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The p u r p o s e  o f  t h i s  r e a d e r  i s  t o  p r o v i d e  WG 2 . 1  members  w i t h  a  c o n v e n i e n t
o v e r v i e w o f  my  p a p e r s  d e v o t e d  t o  t h e  A b s t r a c t o  t h e me .

Not  o n l y  h a v e  I  i n c l u d e d  t h e  p a p e r s  t h a t  e mp l o y  a  n o t a t i o n  t h a t  h a s  f a c e -
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hav e made b e f o r e  I  c ame t o  t h e  p o i n t  wh e r e  I  a m now.  B e t w e e n  t h e  p a p e r s
I  h a v e  i n s e r t e d  s ome c omment s  made i n  h i n d s i g h t .  I  d i d  n o t  i n c l u d e  a n y
o f  t h e  ( s i z a b l e )  s t a c k  o f  p r e s e n t a t i o n s  p r e p a r e d  f o r  WG 2 . 1  me e t i n g s  t h a t
o n l y  e x i s t  i n  t h e  f o r m  o f  o v e r h e a d  s h e e t s ,  w i t h o u t  c o n n e c t i n g  t e x t .

Fo r  t h e  WG 2 . 1  w o r k i n g  doc ument s  I  h a v e  t r i e d  t o  a d a p t  t h e  u s a g e  o f  s y m-
b o l s  t o  my  c u r r e n t  p r a c t i c e .  T h e  p a p e r s  t h a t  h a v e  b e e n  p u b l i s h e d  I  h a v e
l e f t  u n t o u c h e d .

The o r d e r  i n  w h i c h  t h e  p a p e r s  a p p e a r  h e r e  i s  t h e  c h r o n o l o g i c a l  o r d e r  i n
wh i c h  t h e y  we r e  w r i t t e n .  A  b e t t e r  r e a d i n g  o r d e r  may  b e :

Ams t erdam,  A p r i l  1 9 8 7  L a m b e r t  Me e r t e n s
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. . REMARKS ON ABSTRACTO

He h a d  b o u g h t  a  l a r g e  map  r e p r e s e n t i n g  t h e  s e a ,
Wi t h o u t  t h e  l e a s t  v e s t i g e  o f  l a n d :

And t h e  c r e w we r e  muc h  p l e a s e d  when  t h e y  f o u n d  i t  t o  b e
A map t h e y  c o u l d  a l l  u n d e r s t a n d .

The fi r s t  p a p e r  o f  t h i s  r e a d e r  wa s  p r e p a r e d  f o r  t h e  O x f o r d  me e t i n g  o f
WG 2 . 1  i n  Dec ember  1 9 7 7 .  T h e  t e r m  " A b s t r a c t o "  mu s t  h a v e  b e e n  i n t r o d u c e d
e a r l i e r  i n  WG 2 . 1  c i r c l e s ,  s i n c e  t h e r e  we r e  t w o  o t h e r  p r e s e n t a t i o n s  a t
t h e  me e t i n g  w i t h  t h a t  w o r d  i n  t h e i r  t i t l e s .

One r e a s o n  t h a t  I  fi n d  t h i s  p a p e r  i n t e r e s t i n g  i s  t h a t  i t  a l r e a d y i m p l i -
c i t l y  i d e n t i fi e s  t h e  " fi v e  u n m i s t a k a b l e  ma r k s "  b y  wh i c h  we  may  k now t h e
g e n u i n e  a r t i c l e  i f  we  a r e  t o  h a p p e n  u p o n  i t  d u r i n g  o u r  e x p l o r a t i o n s :

1.  " P r o g r a m  t r a n s f o r m a t i o n "  i s  v i e we d  a s  a  ma t h e ma t i c a l  a c t i v i t y  o f  m a n i -
p u l a t i n g  a l g o r i t h m i c  e x p r e s s i o n s ,  a n d  a  " t r a n s f o r m a t i o n "  a s  n o t h i n g
b u t  t h e  a p p l i c a t i o n  o f  a  t h e o r e m.

2.  A b s t r a c t °  i s  a n  o p e n  l a n g u a g e ,  n o t  d e v e l o p e d  w i t h  t h e  a i m  o f  b e i n g
a b l e  t o  u s e  a  me c h a n i c a l  s y s t e m.

3.  N o  s h a r p  d i s t i n c t i o n  i s  made b e t we e n  a n  " a l g o r i t h m "  a n d  a  " p r o b l e m
s p e c i fi c a t i o n " ,  a n d  e x e c u t a b i l i t y  ( c a l l e d  " i m p l e m e n t a b i l i t y "  h e r e )  i s
no t  r e q u i r e d .

4.  T h e  r e a l  i s s u e  i s  t h e  d e v e l o p me n t  o f  h i g h - l e v e l  c o n c e p t s  a n d  n o t a -
t i o n s .

5.  T h e r e  i s  a l r e a d y  a  c l e a r  e mp h a s i s  o n  " i t e r a t o r s " ,  m i r r o r e d  b y  t h e
c u r r e n t  e mp h a s i s  o n  homomorph is ms ,  a n d  e v e n  a  g e n u i n e  r e d u c t i o n  ( t h e
"OPT . . .  TP O "  c o n s t r u c t i o n ) .

I t  i s  a l s o  i n t e r e s t i n g  t h a t  a  " t e x t b o o k  f o r  a n  a d v a n c e d  c o u r s e  o n  a l g o -
r i t h m i c s "  i s  me n t i o n e d ,  a n  a p p l i c a t i o n  a r e a  t h a t  h a s  b e e n  g i v i n g  g u i d a n c e
t o  my  t h o u g h t s  u n t i l  t h i s  d a y .

A l s o  i n t e r e s t i n g  t o  me i s  t o  l o o k  b a c k  a t  t h e s e  fi r s t  a t t e m p t s  t o  g i v e
some c o n c r e t e  f o r m  t o  A b s t r a c t ° .  R e a d i n g  t h i s  n o w g i v e s  me  a  f e e l i n g  o f
c ompas s ion  f o r  t h e s e  a u t h o r s  wh o  a r e  p a t h e t i c a l l y  g r o p i n g  a r o u n d  i n  p i t c h
dark nes s .  I t  mak es  me wo n d e r  wh a t  I  w i l l  t h i n k  i f  I  r e a d  my  l a t e s t  w r i t -
i n g s  t e n  y e a r s  f r o m  now.

A fi n a l  p o i n t  o f  i n t e r e s t  i s  t h e  a p p e a r a n c e  o f  t h i s  B i r d  c h a r a c t e r ,  wh o
i s  q u o t e d  w i t h  a g r e e me n t  s e v e r a l  t i m e s  ( a n d  a g a i n  i n  t h e  n e x t  f e w  p a -
p e r s ) .  I t  i s  c l e a r  t h a t  I  mu s t  h a v e  r e c o g n i z e d  a  k i n d r e d  s p i r i t  i n  h i m,
b u t  l i t t l e  d i d  I  s u s p e c t  o u r  f r u i t f u l  f u t u r e  c o l l a b o r a t i o n .  I  wa s  t o
meet  R i c h a r d  o n l y  f o u r  y e a r s  l a t e r ,  a t  t h e  N i j me g e n  me e t i n g  i n  1 9 8 1 .
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REMARKS ON ABSTRACTO

Leo G e u r t s
Lambert  Mee r t ens

Mat hemat is c h Cen t rum,  Ams t erdam

I f  a n  a u t h o r  wan t s  t o  d e s c r i b e  a n  a l g o r i t h m ,  h e  h a s  t o  c hoos e a  v e h i c l e
t o  ex p res s  h i m s e l f .  Th e  " t r a d i t i o n a l "  way  i s  t o  g i v e  a  d e s c r i p t i o n  i n  s ome
n a t u r a l  l a n g u a g e ,  s u c h  a s  E n g l i s h .  T h i s  v e h i c l e  has  s ome o b v i o u s  d rawbac k s .
The mos t  s t r i k i n g  o n e  i s  t h a t  o f  t h e  s l oppy nes s  o f  n a t u r a l  l a n g u a g e s .  H i l l
[ I ]  g i v e s  a  c o n v i n c i n g  ( a n d  h i l a r i o u s )  e x p o s i t i o n  o f  a mb i g u i t i e s  i n
o r d i n a r y  E n g l i s h ,  q u o t i n g  many  ex amples  f r o m a c t u a l  t e x t s  f o r  i n s t r u c t i o n a l
o r  s i m i l a r  p u r p o s e s .  Th e  p r o b l e m i s  o f t e n - n o t  s o  muc h t h a t  o f  s y n t a c t i c a l
a mb i g u i t i e s  ( " Y o u  wo u l d  n o t  r e c o g n i s e  l i t t l e  J ohnny  now.  He  h a s  g r o wn
ano t her  f o o t . " )  a s  t h a t  o f  u n i n t e n d e d  p o s s i b l e  i n t e r p r e t a t i o n s  ( " Ho w many
t imes  c a n  y o u  t a k e  6  away  f r o m a  m i l l i o n ?  [ . . . )  I  c a n  d o  t h i s  a s  many
t imes  a s  y o u  l i k e . " ) .  A  p r e c i s e  and  unambiguous  d e s c r i p t i o n  may  r e q u i r e
l e n g t h y  and  r e p e t i t i o u s  p h r a s e s .  Th e  more  p r e c i s e  t h e  d e s c r i p t i o n ,  t h e  mo r e
d i f fi c u l t  i t  i s  t o  u n d e r s t a n d  f o r  many ,  i f  n o t  mos t ,  p e o p l e .  A n o t h e r
drawbac k  o f  n a t u r a l  l anguages  i s  t h e  i nadequac y  o f  r e f e r e n c i n g  o r  g r o u p i n g
methods  ( t h e  l a t t e r  f o r  l a c k  o f  n o n - p a r e n t h e t i c a l  p a r e n t h e s e s ) .  T h i s  t e n d s
t o g i v e  r i s e  t o  GOTO- l i k e  i n s t r u c t i o n s .

Wi t h  t h e  a d v e n t  o f  modern  c ompu t i ng  a u t o ma t a ,  p r o g r a mmi n g  l anguages
have been i n v e n t e d  t o  c ommunic a t e  a l g o r i t h ms  t o  t h e s e  c ompu t e rs .
Programming l anguages  a r e  a l mo s t  b y  d e fi n i t i o n  p r e c i s e  a n d  unambiguous .
Nev e r t he l es s ,  t h e y  d o  n o t  p r o v i d e  a n  i d e a l  v e h i c l e  f o r  p r e s e n t i n g
a l g o r i t h ms  t o  human b e i n g s .  Th e  r e a s o n  f o r  t h i s  i s  t h a t  p rog ramming
languages  r e q u i r e  t h e  s p e c i fi c a t i o n  o f  many  d e t a i l s  wh i c h  a r e  r e l e v a n t  f o r
t he c o mp u t i n g  equ i pmen t  b u t  n o t  f o r  t h e  a l g o r i t h m  p r o p e r .  Th e  p r i m i t i v e s  o f
t he p rog ramming  l a n g u a g e  a r e  o n  a  much l o w e r  l e v e l  t h a n  t h o s e  o f  t h e
a l g o r i t h m i t s e l f .

The e v o l u t i o n  o f  h i g h - l e v e l  p rog ramming  l anguages  i s  o n e  i n  wh i c h  t h e
l e v e l  o f  t h e  a v a i l a b l e  p r i m i t i v e s  i n c r e a s e s  t o wa r d s  t h e  a b s t r a c t i o n s  t h a t
human b e i n g s  u s e  when t h i n k i n g  a b o u t  a l g o r i t h m s .  S t i l l ,  t h e  gap  i s  v e r y ,
v e ry  l a r g e .  Un f o r t u n a t e l y ,  r e c e n t  p r o g r e s s  i s  n o t  y e t  r e fl e c t e d  i n  any
ma j o r ,  g e n e r a l l y  k nown programming  l a n g u a g e .

Howev er,  h i g h - l e v e l  p rog ramming  l anguages  h a v e  had  a  d i r e c t  i n fl u e n c e
on t h e  p r e s e n t a t i o n  o f  a l g o r i t h ms  i n  t h e  l i t e r a t u r e .  Many  a n  a u t h o r  now
employs  a  k i n d  o f  p i d g i n  ALGOL t o  ex p r es s  h i m s e l f .  Th e  p i d g i n
c h a r a c t e r i s t i c s  a r e  a l l  p r e s e n t :  ( a )  t h e  l a n g u a g e  i s  p r i m a r i l y  a  c o n t a c t
language,  u s e d  be t ween pe rs ons  who d o  n o t  s peak  eac h  o t h e r ' s  l a n g u a g e ;
a l t h o u g h  eac h  " s p e a k e r "  may  hav e  h i s  own v a r i a n t ,  t h e r e  i s  mu t u a l
u n d e r s t a n d a b i l i t y ;  ( b )  t h e r e  i s  a  l i m i t e d  v o c a b u l a r y ,  a n d  t h e  s y n t a x  i s
s t r i p p e d  down t o  t h e  b a r e  n e c e s s i t i e s ,  w i t h  e l i m i n a t i o n  o f  t h e  g r a mma t i c a l
s u b t l e t i e s  t h a t  c a n  o n l y  b e  mas t e red  b y  a  r e g u l a r  u s e r ;  ( c )  t h e  l a n g u a g e  i s
n o t  f r o z e n  b u t  p e r m i t s  a d a p t a t i o n  t o  v a r i o u s  u n i v e r s e s  o f  d i s c o u r s e .  Th e
main adv ant ages  t o  t h e  a u t h o r  ( a n d  h i s  a u d i e n c e )  a r e  t h a t  t h e r e  i s  no  n e e d
f o r  a  p r e l i m i n a r y  a n d  b o r i n g  e x p o s i t i o n  o f  t h e  a l g o r i t h m i c  n o t a t i o n ,  t h a t
ma t hema t i c a l  n o t i o n s  a n d  n o t a t i o n s  may  f r e e l y  b e  emp loy ed ,  a n d  t h a t  t h e
r e s u l t i n g  d e s c r i p t i o n  i s  s u f fi c i e n t l y  p r e c i s e  t o  c onv ey  t h e  a l g o r i t h m

Th i s  p a p e r  i s  r e g i s t e r e d  a t  t h e  Ma t h e ma t i c a l  Ce n t r e  a s  I W 9 7 .
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wi t h o u t  t h e  d e l e t e r i o u s  b u r d e n  o f  i r r e l e v a n t  d e t a i l .
Th i s  p i d g i n  ALGOL i s  a  l a n g u a g e .  I t  i s  n o t  r e a l l y  a  p rog ramming ,  n o r  a

n a t u r a l  l a n g u a g e ,  b u t  i t  h a s  c h a r a c t e r i s t i c s  f r o m b o t h .  I t  i s  n o t  s t e a d y ,
but  e v o l v i n g .  Ho w i t  w i l l  e v o l v e  we  c anno t  k now.  B u t  a s  a n y  man-made t h i n g ,
i t s  e v o l u t i o n  c an  b e  i n fl u e n c e d  b y  o u r  c ons c ious  e f f o r t .  T h i s  l a n g u a g e  o n -
i t s - wa y  may  b e  dubbed A b s t r a c t ° .  ( T h e  name " A b s t r a c t o "  a r o s e  f r o m a
mis unde rs t and ing .  Th e  fi r s t  a u t h o r ,  t e a c h i n g  a  c o u r s e  i n  p rog ramming ,
remark ed t h a t  h e  wo u l d  fi r s t  p r e s e n t  a n  a l g o r i t h m  " i n  a b s t r a c t o "  ( Du t c h  f o r
" i n  t h e  a b s t r a c t " )  b e f o r e  d e v e l o p i n g  i t  i n  ALGOL 6 0 .  A t  t h e  end  o f  t h e
c las s ,  a  s t u d e n t  ex p res s ed  h i s  d e s i r e  t o  l e a r n  more  a b o u t  t h i s  A b s t r a c t °
programming l a n g u a g e . )

A b s t r a c t °  ' 7 7  i s  a  c lums y  l a n g u a g e ,  l i k e  a n y  p i d g i n .  O n l y  when a  p i d g i n
language becomes  a  mo t he r  t o n g u e ,  wh i c h  i s  n o t  p i c k e d  u p  i n  c a s u a l  c o n t a c t s
but  i s  t h e  p r i ma r y  l a n g u a g e  o n e  l e a r n s  a n d  u s e s ,  c a n  i t  bec ome t h e
v e r s a t i l e  t o o l  t h a t  a l l o ws  t h e  e x p r e s s i o n  o f  c o mp l i c a t e d  t h o u g h t s  i n  a
n a t u r a l  way .

There a r e  a t  l e a s t  t wo  r eas ons  f o r  p r o g r a mmi n g - l i n g u i s t s  t o  s t u d y
A b s t r a c t ° .  Th e  fi r s t  i s  t h a t  we  may  hope t o  s peed  u p  t h e  e v o l u t i o n  o f
A b s t r a c t ° ,  b y  p r o p o s i n g  a n d  u s i n g  s u i t a b l e  n o t a t i o n s  f o r  i mp o r t a n t
c onc ept s ,  e i t h e r  d e r i v e d  f r o m e x i s t i n g  p rog ramming  l a n g u a g e s ,  o r  n e wl y
c o ined .  ( A n  e x c e l l e n t  ex ample  a r e  D i j k s t r a ' s  g u a r d e d  c ommands . ) Th e  s ec ond
i s  t h a t  A b s t r a c t °  may  s how us  how t o  d e s i g n  b e t t e r  p rog ramming  l a n g u a g e s .

I t  i s  p o s s i b l e  t o  d r a w a  p a r a l l e l  w i t h  t h e  l a n g u a g e  o f  ma t h e ma t i c s .
Only  a  f e w c e n t u r i e s  a g o ,  t h e  s i mp l e s t  a l g e b r a i c  e q u a t i o n  c o u l d  o n l y  b e
des c r i bed  i n  a n  u n b e l i e v a b l y  c lums y  way .  T h i s  v e r y  c l u ms i n e s s  s t o o d
d i r e c t l y  i n  t h e  way  o f  ma t h e ma t i c a l  p r o g r e s s .

Tak e,  o r  ex amp le ,  Ca r d a n ' s  d e s c r i p t i o n  o f  t h e  s o l u t i o n  o f  t h e  c u b i c
equa t i on  x  +  p x  =  q ,  a s  p u b l i s h e d  i n  h i s  A r s  Magna ( 1 5 4 5 ) .  Th e  f o l l o w i n g
t r a n s l a t i o n  f r o m L a t i n  i s  a s  l i t e r a l  a s  p o s s i b l e ,  w i t h  s ome e x p l a n a t i o n s
bet ween s q u a r e  b r a c k e t s  t h a t  wo u l d  hav e  been  o b v i o u s  t o  t h e  ma t h e ma t i c a l l y
educ at ed s i x t e e n t h - c e n t u r y  r e a d e r :

RULE
B r i n g  [ Ra i s e ]  t h e  t h i r d  p a r t  o f  t h e  number  [ c o e f fi c i e n t ]  o f  t h i n g s  [ t h e
unknown]  [ i . e . ,  p ]  t o  t h e  c ube ,  t o  wh i c h  y o u  add  t h e  s q u a r e  o f  h a l f  t h e
number [ c o e f fi c i e n t ]  o f  t h e  e q u a t i o n  [ i . e . ,  q ] ,  &  t a k e  t h e  r o o t  o f  t h e
who le  [ s u m] ,  n a me l y  t h e  s q u a r e  o n e ,  a n d  t h i s  y o u  w i l l  [ mu s t ]  s o w
[ c opy ] ,  a n d  t o  o n e  [ c o p y ]  y o u  j o i n  [ a d d ]  t h e  h a l f  o f  t h e  number
[ c o e f fi c i e n t ]  w h i c h  [ h a l f ]  y o u  hav e  j u s t  b r o u g h t  i n  [ m u l t i p l i e d  by ]
i t s e l f ,  f r o m  a n o t h e r  [ c o p y ]  y o u  d i m i n i s h  [ s u b t r a c t ]  t h e  s ame h a l f ,  a n d
you w i l l  hav e  t h e  B inomium w i t h  i t s  Apot ome [ r e s p e c t i v e l y ] ,  n e x t ,  when
the c ube  r o o t  o f  t h e  Apot ome i s  t a k e n  away  [ s u b t r a c t e d ]  f r o m  t h e  c ube
r o o t  o f  i t s  B inomium,  t h e  r e ma i n d e r  t h a t  i s  l e f t  f r o m t h i s ,  i s  t h e
e s t i ma t i o n  [ d e t e r mi n e d  v a l u e ]  o f  t h e  t h i n g  [ u n k n o wn ] .

Nowadays,  t h e r e  i s  a  l a r g e  b a s i c  a r s e n a l  o f  ma t h e ma t i c a l  n o t i o n s  a n d
c o r res pond ing  n o t a t i o n s  t h a t  may  b e  f r e e l y  u s e d  w i t h o u t  f u r t h e r
e x p l a n a t i o n .  E a c h  s p e c i a l i s m has ,  i n  a d d i t i o n ,  i t s  own  n o t a t i o n s .
Nev e r t he les s ,  e a c h  a u t h o r  i s  f r e e  t o  i n t r o d u c e  new n o t a t i o n s  a s  t h e
c i rc ums t anc es  r e q u i r e .

Which n o t a t i o n s  s u r v i v e  i n  t h e  s t r u g g l e  f o r  l i f e  i s  d e t e r mi n e d  b y
s e v e r a l  f a c t o r s ,  o f  wh i c h  t h e  eas e  o f  ma n i p u l a t i n g  e x p r e s s i o n s  i s  p r o b a b l y
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t he  f o r e mo s t  o n e .  S t i l l ,  s e v e r a l  n o t a t i o n s  may  c o e x i s t ,  e a c h  w i t h  i t s  own
adv ant ages  a n d  d i s adv an t ages  ( l i k e  Ne wt o n ' s  v e r s u s  L e i b n i t z ' s  n o t a t i o n  f o r
d e r i v a t i v e s ) .  G e n e r a l l y ,  ma t h e ma t i c i a n s  d o  n o t  b o t h e r  t o o  muc h a b o u t
s y n t a c t i c a l  a mb i g u i t y  and  d o  n o t  ev en  s t o o p  down t o  i n d i c a t e  o p e r a t o r
p r i o r i t i e s ,  a s  l o n g  a s  t h e  i n t e n d e d  mean ing  i s  c onv ey ed t o  t h e  g e n t l e
r e a d e r .  ( Ho w d i f f e r e n t  f r 3 m t h a t  a d v e r s a r y ,  t h e  a u t o ma t o n ! )

The w i l d g r o wt h  o f  n o t a t ! o n s  i n  new fi e l d s  c a n ,  u n d e r  c i r c u ms t a n c e s ,  b e
e f f e c t e d  b e n e fi c i a l l y  b y  a  more  o r  l e s s  a u t h o r i t a t i v e  body  ( p o s s i b l y  o n e
p e r s o n ) .  Do n a l d  K n u t h ' s  p r o p o s a l  [ 2 ]  f o r ,  among o t h e r s ,  t h e  u s e  o f  a  Greek
l e t t e r  t h e t a  t o  d e n o t e  t h e  c l a s s  o f  f u n c t i o n s  o f  s ome o r d e r ,  c o n s t i t u t e s  a n
i n t e r v e n t i o n  f o r  l a c k  o f  a n  e s t a b l i s h e d  n o t a t i o n .  Suc h  i n t e r v e n t i o n s  a r e
not  t o  b e  c on f us ed  w i t h  s t a n d a r d i z a t i o n  e f f o r t s !  O n l y  i n  a  f r o z e n  fi e l d  i s
i t  p o s s i b l e  t o  s t a n d a r d i z e ,  o r  e l s e  we  hav e  a  c a s e  o f  d e a t h  b y  p r e ma t u r e
ex pos ure t o  f r o s t  ( h o p e f u l l y  o f  t h e  s t a n d a r d ) .

