shorter of the two sequences. Although the binary case is the most frequent one, it is possible to
generalise this to an n-ary operator. A possible notation might then be °,’. The notation for this
concept in [4] and [5] is ‘with’. ,
(j) Transpose: Struct (Seq 4) — Seq (Struct 4).
A prefix function ‘trans’. For instance
trans([a, b, c],[d, e, f] = [{a,), b, &), <(c,)].
All elements of the argument must have equal length. If the argument is a sequence s, then trans
trans s = s. Alternatively, we might have, e.g., ,
trans<[al,[b, ¢, d],[e,] = [4a, b, &), {c, P, (D},
that is, the structure of all first elements, followed by the structure of all second elements, etc. To
save the property trans trans s = s for sequences, we should then require that the lengths of the
- elements of s form a non-increasing sequence.
(k) Composition: (B — C) > (4 — B) » (4 = ().
An infix operator o. We have (fog)x = f(gx). See also section 5.
(I) Length (size): Struct 4 — N.
A prefix function ‘#’, so #[a, b, c] = 3.
(m) Closure.

We feel this is an important function, but are in a quandary as to the exact type the function
should possess. The two possibilities are

(1) (Set A — Set A) — Set A — Set A4;
(2) (A —> Set A) = Set A — Set A.

For the former, Clo, fS=SU(fSHYUSUSHHHU ---. For the latter,
Clo, fS =SU(U/f<S)U ---. The first possibility is more general; in particular,
Clo, fS = Cloy ((U/)o(f+)) S. On the other hand this is somewhat awkward, since in most

96

R R

9

applications we encounter the second case. Also, Clo, f can be expressed as (U /) o (repeat g)
(see (f)), where g S = S U (fS).

(n) Optimisation functions.
For minimisation and maximisation we suggest infix operators ‘!’ and ‘I>. For instance,

(BLla1(516) = 5.

The function |/ selects the least element of a structure. These two operations are coupled to
whatever order relation ‘<<’ is defined on the operands domain. A question is whether these
operations should be generalised to work on (semi-)lattices, with ‘I’ standing for ¢ A’, and for
VO

We would also like to have functions for ‘a (or all) fminimising (-maximising) element(s)’.

This awaits resolution of the treatment of indeterminacy.

(o) Conditional. .
A 2n-ary operator pair, as in p — x[lg = yllr — z. If no indeterminacy is allowed, the guards
must be mutually insatisfiable, or the expressions following ‘ —’ must have the same value. Note:
these operators are supposed to have low syntactic priority, so that we can write
x<y—->x+lllx=zy-—>y+1.

In view of the frequency of forms like p —»x[]— p— y (in which p may be a complicated
expression), some notation for ‘if ... then ... else’ would be nice, like an asymmetric ‘choice opera-
tor’, say [I:, so that we can write p —> x[: y.

(p) K combinator. A
_This is a function for turning a value v into the constant function Ax: v, which is often needed.
If the infix operator < selects its left operand, then we could use the notation v < (a ‘section’),
as in [3]. However, we do not like this notational trick, nor do we like ‘K’ itself.
(q) Switching operands to operator.
A notational device: x®,y = yex. For example: reverse s = +,/[-]+s. The same device could
be used for functions too: f, x y = fy x. An alternative suggestion is to use the notation ®~, or
possibly ®, which should be more familiar to mathematicians.
(r) Turning operators to functions.
Another notational device: (®)x y = x® y. DW is quite averse to this notation, and recommends
the use of an explicit conversion operator.
(s) Turning functions to operators.
This is useful for supplying an operand to operators like / or £ Simply allow f/ to mean &/,
where x® y = fx y.
(t) Initial parts of sequence: Seq 4 — Seq(Seq 4)).
A prefix function. For instance

ala, b, c] = [[a], [a, b], [a, b, c]].

Note that the initial empty sequence is not included, so that #oca = #.
Question: do we also need final parts:

wla, b, c] = [la, b, c},[b, c],[c])?

(u) First, last: Seq 4 — A.
Tail, head: Seq 4 — Seq A.
For first and last element of a sequence we could use </ and >/, as in [3]. On the other hand,
we would like suggestive pairs of notations for (first, tail) and (head, last), where
(first s)+-(tail s) = (head s)H(last s) = s for non-empty sequences s.

It is understood that existing standard mathematical notation is allowed as well, although some care
must be exercised lest confusion arise between different sets of conventions. In particular, we have:
® Arithmetic expressions, like ax?+bx +c. However, the symbols ‘=’ and /* have been preempted

for algorithmic purposes; possible alternatives are “’ and ‘<. A potential source of confusion is

97

SRS

10

also the parsing of x +y —z.