I t  i s  d i f fi c u l t  t o  c h a r a c t e r i z e  wh a t  c o n s t i t u t e s  good  n o t a t i o n a l
p r a c t i c e .  No t  o n l y  i s  " e l e g a n t "  v ague ,  b u t  wh e r e  n o t a t i o n  i s  c onc e rned ,  i t
i s  j u s t  a  s y nony m f o r  "g o o d  t o  u s e " .  Some c r i t e r i a  a r e :  c o n c i s e n e s s ,
s i m i l a r i t y  t o  n o t a t i o n s  f o r  s i m i l a r  c o n c e p t s ,  a n d  r e l a t i v e  i ndependenc e  o f
c o n t e x t .  Th e r e  a r e ,  o f  c o u r s e ,  e n o u g h  d u b i o u s  n o t a t i o n s ,  s u c h  a s  l i m  f ( x )  =
a,  wh e r e  t h e  e q u a l i t y  s i g n  has  a  s u b t l y  d i f f e r e n t  mean ing .  ( A n  e x t r e me l y
bad c as e  i n  ALGOL 6 0  i s  t h e  s w i t c h  d e c l a r a t i o n  SWITCH s  : =  1 1 ,  1 2 ,  1 3 . )

3.  I N  SEARCH OF ABSTRACTO 8 4

We e x p e c t  t h a t  t h e  i n t r o d u c t i o n  o f  b e t t e r  n o t a t i o n s  w i l l  p r o v e  a s
i mp o r t a n t  f o r  t h e  dev e lopment  o f  " a l g o r i t h m i c s " ,  a s  i t  h a s  been  -  and  s t i l l
i s  -  f o r  ma t hema t i c s .  One mus t ,  o f  c o u r s e ,  fi r s t  i d e n t i f y  t h e  c onc ep t s
b e f o r e  a  n o t a t i o n  c an  b e  d e v e l o p e d .  I t  s eems  u n l i k e l y  t h a t  p r o g r e s s  w i l l
come f r o m s e l e c t i n g  mi n d - b l o wi n g  c onc ep t s ,  i f  o n l y  bec aus e i t  i s  h a r d
enough t o  t h i n k  a b o u t  a l g o r i t h ms  w i t h o u t  h a v i n g  o n e ' s  mi n d  b l o wn .  I f  t h e
p a r a l l e l  w i t h  ma t hemat i c s  i s  n o t  d e c e p t i v e ,  t h e  i mp o r t a n t  p o i n t  i s  t h e
ma n i p u l a t i o n  o f  " a l g o r i t h m i c  e x p r e s s i o n s " .  Fr o m a  p a p e r  b y  B i r d  [ 3 ] ,
d e s c r i b i n g  a  new t e c h n i q u e  o f  p r o g r a m t r a n s f o r ma t i o n ,  we  q u o t e :  " T h e
ma n i p u l a t i o n s  d e s c r i b e d  i n  t h e  p r e s e n t  p a p e r  m i r r o r  v e r y  c l o s e l y  t h e  s t y l e
o f  d e r i v a t i o n  o f  ma t h e ma t i c a l  f o r mu l a s  [ . . . ]  A s  t h e  l e n g t h  o f  t h e
d e r i v a t i o n s  t e s t i f y ,  we  s t i l l  l a c k  a  c o n v e n i e n t  s h o r t h a n d  w i t h  wh i c h  t o
d e s c r i b e  p r o g r a ms ,  b u t  t h i s  w i l l  c ome w i t h  a  d e e p e r  u n d e r s t a n d i n g  a b o u t  t h e
r i g h t  s equenc ing  mec han is ms . "

At  fi r s t  s i g h t  i t  may  s eem a t t r a c t i v e  t o  v i e w  a n  a l g o r i t h m  as  a
( c o n s t r u c t i v e )  s o l u t i o n  s a t i s f y i n g  a  c o r r e c t n e s s  f o r mu l a

(p) x

One c a n  d e v e l o p  a  n o t a t i o n ,  l i k e  S c hwa r z ' s  g e n e r i c  command p  q  [ 4 ] ,  f o r  a
s o l u t i o n  ( o r  t h e  s e t  o f  s o l u t i o n s )  o f  t h e  c o r r e c t n e s s  f o r mu l a .  Th e r e  mus t
be s ome c o n s t r a i n t  o n  t h e  v a r i a b l e s  t h a t  may  b e  a l t e r e d  b y  t h e  a l g o r i t h m,
s i nc e  i t  i s  h a r d l y  h e l p f u l  t o  k now t h a t
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L I :  I F  NOT c o n d i t i o n  GOTO L2
p e r f o r m s omet h ing
GOT° L I

L2:

6

( c o r r es pond i ng  t o  t h e  s o l u t i o n  v  : =  e ) ,  t h e  p r o o f  r u l e

( c o r r es pond i ng  t o  p  q ;  q  r ) ,  a n d  t h e  p r o o f  r u l e

' M U M M
V

I f  v  s t ands  f o r  t h e  a l t e r a b l e  v a r i a b l e s ,  a n d  we  w r i t e  q l v  : =  e l  f o r  t h e
r e s u l t  o f  s u b s t i t u t i n g  e  f o r  v  i n  q ,  t h e n  p  =a
, q  c a n  a l r e a d y  
b e  
e x p r e s s e d  
i n

A b s t r a c t °  ' 7 7  b y

where fl
e  
d e n
o t e
s  
t
h
e  
( i n
d e
t e r
m i
n a
t e )  
s
e
l
e
c
t
i
o
n  
o
p
e
r
a
t
o
r
.

I f  o n e  i n t e r p r e t s  p  q  a t  t h e  s ame t i m e  a s  a  f o r mu l a  e x p r e s s i n g  t h e
(prov ed)  e x i s t e n c e  o f  a  s o l u t i o n ,  s ome p r o o f  r u l e s  may  b e  g i v e n .  F o r
ex ample,  we  hav e  a  p r o o f  r u l e

( c o r res pond ing  t o  I F  p l  p l  q i  0  p 2  ±  p2  =a
, q 2  F I ) .  B y  
t u r n i n g  a
d e r i v a t i o n  o f  p  q  u p s i d e  down,  a  s o l u t i o n  i s  c o n s t r u c t e d .  Un f o r t u n a t e l y ,
t h e r e  i s  n o  s u i t a b l e  r u l e  f o r  a  s o l u t i o n  o f  t h e  f o r m

does n o t  ex p r es s  t e r m i n a t i o n  and  a l l o ws  t h e  d e r i v a t i o n  o f  p  * , p  A  -
l b  f o ra r b i t r a r y  p  a n d  b . )

There a r e  s e v e r a l  o t h e r  c o u r s e s  one  may  f o l l o w  t o  s e a r c h  f o r  more
c o n s t r u c t i v e  e l e me n t s  o f  A b s t r a c t ° .  One i s  s i m i l a r  t o  t h e  way  h i g h - l e v e l
programming l a n g u a g e  e lemen t s  o r i g i n a t e :  c o n s i d e r  e x i s t i n g  ( A b s t r a c t o )
programs ,  a n d  fi n d  s i m i l a r  " c o d e  s equenc es " t h a t  a p p e a r  t o  b e  t h e
ex pres s ion  o f  t h e  s ame more  a b s t r a c t  c o n c e p t .  J u s t  l i k e
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may b e  ex pres s ed  more  c l e a r l y  b y

DO c o n d i t i o n  ±  p e r f o r m s omet h ing  OD,

one mi g h t  w i s h  t o  ex p res s

as

, ,
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a
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,
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v opt  : =  op;
FOR e  s
DO I F  o k l  ( e )

THEN I F  v  <  v o p t
THEN e o p t ,  v o p t  : =  e ,  v
FI  WHERE v  =  fl  ( e )

ELI F o k 2  ( e )
THEN I F  v  <  v o p t

THEN e o p t ,  v o p t  : =  e ,  v
FI  WHERE v  =  f 2  ( e )

Ft
OD

eopt ,  v o p t  : =  FOR e  e  s
OPT o k l  ( e )  ÷  fl  ( e )

0 o k 2  ( e )  f 2  ( e )
TPO.

7

U s Si
,
K*

( Th i s  i s  n o t  a  s e r i o u s  p r o p o s a l ,  b u t  n e i t h e r  i s  i t  a  mere  j o k e . )
I ns t ead  o f  t h i s  b o t t o m- u p  a p p r o a c h  a  more  a n a l y t i c a l  c o n s i d e r a t i o n  o f

t he human way  o f  t h i n k i n g  a b o u t  a l g o r i t h ms  may  p r o v e ,  i n  t h e  l o n g  r u n ,  mo r e
f r u i t f u l .  I n  c o n t r a s t  t o  t h e  p roc es s  o f  d e v e l o p i n g  a  p r o g r a m,  g i v e n  a n
a l g o r i t h m,  i t  appea r s  t h a t  l i t t l e  i s  k nown a b o u t  t h i s  s u b j e c t .  De s c r i p t i o n s
o f  a l g o r i t h ms  i n  n a t u r a l  l anguages  d o  n o t  p r o v i d e  muc h i n s i g h t ,  p r e s u ma b l y
because o f  t h e  p o o r  ex p res s i v enes s  f o r  a l g o r i t h m i c  n o t i o n s .  ( O n e  t endenc y ,
howev er,  i s  v e r y  n o t i c e a b l e ,  a n d  i s  may be a n  i n d i c a t i o n  t h a t  i s  wo r t h
f o l l o w i n g  u p :  wh a t  mi g h t  b e  c a l l e d  t h e  " a n d - s o - o n "  d e s c r i p t i o n s ,  a n d  t h e
" a f t e r t h o u g h t s " .  We s u r mi s e  t h a t  t h i s  r e fl e c t s  t h e  emergenc e o f  a l g o r i t h ms
as t h e  j u mp  t o  t h e  l i m i t  o f  a  s equenc e o f  a p p r o x i ma t i o n s . )

Perhaps  t h e  b e s t  a p p r o a c h  i s  t h e  f o l l o w i n g .  Suppos e a  t e x t b o o k  has  t o
be w r i t t e n  f o r  a n  adv anc ed c o u r s e  i n  a l g o r i t h m i c s .  Wh i c h  v e h i c l e  s h o u l d  b e
chosen t o  ex p r es s  t h e  a l g o r i t h ms ?  C l e a r l y ,  o n e  has  t h e  f r e e d o m t o  c o n s t r u c t
a new l a n g u a g e ,  n o t  o n l y  w i t h o u t  t h e  r e s t r a i n t  o f  e f fi c i e n c y
c o n s i d e r a t i o n s ,  b u t  w i t h o u t  a n y  c o n s i d e r a t i o n s  o f  i m p l e m e n t a b i l i t y
what s oev er .

The f o l l o w i n g  i s  a n  a t t e mp t  t o  i n d i c a t e  s ome d e s i d e r a t a  f o r  A b s t r a c t °
84.

O r t h o g o n a l i t y  i s  a  mus t .  F o r  a  l i n g u a  f r a n c a  w i t h o u t  f r o z e n  and  f o r ma l
d e s c r i p t i o n ,  e x c e p t i o n s  a r e  o u t  o f  t h e  q u e s t i o n .

A b s t r a c t °  8 4  h a s  a n  ALGOL fl a v o r ,  b u t  i s  c e r t a i n l y  n o t  c ommi t t ed  t o  t h e
c o n t r o l  s t r u c t u r e s  o r  any  o t h e r  p a r t i c u l a r  c o n s t r u c t  o f  a n y  ALGOL
what s oev er .

Wi t h  t h e  e x c e p t i o n  o f  t r u t h  v a l u e s ,  A b s t r a c t °  8 4  has  n o  p r e d e fi n e d
t y pes ,  b u t  o n l y  way s  t o  c o n s t r u c t  n e w t y pes  f r o m  " a p p l i c a t i o n  o r i e n t e d "
t y pes .  O p e r a t i o n s  o n  o b j e c t s  a r e  o u t s i d e  t h e  r e a l m  o f  A b s t r a c t °  8 4  p r o p e r ,
ex c ept  s uc h  o p e r a t i o n s  a s  hav e  a  g e n e r i c  mean ing  f o r  a  c l a s s  o f  t y p e s
c ons t ruc t ed  b y  means  p r o v i d e d  b y  A b s t r a c t °  8 4  ( c f .  Wi l k e s  [ 5 ] ) .

A l t h o u g h  t h e r e  a r e  v a r i a b l e s  f o r  o b j e c t s  o f  a n y  t y p e ,  t h e s e  v a r i a b l e s
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a re  n o t  c o n s i d e r e d  a s  new o b j e c t s .  Th e r e  a r e  n o  p o i n t e r  v a l u e s  ( e x c e p t  when
i n t r o d u c e d  f o r  a  s p e c i fi c  a p p l i c a t i o n ) .

S i m i l a r l y ,  p r o c e d u r e s  a r e  n o t  c o n s i d e r e d  a s  o b j e c t s  wh i c h  may  b e
as s igned e t c e t e r a .

Co n d i t i o n s  may  c o n t a i n  d e fi n i n g  i d e n t i fi e r s  w h i c h  a r e  a l s o  bound i n  t h e
c o n t r o l l e d  c l a u s e  s e l e c t e d  i f  t h e  c o n d i t i o n  s uc c eeds .

Due t o  o u r  n e a r - s i g h t e d n e s s ,  i t  i s  d i f fi c u l t  t o  d i s c e r n  more  t h a n  s ome
o u t l i n e s  o f  A b s t r a c t o  8 4 .  O f  s ome p r o mi n e n t  f e a t u r e s  a  g l i mp s e  may  now and
t hen b e  c a u g h t .  I t  s h o u l d  g o  w i t h o u t  s a y i n g  t h a t  a l l  ma t h e ma t i c a l  n o t a t i o n
remains  we lc ome t o  A b s t r a c t ° .

F i r s t  o f  a l l ,  i t  i s  c l e a r l y  s e t t l e d ,  e v e n  i n  t h i s  e a r l y  s t a g e ,  t h a t
A b s t r a c t °  i s  r i c h  i n  " i t e r a t o r s "  ( o p e r a t o r s  o r  o t h e r  c o n s t r u c t s  t h a t
o p e r a t e  o n  g e n e r a t o r s  i n  a n  A l p h a r d - l i k e  s e n s e ) .  F o r  ex amp le ,  o n e  may  w r i t e
a c o n d i t i o n

e E  s :  p ( e ) ,

and i f  t h i s  s uc c eeds ,  t h e n  i n  t h e  s c ope o f  t h e  s e l e c t e d  c l a u s e ,  i f  a n y ,  e
accesses  s ome e l e me n t  f r o m s  s a t i s f y i n g  t h e  p r e d i c a t e  p .  Suc h  c o n s t r u c t i o n s
may p r o v i d e  a  c l e a r  a n d  c o n c i s e  d e s c r i p t i o n  t h a t  i s  q u i t e  c l o s e  t o  t h e
a l g o r i t h m o r i g i n a l l y  c o n c e i v e d .  A l s o ,  i f  i t  i s  i m m a t e r i a l  f o r  t h e  a l g o r i t h m
i n  wh i c h  o r d e r  e l e me n t s  a r e  s e l e c t e d ,  i t  i s  i mp o r t a n t  t h a t  t h i s  b e
ex pres s ed.

The c o n t r o l  s t r u c t u r e s  o f  A b s t r a c t °  8 4  s eem t o  b e  c e n t e r e d  a r o u n d
guarded command s e t s  ( D i j k s t r a  ( 6 ] )  o f  t h e  f o r m:

C
l  
S
I  
0  
C
2  
S
2  
0  
.
.
.  
0  
C
n  
S

The b a s i c  mean ing  o f  s uc h  a  f o r m i s :  i f  a t  l e a s t  o n e  o f  t h e  C
i  h o l d s  ( w h e r et he e v a l u a t i o n  o f  a  c o n d i t i o n  i s  s uppos ed t o  h a v e  n o  s i d e  e f f e c t s ) ,  t h e n
some c o r r e s p o n d i n g  S
4  i s  
s e l e c t e d  
( b u t  
n o t  
y e
t  
e v a l u
a t e d )
.  
I
n  
t
h
e

t e r mi n o l o g y  o f  t h e  AtGOL 6 8  Re p o r t ,  a  s c ene  i s  s e l e c t e d ,  c ompos ed f r o m t h a t
S a n d  a n  e n v i r o n  whose mos t  r e c e n t  l o c a l e  may  hav e  been  added bec aus e o f
a e  d e c l a r a t i v e  f o r m o f  C i*

The mean ing  o f  I F  F t  a n d  DO . . .  OD may  now b e  d e fi n e d  e a s i l y .  I t
appears ,  h o we v e r ,  t h a t  i n  A b s t r a c t °  8 4  s e v e r a l  o t h e r  c o n t r o l  s t r u c t u r e s  may
be d e fi n e d  w i t h  t h e  g u a r d e d  commands a t  t h e i r  c o r e s ,  a s  s ugges t ed  b y  t h e
FOR O P T  . . .  TPO c o n s t r u c t  i n  t h e  p r e v i o u s  s e c t i o n .  Th e  b a s i c  s i m p l i c i t y
o f  t h e  c o n c e p t ,  i n  c o n j u n c t i o n  w i t h  i t s  i n d e t e r mi n a c y ,  s h o u l d  wa r r a n t  eas e
o f  ma n i p u l a t i o n .

Many t y p e s ,  s p e c i fi c a l l y  t h o s e  t h a t  c a n  b e  t r e a t e d  s a t i s f a c t o r i l y  b y
s o - c a l l e d  a x i o ma t i c / a l g e b r a i c  s p e c i fi c a t i o n s ,  c a n  b e  d e fi n e d  i n  t h e  way
e x e mp l i fi e d  b e l o w :

t r e e  : : =  n i l  1 a t o m ( v a l :  i t e m )  1  p a i r  ( l e f t ,  r i g h t :  t r e e ) .

(We w r i t e  " : : = "  t o  s t r e s s  t h e  s i m i l a r i t y  w i t h  BNF,  a l t h o u g h  t h i s  " s y n t a x "
o f  o b j e c t s  i s  mo r e  a b s t r a c t  t h a n  u s u a l ,  s i n c e  t h e  nodes  i n  t h e  " p a r s e  t r e e "
o f  a n  o b j e c t  a r e  l a b e l l e d ;  i n  t h e  ex amp le ,  " n i l " ,  " a t o m"  a n d  " p a i r "  a r e
node l a b e l s . )  T h i s  n o t a t i o n  i s  s i m i l a r  t o  Ro a r e ' s  n o t a t i o n  f o r  r e c u r s i v e

8



MlOaCC,I,%02,= ' ' f t n
-
4 . .
m a
m m
a m
m m
m m
m m

DO t  FI TS
p a i r  ( 0 ,  t 2 )  ÷  t  : =  t 2

OD.

5. A  POSSIBLE PI TFALL

rec o rds ,  a s  i n

complex  : : =  p a i r  ( r e ,  i m :  r e a l ) ;

( d i s j o i n t )  u n i o n s ,  a s  i n

a r i t h m e t i c a l  : : =  i  ( v a l :  i n t )  1  r  ( v a l :

PASCAL s c a l a r s ,  a s  i n

c o l o r  : : =  r e d  1 b l u e  1  g r e e n .
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F i n a l l y ,  i t  i s  eas y  t o  i n s t r u c t  a  c o mp i l e r  t o
The o n l y  d rawbac k  i s  t h e  i n e f fi c i e n c y ,  r e a s o n  why
maybe A b s t r a c t °  r a t h e r  t h a n  Co n c r e t o .

Objec t s  o f  a  t h u s  d e fi n e d  t y p e  c an  now b e  s u b j
c o n d i t i o n " ,  a s  i n

r e a l ) ;

V

dat a  s t r u c t u r e s  [ 7 ] ;  i t  c a r r i e s  n o  o t h e r  i n f o r m a t i o n  t h a n  i s  r e l e v a n t  f r o m
an a b s t r a c t  a l g o r i t h m i c  p o i n t  o f  v i e w.  Th e r e  a r e  t h r e e  n i c e  t h i n g s  a b o u t
t h i s  way  o f  d e fi n i n g  t y p e s .  I n  t h e  fi r s t  p l a c e ,  i t  i s  eas y  t o  d e r i v e  i n  a
s t r a i g h t f o r wa r d  way  " a x i o ma t i c "  s p e c i fi c a t i o n s  i n  t h e  s t y l e  o f  G u t t a g  [ 8 ] ,
bu t  t h e  n o t a t i o n  i s  much more  c ompac t .  ( F o r  t h e  abov e  ex amp le ,  we  wo u l d
o b t a i n  n i n e  l i n e s  f o r  t h e  d i s c e r n i b l e  f u n c t i o n s  a n d  e i g h t e e n  f o r  t h e
ax ioms . )  S e c o n d l y ,  t h i s  way  o f  d e fi n i n g  o f f e r s  a  u n i fi c a t i o n  o f  t h r e e
we l l - k n o wn  c onc ep t s :

hand le  s uc h  d e fi n i t i o n s .
such d e fi n i t i o n s  a r e

ec t ed t o  a  " c o n f o r m i t y

I n  t h i s  e x a mp l e ,  i f  t h e  c o n d i t i o n  s uc c eeds ,  t 2  ac c es s es  t h e  t r e e  t  r i g h t .

Unles s  we  a r e  v e r y  mi s t a k e n ,  p r o g r a m dev e lopment  b y  s uc c es s i v e  "p r o g r a m
t r a n s f o r ma t i o n s " ,  i . e . ,  a  s equenc e o f  ma n i p u l a t i o n s  o n  e x p r e s s i o n s  wh i c h
r e p r e s e n t  a l g o r i t h ms ,  h a s  a  p r o mi s i n g  f u t u r e .  Eac h  t r a n s f o r ma t i o n  r u l e  i s  a
t heorem.  To  u s ,  c ompu t e r  man iac s ,  t h e  p e r s p e c t i v e  i s  t e mp t i n g  t o  c r e a t e  a
da t a  bas e  o f  t r a n s f o r ma t i o n s  t o  b e  a p p l i e d  me c h a n i c a l l y .  S i n c e  t h e
a p p l i c a b i l i t y  o f  e a c h  t r a n s f o r ma t i o n  i s  a l s o  c hec k ed me c h a n i c a l l y ,  we  h a v e
done away  w i t h  a l l  bugs  ( e x c e p t  f o r  t h o s e  i n  t h e  o r i g i n a l ,  p u r e ,  a l g o r i t h m ,
p o s s i b l y  a  p r o b l e m s p e c i fi c a t i o n ) .  Wh a t  v i s t a !  O f  c o u r s e ,  we  mus t  i n v e n t
f o r  o u r  A b s t r a c t °  l a n g u a g e  s ome s y n t a c t i c  n o t i o n s  t o  a l l o w  e x p r e s s i o n  o f
t he a p p l i c a b i l i t y  o f  t r a n s f o r ma t i o n s .