® Set formers, like {(;, j)|ieN, jeN: 1<i<j<n}. Note that {fx|xes: px} can be written as
J+p<s, and it is recommended that set formers be used only if no convenient such expression
exists. We also recommend the use of forms like {1..n}. Also, set formers can be generalised to
other structure formers by using other brackets, as in SETL: [(#s5, >/s)|s€at: s = reverse s).

® Lambda forms, such as AneN: (n-(n +1))+2. If the domain is sufficiently clear, we can abbre-
viate this to An: (n-(n +1))+2.

® Quantifications, such as VneN: fn>0. Note that Vxes: ps can be written as A /p»s.

The following concepts were considered, but rejected for separate predefined notation:

® Scan (the *\’ of APL): use &/a.

® Limit (repeat until convergence): use closure if appropriate (see (m) above).

® Shuffie (indeterminate merge) of sequences: probably not important enough for inclusion.
® Unless, until: use (— op)< and while(— op).

Not discussed, but possibly important are: (a) a notation for finite maps (functions with finite
domains) and an operator for function update; (b) a sort of Cartesian product for structures (named
‘cross’ in [5]); for example {a, b, c}X[d, e] = {[(a, d), (a,)}, (b, d), (b, &)}, [(c, d), (c, e)]}; (c) an
explicit notation for function application, say ‘appl’, as in appl+([f, g, k] zip [x, y, z]) = [fx, gy, h z];
(d) notations for ‘pattern matching’, binding variables in a pattern to actual values; both in function
definitions, in ‘where’ clauses and in conditions; () other devices that can replace the awkward pro-
jection functions.

5. NoTATION

The question of concrete syntax for expressions was debated at length during our meetings and was
the source of much (good-natured) conflict. Since matters of syntax are to a large extent questions of
personal taste and cultural background, it seems appropriate to preface this section with some histori-
cal remarks.

In 1973 DW had developed a language emphasising the relationships between program structures
and data structures, with a small but powerful set of operators, mainly directed towards (possibly
infinite) streams and trees [4]. In particular, we find ‘sections’ there as a useful device. This work has
not had any noticeable immediate follow-up. In 1981 RB presented to the Nijmegen meeting of
WG2.1 some notational suggestions for transformational programming [1]. Apart from reinventing
map and filter and suggesting concrete operator notations, the proposed syntax was rather free wheel-
ing. Subsequent presentations at various UK universities convinced him that the syntactical conven-
tions were totally alien to audiences, prone to ambiguity and generally unworkable. RB then adopted
an alternative notation broadly in agreement with Turner’s suggestions for KRC (henceforth called
KRC style). Meanwhile LM took RB’s original proposal, modified and refined it, and gave an unam-
biguous grammar. LM has since used this syntactic style in a number of publications and presenta-
tions, and found it convenient, succinct and transformation friendly. RB, working with the KRC-
style, came to similar conclusions with that notation. During our meetings we tried to resolve this
situation, but were unable to do so in a satisfactory manner. With the insertion of one or two brack-
ets the terminal productions of the KRC-style appear to be a strict subset of the LM style, but the
problem is that common terminal productions are sometimes assigned different meanings in the two
styles. There is also the question of taste. LM prefers to carry out manipulations at the function
level, to which his notation is more suited. In particular, the use of an explicit composition operator
can be avoided whenever the context makes it clear which interpretation is intended. RB prefers to
carry out many derivations at the point level, with only occasional references to functional identities.
Experiments were performed trying to do essentially the same derivation in the two styles. The con-
clusions were interesting: in neither derivation did brackets proliferate, but this was entirely a conse-
quence of the point versus function decision. The rest of this section is devoted to short expositions
of the two alternative proposals, followed by a short exposition of DW’s preferred style, with an

&

98

11

appraisal of their respective merits.

Bird’s Proposal. Ignoring productions involving explicit set, tuple and sequence constructions, the
proposed syntax follows these rules:

expression ::= term {op term} | term op | op term | op
term ::= {primary} primary
primary ::= constant | identifier | (expression)

The notation ‘{...}" stands here for zero or more repetitions of the enclosed part, whereas the ‘(’ and
‘Y are literals. An “op’ is an operator.

With the exception of sections—expressions of the form ‘term op’, ‘op term’ and ‘op’—such a syn-
tax conforms to the generally recognised KRC style. Function application (a ‘term’ applied to a ‘pri-
mary’) is left associative and binds tightest; the other operators are all right associative and of equal
binding power (but lower than application). For example, fx + y is parsed as (fx)+ y. The alter-
native of providing explicit precedence rules between operators is not precluded.

A section like x + stands, of course, for the function A y: x +y, and +y stands for Ax: x +y.
Used by itself, + stands for Ax: A y: x +y.

Advantages of this style are: (a) simplicity; (b) familiarity to programmers of the KRC persuasion;
(c) type independence, by which is meant that the rules of syntactic composition are not dependent
on the types of the components.

Possible disadvantages include: (a) the composition operator o has at all times to be made explicit;
(b) operators which take operators as left arguments (such as reduce) have to be written with those
operators in brackets—for example, (+)/ rather than -/; (c) sections have to be bracketed—e.g.,
(foo+)- rather than foo-+. Note here that ‘(op)’ denotes a prefix function, not operator, so that, e.g.,
(+) x y is meaningful and denotes x+ y. It follows that operators now never take operators as left
arguments, only -functions. Hence greater flexibility is achieved and one can write, e.g,
sort = insertA[-], where insert is a function with its usual KRC definition.

Meertens’ Proposal. The proposed syntax for the same part of the language can be given as:

expression ::= [op] {factor} factor | op
factor ::= primary {other-op }
primary ::= constant | identifier | op op-op | (expression)

op ::= op-op | other-op

The same notation as above applies, and, moreover, ‘[...]’ denotes an optional occurrence of the
enclosed part. ,

This is the same notational style as has been used in previous examples by LM, but with sections of
the form +y added. The meaning of an ‘apposition’ f x depends on the types of f (which must be a
function) and x (which could be a function). If x is a meaningful argument to f, then the meaning is
f applied to x. Otherwise, the meaning is f composed with x. This has some theoretical background,
insofar as a non-function x could be viewed as a 0-ary function, and then functional composition
yields the O-ary function corresponding to f applied to x. (The word ‘apposition’ can be understood
not only in its usual meaning of ‘juxtaposition’, but also as a portmanteau word for
‘application’ + ‘composition’. It has been pointed out that a more apposite portmanteau might be
‘complication’.)

The operators are divided into two disjoint classes: ‘op-op’ for operators taking an operator as left
operand (notably %), and ‘other-op’ for the other operators (like ‘+’). By allowing ‘primary’, next to
‘op’, for the left-operand of ‘op-op’s, it is likewise possible to allow insert4[-]. A formula like x + y is
allowed, but although it has the same meaning as one would expect, it has the unexpected parsing
x -+ applied to y.

The major difference with Bird’s approach is that the expression fx + y is likewise allowed, but
this tixge has the same meaning as f(x +y). Also, fgx is allowed with meaning f(gx), which in

99

12

Bird’s approach would require the parentheses.

Advantages of this style are: (a) greater ‘substitutivety’ and fewer trivial derivation steps: from a
functional identity f = g one may conclude that fx = gx without having to change the syntactic
form of for g, and usually the step from x = y to fx = fy requires no syntactic changes either; so,
for example, f=gh and hx =y imply fx =gy in fewer steps than
fx = (goh)x = g(hx) = g y; (b) although +/+«« +/x, e.g,, may indeed be abstruse and require
familiarity of this style to be interpreted, it is still felt to be more readable than ((4)/+)+(+)/ x or
((((+)/*)*)o((+))x, which hide the patterns involved rather than disclose them, and are, moreover,
tedious to write if they have to be copied in derivation steps.

Possible disadvantages include: (a) the grammar is-more complicated; (b) people familiar with the
KRC style are apt to misinterpret fx + y as (fx) + y—but on the other hand, the converse applies
to Birds’ approach for APL-fandom; (c) without contextual knowledge, in particular the types
involved, fx cannot be interpreted (composition or application?); for example, an expression /(g x) y
can, depending on the types of f and g, stand for either f((gx)y) or (f(g(x)) y, and due to generic
types an explicit composition operator may be required for genuinely ambiguous cases.

Wile’s Proposal. Rather than giving a syntax description here, let it suffice to say that DW prefers
postfix functions. A possible grammar might be the mirror image of LM’s grammar. For example,
+/p<f+s would become s+f<p/+, or rather s obtain f when p accrue +. For some operators, the
operands would stay as they are; in particular so for — (conditional, see (0) in section 4). Prefix
function like ‘repeat’ and ‘while’ (see (f) and (g) in section 4) would become infix operators. For
more examples of the style, see [5].