The l a s t  s e n t e n c e  s h o u l d  make i t  c l e a r  a l r e a d y  t h a t  t h e  p u r s u i t  o f  t h i s
Ut o p i a n  c onc ep t  -  u n l e s s  o n e  c o n t e n t s  o n e s e l f  w i t h  t r i v i a l  t r a n s f o r ma t i o n s
t h a t  mi g h t  a s  w e l l  b e  a p p l i e d  d i r e c t l y  b y  a  c o mp i l e r  -  s p o i l s  t h e
s i m p l i c i t y  o f  A b s t r a c t ° .  Wors e y e t ,  t h e  c onc ep t  w h o l l y  i g n o r e s  t h e  f a c t
t h a t  i n  mat hemat i c s  f o r  none  b u t  t h e  s i mp l e s t  t heo rems  t h e  a p p l i c a b i l i t y
may b e  c hec k ed b y  " s y n t a c t i c a l "  means .  I f  c ompu t e rs  wo u l d  h a v e  d a t e d  bac k
t o  t h e  i n c e p t i o n  o f  modern  ma t h e ma t i c a l  n o t a t i o n  and  o n l y  mec han i z ab le
t r a n s f o r ma t i o n s  wo u l d  hav e  been  s t u d i e d ,  t h e  s o - c a l l e d  s p e c i a l  p r o d u c t s
wou l d ,  p r e s u ma b l y ,  s t i l l  b e  among t h e  h i g h - l i g h t s  o f  ma t h e ma t i c a l
k nowledge.

To q u o t e  o n c e  more B i r d  [ 3 ] :  " w e  d i d  n o t  s t a r t  o u t ,  a s  n o  ma t h e ma t i c i a n

l a g l a Z a U g M f g a i
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ever does, w i t h  t h e  p reconcep t ion  t h a t  such d e r iva t io n s  sh o u ld  be  d e scrib e d
wit h  a  v ie w t o  immed ia te  mechan iza t ion ;  su ch  a  v ie w would se ve re ly  l i m i t
the many ways i n  wh ich  an a lg o r i t h m can be  s i mp l i fi e d  a n d  p o l ish e d . "
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T he l a s t  o f  t h e  c r e w  n e e d s  e s p e c i a l  r e m a r k ,
T h o u g h  h e  l o o k e d  a n  i n c r e d i b l e  d u n c e :

He h a d  j u s t  o n e  i d e a - - b u t ,  t h a t  o n e  b e i n g  " S n a r k , "
T he g o o d  H e l l m a n  e n g a g e d  h i m  a t  o n c e .

T he f o l l o w i n g  p a p e r  w a s  w r i t t e n  d u r i n g  a  s t a y  a t  N e w  Y o r k  U n i v e r s i t y  i n
1 9 7 9 .  I t  i s  n o t  a  p a p e r  I  a m  p a r t i c u l a r l y  f o n d  o f ,  b u t  i t  r e p r e s e n t s  a
n e c e s s a r y  s t a g e  I  h a d  t o  g o  t h r o u g h  i n  m y  g u e s t .  A l s o ,  t h e  o b j e c t i v e s  o f
A b s t r a c t o  a r e  f o r m u l a t e d  h e r e  m o r e  c l e a r l y  ( i n  S e c t i o n s  3  a n d  4 )  t h a n  i n
t h e  fi r s t  p a p e r .

One s p e c i fi c  r e a s o n  w h y  I  d o  n o t  l i k e  t h e  p a p e r  i s  t h a t  t h e  t e c h n i c a l
p a r t  i s  f u l l  o f  b u g s .  I  h a v e  a p p e n d e d  a  l i s t  o f  e r r a t a ,  j u s t  i n  c a s e .
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P roc .  o f  t h e  1 9 7 9  A n n u a l  C o n f . ,  3 3 - 3 9 ,
ACM, D e t r o i t  ( 1 9 7 9 )

A b s t ra c t .  P rogrammi ng l anguages  a r e  n o t  a n  i d e a l
v eh i c l e  f o r  e x p re s s i n g  a l g o r i t h m s .  T h i s  p a p e rsketches  h o w  a  l a n g u a g e  A b s t r a c t °  s i g h t  b e
developed f o r  "a l g o r i t h m i c  ex pres s i ons " t h a t  may be
mani pul ated b y  t h e  r u l e s  o f  "a l g o r i t h m i c s ",  q u i t e
s i m i l a r t o  t h e  man i pu l a t i on  o f  mathemati c al  e x p re s -
s ions  i n  mathemat i c s .  Tw o  ex ampl es  a r e  g i v e n  o f
"a b s t ra c t " a l g o ri t h m i c  ex pres s i ons  t h a t  a re  n o t  e x -
ec utabl e i n  t h e  o rd i n a ry  s ens e, b u t  may b e  us ed i n
the d e r i v a t i o n  o f  p rograms .  I t  appears  t h a t  t h e  n o -
t i o n  o f  " re fi n e m e n t "  m a y  b e  re p l a c e d  b y  a  weak er
no t i on  f o r  a b s t r a c t  a l g o r i t h m i c  e x p re s s i o n s ,
c orres pondi ng a l s o  t o  a  weak er n o t i o n  o f  "weak es t
p re c o n d i t i o n ".

1. THE ABSTRACT° PROJECT

Since December 1977 I F I P  W ork i ng Group  2 . 1  h a s
been wo rk i n g  o n  t h e  i n v e s t i g a t i o n  o f  " t h e  p ro p e r -
t i e s ,  f e a s i b i l i t y  a n d  u s e f u l n e s s  o f  a  l a n g u a g e
hel pi ng t h e  s p e c i fi c a t i o n  a n d  c o n s t ru c t i o n  o f  good
a l g o ri t h m s ".  I f  t h i s  d e s c r i p t i o n  seems vague ( i t  i s
so o n  p u rp o s e ),  i t  n e v e rt h e l e s s  d e s c ri b e s  "s o m e -
t h i n g " t h a t  i s  a l mos t  t a n g i b l e  b y  i t s  c ons pi c uous
absence f ro m  th e  programmer's  t o o l  k i t .

A programmer who  i s  w r i t i n g  a  p rog ram  i s  i n
f a c t  enc od i ng a n  a l g o r i t h m  i n  a  l anguage  f o r  some
machine. T h i s  need n o t  b e  a  p i e c e  o f  ha rdware ;  i t
can b e  " t h e "  a b s t ra c t  machine f o r  FORTRAN o r  some
o the r h i g h - l e v e l  l a n g u a g e .  T h e  dev el opment o f  a n
a l g o ri t h m  d o wn  t o  t h e  mac h i ne l e v e l  t a k e s  m any
s teps , s o m e  o f  w h i c h  r e q u i r e  i n g e n u i t y ,  b u t  t h e
l a rg e r p a r t  o f  wh i c h  c ons i s ts  o f  c l e r i c a l  man i pu l a-
t i ons  a n d  book -k eep i ng .  T h i s  i s  p a r t l y  d u e  t o  t h e
(no t  a l way s  u n j u s t i fi e d )  w i s h  o f  w r i t i n g  a n  e f fi -
c i en t  p rog ram,  and  p a r t l y  t o  t h e  f a c t  t h a t  ev en t h e
h i g h e s t -l e v e l  l anguages  r e q u i r e  t h e  s p e c i fi c a t i o n
o f  d e t a i l s  t h a t  a r e  re l e v a n t  t o  t h e  mac hi nery , b u t
not t o  t h e  a l g o r i t h m  p ro p e r.

I t  w o u l d  b e  g o o d  p ra c t i c e  i f  t h e  programmer
would fi r s t  w r i t e  down t h e  a l g o r i t h m  b e f o re  s t a r t -
i ng t o  c o d e  i t  a s  a  p rog ram .  B u t  now,  i n  wh a t  way?
Some "a l g o r i t h m i c "  l anguage i s  needed.  Th e  a v a i l -
abl e l anguages ,  howev er,  a r e  programming l anguages .
(H i l l [ 5 ]  s h o ws  c o n v i n c i n g l y  h o w  u n s u i t e d  n a t u r a l
language i s  f o r  t h i s  p u rp o s e . ) S o  we a r e  bac k  we re
we s t a r t e d :  t o  w r i t e  a n  a l g o ri t h m  i n  a  programming
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language i s  t o  w r i t e  a  p rogram.
In  a  n u t s h e l l ,  t h e  a i m  o f  t h e  A b s t ra c t °  p ro j e c t

i s  t o  fi l l  t h e  gap b y  des i gn i ng  a  l anguage s p e c i fi -
c a l l y  f o r  t h e  purpos e o f  d e s c ri b i n g  a l g o ri t h m s .  The
language s hou l d  be  a  s u i t a b l e  v e h i c l e  f o r  a p p l y i n g
es tabl i s hed p rog ram m i ng  t e c h n i q u e s ,  a n d  t h e r e b y
also f o r  teac h i ng  s u c h  te c h n i q u e s ,  w i t h o u t  d a n g e r
o f  hav i ng t o  e x p l a i n  i deos y nc rac i es .

The A b s t ra c t °  p r o j e c t  i s  s t i l l  i n  i t s  e a r l y
phase. Th e re  i s  n o t  ev en  a n  app rox i m a t i on  o f  c o n -
sensus abou t  t h e  bas i c s  o f  A b s t ra c t ° .  I n  t h i s  paper
some i d e a s  a r e  p re s e n t e d ;  i t  s h o u l d  b e  s t re s s e d
tha t  thes e  re p re s e n t  s o l e l y  my p o s i t i o n  and may n o t
be ta k e n  f o r  op i n i ons  o f  WG 2 . 1 .  A l t h o u g h  some l o g -
i c a l  f o rm a l i s m  i s  u s e d  i n  t h i s  p a p e r ,  t h e  re a d e r
should b e  warned  t h a t  t h i s  i s  o n l y  d o n e  f o r  t h e
purpose o f  c onv ey ing a  meani ng; n o t h i n g  i s  a l l e g e d
to b e  "p ro v e d " h e re .

2. ABSTRACT° AS A  PIDGIN

When peop l e  who d o  n o t  s peak  a  common l anguage
es tab l i s h  a  r e g u l a r  c o n t a c t  a n d  w a n t  t o  c ommuni -
c ate, a n  i n t e r e s t i n g  phenomenon h a p p e n s :  t h e y
develop a  "p i d g i n "  l anguage ,  c l ums y  b u t  e f f e c t i v e .
A s i m i l a r  phenomenon h a s  happened i n  Computer S c i -
ence l i t e r a t u r e :  a  k i n d  o f  p i d g i n  A LGOL h a s
developed t h e r e ,  f r o m  t h e  n e e d  o f  a u t h o rs  t o  a d -
dress a  b ro a d  aud i enc e  w i t h o u t  h a v i n g  t o  e x p l a i n
over a n d  o v e r  t h e  m ean i ng  o f  a l l  n o t a t i o n s  e m -
ployed. T h i s  p i d g i n  ALGOL i s  a  l anguage ,  a l t h o u g h
i t  i s  n o t  f ro z e n ,  l e t  a l o n e  f o rm a l i z e d .  I n  f a c t ,  i t
has s o m e  o f  t h e  c h a r a c t e r i s t i c s  f r o m  n a t u r a l
languages .

A m a j o r s i m i l a r i t y  i s  t h e  p ro p e r t y  t h a t  t h i s
language i s  g ra d u a l l y  e v o l v i n g ,  t o  meet  t h e  needs
i n c ommuni c ati ng a l g o r i t h m s .  On e  may  ( a n d  I  d o )
take t h e  p o s i t i o n ,  t h u s  m i t i g a t i n g  t h e  gri mnes s  o f
the s i t u a t i o n  s k e t c h e d  i n  t h e  p re v i o u s  s e c t i o n ,
tha t  p i d g i n  ALGOL c o v e rs  t o  some e x t e n t  t h e  n e e d
f o r a n  a l g o ri t h m i c  l anguage .  Moreov er,  t h e  " n a t u r -
a l " c o u rs e  o f  e v o l u t i o n  w i l l  b e  t o  t u n e  t h e
language t o  t h e  requ i rements  o f  dev el opi ng p rog ram -
ming methodol ogy . Howev er,  w e  a r e  s t i l l  f a r  away
from wha t  c ou l d  b e  ac hi ev ed ev en  today .  A s  l o n g  a s
we a re  f a c e d  w i t h  t h e  s i t u a t i o n  t h a t  t h e  l anguage
has t o  b e  m as te red  b y  p i c k i n g  i t  u p  f r o m  c as ua l
c ontac ts , i t  w i l l  o f  n e c e s s i t y  d ra g  a l o n g  t r a i l s
tha t  hav e been beaten y ea rs  b e f o re .

Viewed i n  t h i s  p e rs p e c t i v e ,  t h e  A b s t ra c t °  e f -
f o r t  i s  aimed a t  s peedi ng u p  e v o l u t i o n  by  propos i ng
and u s i n g  s u i t a b l e  n o t a t i o n s  f o r  i m p o r t a n t  a l g o -
ri thm i c  c onc ep ts .  O f  c o u rs e ,  i t  w i l l  b e  p o s s i b l e
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(and m a y b e  d e s i r a b l e )  t o  t a k e  a  s n a p s h o t  o f
A bs t rac t °  a t  r e g u l a r  i n t e r v a l s ,  t o  c l e a n  u p  t h e
p i c t u re  a n d  t o  p re s e n t  i t  a s ,  s a y ,  A b s t ra c t o  8 4 .
But t h i s  w i l l  n o t  s t o p  A b s t ra c t °  f ro m  ev o l v i ng  o n .

The obv i ous  adv antage o f  f re e z i n g  a n  A b s t ra c t °
X i s  t h e  p o s s i b i l i t y  o f  r e f e r r i n g  t o  a  "s t a n d a rd '
when p u b l i s h i n g  a n  a l g o r i t h m .  M o re o v e r,  w h e n  a
language i s  f o rm a l i z e d ,  i t  a l s o  becomes pos s i b l e  t o
fo rma l i z e  p ro o f  ru l e s  and  t o  p ro v e  . t h e i r c ons i s ten -
cy a n d  c ompl e tenes s .  Th e s e  a r e  n o t ,  howev e r,  t h e
main re a s o n s  why  I  f e e l  t h e  e f f o r t  o f  f re e z i n g  a
v ers i on  o f  A bs t rac to  a t  s ome f u t u re  t i m e  may p ro v e
worth  t h e  t ro u b l e .  I t  seems  much more i m p o rt a n t  t o
me t h a t  t h i s  f o r c e s  o n e  t o  c l a r i f y  i s s u e s  t h a t
s t i l l  a p p e a r  m u rk y ,  t h e r e b y  deepeni ng t h e  u n d e r -
s tandi ng o f  what  i s  go i ng  o n .  A l s o ,  i t  may s how us
how t o  des i gn  b e t t e r  programming l anguages .

3, ABSTRACT° AND TRANSFORMATIONAL PROGRAMMING

Unl i k e many f a d s  i n  Computer Sc i enc e, t h e  r e l a -
t i v e l y  re c e n t  t e c h n i q u e  o f  "t ra n s f o rm a t i o n a l  p r o -
gramming" appears  t o  b e  q u i t e  p rom i s i ng .  One s hou l d
o f  c o u rs e  n o t  make t h e  m i s tak e  t o  e x p e c t  t h a t  i t
opens u p  a  ro y a l  r o a d  t o  p ro g ra m  c o n s t ru c t i o n ;  n o
technique e v e r  u d l l .  B u t  t h e  b a s i c  i d e a  i s  q u i t e
s imple a n d  s o u n d ,  i t s  v a l u e  h a s  b e e n  demons trated
on d i v e rs e ,  s ometi mes  e v e n  n o t  t r i v i a l ,  ex ampl es ,
and i t  p ro v i d e s  a  f ram ework  f o r  ex p res s i ng  a n  e x -
panding body  o f  k nowl edge about  programming and f o r
dev eloping new programmi ng tec hn i ques  ( o r  a p p l y i n g
"o l d " programmi ng tec hn i ques  k nown u n d e r t h e  c o l -
l e c t i v e  t i t l e  o f  S t r u c t u r e d  P ro g ra m m i n g ).  I n
essence, t h e  method o f  t ra n s f o rm a t i o n a l  programming
c ons i s ts  o f  ( a )  w r i t i n g  a n  a l g o r i t h m ,  a s  p u re  and
s imple a s  p o s s i b l e ,  t o  m e e t  a  g i v e n  s p e c i fi c a t i o n
as t o  c o r re c t n e s s ,  a n d  ( b )  n e x t  s u c c e s s i v e l y
t rans fo rm i ng  t h e  a l g o r i t h m ,  b y  r e l a t i v e l y  s i m p l e
c orrec tnes s -p res erv i ng  t r a n s f o rm a t i o n s ,  t o  m e e t
o ther re q u i re m e n ts ,  s uc h  a s  thos e s temming f ro m  e f -
fi c i enc y  c o n s i d e ra t i o n s .

Trans format i ons  m a y  b e  g l o b a l ,  re p l a c i n g  t h e
whole p rog ram  under dev el opment b y  a  new t e x t ,  b u t
the t y p i c a l  t ra n s f o rm a t i o n  i s  l o c a l ,  e f f e c t i n g  o n l y
a s m a l l  p a r t .  I d e a l l y ,  t h e  a l g o r i t h m  a t  t h e  t o p
should b e  i d e n t i c a l  w i t h  t h e  c o rrec tnes s  s p e c i fi c a -
t i o n ,  b u t  we  do  n o t  k now i n  g e n e ra l  how t o  g o  down
from t h a t  l e v e l  b y  s ometh i ng  i n  t h e  s p i r i t  o f  a
t rans fo rm a t i on .

Wel l -known t ra n s f o rm a t i o n s  a re  s tepwi s e r e fi n e -
ment a n d  re c u rs i o n  re m o v a l .  I t  m a y  w e l l  h a p p e n ,
however, t h a t  a t  s ome s t a g e  o f  dev el opment r e c u r -
s ion i n t ro d u c t i o n  ( B i r d [ 2 ] )  i s  i n  o rd e r  t o  p re p a re
f o r  a  more adv antageous  s t e p .

The n a t u re  o f  t ra n s f o rm a t i o n a l  programmi ng i s
qu i te  a p t l y  d e s c ri b e d  b y  B i r d :  "Th e  m an i pu l a t i ons
[ . . . I  m i r r o r  v e r y  c l o s e l y  t h e  s t y l e  o f  d e r i v a t i o n
o f  mathemat i c a l  f o rm u l a s ".  Me a l s o  remark s :  "A s  t h e
l eng th  o f  t h e  d e r i v a t i o n s  t e s t i f y ,  we s t i l l  l a c k  a
c onv enient s h o rt h a n d  w i t h  w h i c h  t o  d e s c r i b e  p r o -
grams ".

I t  i s  h e re  t h a t  A b s t ra c t °  s hou l d  s t e p  i n .  I t  i s
i mportan t  t o  r e a l i z e  t h a t  t h e  o b j e c t s  o n e  m an i pu -
l a tes  upon  a r e  n o t  t h e  a l g o r i t h m s  thems el v es ,  b u t
are ex pres s i ons :  a l g o r i t h m i c  ex pres s i ons .  I n  f a c t ,
f o r  m o s t  s t e p s  i t  i s  i m pos s i b l e  t o  m a i n t a i n  t h a t
there  oc c u rs  a  c hange i n  t h e  a l g o r i t h m  (un l es s  o n e
refus es  t o  a d m i t  t h e  e x i s t e n c e  o f  " t h e "  E uc l i dean
a l go ri t hm ,  o r  " t h e "  s i e v e  o f  E ra t o s t h e n e s ).  F o r
these a l g o r i t h m i c  e x p re s s i o n s ,  w e  n e e d  n o t a t i o n s .
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None o f  t h e  e x i s t i n g  programming l anguages  has  been
des igned w i t h  a  des i gn  o b j e c t i v e  as  eas e o f  man i pu-
l a t i o n .  O n  t h e  c o n t r a r y ;  i f  o n e  w o u l d  n o t  k n o w
b e t t e r ,  o n e  wou l d  i n  many c as es  b e  tempted  t o  b e -
l i ev e  t h e y  were  des i gned on  purpos e t o  b e  t r a n s f o r -
mation re s i s t e n t :  t h e  s emant i c  p e c u l i a r i t i e s  o f t e n
make i t  d e v i l i s h l y  h a rd  t o  v e r i f y  t h a t  a  p a r t i c u l a r
s tep i s  a p p l i c a b l e .  M o reov e r,  t h e  v e rb o s i t y  o f  e x -
i s t i n g  n o t a t i o n s  makes i t  agg rav a t i ng  t o  w r i t e  down
the d e r i v a t i o n s  and makes i t  h a rd  t o  k eep  t ra c k  o f
what i s  happen i ng .  I t  i s  t o  b e  ex pec ted  t h a t  t h e
i n t ro d u c t i o n  o f  b e t t e r  n o t a t i o n s  w i l l  p ro v e  as  i m -
p o rt a n t  f o r  t h e  dev elopment o f  "a l g o r i t h m i c s " a s  i t
has been f o r  mathemati c s .

4. DESIGNING ABSTRACT° 8 4

To mak e A b s t ra c t °  c a t c h  u p  w i t h  t h e  s t a t e  o f
the a r t ,  i t  seems wi s e t o  g o  t h ro u g h  t h e  mot i ons  o f
des i gni ng a  l anguage f ro m  s c ra t c h .  One s hou l d  hav e
the f reedom  o f  i g n o r i n g  es tab l i s hed  b u t  cumbersome
no ta t i ons  and c onv ent i ons .

There i s ,  howev er,  a  much more i m p o rt a n t  degree
of  f reedom  t h a t  s h o u l d  b e  e x p l o re d  a n d  e x p l o i t e d :
un l i k e  a n y  programming l ang uag e ,  A b s t ra c t o  i s  e x -
empt f r o m  t h e  re q u i re m e n t  t h a t  i t s  t e x t s  s hou l d  b e
unders tandabl e t o  a n  automaton,  l e t  a l o n e  t h a t  i t
should b e  pos s i b l e  t o  c oerc e  i t  t o  ex ec ute t h e  p r o -
cess d e s c r i b e d  b y  a n  a l g o r i t h m i c  e x p re s s i o n  f r o m
A bs trac to m e re l y  b y  p ro c e e d i n g  t o  f e e d  i t  t h e
source t e x t .  R a t h e r  t h a n  t r y i n g  t o  e x t e n d  t h e
machine t o  h i g h e r l e v e l s  o f  a b s t ra c t i o n  by  e re c t i n g
s c af fo l ds  f r o m  t h e  h a rd wa re ,  w e  c an  s t a r t  i n  t h e
blue s k y  a n d  g o  down f r o m  t h e r e .  I t  i s  n i c e ,  o f
c ours e, i f  we  c an  re a c h  s o l i d  g ro u n d ,  b u t  t h i s  i s
no t  a  p re re q u i s i t e .

Nev erthel es s , i t  s h o u l d  b e  p o s s i b l e  t o  w r i t e
more o r  l e s s  c onv en t i ona l  programs  i n  A b s t ra c t °  a l -
so. T h i s  means t h a t  a  p i e c e  o f  p rogram l i k e

z :=1 ;  x : = 2  ;  z : = z . x

i s  fi n e .  T h i s  l e a d s  t o  t h e  q u e s t i o n  o f  t y p e s  a n d
data s t ru c t u re s  i n  A b s t ra c t °  84 .

I t  i s  d e s i ra b l e  t h a t  t h e  programmer c an us e o b -
j ec ts  o f  any  t y p e  c onc e i v ab l e .  Ra t h e r t h a n  c re a t i n g
some heav y  mechanism f o r  add i ng u s e r-d e fi n e d  t y p e s
to  t h e  l anguage,  i t  i s  f a r  e a s i e r t o  a l l o w  t h e  d e -
fi n i t i o n  o f  a n y  new t y p e ,  i n c l u d i n g  t h e  s emant i c s
o f  t h e  o p e ra t i o n s  c h a ra c t e r i z i n g  t h e  t y p e ,  a s  p r e -
l i m i n a ri e s  t o  t h e  a l g o ri t h m .  I f  t h e  t y p e  under c o n -
s i d e ra t i o n  i s  w e l l  e s t a b l i s h e d  ( e . g . ,  i n t e g e r s ) ,
the re  w i l l  o f t e n  b e  n o  need t o  e x p l a i n  be fo rehand
the v a ri o u s  o p e ra t i o n s  us ed.  S o A b s t ra c t °  8 4  has  no
predefi ned t y p e s  ( w i t h  t h e  e x c e p t i o n  o f  t r u t h
v al ues , a n d  maybe o t h e r  t y p e s  l i n k e d  u p  w i t h  c o n -
t r o l  s t r u c t u r e s ) .  Op e ra t i o n s  o n  o b j e c t s  f a l l  o u t -
s ide t h e  re a l m  o f  A b s t ra c t °  8 4  p ro p e r .  A p a r t  f ro m
these "a p p l i c a t i o n  o r i e n t e d " t y p e s ,  t h e re  a re  t y pes
c ons truc ted f r o m  e x i s t i n g  t y p e s  ( e . g . ,  s e t s ) .
A bs t rac t °  8 4  may  s ugges t  s ome u n i fi c a t i o n  i n  t h e
no ta t i ons  f o r  some c l as s es  o f  s uc h t y p e s ;  t h e  q u e s -
t i o n  wh e th e r t h i s  "b e l o n g s " t o  A b s t ra c t °  8 4  o r  n o t
i s  n o t  p a r t i c u l a r l y  re l e v a n t .

As a  c ons equenc e,  a l l  o f  e s t a b l i s h e d  m a t h e -
mati c al  n o t a t i o n  i s  welcome i n  an  A b s t ra c t °  8 4  p r o -
gram. Th e  s y n t a x  o f  A b s t ra c t °  8 4  w i l l  n o t  a t t e m p t
to  d e fi n e  wh a t  may appear o n  t h e  r i g h t -h a n d  s i d e  o f
an as s i gnm en t .  Remember t h a t  t h i s  i s  a c c e p ta b l e ,
s ince A b s t ra c t °  8 4  t e x t s  a re  n o t  re q u i re d  t o  b e  i n -
t e rp re t a b l e  by  mac hi ne.
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The same l i b e r a l  a t t i t u d e  c an  b e  ta k e n  f o r  t h e
whole o f  A bs t rac to  84 .  Th e  ru l e  wou l d  be :  any  n o t a -
t i on  o r  c onv en t i on  t h a t  i s  s u f fi c i e n t l y  c l e a r  may
be u s e d ,  p ro v i d e d  t h a t  i t s  meani ng, i f  n o t  s e l f -
ev i den t ,  i s  ex p l a i ned i n  t h e  p re l i m i n a r i e s .  The  e f -
f o r t  i n  des i gn i ng  A b s t ra c t °  8 4  s houl d g o  i n  e s t a b -
l i s h i n g  wh i c h  new,  o r  n o t  y e t  commonly  ac c ep ted ,
no ta t i ons  a re  s u f fi c i e n t l y  i m p o rt a n t  t o  exempt them
from t h e  requ i remen t  o f  p re l i m i n a ry  ex p l ana t i on  f o r
use i n  A b s t ra c t o  8 4  ex p res s i ons .  When des i gn i ng  a
language (e s p e c i a l l y  b y  c o m m i t t e e ) i t  i s  o f t e n
qu i te  h a rd  t o  k eep t h e  l anguage f ro m  bei ng c l ogged
by a  m u l t i t u d e  o f  t h i n g s ,  f o r  none o f  wh i c h  i n d i v i -
dua l l y  t h e re  i s  a  p a r t i c u l a r l y  c ompel l i ng reas on t o
ban i t .  Thus ,  t h e  l i b e r a l  r u l e  may s av e many t e a rs :
c heri s hed n o t a t i o n s  may b e  us ed anyway , e v e n  i f  n o
p a r t  o f  A b s t ra c t °  8 4  p r o p e r .  I n  f a c t ,  i t  i s  m y
fee l i ng  t h a t  t h i s  ru l e  i s  e s s e n t i a l  f o r  t h e  v i a b i l -
i t y  o f  t h e  p ro j e c t .  J u s t  c ons i de r what  woul d happen
to  a  l anguage  Mathemati c °  8 4  f o r  mathemat i c a l  e x -
pres s i ons  t h a t  t o o k  a  r i g i d  a n d  ex c l us i v e a t t i t u d e
as t o  w h a t  was  a l l o we d :  t h e  i n e v i t a b l e  ex pres s i v e
shortcomings  woul d be  as  many reas ons  t o  s hun i t .

In  t h e  s e q u e l ,  "A b s t ra c t o  8 4 "  w i l l  r e f e r  t o
A bs t rac t °  8 4  p ro p e r ,  t h e  c o r e  o f  a n  e x t e n s i b l e
language -  wh e re  t h e  e x te n s i o n  mechanism i s  n o t
p a rt  o f  t h e  l anguage .  A n  "a l g o r i t h m i c  e x p re s s i o n "
(o r ,  f o r  s h o r t ,  "e x p re s s i o n ")  i s  a  p i e c e  o f  t e x t
w r i t t e n  i n  t h e ,  p o s s i b l y  ex tended, l anguage.  I t  may
be h e l p f u l  t o  t h i n k  o f  ex pres s i ons  as  "s ta te m e n ts ",
s ince t h e y  des c ri be  a  proc es s  t o  be  ex ec uted. Some-
thi ng l i k e  " z . x " ,  c o n v e n t i o n a l l y  c a l l e d  a n  e x p re s -
s i on, w i l l  be  c a l l e d  a  " u n i t "  i n  t h e  s equel  o f  t h i s
paper.

I t  i s  w e l l  k nown t h a t  many mathemat i c a l  n o t a -
t i ons  a r e  p o t e n t i a l l y  ambiguous . I n  p ra c t i c e ,  t h i s
i s  n o t  h a rm f u l :  i f  a  g i v e n  mathemati c al  ex pres s i on
turns  o u t  ambiguous , parenthes es  w i l l  d o .  A mbi gu i ty
here d o e s  n o t  mean t h a t  t h e r e  i s  more  t h a n  o n e
pars e, b u t  t h a t  t h e re  e x i s t  t w o  o r  more p l a u s i b l e
parses  w i t h  d i f f e r e n t  m e a n i n g s .  S i m i l a r l y ,  o n e
should n o t  wo rry  t o o  much a b o u t  p o t e n t i a l  a m b i g u i -
t i e s  f o r  a l g o r i t h m i c  ex pres s i ons .  I f  p r i o r i t y  c o n -
v ent i ons  a re  es tab l i s hed ,  t h e i r  purpos e i s  t o  s av e
the w r i t i n g  o f  parenthes es ,  n o t  t o  compel  i n s e r t i o n

where t h e  i n tended  meaning i s  a l re a d y  c l e a r  enough.
So t h e  s y n t a x  o f  A b s t ra c t o  8 4  i s  a b s t ra c t  r a t h e r
than c o n c re t e .

I f  S i  and S2 a re  ex pres s i ons ,  t h a n  s o  i s  S1;S2.
Expressed i n  o p e ra t i o n a l  s emant i c s ,  t h e  meaning i s
s equent i a l  e x e c u t i o n .  B y  t h e  a b o v e  r u l e ,  s i n c e
(S I ; S D ; 5 3  i s  c l e a r l y  e q u i v a l e n t  t o  S I ; (S 2 ; S 3 ),  we
may w r i t e  S 1 ; S 2 ; S 3 ,  a n d  s o  o n .  O t h e r  c o n t r o l
mechanisms i n  A bs t rac to  84  a re  g i v e n  by  t h e  guarded
command c o n s t ru c t s  o f  D i j k s t ra l 4 ) .  Howev er, f o r  t h e
ease o f  m a n i p u l a t i o n ,  we  w r i t e  " . . . "  a n d  " * ( . . . ) "
ra t h e r t h a n  " I F  . . .  F I "  and "DO . . .  OD".  S o  we hav e

b i -+S i  a . . .  U  b
fl
- + S
n
,

meaning ( o p e r a t i o n a l l y )  t h a t  s ome i  i s  s e l e c t e d
such t h a t  t h e  g u a rd  b i  h o l d s ,  whereupon S i  i s  e x e -
c uted. I f  n o  s uc h  i  e x i s t s ,  t h e  meani ng i s  u n d e -
fi ned ( t h e  same a s  t h a t  o f  a n  i n fi n i t e  l o o p ) .  Th e
meaning o f  t h e  l o o p  ex pres s i on

* (b -+S )

i s  t h e  same as  t h a t  o f

b - +  S ; * (b -0 S ) 0 - ,
b  - +  
s k i p .
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Al though i t  i s  e n v i s a g e d  t h a t  m o re  c o n t r o l
s t ruc tu res  m ay  b e  needed  i n  A b s t ra c t °  8 4 ,  i t  i s
he l p fu l  i f  t h e i r  meani ng i s  d e fi n e d  i n  t e rm s  o f
s i mpl er ex p res s i ons ,  s o  t h a t  a n  e x i s t i n g  b o d y  o f
t rans fo rmat i ons  bec omes  a u t o m a t i c a l l y  a v a i l a b l e .
For e x p re s s i n g  c o n c u rre n c y  ( p a r a l l e l  e x e c u t i o n ) ,
however, t h i s  i s  i mpos s i b l e  w i t h  t h e  c onc epts  g i v e n
so f a r .  A  p o s s i b l e  n o t a t i o n  i s  n o t  h a rd  t o  d e v i s e ;
the p ro b l e m  i s  t o  s e l e c t  a  p ro p e r  s y n c h ro n i z a t i o n
mechanism.

A b a s i c  t y p e  o f  a l g o r i t h m i c  ex p res s i on  i s  t h e
ass ignment e x p re s s i o n .  F o l l o w i n g  D i j k s t r a  a g a i n ,
A bs trac to 8 4  a l l ows  p a r a l l e l  as s i gnment ex pres s i ons
such a s

x ,Y : =  -
Y , x .

Thi s  i s  q u i t e  n a t u ra l ,  s i n c e  t h e  as s i gnment e x p re s -
s ion m i g h t  r e s u l t  f r o m  t ra n s f o rm i n g  a n  as s i gnment
express ion

z :  i z

us ing z  =  x  +  i y .

5. ABSTRACT ALGORITHMIC EXPRESSIONS AND REFINEMENT

So f a r  we hav e s een n o t h i n g  e x c i t i n g .  I f  i t  i s
c laimed t h a t  A b s t ra c t °  8 4  i s  o f  a  h i g h e r l e v e l  t h a n
SETL, s a y ,  t h i s  i s  n o t  bec aus e i t  u s u rp s  b y  e x t e n -
s ion t h e  n o t a t i o n s  o f  S E M .  Th e  re a s o n  i s ,  r a t h e r ,
tha t  ex pres s i ons  i n  A b s t ra c t °  8 4  need n o t  b e  e x e -
c utabl e i n  t h e  us ua l  s ens e.

Let u s  c o n s i d e r f o r  a  moment w h a t  w e  mean b y
"ex ec u tab l e ".  I t  i s  t h e  p ro p e r t y  o f  a n  ex p res s i on
that  makes  i t  p o s s i b l e  t o  h a v e  i t  e x e c u t e d  b y  a
computer. Now, i f  we hav e a  mathemat i c a l  ex pres s i on
l i k e  "2 1 / 7 " ,  we  k now t h a t  i t s  meaning i s :  a  number
x s u c h  t h a t  7 x  =  2 1 .  S o  w e  c a n  v i e w  " 2 1 / 7 "  a s  a
conc ise prob l em s p e c i fi c a t i o n :  fi n d  a  number x  s uc h
that  7 x  =  2 1 .  Th e re  e x i s t s  a  we l l -k nown  a l g o r i t h m
to s o l v e  t h i s  t y p e  o f  p rob l em.  I n  many c omputers  i t
Is  implemented i n  t h e  ha rdware .  H i g h - l e v e l  p ro g ra m -
ming l anguages  a l l o w  f o r  n o t a t i o n s  t o  i n v o k e  t h a t
a l go ri thm.  Th e  u s u a l  n o t a t i o n  f o r  t h a t  i s  "
2 1
/
2
" .

Thi s  i s  a  c onc i s e  s p e c i fi c a t i o n  f o r  t h e  s o l u t i o n  t o
the abov e p rob l em:  d i v i d e  21  b y  7 ;  t h e  r e s u l t  w i l l
be t h e  re q u i re d  number.  Ob v i o u s l y ,  i t  i s  a  m a t t e r
o f  v i e wp o i n t  whe ther " 2 1 / 7 "  s p e c i fi e s  a  p rob l em o r
a s o l u t i o n .  We hav e a l mos t  f o rg o t t e n  t h a t  i t  may be
cons idered a s  a  p rob l em ,  a l t h o u g h  a t  s ome t i m e  i n
our l i v e s  we hav e  c e r t a i n l y  done  s o .  I n  g e n e ra l ,  a
problem s p e c i fi c a t i o n  f o r  a  p rob l em t h a t  f a l l s  i n  a
c lass  where  t h e r e  e x i s t  k nown a l g o r i t h m s  t o  s o l v e
the p ro b l e m ,  may  b e  c ons i de red  s i m u l taneous l y  as  a
s o l u t i on  s p e c i fi c a t i o n .  I n  m a th e m a t i c a l  p ra c t i s e ,
the d i s t i n c t i o n  between t h e  t w o  i s  v e r y  v ague ,  a
matter o f  t a s t e .  Th i s  v aguenes s  i s  i n  f a c t  b e n e fi -
c i a l .

S i m i l a rl y ,  w e  n e e d  t h e  s a m e  v a g u e n e s s  i n
A bs t rac t°  84 .  I t  may happen t h a t  a  g i v e n  ex pres s i on
looks s o  s u s p i c i o u s l y  l i k e  a  p rog ram  t h a t  w e  may
s uc c es s ful l y  f e e d  i t  t o  a  c o m p i l e r and hav e i t  ru n .
Now c o n s i d e r t h e  s u b s e t  E A  (E x ec u tab l e  A b s t ra c t o )
of ex pres s i ons  f o r  wh i c h  t h i s  work s .  I t  i s  c l a i med
tha t  EA i s  a  fuz z y  s e t .  A s  t i m e  proc eeds ,  m ore  and
more a l g o ri t h m s  may  b e  i n c o rp o ra t e d  i n  t h e  s eman-
t i c s  o f  programmi ng l anguages  t o  c o v e r  p a r t s  o f
A bs t rac t°  t h a t  w e re ,  u n t i l  t h e n ,  deemed "u n e x e c u t -
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a b l e ".  B y  t h a t  a c t ,  E A  grows .  Th u s ,  t h e  ex pe ri enc e
gained b y  us i ng  A b s t ra c t °  may  s e rv e  a s  a  g u i d e l i n e
f o r  t h e  dev el opment o f  programming l anguages .

A bs t rac to  8 4  s hou l d  p ro v i d e  ex pres s i v e  c a p a b i l -
i t i e s  f o r  a  b r o a d  r a n g e ,  c o v e r i n g  v e r y  c l e a r l y
Problem s p e c i fi c a t i o n s  o n  one end ,  and  v e ry  c l e a r l y
s o l u t i o n  s p e c i fi c a t i o n s  o n  t h e  o t h e r .  The  n o t i o n  o f
"a l g o ri t h m i c  e x p re s s i o n "  enc ompas s es  t h e  w h o l e
range. B y  app l y i ng  t h e  a r t s  and tec hni ques  o f  A l g o -
ri t h m i c s ,  t h e s e  ex pres s i ons  may be  mani pu l a ted.  ( T o
my t a s t e  t h e  t e r m  "a l g o r i t h m i c s ",  b y  a n a l o g y  t o
"mathemat i c s ",  i s  f a r  b e t t e r  t h a n  t h e  u s u a l
"Trans fo rm a t i ona l  P rog ram m i ng".  A f t e r  a l l ,  m a t h e -
mati c s  i s  more t h a n  "Tra n s f o rm a t i o n a l  A r i t h m e t i c " ,
even t h o u g h  much mathemat i c a l  e f f o r t  i s  a i med a t
ev a l ua t i ng  e x p re s s i o n s ).  Th e  fi e l d  o f  a l g o ri t h m i c s
i s  s t i l l  u n d e rd e v e l o p e d ,  o f  c o u rs e ;  m a them a t i c s
c oul d o n l y  t a k e  i t s  fl i g h t  wh e n  s u i t a b l e  n o t a t i o n s
came t o  b e  dev el oped.

I t  m ay  p ro v e  t h a t  t h e  mos t  i m p o r t a n t  p a r t  o f
A bs t rac t °  8 4  i s  t h e  i n -b e t we e n  ra n g e :  n o  l o n g e r
c l e a rl y  a  p rob l em,  b u t  n o t  y e t  c l e a r l y  a  s o l u t i o n .
Thi s  i s  t h e  p a r t  where  n o t a t i o n s  a re  mos t l a c k i n g .

Even t h o u g h  t h e  n o t i o n  o f  "e x e c u t a b i l i t y "  i s
fuz z y , i t  i s  u s e f u l  t o  hav e some te rm i no l ogy  t o  i n -
d i c a te  t h e  c o n c e p t .  S i n c e  I  p r e f e r  a  more  n e u t ra l
te rm i no l ogy ,  I  p ropos e t o  c a l l  a n  ex pres s i on "c o n -
c re t e " i f  i t  i s  f r e e  o f  "u n e x e c u t a b l e " n o t a t i o n s ,
and "a b s t r a c t "  o t h e rw i s e .  Th e  t a s k  o f  a  programmer
i s  t o  d e r i v e  c o n c re t e  e x p re s s i o n s  f r o m  a b s t r a c t
ones.

I t  s h o u l d  be  s t re s s e d  t h a t  "a b s t ra c t "  does  n o t
impl y  "v a g u e ".  A n  a b s t ra c t  e x p re s s i o n  may  h a v e  a
v ery  p re c i s e  meani ng. B u t  t h i s  meaning need  n o t  b e
defi ned i n  te rm s  o f :  fi r s t  d o  t h i s ,  n e x t  t h a t ,  a n d
so o n .

In  o r d e r  t o  s e a rc h  f o r  p o w e rf u l  a b s t r a c t  e x -
pres s i ons ,  we mus t hav e an  i d e a  i n  what way  we wa n t
to u s e  them.  I n  mathemat i c s ,  t h e  c e n t ra l  n o t i o n  i s
t h a t  o f  e q u a l i t y .  I n  a l g o ri t h m i c s ,  howev er,  a n o t h -
e r,  as y m m et ri c  re l a t i o n s h i p  p l a y s  a  c e n t ra l  r o l e :
t h a t  o f  re fi n e m e n t .  S peak i ng i n f o rm a l l y ,  a n  e x p re s -
s ion S  i s  r e fi n e d  b y  a n o t h e r ex p res s i on  S
.  i f  a n yc onc rete re a l i z a t i o n  o f  S
.  i s  a l s o  
a  
c o n c r e t e  
r e a l -

i z a t i o n  o f  S .  N o t e  t h a t  t h i s  does  n o t  ex c l ude  t h e
p o s s i b i l i t y  t h a t  S  i s  c onc re te  and S
.  i s  a b s t r a c t .I t  i s  nec es s ary  t o  d e fi n e  t h e  meani ng o f  r e -
fi nement more  f o rm a l l y .  F o r  p  and q  a s s e rt i o n s ,  a n d
S a n  e x p re s s i o n ,  l e t  t h e  c o r re c t n e s s  f o r m u l a
(p )S (q )  s t a n d  f o r :  a  c onc re te  re a l i z a t i o n  o f  S ,  e x -
ecuted w i t h  p re c o n d i t i o n  p ,  w i l l  t e r m i n a t e  a n d
re s u l t  i n  t h e  p o s t c o n d i t i o n  q .  S  i s  t h e n  re fi n e d  b y
S
. 
i
f

f o r  a l l  p  and q ,  i f  ( p ) S
.
( q ) ,

hen (p )S (q ) .

Thi s  d e fi n i t i o n  i s ,  howev er,  c i r c u l a r ,  s i n c e  a  c o n -
c re te  r e a l i z a t i o n  o f  S  i s  a  c o n c re t e  ex p res s i on  C
such t h a t  S  i s  re fi n e d  b y  C.  We need a n  i ndependent
c h a ra c te ri z a t i o n  o f  t h e  s emant i c s  o f  a b s t ra c t  e x -
pres s i ons .  F r o m  t h e  v a r i o u s ,  m o r e  o r  l e s s
equ i v a l en t ,  methods  f o r  d e fi n i n g  s emant i c s ,  t h a t  o f
weakest p re c o n d i t i o n s  seems q u i t e  c onv en i en t ,  s i n c e
i t  a l l o w s  i n  a  n a t u ra l  way  t o  ex p res s  t h e  i n d e t e r -
minacy o f  t h e  meani ng o f  a b s t ra c t  ex pres s i ons .  L e t
wp(S ,q) s t a n d  f o r  t h e  weak es t p re c o n d i t i o n  o f  S  e n -
s uri ng  t e rm i n a t i o n  w i t h  q .  Then  S <  S
.  m e a n s :

,
m
o
a
m
m
'
i
n
m
m
u
a
.
M
a
a
,  
a
m
m
a
a
m
.  
-
,
,
,
a
k
u
K
m
a
m
m
a
-

16

w r ( S , q )  =  A  w p (C , q ) .S<C

Then S  < '  S
.  i s  
e q u i v
a l e n t  
t
o

Thi s  n o t i o n  o f  re fi n e m e n t  i s  i d e n t i c a l  t o  t h a t  i n
the w o r k  o f  B a c k [ 1 ] ,  w h i c h  p ro v i d e s  a  r i g o r o u s
mathemati cal  f o u n d a t i o n .  I t  i s  obv i ous  t h a t  t h e  r e -
l a t i o n s h i p  i s  re fl e x i v e  a n d  t r a n s i t i v e :

S <  S ;
i f  S  <  S
.  
a n d  
S
.  
<  
t
h
e
n  
S  
<

A v e r y  i m p o r t a n t  p r o p e r t y  i s  t h e  f o l l o w i n g .  L e t
f (S ) b e  a n  a l g o r i t h m i c  e x p re s s i o n ,  c o n t a i n i n g  S  a s
a component ex pres s i on .  Then  we hav e:

i f  S  <  S
.
,  
t h e
n  f
( S
)  
<  
f
( S
.
) .