Advantages of this style include: (a) the parsing is from left to right again and so is more natural;
in particular, a formula like a +b —c regains it usual meaning; (b) LM’s syntax favours sections in
which the operand precedes the operator, and so makes one use for instance 0>, although the section
<<0 would be more natural; in this style, the latter becomes the favoured form; (c) using longer opera-
tor names gives a considerable help to human interpreters.

Possible disadvantages are: (a) it is one more step away from mathematical tradition; (b) longer
operator names tend to get tedious in transformational developments.

6. Laws
Unfortunately, time did not permit us to draft this section.

REFERENCES

1. R.S. Bird. Some notational suggestions for transformational programming. WG 2.1 working paper
N1J-3 (unpublished), 1981.

2. R.S. Bird. Transformational derivation of a text formatter. (unpublished), 1984.

3. L. Meertens. Algorithmics— Towards programming as a mathematical activity. WG 2.1 working
paper ADP-3, 1984. To appear in: Mathematics and Computer Science, CWI Monographs Vol. 1
(J. W. de Bakker, M, Hazewinkel and J. K. Lenstra, eds.), North-Holland, [J/1985<<U.

4. D.S. Wile. A Generative, Nested-Sequential Basis for General Purpose Programming Languages.
CMU Dept. of Comp. Science, Pittsburgh, 1973.

5. D.S. Wile. Generator Expressions. WG 2.1 working paper ADP-8, 1984.

100

TWO EXERCISES FOUND IN A BOOK ON ALGORITHMICS

So engrossed was the Butcher, he heeded them not,
As he wrote with a pen in each hand,

And explained all the while in a popular style
Which the Beaver could well understand.

The last paper of this reader was first presented on the April 1985 boat,
and again, exactly one year later, at the Bad Tdlz Working Conference on
Program Specification and Transformation.

The title reflects that old guiding concept in the search for the genuine
Abstracto: an advanced book on algorithmics. The exercises here are
rather elementary, of course, but one must start somewhere.

If the algorithmic developments here are eminently more readable than in
the other papers, this is not only due to the greater simplicity, but
also or mainly to Richard’s influence. You see, I will always remain
something of a hacker, I'm afraid, whether I write my programs the "old”
way or develop them formally.

101

TR

sasiannaYe
A

i

e

R

0

paseaso
A

jo

4

R

SR

s
i

i

5

i

i

i

-

=

e

o

Program Specification and Transformation

L.G.L.T. Meertens {Editor)}

Elsevier Science Publishers B.V. (North-Holland) 451
© IFIP, 1987

Two Exercises Found in a Book on Algorithmics

Richard S. Bird

Programming Research Group
University of Oxford, UK

Lambert Meertens

‘entrum voor Wiskunde en informatica
Amsterdam, The Netherlands

1. INTRODUCTION.

A major test of a good notation is how suggestive it is of new relationships between the objects
described, and how susceptible it is to the manipulations required to establish such relationships
formally. Indeed, if the associated calculus is sufficiently attractive to use, new relationships can
come to light simply by the process of manipulating formulae.

The term “algorithmics’ was coined in [Geurts & Meertens 2]: ‘Suppose a textbook has to be writ-
ten for an advanced course in algorithmics. Which vehicle should be chosen to express the algo-
rithms? Clearly, one has the freedom to construct a new language, not only without the restraint of
efficiency considerations, but without any considerations of implementability whatsoever.” It was
elaborated upon in {Meertens 3], and stands now for both a notation and a calculus for manipulat-
ing algorithmic expressions, designed with the aim of meeting the criteria enunciated above. Algo-
rithmics corresponds, broadly speaking, to what is currently known as Transformational Program-
ming, but the level of abstraction is arguably higher than one would normally encounter, and a
wide range of specific notation is emphasised. The subject is still in its infancy and it is not the
purpose of the present paper to give a comprehensive account. Instead we want to present, in as
simple and direct a fashion as possible, two exercises in manipulation as they might appear in some
future book on Algorithmics. If, in studying these problems and their solutions, the reader is by
turns puzzied, intrigued and finally enlightened as to the real possibilities for a useful calculus of
algorithm derivation, then we shall have achieved what we set out to do.

In order to describe the two problems without further preamble, it is necessary to refer to certain
concepts without giving them a formal definition; consequently the statement of exactly what is
provided and what is required will not be very precise. The first part of the paper is devoted to
developing enough of the calculus of algorithmics to remedy this deficiency. 'We shall then be in a
position in the last two sections both to state the two problems precisely and solve them simply by
a process of formula manipulation.