(Thi s  p r o p e r t y  c r u c i a l l y  depends  o n  t h e  w a y  t h e
meaning o f  ex p res s i ons  i s  d e fi n e d  i n  t e rm s  o f  t h e
meanings o f  t h e i r  c omponent e x p re s s i o n s .  A  s u f fi -
c i en t  c o n d i t i o n  i s  t h a t  t h e  weak es t p re c o n d i t i o n  o f
a c ompos i te ex pres s i on i s  a  p o s i t i v e  monotone f u n c -
t i o n a l  o f  t h e  weak es t  p re c o n d i t i o n s  o f  i t s  c o m -
ponents . Th i s  i s  c e r t a i n l y  t h e  c as e f o r  a l l  c onv en-
t i o n a l  c ompos i t i on methods . )

I t  appears  t h a t  t h e  n o t i o n  o f  < -re fi n e m e n t  i s
s t ronger t h a n  i s  nec es s a ry  f o r  a b s t r a c t  e x p re s -
s ions . L e t  C be  re s t r i c t e d  be l ow t o  t h e  s e t  o f  c o n -
c re te  a l g o r i t h m i c  ex p res s i ons .  Th e n  we  c an  d e fi n e
s < -  S
.  
t o  
m e
a n
:

f o r  a l l  C,  i f  S
.  <  C ,  
t h e n  
S  
<  
C .

Thi s  c o rres ponds  t o  t h e  o r i g i n a l  i n f o rm a l  d e fi n i -
t i o n .  C l e a r l y ,  i f  S  <  S
.
,  t h e n  S  
< '  S
.
.  
T h e  
c o n
-

v ers e need n o t  h o l d .  Th e  i m p o rt a n t  t h i n g  t o  n o t i c e ,
however, i s  t h a t  S  < '  C  i m p l i e s  S  <  C. I n  o t h e r
words , i f  i t  i s  p o s s i b l e  t o  d e r i v e  a  c o n c re te  e x -
pres s i on f o r  S  u s i n g  < ' - re fi n e m e n t ,  t h i s  i s  a l s o  a
c o rre c t  d e r i v a t i o n  u n d e r  < - re fi n e m e n t .  I t  m a y  b e
pos s i b l e t h a t  t h e  we a k e r t y p e  o f  re fi n e m e n t  d o e s
lead u s  i n t o  b l i n d  a l l e y s ,  b u t  i n  n o  way  d o e s  i t
l ead t o  i n c o r re c t  programs .

I t  i s  c l e a r  t h a t  we  hav e l o s t  some "g u i d a n c e ",
so a  l e g i t i m a t e  q u e s t i o n  i s  wh a t  w e  h a v e  g a i n e d .
F i r s t ,  one  s hou l d  re a l i z e  t h a t  t h e  o r i g i n a l  r e fi n e -
ment d e fi n i t i o n  i s  n o  g u a ra n t e e  a g a i n s t  b l i n d  a l -
leys  i n  t h e  d e r i v a t i o n  p ro c e s s .  I n  many c as es , o n e
proceeds  w i t h  a  g o a l  i n  m i n d ,  k nowi ng  b e fo re h a n d
tha t  t h i s  ro a d  l e a d s  t o  s uc c es s .  Th e  g a i n  i s  k now
t h a t ,  h o p e f u l l y ,  t h e  we a k e r re q u i re m e n t s  f o r  t h e
a p p l i c a b i l i t y  o f  a  re fi n e m e n t  s t e p  a r e  e a s i e r  t o
v e r i f y .

I t  i s  p o s s i b l e  t o  d e fi n e  a  c o rres pond i ng  t y p e
of  (we a k e r) weak es t p re c o n d i t i o n s :

f o r  a l l  q ,  w p ' (S , q )  i m p l i e s  w p ' ( S
.
, q ) .Un fo rtuna te l y ,  i t  i s  n o t  c l e a r  how a  c a l c u l u s

mi ght b e  dev e l oped f o r  w p ' .  A  p r a c t i c a l  a p p ro a c h
may, howev e r,  b e  f o u n d  a l o n g  t h e  f o l l o w i n g  l i n e s .
Let  c r  ( "c o n c r e t e l y  r e a l i z a b l e " )  s t a n d  f o r  a n y
pred i c a te  o v e r  t h e  ex p res s i ons ,  c h o s e n  s uc h  a s  t o
s a t i s f y

( i )  f o r  a l l  C ,  c r ( C )  h o l d s ,  a n d
( i i )  f o r  a l l  S ,  w p (S , t ru e )  i m p l i e s  c r ( S ) .

f o r  a l l  q ,  wp (S , q ) i m p l i e s  w p ( S
.
, q ) .  T a k e  
f o r  
w p *  
a n y  
p r e d i c
a t e  
t r a n s f
o r m e r  
s a t i
s f y i
n g
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wp(S ,q) =  wp * (S ,q ) &  c r ( S ) .

Any p *  thus  d e fi n e d  s a t i s fi e s

wp(S ,q) i m p l i e s  wp * (S , q ),  and
wp* (5 ,q ) i m p l i e s  wpo '(S ,q).

Now d e fi n e  S  S
.  b y :

,

f o r  a l l  q ,  wp * (S , q ) i m p l i e s  w p * ( S
.
A ) .Thi s  .

* _ r e
fi n e
m e n
t  
h
a
s  
a
g
a
i
n  
a
l
l  
d
e
s
i
r
a
b
l
e  
p
r
o
p
e
r
-

t i e s ,  l i k e  r e fl e x i v i t y  a n d  t r a n s i t i v i t y .  Th e  f r e e -
dom i n  c hoos i ng C r  i s  q u i t e  l a rg e .  One  ex t reme i s
to  c hoos e c r ( S )  i d e n t i c a l l y  t r u e  f o r  a l l  S ;  t h i s
l eads  t o  wp*  =  wp. Th e  o t h e r  ex treme i s  t o  c ons i de r
te rm i na t i on  a  p re re q u i s i t e  f o r  c onc retenes s , and  t o
choose c r ( S )  =  w p (S , t ru e ) .  T h i s  a l l o ws  t h e  c ho i c e
f o r w p *  o f  t h e  weak es t  p re c o n d i t i o n  f o r  p a r t i a l
c orrec tnes s  ( w i t h o u t  t e r m i n a t i o n ) .  I n  g e n e r a l ,
g i v en a  c h o i c e  f o r  C r ,  t h e  ra n g e  o f  c h o i c e  f o r
wp* (S ,q) has  as  ex tremes  a t  t h e  s t ro n g  end wp (S , q ),
and a t  t h e  weak  end  c r(S )D w p (S , q ) .  Th e  f reedom o f
choice s hou l d  be  us ed t o  o b t a i n  manageable fo rmu l as
and ru l e s .

I t  may appear t h a t  c r  a l s o  has  t o  s a t i s f y

i f  S  < *  S
.  a n d  
c r ( S
.
) ,  
t h
e n  
c r
( S
) .

In  f a c t ,  t h i s  i s  n o t  nec es s ary . I t  i s  s u f fi c i e n t  i f
we hav e:

i f  S  < *  C,  t h e n  S <  C.

Thi s  i s  i ndeed t h e  c as e,  a s  i s  e a s i l y  v e r i fi e d .

p i j k s t ra [ 4 ]  g i v e s  r u l e s  f o r  c omput i ng w p  f o r
compound ex pres s i ons .  I t  i s  d e s i ra b l e  t h a t  t h e  same
ru l es  go  t h ro u g h  f o r  wp * ,  ev en i f  t h e  component e x -
pres s i ons  a re  a b s t ra c t .  (Howev e r,  f o r  t h e  l o o p  e x -
pres s i on we  n e e d  t h e  we a k e r p re c o n d i t i o n  g i v e n  b y
Boom[3), bec aus e  o f  t h e  i nde te rm i nac y  a l l o we d  i n
a b s t ra c t  ex p res s i ons . ) A l s o ,  f o r  an  ex pres s i on l i k e
SI;S2, w e  w a n t  c r (S 1 ; 8 2 )  t o  h o l d  whenev er c r ( g 1 )
and c r ( S 2 )  b o t h  h o l d ,  a n d  s o  o n .  T h i s  t u r n s  o u t
pos s i b l e.  I f  we c hoos e

c r(S I ;S 2 ) =
c r(S 1) &  (w p * (5 1 , t ru e )D u p * (S 1 , c r (S 2 ) ) ,

then i t  i s  s t ra i g h t f o rw a rd  t o  v e r i f y  t h a t

wp* (S I ;S 2 ,q) =  w p
*
( E 1 , w p *
( S 2 . q ) )

i s  a c c e p t a b l e  a s  d e fi n i t i o n .  S i m i l a r l y ,  o n e  c a n
take

c r(b1-0S1 Ob2-0S2) =
(b1 c r  (S I )) &  ( b 2  Der (S 2) )

as d e fi n i t i o n  a n d  o b t a i n  t h e  us ua l  fo rm u l a  f o r  wp* ,
and s o  o n .

6. EXAMPLES OF ABSTRACT ALGORITHMIC EXPRESSIONS

Before g i v i n g  t w o  ex amples  o f  a b s t ra c t  e x p re s -
s i ons , o n e  n o t a t i o n  h a s  t o  b e  e x p l a i n e d .  L e t  A
s tand f o r  a n  a l g o r i t h m i c  e x p re s s i o n  o r  a n  a s s e r -
t i o n ,  v  f o r  a  l i s t  o f  v a r i a b l e s  a n d  u  f o r  a  l i s t
(o f  t h e  same number o f  e l ements ) o f  u n i t s .  Then t h e
no ta t i on
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stands f o r  A  w i t h  a l l  f r e e  oc c urrenc es  o f  v  i n  A
repl ac ed b y  u .  A  m ore  c onv en t i ona l  n o t a t i o n  wou l d
be A [ u / v ) .  Howev er,  i f  o t h e r  t h a n  s i mp l e  v a r i a b l e s
are a l l o we d ,  t h e  i m p l i e d  s u b s t i t u t i o n  s hou l d  n o t  be
performed l i t e r a l l y .  F o r  ex ampl e,

Using t h i s  n o t a t i o n ,  w e  c a n
prec ond i t i on  o f  a s s i g n m e n t
e l egan t l y :

wp (v :=u ,q ) =  q i v s =u ] .

Let  us  s t a r t  a t  a  h i g h  p o i n t .  Many  probl ems  c an
be d e s c ri b e d  as  t h e  t a s k  o f  go i ng  f r o m  a  p re c o n d i -
t i o n  p  t o  a  p o s t c o n d i t i o n  q .  Th u s ,  w e  a r e  l e d  t o
c ons i der p rob l em d e s c ri p t i o n s  o f  t h e  f o rm

There i s ,  h o w e v e r ,  s o m e t h i n g  e s s e n t i a l  l a c k i n g .
Thi s  c an b e  s een by  l o o k i n g  a t  t h e  d e s c r i p t i o n

(x =x 0 ,Y =Y 0)? (x =x 0 ,Y =Y 0 ,z =GCD(x
,
y
)
).

Thi s  has  many pres umabl y  un i n tended s o l u t i o n s ,  l i k e

x , x 0 , y , y 0 , s  : =  1 , 1 , 1 , 1 , 1 .

There s h o u l d  b e  a  way  o f  i n d i c a t i n g  t h e  v a r i a b l e s
tha t  may be  changed i n  t h e  p roc es s .  Th i s  l e a d s  t o

<p }v : =? (q ).

Thi s  wou l d  d o ,  b u t  i t  i s  cumbersome. A  b e t t e r  n o t a -
t i on  f o r  t h i s  "p ro b l e m  ex pres s i on" i s

and

,
K
,
a
m
m
s
s
'
m
m
a
w
a
w
w
L
m
w
o
m
a
u
v
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,
,  
-
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A tv =u11

(e14) >  0 ) ( a [ 2 4
-
2 ) : = b 1  =  
( b  
>  
0 ) .

( p )
.
. q
q ) •

v : = ( p '
0
0 ,where v  s t a n d s  f o r  a  l i s t  o f  v a r i a b l e s .  (W a rn i n g :

(p=oq) i s  n o t  a  u n i t  l i s t ,  s o  a  s u b s t i t u t i o n
t v : = f p = 0 0 ]  i s  mean i ng l es s . ) I n  ps eudo -ope ra t i ona l
semantics , t h e  meaning i s :  s e t  v  t o  some v a l ue  s uc h
t h a t ,  i f  i n i t i a l l y  p  h e l d ,  t h e n  now q  h o l d s .  I f  p
does n o t  h o l d ,  a n y  v a l u e  w i l l  d o .  (On e  m i g h t  a l s o
not r e q u i r e  t e rm i n a t i o n  i n  t h e  l a t t e r  c a s e ;  t h e
m eri t s  o f  t h i s  v a r i a n t  d e fi n i t i o n  hav e  n o t  been e x -
p l ored s u f fi c i e n t l y . )

An example o f  a  p rob l em ex pres s i on i s

y :=[x >0 =0  y
2
= x  &  
y > 0 )
.

Thi s  c o u l d  b e  re a l i z e d  b y  t h e  c onc re te  ex pres s i on

y : = s q r t (x ) .

I f  w e  c ompute t h e  p re c o n d i t i o n  b y  t ra n s p o s i n g
th i s  i n  t h e  f o rm a l i s m  o f  B a c k i l )  a n d  u s i n g  h i s
ru l es ,  we o b t a i n

wp (v :=Ip =0 q 1 , r)
(p m (3 v ' :  q ( v : = v
-
I ) )  &
(V v :  c p r ) .

express  t h e  we a k e s t
ex pres s ions  q u i t e

Cl ea rl y ,  we  may t a k e

c r ( v := Ip- 00)  =  pm(317' : (1117:=v1)
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wp * (v : = [ p =0 1 ), r) =  V v :  q  m r .

I n  f a c t ,  c r ( v : = I p = 0
,
q ) )  =  w p
( v : = E p =
0
' 0 , t r u e ) .

Some p ro p e r t i e s  o f  t h e  n e w  t y p e  o f  ex p res s i on
are g i v e n  by  t h e  f o l l o w i n g  l i s t  o f  ru l e s :

(a) I f  p  i m p l i es  p  a n d  q '  i m p l i e s  q ,  t h e n
v :m[p.-og) < *  v : = [ P ' =
- 0
1
.
] ;

(b ) v :=Ip=.0q) < *  v , v ": = I p = o q l ,  w h e re  v '  i s  a  f r e s h
l i s t  o f  v a ri a b l e s ;

(c ) v :=1p=o•rI  < *  v : = I p = 0 0 ;  v : = f q =
0 .
r 1 ;
(d ) v ;=[P i v P 2  ° • < *

P 1-":=[131 '4N]  I I  P 2 [ P 2
- 4
' q ]  -Rule ( a )  c o rre s p o n d s  t o  t h e  u s u a l  r u l e  o f  c o n s e -

quence. Ru l e  ( b )  a l l o ws  t h e  i n t ro d u c t i o n  o f  a u x i l i -
a ry  v a r i a b l e s .  A s  t o  ( c )  and  ( d ) ,  t h e s e  c o rres pond
to t h e  u s u a l  ru l e s  f o r  s e q u e n t i a l  a n d  c o n d i t i o n a l
c ompos i t i on.

The v e r i fi c a t i o n  i s  q u i t e  s t ra i g h t f o rw a rd ,  b u t
i s  l e f t  a s  an ex e rc i s e  t o  t h e  i n t e re s t e d  re a d e r .

The n e x t  a b s t ra c t  ex pres s i on i s  l e s s  o f  a  p ro b -
lem s p e c i fi c a t i o n ,  b u t  s t i l l  q u i t e  a b s t ra c t .  I t  i s
the "bound  ex p res s i on "

S Iv :p ,

where v  i s  a  l i s t  o f  v a r i a b l e s ,  p  i s  a n  a s s e r t i o n
and S  i s  a n o t h e r a l g o r i t h m i c  e x p re s s i o n  n o t  c o n -
ta i n i ng  e l ements  o f  v  i n  t h e  l e f t - h a n d  s i d e  p o s i -
t i o n  o f  a n  as s i gnment e x p re s s i o n ,  p ro b l e m  e x p re s -
s ion o r  o the rwi s e  ( i f  more ex pres s i ons  w i t h  t h e  n a -
t u re  o f  a n  as s i gnment a re  i n t ro d u c e d ) .  I n f o rm a l l y ,
i t s  meani ng i s :  e x e c u t e  S  wh e re  v  i s  c hos en s u c h
t h a t  p  i s  s a t i s fi e d .  A n  example i s  g i v e n  by

y :=v  1 v :  x >0  m  ( v
2
= x  &  
v > 0 ) .

The v a r i a b l e s  i n  v  a re  bound t o  t h e  ex pres s i on .  Th e
semantics  i s  g i v en  by  c omputi ng wp :

wp(S1v :p,q) =  (3 v :  p )  &  (V v :  p  m w p (S , q )) .

We may t a k e

c r(S I v : p ) =  3 v :  p

and

wp* (S 1v :p,q) =  V v :  p  D w p (s , q ) .

We c a n  n o w  e x p re s s  s o m e  m o re  r u l e s ,  w h e r e
S = *  S '  s tands  f o r  S  25* S '  &  S '  25* S .

(e ) v : = [ p =
0
1 ]  = *  
v : =
v "  
1  
v '
:  
p  
m  
e l
f v
1 1
1 ,  
w
h
e
r
e  
v
'

i s  a  l i s t  o f  f re s h  v a ri a b l e s  o f  t h e  same l e n g t h
as v ;

( f )  v : = [ p  =0  p &
-
n b ]  = *

* (b  v : = v "  I  v ' :
p&b m p a v : v " ]  &  0 ( v ' )  <  0 ( v ) ) ,

where v '  i s  a g a i n  a  l i s t  o f  f r e s h  v a ri a b l e s  o f
the p ro p e r  l e n g t h ,  a n d  0  i s  a  mapping f ro m  o b -
j e c t s  o f  t h e  t y p e  o f  v  t o  t h e  el ements  o f  some
we l l -o rd e re d  s e t  ( e . g . ,  t h e  o r d i n a l s ) ,  w h i c h
may be  c hos en f r e e l y ;

(g ) I f  p '  i m p l i e s  p ,  t h e n  S l v :P  S l v , v " : p " ,  whe re
v '  i s  a  (p o s s i b l y  e m p ty ) l i s t  o f  f r e s h  v a r i -
ab l es ;

(h) S l v : p  S  lv:•=u1 l v ": p l v : =u 1 ,  wh e re  u  i s  a  l i s t
o f  u n i t s  o f  t h e  p ro p e r l e n g t h  and v '  i s  a  l i s t
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of  v a r i a b l e s  t h a t  a r e  e i t h e r  f r e s h  o r  a n  e l e -
ment o f  v ,  s u f fi c i e n t l y  l a r g e  t o  b i n d  a l l  v a r i -
ables  o f  v  t h a t  rema i n  p re s e n t  a f t e r  t h e  s t e p ;

( I )  S l e : t r u e  < *  S  ( w h e r e  e  s t a n d s  f o r  t h e  e m p ty
l i s t ) .

Rules ( e )  a n d  ( f )  a l l o w  t h e  e l i m i n a t i o n  o f
problem e x p re s s i o n s .  I f  t h e  v a r i a n t  d e fi n i t i o n
hi nted a t  abov e i s  adop ted ,  we  wou l d  o n l y  hav e r e -
fi nement i n  one d i re c t i o n .  Ru l e  ( f )  i s  p robab l y  t h e
most p o w e r f u l  o n e  i n  p r a c t i c e .  I t  c o rres ponds  t o
ru l es  i n  o t h e r  p r o o f  s y s tems  t h a t  c o v e r  t h e  WHILE
l oop. Th e  mapping 0  ens u res  t e rm i n a t i o n .  I t  c an b e
shown t h a t  mapping t o  t h e  n a t u ra l  numbers  ( t h e  i n i -
t i a l  s egment o f  t h e  o rd i n a l s )  g i v e s  t h e  same power,
but a t  t h e  c o s t  o f  i n t ro d u c i n g  mappi ngs  t h a t  a r e
sometimes much more c ompl i c a ted t h a n  nec es s ary  ( c f .
Boom(3)).  I n  ( g )  we fi n d  a n o t h e r  a p p l i c a t i o n  o f  t h e
ru l e  o f  c ons equenc e. I t  m i g h t  h a v e  b e e n  c ombined
wi t h  ( h ) ;  f o r  t h e  s ak e o f  s i m p l i c i t y ,  t h i s  has  n o t
been done .  Ru l e  ( h )  i s  a l s o  q u i t e  p o w e rf u l .  B y  a p -
p l i c a t i o n  o f  t h i s  r u l e  one may a r r i v e  a t  ( i ) ,  where
the bound ex p res s i on  i s  e l i m i n a t e d .  One  h a s  t o  g o
through t h i s  ru l e  onc e f o r  eac h a b s t ra c t  ex pres s i on
i n t roduc ed.

Again, t h e  v e r i fi c a t i o n  i s  l e f t  t o  t h e  re a d e r .
A s i m p l e  p ro o f  o f  ( f )  i s  f o u n d  b y  s e p a ra t i n g  p a r -
t i a l  c o rrec tnes s  and t e rm i n a t i o n .

7. AN EXAMPLE

.USIWigigOi&VMA06..A.U, ,
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The us e fu l nes s  o f  t h e  a b s t ra c t  ex pres s i ons  i n -
troduced i n  t h e  p re v i o u s  s e c t i o n  may  n o t  b e  o b v i -
ous. Th e  t e s t  c a n  o n l y  b e  t h e  a p p l i c a t i o n  t o  p ra c -
t i c a l  ex ampl es . I n  f a c t ,  t h e y  h a v e  been  us ed o n  a
v a ri e t y  o f  probl ems  o f  d i v e rs e  c omp l ex i ty ,  g e n e ra l -
l y  reas onab l y  s uc c es fu l l y .  Th e re  a re  t wo  as pec ts  i n
j udgi ng t h e  measure o f  s uc c es s . One i s  how n a t u ra l -
l y  t h e  o r i g i n a l  p rob l em  may b e  ex p res s ed ,  a n d  o n e
i s  how eas y  i t  i s  t o  massage t h e  re s u l t i n g  e x p re s -
s ion i n  t h e  i n t e n d e d  d i r e c t i o n  o f  c o n c re te n e s s .
Note, howev er,  t h a t  t h e  ex pres s i ons  thems el v es  g i v e
no gu i danc e  a s  t o  w h a t  re fi n e m e n t  s t e p s  a r e  b e s t
app l i ed .  Th e  f reedom  o f  c hoos i ng u  i n  r u l e  ( h )  i s
b e n e fi c i a l  o n l y  i f  o n e  h a s  some e x p e r t i s e  i n  p r o -
gramming ( o r  a l g o r i t h m i c s ) .

No a t t e m p t  h a s  b e e n  made y e t  t o  a p p l y  t h e
pres ent m o d e s t  a p p ro x i m a t i o n  o f  A b s t r a c t °  t o  a
l a rg e -s c a l e ,  r e a l - l i f e  p rob l em f ro m  t h e  t o p  t o  t h e
bottom. Th e re f o re  i t  i s  n o t  k nown how w e l l  i t  w i l l
s tand u p .  I n  t h e o r y ,  a n y  p ro g ra m  may  b e  d e r i v e d
tha t  c an b e  w r i t t e n  w i t h  WHILE l o o p s ,  b u t  t h e  a c t u -
al  e f f o r t  may be  q u i t e  i m p ra c t i c a l .  Howev er,  I  hav e
some c onfi denc e t h a t  t h e  s i t u a t i o n  w i l l  n o t  be  t h a t
bad.

The u s e  o f  a l g o r i t h m i c  ex p res s i ons  w i l l  now b e
demons trated o n  a  v e ry  s i m p l e  ex ampl e ,  t r e a t e d  b y
D i j k s t ra (4 )  a n d  a l s o  b y  B a c k [1 ).  Th e  p ro b l e m  i s  t o
compute Z i p  w h e re  Y  i s  a  n a t u r a l  num ber,  w i t h o u t
us ing t h e  ex ponen t i a t i on  o p e ra t o r .