Problem 1. The reduction operator ‘/’ of APL takes some binary operator @ on its left and a vec-
tor x of values on its right. The meaning of ®/x for x = [a, b, ..., z] is the value a@beo - - - @2z.
For this to be well-defined in the absence of brackets, the operation @ has to be associative. Now
there is another operator “\’ of APL called ‘scan’. Its effect is closely related to reduction in that
we have

o\ x = [a, a®b, adbec,...,a0bs -. - 0z].

The problem is to find some definition of scan as a reduction. In other words, we have to find
some function f and an operator ® so that

e\x = (fa)e(fb)e .- -e(f2).

Problem 2. This problem was suggested to us by Phil Wadler. Define a line to be a sequence of
characters not containing the newline character NL. It is easy to define a function Unlines that con-
verts a non-empty sequence ¢ of lines into a sequence of characters by inserting newline characters

103

452 R.S. Bird and L. Meertens

between every two lines of 1. Indeed, Unlines can be written as a simple reduction as described in
Problem 1. Since Unlines is injective, the function Lines, which converts a sequence of characters
into a sequence of lines by splitting on newline characters, can be specified as the inverse of
Unlines. The problem, just as in Problem 1, is to find a definition by reduction of the function
Lines.

It is worth remarking that neither problem, both of which are fairly simple to solve, is just an
academic exercise of no practical relevance; both illustrate quite serious and important concerns in
computation. The former seeks to replace a quadratic time algorithm with' a linear one, while the
latter is an instance of the problem of finding a computationally effective definition of some opera-
tion, given only an effective definition for its inverse. This problem arose in interactive text-
formatting.

2, NOTATION

Our formulae will be (equations between) expressions. The class of allowable expressions (actually,
a simplified version) is described below. Certain equations are taken as definitions of the operator
or function appearing on the left hand side; these equations may define the function recursively.
As simple examples we have

factn = X/{1..n]
and
fib0 =0
ﬁb =1
Cfib(n+2)y = fib(n+t1)+fibn.
The class of expressions is given by the following BNF syntax, in which the meta-brackets *{* and
‘) signify zero or more occurrences of the enclosed part, and signs in double quotes are literals.
expression ::= term {op term} |.térm op | op term | op
term ::= {primary)} primary
primary ::= constant | identifier | “(” expression “)” | “[” expression-list “]”
expression-list ::= | expression {*,” expression}

Here, ‘op’ is short for ‘operator’. We shall use symbols such as ©, ®, / and - to denote operators.
The precedence rule between operators is that all have the same precedence and all are right associ-
ative. (So a@b®c means a® (b®c).) This is the convention adopted in [Bird 1]. Function applica-
tion is denoted by a space; this operator is of higher precedence than others and is left associative.
(So fa bec means ((f a) b)®c.) Again this is the convention adopted in [1] and is one that is
familiar to many functional programmers, being copied from Turner’s KRC [4].

The forms (term op), (op term) and (op) are known as sections. If they stand alone, no brackets
are needed. A presection, of the form (x®), is a prefix function with the property

(x®)y = x®y.

A postsection, of the form (®x), is a prefix function with the property
(®x)y = y®x.

A full section, of the form (8), is a prefix function with the property
@®)xy = x@y.

Certain operators, for example the reduction operator °/* of Problem 1, expect operators as their
left argument. However, productions such as ®/ are not allowed by the foregoing grammar, and
one has to write (8)/. It is a harmless abuse of notation to permit the brackets to be dropped in
such a situation, and we shall henceforth do so.

This is all there is to say about syntax. The equal precedence and right-associative rule for all
operators except application takes a little getting used to, but turns out to be very convenient, at

104

Two Exercises Found in a Book on Algorithmics 453

least for formulae not involving common arithmetic operations, where other precedence rules are
deeply ingrained.

3. STRUCTURES AND HOMOMORPHISMS.
As was stated before, ®/[a, b,...,z] = a®b® - - - @z, in which no brackets are needed if @ is
associative. Henceforth we shall require ® to be associative if used in reductions. This means that
it is unnecessary to specify the order in which the reduction is performed: left to right, right to left
and recursive computation by splitting in two halves all yield the same result. Such
‘underspecifications’ are generally helpful in algorithmic developments, since they allow one to
explore various strategies. In fact, it may be argued that the imposition of an order if it is
irrelevant is an overspecification, an undue commitment that may stand in the way of a useful
transformation.

Since the computation order for reduction by an associative operator @ is immaterial we can give
a symmetric recursive characterisation of @/, which can be taken as its formal definition. Let
stand for sequence concatenation, so [a, b] # [c, d, e] = [a, b, ¢, d, e]. Also let the identifiers x
and y stand for arbitrary sequences. Then

e/la] = a;
&/ (x+y) = (8/x)e(e/y).