Thi s  p rob l em  c a n  b e  s p e c i fi e d  b y  t h e  a b s t ra c t
ex pres s i on

z : = [ t ru e  z - X Y ) .

Using ( b )  and  ( c )  o f  Lemma 1 ,  we r e fi n e  t h i s  t o

(S i ) z , x , y  : =  [ t r u e  z . 0 = X Y ] ;
(S2) z , x , y  : =  I 5 . 0 = X Y  z = X Y ) .
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F i r s t  w e  p ro c e e d  w i t h  t h e  eas y  p a r t ,  ( S i ) .  W here
the re fi n e m e n t s  a r e  g i v e n  h e r e  i n  t w o  s t e p s ,  a
t ra i n e d  a l g o r i t h m i c i a n  w o u l d  i m m ed i a te l y  j u m p  t o
the fi n a l  v e r s i o n ,  m u c h  l i k e  a  mathemat i c i an  i s
used t o  d o .  From ( e )  we  o b t a i n

z , x , y  : =  1  z " , x " , y ' :

By u s i n g  t h e  u n i t  l i s t  u  =  1 ,X ,Y  i n  ( h ) ,  t h i s  s i m -
p l i fi e s  t o

z ,x ,y  : =  1 ,X ,Y  1  c :  t r u e .

Thi s  g i v e s  us  t h e  fi n a l ,  c o n c re t e  ex pres s i on ,  s i n c e
now ru l e  ( i )  i s  a p p l i c a b l e :

z , x , y  : =  1 ,X ,Y .

As t o  ( S 2 ) ,  t h i s  fi t s  ( f )  w i t h  t h e  a s s e r t i o n
z - 0 = X
Y  
f o r  
p  
a
n
d  
5
4
0  
f
o
r  
b
.  
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can, s i mp l y  t a k e  t h e  i d e n t i t y ,  s i n c e  t h e  "g o a l "  i s
to  g e t  y  t o  O.  We t h u s  r e fi n e  ( S 2 )  t o

* (y 00 - 4  z , x , y  : =  z ", x ', y  1  z ", x ' , y ' :
z .x y =  X
Y  &  
y 0 0  
D  
e . x '
3 '
.
. . X
Y  
y
'
<
y
)
.

Using ( g ) ,  t h i s  may a g a i n  be  re fi n e d  t o

* (y 00 z , x , Y  : =  1  z ", x ", y ", r :
z '=  z . x r  &  x ' =  x . x  &  y =2y "-Fr &

(r=0  v  r = 1 ) ) .

I f  o p e ra t i o n s  /  and % a re  a v a i l a b l e ,  s a t i s f y i n g  y  =
2(y /2 )+(y %2) a n d  (y %2=0. v  y %2=1), t h e  u s e  o f  t h e
u n i t  l i s t  u  =  ZZ, x . x , y 1 2 , y 1 2  i n  ( d )  o f  Lemma 2 ,
where Z Z  i s  s h o rt h a n d  f o r  (y%2=0-0.z  Dy %2=1-0z .x ),
a l l ows  t o  s i m p l i f y  t h i s  t o

* ( )
,
4 0  
-
0  
z
,
x
,
y  
:
=  
Z
Z
,
x
-
x
,
y
/
2
)
.

Here ( i )  h a s  a l s o  b e e n  a p p l i e d .  I t  h a s  n o w been
shown t h a t

z :=1 t rue  =0  z=XY1 <
zoc,y  : =  1 ,X ,Y ;
* (y 00 =
4  
z , x
, Y

ZZ, x . x , y / 2 ) .

(Note t h a t  we  may u s e  " < "  r a t h e r  t h a n  " < * " ,  s i n c e
the r i g h t -h a n d  s i d e  i s  c o n c re t e . )

Th i s  p r o o f  i s  a d m i t t e d l y  q u i t e  l e n g t h y  ( a n d
b o ri n g ) f o r  t h e  f e a t  i t  p e rf o rm s .  B u t  t h i s  wo u l d
al s o b e  t h e  c as e f o r  a t t e m p ts  t o  de te rm i ne  a n  i n d e -
fi n i t e  i n t e g r a l ,  s a y ,  b y  f o l l o w i n g  t h e  r u l e s  f ro m
the c a l c u l u s  book  s t e p  f o r  s t e p  and  d i s p l a y i n g  a l l
i n te rmed i a te  r e s u l t s .  A  m o r e  a p p r o p r i a t e  p r o o f
mi ght r e a d :  " t h i s  c o n c re t i z a t i o n  i s  o b t a i n e d  b y
keeping z . 0 = X Y  i n v a r i a n t " .
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(L s t a n d s  f o r  l e f t  a n d  R f o r  r i g h t  c o l u mn . )

p . 3 6 L :

f o r  a l l  p  a n d  q ,  i f  f p 1 S " { q } ,  t h e n  { p } s { q }

swap " S "  a n d  " S " •

wp(Up,  q )  =
wP(Dn,  =
wp(Sk ,  q )  =  q .

Then we  fi n d

4
3
,  
a
l
i
i
M
A
M
I
W
•
•
•
•
-
k
V
.
'
"
M
U
Z
M
A
R
Q
:
'
,

wp ' ( Up ,  q )  =  w p ( U p ,  q ) ,
wp ' ( Dn ,  q )  =  T R U E ,
wp ' ( S k ,  q )  =  w p ( S k ,  q ) .

RMW M&W Q 'm u w  z m u m m a i m - u a r

p . 36R:  I t  s h o u l d  b e  me n t i o n e d  t h a t  $
1  d o e s  n o t  
n e c e s s a r i l y  
p r e s e r v e

mo n o t o n i c i t y .  ( C o u n t e r e x a m p l e :  l e t  t h e  s e t  o f  a b s t r a c t  e x p r e s -
s i o n s  b e  t h e  c l o s u r e  u n d e r  " ; "  o f  { Up ,  Dn ,  S k } ,  w i t h  t h e  c o n c r e t e
e x p r e s s i o n s  b e i n g  t h o s e  n o t  c o n t a i n i n g  Dn .  T h e  s e ma n t i c s  a r e
g i v e n  b y

So Up  5." D n .  N o w  t a k e  f ( S )  =  ( S ;  U p ) .  T h e n  w p f ( f ( U p ) ,  q )  =
c a i : = i 4 . 2 ]  a n d  w p ' ( f ( D n ) ,  q )  =  q .  S o  f (TI P)  $ '  f ( D n ) . )

I t  s h o u l d  a l s o  h a v e  b e e n  p o i n t e d  o u t  t h a t  wp i  d o e s  n o t  f u l l y
s a t i s f y  D i j k s t r a ' s  h e a l t h i n e s s  c r i t e r i a ,  s i n c e  t h e  L a w o f  t h e  E x -
c l u d e d  M i r a c l e  d o e s  n o t  h o l d - - o n  p u r p o s e - - f o r  " u n c o n c r e t i z a b l e "
e x p r e s s i o n s  ( l i k e  Dn  a b o v e ) .

p . 3 7 L :  T h e  s t a t e me n t  ( n e a r  t h e  t o p )  " w p * ( S , g )  i m p l i e s  w p ' ( S , q ) "  i s
wrong .  ( C o u n t e r e x a m p l e :  l e t  t h e  s e t  o f  a b s t r a c t  e x p r e s s i o n s  b e
t h e  c l o s u r e  u n d e r  " ; "  o f  { A b ,  H o ) ,  a n d  l e t  t h e  c o n c r e t e  e x p r e s -
s i o n s  b e  t h o s e  n o t  c o n t a i n i n g  A b .  T h e  s e ma n t i c s  a r e  g i v e n  b y

wp(Ab,  q )  =  FA L S E ,
wp(Ho,  q )  =  FA L S E .

Then we  fi n d  ( s i n c e  A b  $  Ho)

wp ' ( A b ,  q )  =  FA L S E ,
wp i ( Ho ,  q )  =  FA L S E .

Tak e c r ( A b )  =  FALSE,  c r ( H o )  =  TRUE,  a n d

wp* (Ab ,  q )  =  q ,
wp* (Ho ,  q )  =  FA L S E .
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Then wp * ( A b ,  TRUE) d o e s  n o t  i m p l y  wp ' ( A b ,  TRUE ) . )

I dem:  A t  t h e  e n d  o f  S e c t i o n  5 ,  t h e  n a n d  s o  o n "  i s  t o o  o p t i m i s t i c ;  t h e
c h o i c e  f o r  c r ( * ( b — >S ) )  i s  n o t  o b v i o u s  ( t h e  p r e d i c a t e  mu s t  h o l d
whenev e r  * ( b - 3 S )  w o u l d  t e r m i n a t e ) .

p . 3 8 L :  A t  t h e  b o t t o m o f  t h e  p r e v i o u s  p a g e ,  t h e  " C l e a r l y  we  may  t a k e . . . "
i s  b y  i t s e l f  c o r r e c t ,  b u t  t h e  c h o i c e  f o r  wp *  h e r e  i s  n o t  c o m p a t i -
b l e  w i t h  ( d )  a n d  ( e )  l a t e r  o n .  T h e  p r o p e r t y  ( d )  c a n  b e  p o s s i b l y
be s a v e d  b y  t a k i n g

w P
*
(
1 7
: =
[ P
= *
c A
r r
)  
=

p &  g f f v : = v " 1 1 )  &  Ot 67":  c a v : = v ' D  D  r f f v : = v i l ) ,

b u t  " = * "  i n  ( e )  c a n n o t  h o l d  t h e n .

p . 38R:  T h e  r e ma r k  c o n c e r n i n g  0 :  " I t  c a n  b e  s h o wn  t h a t  ma p p i n g  t o  t h e  n a
- t u r a l  n u mb e r s  . . . "  i s  wr o n g .  J u s t  c o n s i d e r  c o mp u t i n g  i n  t h e

doma in  o f  o r d i n a l s .

' dem:  I n  t h e  t h i r d  l i n e  f r o m  t h e  b o t t o m,  d e l e t e  o f  Lemma 1 " .

p . 3 9 L :  A t  a b o u t  t h e  m i d d l e ,  r e a d  " ( h ) "  i n s t e a d  o f  " ( d )  o f  Lemma 2 " .
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ALGORITHMICS

V

Us i n g  t h e  f r a me wo r k  s k e t c h e d  i n  t h e  p r e v i o u s  p a p e r ,  I  d i d  mo s t  o f  t h e  e x
-amples  f r o m  t h e  p r o b l e m  s e t s  p r e p a r e d  f o r  t h e  B r u s s e l s  m e e t i n g  o f  WG 2 . 1
i n  Dec ember  1 9 7 9  a n d  t h e  me e t i n g  i n  Wh e e l i n g ,  We s t  V i r g i n i a ,  i n  A u g u s t
1980.

On t h e  wh o l e ,  I  wa s  r e a s o n a b l y  s u c c e s s f u l ,  b u t  I  n e v e r t h e l e s s  a b a n d o n e d
t h e  a p p r o a c h .  T h e  r e a s o n s  f o r  t h a t  a r e  s e t  f o r t h  i n  a  n o t e  I  w r o t e  t o
my s e l f  a t  a b o u t  t h a t  t i m e ,  a n d  t h a t  I  c a n n o t  r e s i s t  q u o t i n g  i n  l e n g t h .
A f t e r  m e n t i o n i n g  s ome t e c h n i c a l  p r o b l e ms  I  r a n  a c r o s s ,  I  c o n t i n u e :

Mos t  o f  t h e s e  s h o r t c o mi n g s  c a n  b e  o v e r c o me  i n  a n  a d - h o c  ma n n e r ,
and t h i s  m i g h t  p o s s i b l y  l e a d  t o  i n s i g h t  h o w t o  e x t e n d  t h e  f r a m e -
work .  H o w e v e r ,  i n  u s i n g  my  a p p r o a c h  i t  h a s  g r a d u a l l y  dawned  u p o n
me t h a t  t h e r e  i s  a  muc h mo r e  b a s i c  s h o r t c o mi n g ,  n o t  s o  muc h  o f  a
t e c h n i c a l ,  b u t  mo r e  o f  a  m e t h o d o l o g i c a l  c h a r a c t e r .

I  t r i e d  t o  a p p l y  my  " me t h o d "  t o  t h e  s e t  o f  B r u s s e l s  e x a mp l e s ,
and f o u n d  t h a t  i t  d i d ,  o n  t h e  wh o l e  o f  i t ,  r e a s o n a b l y  w e l l  ( a d -
m i t t e d l y  u s i n g  s ome a d - h o c  t r i c k s ) .  I n  f a c t ,  i t  t u r n e d  o u t  muc h
more a p p l i c a b l e  t h a n  I  h a d  e x p e c t e d .  P a r a d o x i c a l l y ,  t h i s  v e r y
s uc c es s  made me s u s p i c i o u s .  M y  a t t e mp t s  t o  u n d e r s t a n d  t h e  s i t u a -
t i o n  l e d  t o  a  s t r o n g  d i s s a t i s f a c t i o n  w i t h  t h e  b a s i c  a p p r o a c h .
A l t h o u g h  I  s t i l l  f e e l  t h a t  t h e  f r a me wo r k  h a s  a n  a r e a  o f  a p p l i c a -
b i l i t y  i n  wh i c h  i t  i s  v a l u a b l e ,  a n d  f u r t h e r  i n v e s t i g a t i o n s  i n
t h i s  d i r e c t i o n  m i g h t  b e  w o r t h w i l e ,  I  s t a r t e d  t h i n k i n g  i n  a  c o m-
p l e t e l y  d i f f e r e n t  d i r e c t i o n .  T o  e x p l a i n  t h e  d i s s a t i s f a c t i o n ,  I
have t o  g o  i n t o  s ome d e t a i l .  A n  e x p r e s s i o n  ( t h i n k  o f  i t  a s
" s t a t e me n t " )  i n  t h e  1 9 7 9  f r a me wo r k  i s  e i t h e r  b a s i c ,  o r  c ompos ed
o f  o t h e r  e x p r e s s i o n s .  T h e  c o m p o s i t i o n  me t hods  a r e  " s e q u e n c i n g "
(ex pres s ed ,  c o n v e n t i o n a l l y ,  w i t h  a  s e m i c o l o n  o p e r a t o r ) ,  " c o n d i -
t i o n a l  c h o i c e "  a n d  " i t e r a t i o n " .  T h e  b a s i c  e x p r e s s i o n s  a r e  a s -
s ignment  a n d  t wo  " a b s t r a c t "  e x p r e s s i o n s :  t h e  " p r o b l e m  e x p r e s s i o n "
and t h e  " b o u n d  e x p r e s s i o n " .  F o r  f o l l o w i n g  t h e  a r g u me n t ,  i t  i s
s u f fi c i e n t  t o  k n o w t h a t  t h e  a b s t r a c t  e x p r e s s i o n s  a l l o w  a  g r e a t
d e a l  o f  i n d e t e r m i n a c y .  T h e  f r a me wo r k  c o n t a i n s  a  n u mb e r  o f
t r a n s f o r ma t i o n s ,  a l l o w i n g  t o  r e fi n e  e x p r e s s i o n s  o f  a  g i v e n  p a t -
t e r n ,  s u b j e c t  t o  s ome c o n d i t i o n s ,  b y  o t h e r  e x p r e s s i o n s .  T h e  game
was t o  s t a r t  w i t h  a  p r o b l e m e x p r e s s i o n  a n d  t o  t r a n s f o r m  i t  i n t o  a
" c o n c r e t e "  e x p r e s s i o n ,  i . e . ,  n o t  c o n t a i n i n g  a b s t r a c t  d i c t i o n s .
The v e r i fi c a t i o n  o f  a  d e r i v a t i o n  c o n s i s t s  o f  ( a p a r t  f r o m  s ome
r o u t i n e  p a t t e r n  ma t c h i n g )  p r o v i n g  a  n u mb e r  o f  ma t h e ma t i c a l  p r o p o -
s i t i o n s .  I t  wa s  n o t  h a r d  t o  s e e  t h a t  g i v e n  a n  i n i t i a l  p r o b l e m
e x p r e s s i o n  P  a n d  a n  i n t e n d e d  c o n c r e t e  e x p r e s s i o n  C,  a  d e r i v a t i o n
i n  t h e  c a l c u l u s  w o u l d  b e  p o s s i b l e  i f  a n d  o n l y  i f  t h e  p r o p o s i t i o n
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"Wh a t ' s  t h e  g o o d  o f  M e r c a t o r ' s  N o r t h  P o l e s  a n d  E q u a t o r s ,
T r o p i c s ,  Zo n e s ,  a n d  M e r i d i a n  L i n e s ? "

So t h e  B e l l ma n  wo u l d  c r y :  a n d  t h e  c r e w  w o u l d  r e p l y
"They  a r e  m e r e l y  c o n v e n t i o n a l  s i g n s ! "
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"P ma y  b e  r e fi n e d  t o  C "  wa s  t r u e .  ( I  d i d  n o t  a t t e m p t  t o  p r o v e
t h i s  f o r m a l l y ,  a n d  t h i s  " c o mp l e t e n e s s  c l a i m "  may  n e e d  s ome t e c h n -
i c a l  r e fi n e m e n t s . )

I  o b s e r v e d ,  h o we v e r ,  a n  u n mi s t a k a b l e  p a t t e r n  i n  t h e  d e r i v a -
t i o n s .  T h e  t r a n s f o r m a t i o n s  s t e p s  c o u l d  b e  c a t e g o r i z e d  a s  b e l o n g -
i n g  r o u g h l y  t o  o n e  o f  t h e  f o l l o w i n g  t wo  t y p e s :
( i )  b o u n d  v a r i a b l e  s u b s t i t u t i o n  ( " V S " )  a n d
( i i )  i m p o s i n g  c o n t r o l  ( " I C " ) ,  i . e . ,  i n t r o d u c i n g  o n e
c o mp o s i t i o n  me t h o d s .
The VS s t e p s  may  l e a d  t o  t h e  d i s a p p e a r a n c e  o f  b o u n d
t o g e t h e r ,  a f t e r  wh i c h  a n  a b s t r a c t  e x p r e s s i o n  may  b e
c o n c r e t e  e x p r e s s i o n .  T h e i r  a p p l i c a b i l i t y  r e fl e c t s  a  ma t h e ma t i c a l
t heo rem.  T h e  I C  s t e p s  may  i n t r o d u c e  b o u n d  v a r i a b l e s  a n d  u s e f u l
i n v a r i a n t s ,  b u t  t y p i c a l l y  r e fl e c t  n o  d e e p  ma t h e ma t i c a l  t r u t h .
Now, i n  a  t y p i c a l  d e r i v a t i o n ,  a n  I C  s t e p  i n t r o d u c e s  b o u n d  v a r i -
a b l e s  t o  b e  e l i m i n a t e d  a n d  i n v a r i a n t s  t o  b e  e x p l o i t e d  i n  s u b s e -
quen t  VS s t e p s .  T h e y  l a y  t h e  g r o u n d  f o r  a p p l y i n g  t h e  t h e o r e ms  we
need.  B u t  i n  f a c t ,  t h e y  a n t i c i p a t e  t h e  VS s t e p s .  I f  I  w o u l d  n o t
know i n  a d v a n c e  wh i c h  t h e o r e ms  I  w o u l d  b e  g o i n g  t o  u s e  f u r t h e r  o n
i n  t h e  d e r i v a t i o n ,  t h e s e  s t e p s  w o u l d  o n l y  l e a d  t o  b l i n d  a l l e y s .
Not  o n l y  d o e s  t h e  d e r i v a t i o n  e x h i b i t  t h e  t h e o r e ms  u s e d ,  b u t  c o n -
v e r s e l y ,  g i v e n  t h e  t h e o r e ms ,  t h e  d e r i v a t i o n  i s  a s  g o o d  a s  d e t e r -
mined .  S o  a p p l y i n g  t h e  t r a n s f o r m a t i o n  r u l e s  i s  o n l y  p o s s i b l e
a f t e r  o n e  k nows  w h i c h  t h e o r e ms  t o  u s e ,  a n d  i s  t h e n  f u r t h e r  a
c hore .  T w o  s u b s t a n t i a l l y  d i f f e r e n t  i mp l e me n t a t i o n s  h a v e  d e r i v a -
t i o n s  t h a t  d i v e r g e  f r o m  t h e i r  v e r y  s t a r t s .  I n s t e a d ,  I  h a d  h o p e d
f o r  s i t u a t i o n s  wh e r e  i n i t i a l  t r a n s f o r m a t i o n s  w o u l d  l e a d  t o  s e m i -
a b s t r a c t  e x p r e s s i o n s  t h a t  m i g h t  s t i l l  b e  r e fi n e d  i n  r a d i c a l l y
d i f f e r e n t  d i r e c t i o n s ,  o r  way s  t o  t r a n s f o r m  r a d i c a l l y  d i f f e r e n t
s e mi - a b s t r a c t  f o r m u l a t i o n s  i n t o  e a c h  o t h e r .

What  n o w?  A  c u r s o r y  e x a mi n a t i o n  h a s  c o n v i n c e d  me t h a t  t h e
f ramework  i s ,  i n  f a c t ,  l a r g e l y  i r r e l e v a n t :  fi n d i n g  t h e  t h e o r e ms
t o  b e  a p p l i e d  i s  t h e  k e y  t o  t h e  d e v e l o p me n t .  I  h a d  n o t  r e a l i z e d
t h i s  b e f o r e  a n d  p l a n  t o  e x a mi n e  t h i s  mo r e  t h o r o u g h l y  t o  g e t  a
b e t t e r  u n d e r s t a n d i n g  o f  wh a t  i s  g o i n g  o n ,  a n d  i n  p a r t i c u l a r  t h e
f r a me wo r k - i r r e l e v a n c e  a s p e c t .

I f  t h e  A b s t r a c t o  d r e a m i s  t o  c ome t r u e ,  I  n e e d  a  r a d i c a l
d e p a r t u r e  f r o m  t h e  l i n e  o f  t h i n k i n g  I  h a v e  f o l l o w e d  u n t i l  n o w.  I
have n o  i d e a  h o w t o  p r o c e e d .  R e a l l y ,  t h e  k e y  " t r a n s f o r m a t i o n s "
a r e  t h e  ma t h e ma t i c a l  t h e o r e ms  a n d  n o t  t h e  b o r i n g  b l i n d - p a t t e r n -
mat c h m a n i p u l a t i o n s  t h a t  I  l o o k e d  u p o n  u n t i l  n o w a s  b e i n g  " t h e "
t r a n s f o r ma t i o n s .  T h i s  s h o u l d  p r o v i d e  s ome c l u e  t o  t h e  d i r e c t i o n
o f  r e s e a r c h .  M i m i c  ma t h e ma t i c s  n o t  o n l y  i n  f o r m,  b u t  a l s o  i n
s ubs t anc e .  O r  i s  i t  a l l  a  p i p e d r e a m?