If the operation'® has a unit, then reduction of an empty sequence, ®/[], stands for that unit.
Otherwise, such a reduction is undefined and x and y must not be empty.

The sequence concatenation operator - 'is associative. Associativity is also the requirement on
@ for @/ to be meaningful. This is, of course, not a coincidence. We may, likewise, define reduc-
tion over a set, so that @/{a, b, ..., 2z} = a®b® - .. ®z. The formal definition is similar to the
one for sequences, with {-} replacing [-] and U replacing . Not only is set union associative,
but also commutative and idempotent. These are precisely the requirements that ® has to meet in
order to make the given definition of reduction over sets unambiguous. In general, one may con-
sider structures that are built by taking singletons from some domain and by applying a binary con-
struction operation to previously erected structures. In the absence of specific properties for the
construction operator, we obtain the set of binary trees whose leaves are labelled with atoms. As
we have seen, familiar algebraic properties give other familiar data structures: sequences and sets,
The algebraic properties of associativity and commutativity together yield yet another familiar data
structure: bags or multisets. This means we can give a generic definition of reduction, and also
obtain generic algorithmic laws and developments that have, as yet, no commitment to a choice of
specific data structure. As the examples in the present paper are only concerned with sequences,
this point will not be elaborated upon here.

The identity law (which is an algebraic property that the construction operation may, or may not,
have) corresponds to the empty structure (tree, sequence, bag or set, as the case may be). It may
happen, and indeed it often does, that an operation ® has no unit, but that an algorithmic develop-
ment naturally leads to forms @/x in which x may be empty. This is a common nuisance that
would require special measures to cater for ‘exceptional’ cases, causing complication of the algo-
rithmic specifications under consideration, which has to be dragged along in the development. For-
tunately, in many cases it is possible to employ an expedient stratagem: extend the domain of ®
with a “fictitious value’, an adjoined element, that assumes the role of the missing unit. For exam-
ple, the binary operation of taking the minimum value of two operands has no unit in the domain
of real numbers. By adding a fictitious value, which we might call oo, we can assign a meaning to
the minimum reduction of an empty structure. This can help to simplify algorithmic developments,
and sometimes very much so. It is not uncommon that such fictitious values only have an ephem-
eral role in a derivation. This is similar to the mathematical ‘trick’ of solving problems concerning
real numbers through a temporary excursion into the complex domain.

Another high-level operation is the map operator *~’, which takes a function on its left and a
sequence, or in general a structure, on its right and replaces each element by its image under the
function. For example, we have f-[a, b,...,z] = [fa, fb,..., fz]. As for reduction, we can
give a recursive characterisation:

felal = {fa];

105

o il s

R

454 R.S. Bird and L. Meertens

[rOcty) = (fox)H(f).

For an empty sequence, we must have f-[] = [].

DEFINITION. A function # defined on sequences over a given domain is a *homomorphism’ if there
exists an operation & such that, for all sequences x and y over that domain:

hixHy) = hxohy.

If h is defined on empty sequences, then, moreover, 4[] must be the (possibly fictitious) unit of &.
The generalisation to other structures is obvious. Both reductions and maps are examples of
homomorphisms. This is immediate from their recursive definitions. For a given homomorphism A,
the operation @ is uniquely determined (on the range of k) by h, and we shall refer to it as ‘the’
operation of 4. The operation of a reduction @/ is, of course, ®. That of a map f- is +. Not all
functions on structures are homomorphisms. A counterexample is the ‘number of elements’ func-
tion # -on sets. On sequences and bags, however, # is a homomorphism. Moreover, all injective
functions are homomorphisms. The importance of homomorphisms is essentially the same as men-
tioned before for reductions: they allow a variety of computational strategies, among which such
important paradigms as iteration (left-to-right construction) and divide-and-rule. The assumption is
that @ (and A on singleton structures) are relatively cheap to compute. The formulation of a func-
tion as a homomorphism shows then also how to develop an incremental approach, as in formal-
difference methods.

Although there are other homomorphisms than reductions and maps, these can be viewed as the
stuff homomorphisms are made of:

HOMOMORPHISM LEMMA. A function h is a homomorphism if and only if there exist an operation ®
and a function f such that h = (&/)o(f*).

ProOF. The ‘if’ part follows straightforwardly from the definitions of reduction, map and
homomorphism. For the ‘only if’ part, use induction on the size of the argument sequence, taking
for.® the operation required by the definition of homomorphism and putting f = k¢[], in which
the function [-] turns an element into a singleton sequence.

For short, we say then that 4 is the homomorphism (@, f). The reduction &/ is the homomorphism
(@, id), in which ‘id’ stands for the identity function, and the map f+ can be written as (4, [Jef).
Although certainly not all of algorithmics can be reduced or mapped to the construction of
homomorphisms, this is a major constructive paradigm.

4. Laws ‘
We give, without proof, some simple laws about homomorphisms.

LAw 1. (fog)» = (f=)o(g).

Law 2. Let f, @ and @' satisfy f(xe@y) = (fx)o'(fy) and f(&/(]) = ®/[].
Then fo(8/) = (&7)o(f-).

Law 3. Let h be a homomorphism with operation ®.
Then ho(#/) = (8/)o(h+).

Laws 2 and 3 are applications of the homomorphism lemma. For the proofs we refer to [3]. Law 3
can also be derived as a special case of law 2. The second condition of law 2 may be left out if the

functions in its conclusion are not required to work on empty sequences. From law 3 we also
derive

COROLLARY. (a) (&/)o(H/) = (8/)o((8/)-) .
) (f)e(H#/) = (H#/)((f)) .

&

106

Two Exercises Found in a Book on Algorithmics 455

Conversely, law 3 follows from the successive application of (b) and (a) of the corollary (using the
homomorphism lemma), followed by an application of law 1. From these laws and the corollary
one can derive many standard program transformations. For example, some forms of loop fusion
can be viewed as an application of law 1, and, as we shall see, filter promotion can also be derived
from these laws. The importance of the corollary is that in contrast to laws 2 and 3 it needs no
applicability condition.

As example, we give a simple application of law 2. Define the function last on non-empty
sequences by last (x 4 [a]) = a. If we define the operator > by a»b = b, the function last can
be expressed as a reduction: last = »/. Let f be a strict function, that is,
S ‘undefined’ = ‘undefined’. (Note that >/[] is undefined.) Since f(a>»b) = (fay>(fb), law 2
gives us now:

felast = fo(>/) = (>/)o(f+) = lasto(f-).
The following plays no role in the exercises to follow.
Let P<x be the notation for filtering the sequence x with the predicate P. For example, if even is
the predicate testing for the property of being even, then even«{1,2,3,5,8] = [2, 8]. Itis easy to
see that a filter is a homomorphism, with operation . So we have, by law 3,

(PR)o(Ht/) = (H/)o((Pa)+).

This corresponds to the filter-promotion or generate-and-test paradigm: rather than filtering one
huge structure, we can divide it into smaller structures, filter each of these, and collect the out-
comes.

5. THE SCAN—REDUCE PROBLEM.

First of all, we must give a precise definition of the scan operator *\’. This is done with the help
of a function « that takes a non-empty sequence x and returns the sequence of non-empty initial
subsequences of x, arranged in order of increasing length. We have

ala] = {[a]] M

a(xHy) = (ax)H (xH#)-ay)
and now we can define
e\ x = (¢/)-ax. 3)
The task before us is to find a homomorphism (®, f) so that
o\x = &/fox. @
First we determine f:
fa = o/[fal (definition of / on singletons)
= &/f[a] (definition of ~)
= @\ [a] (by (4)
= (/) ala] (by (3))
= (8/)+[lal] (by (1))
= [&/[al} (definition of «)
= [a] (definition of / on singletons).

Next we determine ® by calculating x®y. Suppose x = ®/f-x’ and y = ®/f-y’; equivalently, we
have x = @\ x’and y = &\ y’. We may assume that x’ and y’ are non-empty sequences. Then

xey = (8/f+x")®(8/f-y") (definition of x and y)
= &/(f+x")H# (f+y") (definition of /)
= &/f-(x'#)y") (definition of »)
= o\x')y (by (4))

107

456 R.S. Bird and L. Meertens

= (&/)-alx'Hy") (by 3))
= (&/) - (ax')H (x") - ay’ (by (2))
= ((&/)+ax’) # (8/)~ (x'4) - ay’ (definition of).

In the last line, (/) - ax’ = &\ x’" = x, and (&/)o(x’#) = ((&/x") ®)o(a/), s0 that
x®y = x4 ((&/x')®)-(&/)-ay’

= xt(e/x")e)-p,
using definition (3) again. The last expression still contains a reference to x’, which remains to be
eliminated. We note that x’ is the last element of the sequence ax’. So, using the rule found for
{ast in Section 4 from law 2, ®/x’ = @&/last (ax’) = last ((&/)-ax’). By definition (3), the argu-
ment of last equals ®\ x’ = x, and so ®/x’ = last x. Hence

x®y = xH ((last x)®)-y,

and we are done.