The r e a s o n  wh y  a l l  o f  t h i s  was  n o t  i m m e d i a t e l y  c l e a r  t o  me i s  p r o b a b l y
t h a t  I  a m- - n e x t  t o  b e i n g  f o n d  o f  d o i n g  f o r m a l  m a n i p u l a t i o n s  w i t h  p r e f e r -
a b l y  a s  f e w  s y mb o l s  a s  p o s s i b l e - - a  v e r y  e x p e r i e n c e d  a n d  p r o l i fi c  p r o g r a m -
mer .  F o r  v i r t u a l l y  a l l  e x a mp l e s  i t  wa s  i m m e d i a t e l y  o b v i o u s  t o  me h o w t o
" d o "  t h e m i n  c o n c r e t e  p r o g r a m f o r m,  s o  t h a t  I  k n e w a l l  t h e  t i m e  wh e r e  I
was h e a d i n g .  O n e  n o t a b l e  e x c e p t i o n  was  t h e  p r o b l e m o f  t h e  l o n g e s t  u p s e -
quenc e,  a n d  t h e r e  i t  wa s  p a i n f u l l y  a p p a r e n t  t h a t  wh a t e v e r  g u i d a n c e  my
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f r amework  p r o v i d e d  i n  t h e  " d i s c o v e r y "  p r o c e s s  wa s  s h a l l o w  o r  e v e n  t r i v i -
a l .  A t  s ome p o i n t  i n  t h e  " i m p e r a t i v e "  d e v e l o p me n t  o f  t h i s  p r o b l e m  i t  i s
c l e a r  e n o u g h  wh a t  y o u  a r e  l o o k i n g  f o r - - a n  e x t e n s i o n  o f  t h e  o b v i o u s  i n -
v a r i a n t  t h a t  i s  s t i l l  e f fi c i e n t l y  m a i n t a i n a b l e - - a n d  I  f o u n d  t h a t  a l l  r e a -
s o n i n g  t h a t  l e a d s  t o  i t s  c o n s t r u c t i o n  h a d  t o  t a k e  p l a c e  c o m p l e t e l y  o u t
-s i d e  t h e  f r a me wo r k  p r o p e r .

I  t h e n  i n d e e d  s t a r t e d  t o  e x a mi n e  t h e  n o t i o n  o f  t r a n s f o r m a t i o n s  a s  b e i n g
a p p l i e d  t h e o r e ms  i n  t h e  mo s t  g e n e r a l  s e t t i n g  I  c o u l d  d e v i s e  t h a t  c o u l d  b e
t i e d  i n  w i t h  t h e  n o t i o n  o f  a l g o r i t h m ,  w h i c h  I  c a l l e d  " p r e - a l g o r i t h m i c
s y s t ems ".  T h e  fi r s t  r e s u l t s  o f  t h i s  e x a m i n a t i o n  h a d  a l r e a d y  b e e n
p r e s e n t e d  i n  Wh e e l i n g .  F u r t h e r  i n v e s t i g a t i o n  c o n v i n c e d  me t h a t  a l l  k nown
t r a n s f o r ma t i o n s ,  a n d  p r o b a b l y  a l s o  a l l  t r a n s f o r m a t i o n s  y e t  t o  b e
d i s c o v e r e d ,  c o u l d  b e  e x p r e s s e d  a s  t r a n s f o r m a t i o n s  o f  s u c h  s y s t ems .  T h i s
a l s o  i n c l u d e d  t h e  ma p p i n g  o f  i m p e r a t i v e  t o  a p p l i c a t i v e  p r o g r a ms  a n d  v i c e
v e r s a ,  a n d  i n  f a c t  e v e n  p r o g r a m e x e c u t i o n .  A l s o ,  t h e  m e t h o d o l o g i c a l
p r o b l e m o f  h a v i n g  t o  s e e  t h e  t h e o r e ms  t o  b e  a p p l i e d  i n  adv anc e  d i d  n o t
a p p e a r ,  o r  a t  l e a s t  n o t  i n  a  c o mp a r a b l e  s e v e r i t y .  ( W h a t e v e r  t h e  a p -
p r o a c h ,  s o me  f o r e s i g h t  may  a l wa y s  b e  h e l p f u l . )

Why, t h e n ,  d i d  I  n o t  p u r s u e  t h i s  f r a me wo r k ?  T h e  r e a s o n  f o r  t h a t  i s  t h a t
i t  wa s  d e c i d e d l y  a t  t h e  wr o n g  l e v e l .  M y  p r e - a l g o r i t h m i c  s y s t ems  we r e  t o
a l g o r i t h ms  a s  T u r i n g  Ma c h i n e s  a r e  t o  a b s t r a c t  ma c h i n e s  i n  g e n e r a l ,  o r  a s
fi r s t - o r d e r  p r e d i c a t e  c a l c u l u s  t o  ma t h e ma t i c s .  M y  mo t i v e  i n  s t u d y i n g
t h e s e  s y s t e ms  wa s  o n l y  t o  g a i n  mo r e  u n d e r s t a n d i n g .  F o r  a  s i m i l a r  r e a s o n ,
I  d i d  n o t  wa n t  t o  e mb r a c e  t h e  a p p l i c s t i v e  s t y l e ,  i n  s p i t e  o f  t h e  a p p a r e n t
s uc c es s  o f  B u r s t a l l  a n d  D a r l i n g t o n ' s  u n f o l d / f o l d  me t h o d .  C o n s i d e r  t h a t
t h e r e  i s  a  s t a n d a r d  wa y  o f  " c o m p i l i n g "  i m p e r a t i v e  s o u r c e  p r o g r a ms ,  h o we v -
e r  s p a g h e t t i - l i k e  t h e i r  s t r u c t u r e ,  t o  s p p l i c a t i v e  o b j e c t  c o d e ,  a n d  t h a t
t h e  b e s t  wa y  t o  c o m p i l e  FOR a n d  WHILE s t a t e me n t s  i s  b y  fi r s t  e x p a n d i n g
t hem b y  way  o f  a  s o u r c e - t o - s o u r c e  t r a n s f o r m a t i o n  i n  GOTO f o r m.  T h u s ,  t h e
wh o l e  a d v a n t a g e  o f  h a v i n g  a  n o t a t i o n a l  e mb o d i me n t  f o r  a  h i g h e r - l e v e l  c o n -
c e p t  t h a n  GOTO i s  l o s t :  a p p l i c s t i v e  p r o g r a mmi n g  c o n s i d e r e d  h a r m f u l .

Then c ame t h e  N i j me g e n  me e t i n g ,  i n  May  1 9 8 1 ,  a t  w h i c h  R i c h a r d  B i r d  e n -
t e r e d  t h e  s t a g e  a n d  p r e s e n t e d  a  p a p e r  e n t i t l e d  "Some n o t a t i o n a l  s u g g e s -
t i o n s  f o r  t r a n s f o r m a t i o n a l  p r o g r a mmi n g " .  I t  u s e d  a n  s p p l i c a t i v e  ( f u n c -
t i o n a l )  s t y l e ,  b u t  t h e  o b j e c t i o n s  I  h a d  d i d  n o t  a p p l y .  T h e r e  we r e  n o t a -
t i o n s  f o r  h i g h - l e v e l  c o n c e p t s ,  a n d  j u s t  t h e  k i n d  o f  m a n i p u l a t i o n s ,  a t  t h e
r i g h t  l e v e l ,  t h a t  y o u  wo u l d  wa n t  t o  s e e .  T h i s  s u r e  l o o k e d  l i k e  t h e  w a r -
r a n t e d  g e n u i n e  a r t i c l e .  M a y b e  a  b a b y  S n a r k ,  b u t  s t i l l  d e fi n i t e l y  w o r t h
i n v e s t i g a t i n g .  M y  ma i n  w o r r y  was  t h e  s c o p e  o f  a p p l i c a b i l i t y .  W o u l d  I
fi n d  t h a t  I  n e e d e d  mo r e  a n d  mo r e  p r i m i t i v e  f u n c t i o n s  a n d  c o r r e s p o n d i n g
r u l e s  a s  I  d i d  mo r e  e x a mp l e s ?  S o  I  s t a r t e d  d o i n g  s ome p r o b l e ms  t h i s  wa y .
F i r s t  I  f o u n d  t h a t  I  h a d  i n d e e d  t o  i n v e n t  n e w f u n c t i o n s  a n d  l a ws  a l l  t h e
t i me ,  w h i c h  was  d i s a p p o i n t i n g .  I  p u t  i t  d o wn  f o r  s ome t i m e ,  b u t  t o o k  i t
up a g a i n  w h i l e  I  wa s  v i s i t i n g  NYU i n  ' 8 2 / ' 8 3 ,  s i n c e  i t  s t i l l  l o o k e d  l i k e
t h e  mo s t  p r o m i s i n g  a v e n u e  o f  r e s e a r c h .  T h e n  I  s u d d e n l y  r e a l i z e d  t h a t
t h e r e  was  a  p a t t e r n  i n  t h e  n e w f u n c t i o n s  a n d  l a ws .  I n v e s t i g a t i n g  t h i s
l e d  t o  a  wh o l e  l o t  o f  o t h e r  d i s c o v e r i e s  ( t h e  a p p l i c a b i l i t y  t o  " g e n e r i c "
s t r u c t u r e s ;  t h e  r e l a t i o n s h i p  t o  fi c t i t i o u s  v a l u e s ) ,  a n d  I  wa s  v e r y  e x c i t -
ed a b o u t  t h i s .
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Algorithmics
Towards programming as a mathematical activity

Lambert Meertens
Centre for  Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Of the various approaches to program correctness, that of "Transformational
Programming" appears to be the most helpful i n constructing correct pro-
grams. T he essence of the method is to start with an obviously correct—but
possibly hopelessly inefficient—algorithm, and to improve i t by  successively
applying correctness-preserving transformations. T he  manipulations involved
are akin to those used in mathematics. T w o important impediments to this
method are the verbosity of algorithmic notations, making the process cumber-
some, and the semantic baroqueness of many primitives, making it hard to ver-
ify the validity of transformations. Computer  Science can profit here from the
lessons taught by the history of Mathematics. Another  major step, comparable
to one made long ago in Mathematics, is not to insist on the "executability" of
algorithmic descriptions. This makes it possible to treat initial high-level specifi-
cations in the same framework as the final programs. J us t  as Mathematics
evolved fr om  "Transformational Arithmetic", Transformational Programming
may come of age as "Algorithmics".

Mathematical reasoning does play an essential role in all
areas of  computer science which have developed or are
developing from an art to a science. Where such reason-
ing plays little or no role in an area of computer science,
that portion of  our discipline is st ill in its infancy and
needs the support of  mathematical thinking i f  i t  is  t o
mature. RALSTON and SHAW [25]

O. INTRODUCTION
The historical roots o f Mathematics and Computing are intertwined. I f  we
ascertain the validity o f a more efficient way of doing computations—more
generally, of constructing a result—, we are performing mathematics.

Nowadays, we are happy to leave the actual computing to automata. O u r
task is to prescribe the process, by means of a program. Bu t  however great the
speed of our automaton, our need for results is greater, and an important part
of the Art  of Programming is finding efficient computational methods. Who-
ever thinks now that programming as it  is practised implies routinely giving
mathematical justifications—albeit informal—of the "shortcuts" employed, is
deceived. Th is would not be an issue if making an error in programming were
exceptional. The  current deplorable state of affairs can certainly be partially
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ascribed to the ineptitude and ignorance of many programmers. B u t  this is
not the fu ll explanation. I t  is true that Computer Science has yielded a
number of results that make it  possible to reason mathematically about pro-
gramming, i.e., constructing a program that satisfies a given specification. Bu t
what is lacking is a manageable set of mathematical instruments to turn pro-
gramming into an activity that is mathematical in  its methods. T o  make it
possible to  discuss the—as yet hypothetical—discipline that would then be
practised, I  shall use the term "Algorithmics".

Mathematicians portrayed in  cartoons are invariably staring at a  black-
board covered with squiggles. To  outsiders, mathematics f o r m u l a e .  Insid-
ers know that this is only the surface. But, undeniably, mathematics has only
taken its high flight because of the development of algebraic notation, together
with concepts allowing algebraic identities

The work reported on here has been motivated by the conviction that major
parts of the activities of algorithm specification and construction should and
can be performed in much the same way as that in which mathematicians ply
their trade, and that we can profit in  this respect from studying the develop-
ment o f Mathematics. Earlie r work, based on the same conviction, can be
found in GEURTS and MEERTENS [ 111 and MEERTENS [
1 9 ] .  I n  b r i e f ,  t h e  
i d e a  i s
that algorithms are developed by manipulating "algorithmic expressions". T o
be able to do this, we need a language that is capable of encompassing both
specifications and programs. But, and this is important, this language should
not be the union of two different languages, one a specification language, and
the other a programming language. Rather, the language must be homogene-
ous: i t  must be possible to view all its expressions as specifications. Some of
these expressions may, however, suggest a construction process more readily
than others. Alternatively, a ll expressions can be viewed as abstract algo-
rithms Some of these algorithms may be so abstract, however, that they do
not suggest an implementation.

The language should be comparable to the language used by mathemati-
cians. I t s  notations give a convenient way to express concepts and thus facili-
tate reasoning, and also sustain more "mechanical" modes o f  transforming
expressions ( in  the  sense i n  which a  mathematician transforms x
2  — y
2
mechanically into (x +y)(x  —y)).

In the long run, the development of algorithmics should give us "high-level"
theorems, compared to which the few transformations we have now will look
almost trivial. Th is  is only possible through the growing development o f
higher-level concepts and corresponding notations. T o  get an idea of what I
am dreaming of, compare the special product above with Cauchy's Integral
Theorem, or with the Burnside Lemma.

1. The term "algebraic" is not used here in the technical modern sense (as i n "algebraic data
type"), but with the imprecise older meaning of "pertaining to Algebra" (as in "high-school Alge-
bra"). The word "algebra" stems from the Arabic al l  ebr , meaning "the [art of] recombining", ori-
ginally used for  bone setting. I n  the loose sense corresponding to that etymology, an identity like
sin (x + y) =  sin x cosy + cos x siny, in which the left-hand side is broken into constituents that are
recombined to form the right-hand side, is algebraic.
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The reader should carefully distinguish between
(i) th e  conviction—if not belief—that it  is possible to create a discipline of

"Algorithmics" that can be practised in the same style as Mathematics; in
particular, by creating algorithmic derivations, using algorithmic expres-
sions, with the same flavour as mathematical derivations and expressions;

(ii) the general framework around which the current investigations are built;
namely a synthesis of an "algebraic" approach to data and to transforma-
tions (of data);

(in) the concepts selected as worthy of a special notation in the language; and
(iv) the concrete notations and notational conventions chosen.

The program of research implied in  (i) is closely related to the paradigm of
"Transformational Programming"; see further Section 2. I t  i s  becoming
increasingly clear (at least to me; I  do not claim credit for the re-invention of
the wheel) that a  nice algebraic structure is a  prerequisite fo r obtaining
interesting results. Otherwise, no general laws can be stated, and so each step
has to be proved afresh. ( I n  fact, this is a truism, for what is an algebraic
structure but a domain with operations, such that some general laws can be
formulated.) Th is is also a major thought underlying the work on an "algebra
of programs" of BACKUS [1]. A  difference with the approach described here
can be found in his motivation to overcome the "von Neumann bottleneck",
resulting in a determined attempt to eschew variables for values (data, objects)
even in their conventional mathematical roles, generally not considered harm-
ful. Mo re  important is that Backus's "FP" framework is restricted to function
schemata, and has (currently?) no place for an integrated algebraic view on
data. (Th e  approach described by GIYITAG, HORNING and WILLIAMS [12]
allows algebraic specifications of data types but has more the nature of graft-
ing them on FP than o f integration.) I t  is clear, however, that the results
obtained in  his approach are valuable for the approach taken here, and that
the correspondence merits further study. Integration of the data algebra with
the algebra o f  operations o n  da ta  can  b e  found i n  t h e  wo rk  b y
VON HENKE [13]. The  emphasis there is on concepts; no attention is paid to
notation.

The concepts and notations used here have grown out of my attempts to use
the notations suggested by BIRD [4]. I n  trying to develop some small exam-
ples, I  was struck by the similarity of many of the laws formulated in PO (and
some more I had to invent myself). Investigating this intriguing phenomenon,
I discovered the higher-level algebraic framework underlying various similar
laws. Th is  incited me to  introduce modifications to the notation, aimed at
exhibiting similarities in the laws. These modifications have gone through vari-
ous stages; for example, the symbols for sequence concatenation and set union
were initially chosen to be similar; now they have been made identical.

The specific notational conventions, of all ideas presented here, should be
given the least weight. Th is is not to say that I feel that good conventions are
of secondary importance. I t  is obvious, however, that much work has still to
be done t o  strike the right balance between readability, terseness, and



dependability (freedom o f  surprises). On ly  through the use in  actual algo-
rithmic developments, by a variety of people, can progress be made.

Two examples are included. They were chosen as being the first two not
completely trivial problems that I tried to do in the present framework.

534776 + 1149269 = 1684045
540983 + 1143062 = 1684045
547190 + 1136855 = 1684045

1136855 +  547190 = 1684045
1143062 + 540983 = 1684045
1149269 + 534776 = 1684045

1. MATHEMATICS FOR SHORTCUTS IN COMPUTATION
In the Introduction, it  was claimed that to ascertain the validity of a more effi-
cient way of doing computations is to perform mathematics. Th is is still true
if the reasoning is informal: the important thing is that it  could be formalized.
A beautiful example is the feat ascribed to  Gauss as a  young schoolboy.
Asked to  compute the sum o f  an arithmetic progression, he astounded his
teacher by turning in  the correct answer while the other pupils were st ill
labouring on their first additions. We  cannot, of course, know with certainty
(if the story is true at all) what his reasoning was. Bu t  a plausible possibility
is the following. Assume, for concreteness, that the task was to sum the first
one-hundred terms o f  the arithmetic progression 534776, 534776+6207 =
540983, 540983+6207 =  547190, •  - • T h i n k  of all those numbers, written
in a  column, and the same numbers in  a  second column, but this time in
reverse order. So the first number in the second column is the number on the
last line of the first column, which is 534776-1-99x 6207 =  1149269. Next ,
add the numbers horizontally, giving a third column of one-hundred numbers.

am eaaaa r as igc , , ,

S +  S  1 6 8 4 0 4 5 0 0

FIGURE 1. Reconstruction of young Gauss's mathematical reasoning

Now we see a phenomenon that is not hard to explain. I f  we go down by
one line, the number in the first column will increase by 6207. The number in
the second column will decrease by the same amount. Th e  sum of the two
numbers on each line will, therefore, remain constant. S o  the third column
will consist of 100 copies of the same number, namely 534776+1149269 =
1684045. Now, call the sum of the numbers of the first column S (Th is is the
number to be determined ) The second column must have the same sum, for it
contains the same numbers. The  sum of the numbers in the third column is
then 2S. Th is sum is easy to compute: it  equals 100x 1684045 =  168404500.
So S =  li•168404500 =  84202250. This "reconstruction" is rendered schemati-
cally in figure 1. I t  is noteworthy that the proof involves an intermediate con-
struction that, i f  actually performed, would double the effort. The  method is
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easily generalized: i f  a is the first term of the progression, b is the increment
and n is the number of terms to be added, we find a +(n —1)b for the last
term, and so S =  n  (2a +(n- 1 ) 4  The  use of variables does not make the
reasoning any less informal, of course.

Now, this was just an example, but substantial parts of mathematics consist
of showing that two different construction methods will (or would) give the
same result. Often one of the two is the original formulation of a problem to
be solved, and the other one gives a construction that is much easier to per-
form.

It is also interesting to dwell for some time on the question of when we con-
sider a mathematical problem solved. I n  mathematics we make no sharp dis-
tinction between the problem space and the solution space: both "problems"
and "solutions" may have the form o f  construction methods. T o  call an
answer a "solution" requires in the first place that it  have the form either of a
construction method, or of a problem for which we have, in our mathematical
repertoire, a standard method for solving it. Th is requirement is not sufficient.
For example, a mathematician will respond to the problem of determining the
larger root of x
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problem. I t  is true that we have methods to approximate V s numerically—
for most purposes the best one is the Newton-Raphson method—but such
methods w i l l  serve equally we l l  t o  approximate t h e  la rger ro o t  o f
X
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a case that we know how to handle". I f  that were the meaning, any quadratic
equation would be its own solution. Ou t  of the possibly many candidates for
being solutions according to this requirement, mathematicians select one that
allows a concise, elegant, formulation. We  shall return to this issue in a dis-
cussion of mathematical notation, in Section 3.

2. TRANSFORMATIONAL PROGRAMMING
The first published method for proving program correctness with mathematical
rigour is that of FLOYD [10]. Essentially the same method was suggested ear-
lier b y  N A M  [211. Bette r known is  the (semantically related) axiomatic
approach of HOARE [14]. A  technical objection to these methods is that they
require the formulation o f  "intermediate assertions", i.e., predicates whose
domain is the state space of an abstract machine; in  more complicated cases,
these predicates may grow into veritable algorithms themselves, and the con-
ventional notations from predicate logic do not suffice to write them down.
What makes program proving especially unsatisfactory is the following. Th e
activity of programming, even in its present undisciplined form, already impli-
citly contains the essential ingredients for the construction o f a correctness
proof. These ingredients are present in the programmer's mind while develop-
ing the program. F o r  example, a programmer may be heard muttering: " R
must be at least l  here, otherwise this code would not be reached. So  I  can
omit this test and ...". None of this, however, is recorded.

•tt.
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Program proving requires now that a  unique implicit correctness proof be
made explicit after the fact. B u t  such a  reconstruction is in  general much
harder than to  invent some proof in  the first place. A lso ,  i t  would be
uneconomic to attempt to prove the correctness of a given program without
verifying first that it handles several test cases successfully. Bu t  it is unrealistic
to assume that programmers would go—unless forced—through the effort of
proving apparently "working" programs correct.

This objection does not apply to the constructive approach advocated by
DUKSTRA [8],[9] and WIRTH [27], [28]. (Th e  technical objection mentioned,
however, does.) Here, the construction of the program is a result of the con-
struction of the proof. Typical to the practical use of this approach, however,
is that the program-under-construction is a hybrid, in  which algorithmic nota-
tions are mixed with parts that are specified in natural language. Fo r example,
if  we look over the shoulder of a programmer using this method of "stepwise
refinement" or "top-down programming", we might see first:

"ensure enough room for T in curbuf"

in one stage of development, and in the next stage

while "not enough room for T in curbuf' do
"ensure nxtbuf n i l " ;
curbuf, n x t b u f ,  axthufisucc

endwhile

Although a big leap forward, the imprecision of the way the undeveloped parts
are specified is unsatisfactory. I n  the example, it  is probably the case that the
task to "ensure enough room for T  in curbuf' can be solved by emptying
curbuf a n d  t h e  t a sk  t o  "ensure n xth u l •0 n il"  b y  t h e  assignment
n xtb u f
.
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certain invariants to be maintained. I t  is, in  principle, possible to attain the
desired degree of precision, but the method itself does not incite the program-
mer to do so.