6. THE LiNES—UNLINES PROBLEM.
Suppose CH is some set of characters, including the newline character NL. Let CH’ = CH—{NL}.
The function Unlines has type Seq.. (Seq CH')—> Seq CH, and is defined by

Unlines = &/ 1)

x@y = x+H[NL]Hyp, 2)
The reason we insist Unlines takes a non-empty sequence as argument is that the operator @ does
not have a unit, i.e., ®/[] is not well-defined. Tt is easy to show that Unlines is injective, that is,
Unlines xs = Unlines ys implies xs = ys, and so we can specify the function Lines to be

Lines = Unlines™}. 3)

The task before us is to find a homomorphism (®, /) so that Lines x = ®/f. x. We shall discover
the definitions of ® and f simply by making use of the identity Lines(Unlines xs) = xs, or, in other
words,

8/f ®/xs = xs. @
First we determine f for arguments @ # NL:
fa =e@/[fa] (definition of / on singletons)
= 8/f-[a] (definition of »)
= g/f~o/{lal] (definition of / on singletons)
= [{a]] (by (4).
Also
SNL = &/[fNL] (definition of / on singletons)
= @/f+[NL] (definition of)
= &/f[]+4 [NL] 4[] (as [] is unit of #)
=o/f<e/{[],[1] (definition of @ and /)
= 111,111 (by ().

Next we must determine ®. Since each argument of ® is a non-empty sequence we need only con-
sider the definition of (xs H# [x])® ([y] H#ys). We have

(s [x])e ([y]Hys)
= (&/f-o/xsH [x])@(8/f &/ [y] Hys) (by 4))
= 8/(f- &/xs 4 [x]) # (f- &/ [y] Hys) (definition of /)

108

Two Exercises Found in a Book on Algorithmics 457

= @/f-(&/xsH [x]) H (&/[y] Hys) (definition of +)
= &/f-(&/xs)® (a/[x])) + (&/[y]) @ (&/ps)) (definition of /)
= ®/f-(&/xs) # [NL] + (&/[x]) # (&/[y]) H INL] # (a/ys) (definition of &)
= ®/f«(&/xs) H [NL] H# (&/ [x Hy]) + [NL] H# (&/ps) (definition of /)
= ®/f-(a/xs)@(a/[x+y])®(a/ys) (definition of @)
= 8/f+ &/xsH [xitp] Hps " (definition of /)
= xsH [xHy]Hys (by (4)),

and we are done. Note that the above derivation actually juggles with some potentially fictitious
values. We have assigned no meaning to @/{], and yet the term ®/xs appears above in a context
where it is not required that xs be non-empty. No confusion can arise because ® does not have a
unit in Seq CH, so &/[] is adequately defined by the properties it must have. It is consistent with
these properties to add the laws

(e/{DH[N] = [N]H (/1) = (],

which shows how to do actual computations in the extended domain (Seq CH) U {&/{]}. Note
also from the definition of @ that its unit must be {[]]; for example, we can calculate

CGesH[x])e [[]] = Cs# [xDe([[11H+D
xsH [xH[11+#[]
xsHx].

This follows also from Lines[] = ®/[] and Unlines [[]} =[], since we find ®/[] =
Lines (Unlines [{11) = [[1].

I

REFERENCES

1. R.S.Bird. Transformational programming and the paragraph problem. Science of Computer
Programming 6 (1986) 159-189.

2. L. Geurts & L. Meertens. Remarks on Abstracto. ALGOL Bull. 42 (1978), 56—63.

3. L. Meertens. Algorithmics— Towards programming as a mathematical activity. Proc. CWI
Symp. on Mathematics and Computer Science, CWI Monographs Vol. 1 (J.W. de Bakker,
M. Hazewinkel and J. K. Lenstra, eds.) 289-334, North-Holland, 1986.

4. D. Turner. Recursion equations as a programming language. Functional Programming and its
Applications, Cambridge University Press, Cambridge, UK, 1982.

109

st
=

Ao
S

%

5

i

A

foasesagsavante
RN

S

2

s

s
S

5

Y

A

A

o
i\

e
R

A
R

S
RS

&

0

S

o

Ry

o e

R

SRR S SRR AR

"I said it in Hebrew--I said it in Dutch--
I said it in German and Greek:

But I wholly forgot (and it vexes me much)
That English is what you speak!”

e

s

s
i

s

e

SR

s

s

T ey

o

SRR

i
i

5

R

S

s