The same problem is not present in  the method o f  "Transformational
Programming"—at least, in  its ideal form. I n  its essence, Transformational
Programming is simple start  with an evidently correct—but possibly hope-
lessly inefficient—program, and bring this in to  an acceptable fo rm by a
sequence o f  "correctness-preserving" transformations. I n  contrast t o
mathematics, where the symmetrical relation "  " ,  i.e., " is equal to", plays a
central role, the central relation here is the asymmetric "may be replaced by",
1denoted by "  " .  B u t  at a ll stages, one has a correct program, with a pre-
cisely defined meaning. Th is  way o f  manipulating a  sequence o f  symbols

1. A  simple example of  this asymmetry is i n the development of the task T  =  "Given a prime
number p, find a natural number n such that n
2 + n + p  i s  
c o m p o s i t e " .  
T h e  
d e v e l o p m e n
t  
s t e p  
t h a t

comes to mind ( for  a programmer) is to replace T  by T '  =  " F i nd the smallest such natural
numbee. A  mathematician would probably replace the task by  T "  =  "Take n =  p". T hen
T 7 "  and T T " .  But  T'  and T"  are not interchangeable; for  example, i f p =  2, then 7" finds
n I ,  and in fact, they do not produce the same value of n for  any value of p.
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brings us closer to the ideal of "Algorithmics" aimed at. Th is is expressed in
the following quote from a paper by BIRD [3], describing a new technique of
program transformation: "The manipulations described in  the present paper
mirror very closely the style of derivation of mathematical formulas." There
are several impediments to the application of this method. I n  the first place,
the more usual algorithmic notations in  programming languages suffer from
verbosity. Th is makes manipulating an algorithmic description a cumbersome
and tiring process. T o  quote [3] again: "As the length of the derivations tes-
tify, we still lack a convenient shorthand with which to describe programs."
Furthermore, most programming languages have unnecessarily baroque seman-
tics. I n  general, transformations are applicable only under certain conditions;
checking these applicability conditions is all too often far from simple. The
asymmetry of "  m a k e s  these transformations also less general than is usual
in mathematics. The  requirement that the initial form be a program already
(and "evidently correct", a t  that), is not always trivia l to  satisfy. I n  this
respect, the method is a step backwards, compared to Dijkstra's and Wirth's
approach. Finally, there is a very important issue: which are the correctness-
preserving transformations? Ca n  we give a "catalogue" o f  transformations?
Before going deeper into that question, it is instructive to give an example.

Take the following problem. We  want to find the oldest inhabitant of the
Netherlands (disregarding the problem o f  there being two o r more such
creatures). The data needed to find this out are kept by the Dutch municipali-
ties. Every inhabitant is registered at exactly one municipality. I t  is (theoreti-
cally) possible to lump all municipal registrations together into one gigantic
data base, and then to scan this data base for the oldest person registered, as
expressed in figure 2a in "pidgin ALGOL".

input dm, mr;
g d b :
,  
0 ;
for m E dm do

g d b :
,  
g d
b  
U  
m
r
[ r
n
]

endow;
a o i :
,  -
c o
;

for i E gdb do
if i•age >  aoi then

oi, l . a g e
endif

endfor;
output oi.

FIGURE 2a. Program A for determining the oldest inhabitant

A different possibility is to determine the oldest inhabitant for each munici-
pality first. The  oldest person in the set of local Methuselahs thus obtained is
the person sought. This is expressed in figure 2b.

Replacing (possibly within another program) program A by program B is
then a transformation. Were  there no inhabitants of the Netherlands, both
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input dm, mr;
sim:= 0;
for m E dm do

aim : —  oo;
for i e mr[m] do

if i•age >  aim then
1m, i • a g e

endif
endfor;
sim s i m  U (im)

endfor;
aoi := —oo;
for I e sim do

if  i•age >  aoi then
oi, aoi := I, i•age

endif
endfor;
output oi.

FIGURE 2b. Program B for determining the oldest inhabitant

(Vm e dm: mr[m] =  0 )V  (Vm e dm: mr[m] X  0).

programs would have an undefined result. Th is is generally not seen as affect-
ing the applicability of the transformation A B .  B u t  if—assuming at least
one inhabitant in  the country—some municipality had no registered inhabit-
ants, then program A would have a defined result, whereas the outcome of B
might be undefined. (The problem is that in the line "sim : = sim U (im)"  the
variable im has no defined value if the empty municipality is the first one to be
selected by " for m E dm do".) So the transformation A B  has the following
applicability condition:

We happen to know that for the given application this condition is satisfied,
but it  is easy to think of applications of this transformation where it  is less
obvious and has to be checked. Overlooking such conditions that are only
exceptionally not satisfied is a typical source o f programming errors. No te
that a human interpreter of the original descriptions in natural language would
almost certainly handle exceptional cases reasonably.

How large must a catalogue of transformations be before it is reasonable to
expect it to contain this transformation? Obviously, unmanageably large. I t  is
possible to  have a  manageable catalogue, and to  require proofs o f  other
transformations that are not in the catalogue. B u t  how do you prove such a
transformation? Hopefully, again with transformations, otherwise the practi-
tioner of Transformational Programming needs two proof techniques instead
of one. Bu t  what transformations will gradually transform A into B?
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As another example, consider young Gauss's "transformation". Th is may be
expressed as

input a, b, n;
sum, t  0 ,  a;
for i from 1 to n do i n p u t  a, b, n;

sum, t  s u m +  t, t  +b o u t p u t ( n
/  2 )  x ( 2 x a  
- - 1 ) x  
b )

endfor,
output sum

Again, this is an unlikely transformation to be catalogued. No w compare this
to the mathematical derivation:

2  {a +(i — =  [ 2  (a +(i —1)0 +  2  (a +(i —1)141a =1 a  =1 a  =1
n

[ n  n
1 E  fa +(i — IA) +  2  {a +(rt —i)b) =  1 E  t2a -1-01 —DM =i =1 i  =1 i  =1

(7.a + (n — 1)b}

It is usual in presenting such derivations to omit obvious intermediate steps,
and this one is no exception. F o r  example, the first step has the pattern
S -1 -(S  +S); a  complete derivation wou ld  have S  =  IS  =  (1 -2 )S =
-1-(2S) =  1
2
-(S  
+ S ) .  
N e v
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twice to check it  is the substitution of n + 1— i for one of the two summation
variables

In what follows, an attempt is made to sketch an "algorithmic language" to
overcome the drawbacks mentioned. To  give a taste of what will be presented
there, here, in  that language, is the "transformation" A  2  B o f  the oldest-
inhabitant problem:

t
a
g
e
/  
+
/
m
r
.
d
r
n 
t
a
g
e
/
(
l
a
g
e
/
m
r
)
.
d
m
.

Comparing this with figure 2a and 2b should explain my complaint about the
verbosity of algorithmic languages. A n d  yet that pidgin is a terse language
when compared to those mountains of human achievement, from FORTRAN to
Adal..' No t e  also the reinstatement o f  the symmetric "  " ,  which wil l  be
explained in Section 6.

The emphasis on the similarity with Mathematics creates a clear difference
with much of the work in the area of Transformational Programming, such as
that of the Munich CIP group (BAuER et al. [2]). I n  that work, the emphasis
is on creating a tool for mechanical aid in, and the verification of, program
development. The  prerequisite of mechanical verifiability puts its stamp on a
language. Note that the language of Mathematics has not been developed with
any regard to mechanical verifiability; the only important factor has been the
sustenance offered in  reasoning and in  manipulation o f  formulae. I n  this
respect, the approach of, e.g., BIRD [3] is much more closely related, even if  its
framework is different. To  quote that paper once more: "[...] we did not start
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out, as no mathematician ever does, with the preconception that such deriva-
tions should be described with a  view to immediate mechanization; such a
view would severely limit the many ways in which an algorithm can be simpli-
fied and polished." The main point is, perhaps, that in my view the language
should be "open", whereas mechanical verifiability requires a closed and frozen
language. To  prevent misunderstanding of my position, I  want to stress that I
sympathize with  the thesis that systems fo r the complete verification o f  a
development are extremely valuable, and that research and development in
that area should be vigorously pursued. I  hope—and, in  more optimistic
moments, expect—that the different line of approach followed here will, in the
long run, contribute to better methods for program design and development,
and to better systems for mechanical assistance in these tasks.

3. THE ROLE OF NOTATION IN MATHEMATICS
When Cardan breached his pledge of secrecy to Tartaglia and published the
first general method for solving cubic equations in  his Ars Magna (1545), he
described the solution of the case x
3  + p x  q  
a s  
f o l l o w s  
[ m y  
t r a n s l a t i
o n ] :

RULE
Raise the third part of  the coefficient of  the unknown to the cube, to
which you add the square of half the coefficient of the equation, & take
the root of the sum, namely the square one, and this you will copy, and
to one [copy] you add the half of the coefficient that you have just multi-
plied by itself, from another [copy] you subtract the same half, and you
will have the Binomium with its Apotome, next, when the cube root of
the Apotome is subtracted f rom the cube root  of  its Binomium, the
remainder that is left from this, is the determined value of the unknown.

This description strikes us as clumsy, but at the time, no better method was
available. Th is "clumsiness" stood directly in  the way o f mathematical pro-
gress. Take, in  contrast, a  description o f the same solution in  present-day
notation:

SOLUTION OF THE EQUATION X 3 +px .  q.

Then x .  Arg
. —  f a
-  i s  
a  
r o o
t  
o
f  
t h
e  
e q u
a t i
o n .

What are the advantages of this notation? Obviously, i t  allows fo r a more
concise description. Also, in Cardan's description, there might be some doubt
whether "the half of the coefficient" itself, o r its square, has to be added to
and subtracted from the copies. I n  present-day notation, there is (in this case)
no room fo r this doubt, and in  general, parentheses wil l disambiguate (i f
necessary) anything. Both of these advantages, however, are insignificant com-
pared to what I  see as the major advantage of the "algebraic" notation used
now, namely that it is possible to manipulate the formula for x algebraically.

36

e
N !
A'1.A

z

,



E i i M I T
A M M -
M l a
&

LV aM al
,  
' ' '
' ' '

So we see readily that
x
3 
b  
b
2 
a  
+
3
'  
b
a
2 
a

=  (b (
-
6 -
-
C 2 )

=  q — ( 3
-
6 ; ; ; ) x ,

and since
n

b a  C
2  [
1
1  
2  
—  
-  
[
L
-

2 3  ]
3

we see that indeed X
3  + p x  
=  q .  
N o  
m o r
e  
t h a
n  
h i g h
-
s c h o
o l  
m a t
h e m
a t i c
s  
w
a
s

needed to verify the solution. A  similar verification is impossible for the for-
mulation in  natural language. I f ,  at the time, our notations had been avail-
able, then the solution o f  the cubic equation would not have had such a
romantic history. A  disadvantage o f  modern notation is its suggestion o f
abstruseness, o f being an esoteric code. Undeniably, people can only profit
substantially from the major advantage mentioned above if they not only know
the meaning of the diverse squiggles, but are intimately familiar with them,
which takes time and practice. I  want to emphasize, however, that a descrip-
tion in natural language, as the one given by Cardan, is utter gibberish too to
the mathematically uneducated reader. Th is point would have been obvious,
had I chosen to use the "most literal" translation of the words in the Latin ori-
ginal, instead of present-day terminology. The  rule would then have started:
"Bring the third part of the number of things to the cube, ...".

In Section 11 stated that a requirement for "solutions" is that their formula-
tion be "elegant". Th is issue is connected to that of notation. I t  is matter of
context, taste, conventions and tacit agreement between mathematicians, what
constitutes "elegance". I t  is hard for us to understand why the ancient Egyp-
tians were so keen on expressing fractions in terms of quantities a s  in

41 1  ,  1  ,  1  ,  1  1  1  ,  1  ,  - 1
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For some reason, forms like g  did not belong to their solution space, but
quantities like d i d .  I f  we were to agree that, say, Q(p, q, r,  s), denoting
the largest root o f  the equation x
s  - 1 - p x
3  - 1 - q x
2  +  
r x  +  
s  
=  
0 ,  
b e l o n g
s  
t o  
o u r

solution space, then suddenly the general quintic equation becomes solvable
"algebraically". There is a reason for mathematicians not to take this way out.
The squiggle approach is helpful only if mathematical practitioners can acquire
sufficient familiarity with the squiggles, which imposes a limit on their number.
Given this limitation, some criterion must determine which concepts are the
winners in  the contention for a notational embodiment. Two  aspects deter-
mine the viability of a proposed notation. One is the importance of the con-
cept: is it  just applicable in some particular context, or does it come up again
and again? The  other is the amenability to algebraic manipulation: are there
simple powerful algebraic identities expressible in terms of the notation con-
sidered? Th e  Q-notation suggested above wi l l  be found lacking in  both
respects.
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4. NOTATIONAL CONVENTIONS FOR FUNCTIONS AND OPERATIONS
A program operates on input and produces output. Whether that input be a
"value", a data base, or a stream of requests, say, is immaterial to this abstract
viewpoint. Similarly, it  is immaterial if  the output consists of values, modifica-
tions to a data base, or a stream of responses. I n  the usual approaches to pro-
gramming languages, the distinction is, unfortunately, paramount in the con-
crete embodiment o f the program. Th is  obscures the deeper similarities in
possible program development steps. So  the first thing required is a uniform
notation, reflecting a unified conceptual framework. The notation used here is
that of a "function" operating on an "object". The result is a style that may
be called "functional". However, I  feel that the cherished distinction between
a functional (or "applicative") style of programming, and a  procedural (or
"imperative") one, is not as deep as supporters/opponents of one or the other
style would make i t  appear. A  much deeper difference is the distinction
between viewing an algorithmic expression, be it denoted as a function defini-
tion or as a while program, as an operational prescription for an automaton, or
as an abstract specification determining a relationship between input and out-
put. The price paid for taking the latter viewpoint is that this abstraction may
make it hard to express some transformations that derive their relevance from
performance characteristics of certain types of architecture. Such a transfor-
mation makes sense only i f  we commit ourselves to  a decision on how the
abstract specification is mapped to a process on a machine—although in due
time several natural "canonical" mappings f o r various architectures may
emerge. Moreover, if  the inverse mapping is not defined, a low-level transfor-
mation may lack a high-level counterpart. (Th is problem occurs in high-level
programming languages as well: t ry  to express in  Pascal, say, the low-level
optimi7ation that the storage for a global array variable that will no longer be
referenced can be used for other purposes.) Since computing resources will
always remain scarce—relative to our unsatiable need for processing—this is
not a minor inconvenience. Some consolation can be found in  the thought
that many of these transformations are well understood and can be automated
relatively well (e.g., recursion elimination; tabulation techniques; low-level data
structure choice), possibly sustained by "implementation hints" added to the
program text.

The main ingredients of our language will be "objects", (monadic, or unary)
"functions", and (dyadic, or binary) "operations". Functions always take an
object as argument, and return an object. Operations are written in infix nota-
tion, and may take an object, a function or an operation as left operand and
an object as right operand. They return an object. Function application is
(notationally) not treated as an operation (although, f rom a  mathematical
point of view, it  is one, of course). I t  is simply denoted by juxtaposition, usu-
ally leaving some white space fo r legibility o r to  delineate the boundary
between the lexical units involved. So, if  f  is a function and x is an object, f x
stands for the application of f  to x. I f  g is then applied to fx,  this may be
denoted by g fx. Function composition, usually written in mathematics in the
form gof, is  also denoted b y juxtaposition, without intervening operation.
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This makes expressions such as h g f  and g fx ambiguous. B u t  semantically,
there is no ambiguity: the expressions specify the same, since (h g )f  denotes
the same function as h (g  f), and (g  f )x  the same object as g  (fx). (Th e
reader should note that these identities are algebraic, and about the simplest
ones possible.) I n  fact, the wish to  omit as many parentheses as possible
without depending on priority rules motivated this unconventional convention.
In particular, it  removes the somewhat annoying disparity between an identity
expressed on the object level, as in

(g(x)) = ( x ) ) ,
and its expression as functional identity, as in

f og =  g'of .

A drawback is that this convention does not indicate how to denote the appli-
cation of a functional (higher-order function) to a function argument; in  the
general case, a function may be so generic that it  might both be composed
with and be applied to another function. A n  example is the identity function;
in that particular case, the distinction is semantically unimportant, but fo r
other functions it is not. So some operation will be needed to denote function
application in the general case. (Actually, it  turns out possible to denote func-
tion application with the operations provided in  the sequel, but only in  a
clumsy way.)

If x  is an operation, then x X y denotes the application of x  to x and y. I n
general, parentheses are needed to distinguish, e.g., f ( x x  y) f rom ( f x )x  y.
The interpretation of f x  x y in  the absence of parentheses is f ( x x  y). I n  a
formula x x  yxz, the absence of parentheses implies, likewise, the interpreta-
tion x x(y x z). Th is convention is similar to the right-to-left parsing conven-
tion of APL.

Note. I n  derivations, chains may occur like e
l =  e
2  =  •  •  
•  T h e  
c o n n e c -

tive signs ("  = " etc.) in  these chains are meta-signs, and are not to be con-
fused with  operations (in  particular, the operation ,  which takes two
operands and delivers a truth value). They will always give precedence to the
operations in the expressions e
i
.

A further reduction of the number of parentheses is made possible by the
following convention. A n  expression of the form "a  ; fi"  stands for " (a) /3".
The—purely syntactic—operator " ; "  takes lower precedence than the seman-
tic operations. I f  several " ;"s occur, they group from left to right: " a  ; f3 y "
stands for "((a) 6 ) y".

An important convention is the following: I f  x  is some operation, and x is
an acceptable left operand for x  , then the notation "x x"  stands for the func-
tion Ay: x x y. No te  that x  x y is now syntactically, but not semantically,
ambiguous, since (x x) y denotes the same object as x  x y. I n  the notation
f x  x the meaning is always f  (xx), so it denotes a functional composition. I f
the meaning ( f x )x  is intended, parentheses are required (or, equivalently, the
notation fx;  x can be used). Th is convention makes it also possible to define
the meaning of an operation x  in  the following form:
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Let x be T h e n  x x denotes the function F
xThe meaning of x x y is then that of F

x y .Now, f o r  example, 1  + V
-  i s  
d e fi n e d :  
i t s  
m e a n i
n g  
i s  
I
+  
;  
=

Ay: 1+y;  0 X x :  I +  \rx
--
.

Finally, if  x  is an operation that takes two objects as operands, and f  and g
are functions, then f xg  stands for the function A x : ( f x ;  Xg x).

The aim of these conventions is only to increase the usability of the formal
language. The proof is therefore in the practical use. I t  will take time, and the
experience of a variety of practitioners of Algorithmics, to find the most help-
ful notational conventions. No te  that the current mathematical practice o f
using the sign " + "  for addition and juxtaposition for multiplication, and to
give multiplication precedence, has taken it s t ime  to  become universally
accepted—after the general idea of using an algebraic notation was already
commonly accepted. A lso ,  i f  the language is as open as the language o f
Mathematics, i t  is possible to adopt other conventions locally when this is
more helpful in dealing with the problem at hand.

To define functions and operations concisely, we use, in addition to lambda
forms, the convention of BURST/U-1, and DARLINGTON [6]. F o r  example, the
following lines define the Fibonacci function:

Fib 0 0 ;
Fib 1 1 ;
Fib n +2 F i b  n; F i b  n +1

The variables on the left-hand side of "  are dummy variables for which
values are to  be substituted such that the left-hand side matches the actual
function application; then the right-hand side, after applying the same substi-
tutions, is equal to the function application and may replace it  in a formula.
This step is known as "Unfold"; the reverse operation as "Fold". A  canonical
evaluation can be defined b y systematically unfolding, thus providing an
operational semantics BtnisTALL and DARLINGTON show that an orna7ingly
large number o f  transformations can  b e  expressed a s a  sequence o f
Unfold/Fold steps A s  long as i s  interpreted as equality, this is generally
safe. I f  i s  interpreted in terms of the canonical evaluation, then a Fold
step may introduce non-termination where it was not present.

5. STRUCTURES
In giving an algorithmic description, we are generally not only concerned with
elementary values, like  numbers and characters These are combined into
larger objects with a certain structure. Fo r  example, in  some application we
may want to compute on polynomials, represented as a  sequence o f coeffi-
cients, or with a file of debtors. The usual algorithmic approach to such aggre-
gate structures has grown from the aim of obtaining an efficient mapping to
the architecture o f  concrete computational automata. F o r  the purposes o f
Algorithmics, we need a more algebraic approach. Th e  domain o f  data on
which a  program operates usually has some algebraic structure. Th is  fact
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underlies the work in  the field o f  algebraic data types. However, since the
motivation there is not to obtain a simple algebra, but to achieve representation
abstraction, the types as specified by way of example in the papers in this field
are not usually algebraically (in the al-jebr sense) manageable. I f  they are, as
for example the type o f  natural numbers, o r the type o f  McCarthy's S -
expressions, the structure o f algorithms operating on objects o f  these types
tend to reflect the structure of the objects. I n  algebraic terms, the function
relating the input to the output is a homomorphism Th is  observation under-
lies the work by VON FIENKE[13]. (The  work by JACKSON[15]—best known
outside of Academia—can be viewed as based on the same idea, although the
term "homomorphism" is not used there.)

Let us start with algebraic structures that are about as simple as possible.
Using the notation of MCCARTHY[17], we have

SD D  ED SD X SD
This defines a domain of "D-structures", each of which is either an element of
the (given) domain D (e.g., numbers, or sequences of characters), o r is com-
posed of two other D-structures. T o  practitioners of computer science, i t  is
virtually impossible to think of these structures, McCarthy's "S-expressions",
without a mental picture of an implementation with car and cdr fields from
which arrows emerge. T o  mathematicians, however, this domain is simply a
free groupoid, about the poorest (i.e., in  algebraic laws) possible algebra, and
computer-scientists will have a hard time explaining to them how arrows enter
(or emerge from) their mental picture.

We need some notation for constructing such structures. We  construct a D-
structure by using the function "  ̂  " and the operation " +". I f  x is an element
of D, then ^x will stand for the corresponding element of SD. Th e  monadic
function ^ is, of course, an injection. I t  is a semantically rather uninteresting
function, and it could be left unwritten in many cases without ambiguity. A s a
compromise, the application of ^ to  x is written as i f  this is typographically
reasonable. I f  s and t are D-structures, then s + t denotes the D-structure com-
posed of s and t. The  set SD consists then of all structures that can be built
from D by a finite number of applications of ^ and +  ( I t  is also useful to
allow an infinite number of applications; this possibility will be ignored here to
keep the treatment simple.)

The diligent reader will have noticed an important difference between the
structures defined now, and the S-expressions as used for Lisp. The value nil
is missing. We  can introduce it by writing (using "0" instead of "nil"):

SD D  1331 (0) El) SD X SD
Algebraically, however, this makes little difference, the domain obtained is iso-
morphic with SD (0 ),  i.e., the one obtained by the previous construction if  D
is first augmented with  an element O. I t  becomes more interesting i f  we
impose an algebraic law: s +0 =-• 0+s s .  Th is gives about the poorest-but-
one possible algebra. N o w  we have a  more dramatic deviation f rom the
S-expressions, for it is certainly not the case that, e.g., cons (s, n il) ,  s.
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The previous law is known as the identio
, l a w ,  a n d  a n  
e l e m e n t  
0  
s a t i s f y i n g

this law is called an "identity (element)". Note  that an identity can always be
added, but that there is at most one identity in a groupoid.

We can go further and consider structures on which other algebraic laws are
imposed. O f  particular interest are the laws o f  associativity: s  +(t  +u) =
(s + t )+u ;  of commutativity: s + t  t  +s; and finally of idempotency: s +s --=
s. The interesting thing now is that the structures obtained correspond to fam-
iliar data structures: we get, successively, sequences, bag4 and sets. Fo r sets, ^
is the function X x: ( 4  and +  is the set union U .  The identity law gives us
the empty sequence, bag or set. Th is relationship between familiar algebraic
laws and  familia r data structures has been pointed Out b y  Boom [51.
Sequences correspond to what are known in  algebra as monoids (o r semi-
groups if there is no identity).

The usual way of characterizing sequences algebraically uses an operation
"append (or prepend) an element". The  choice between using "append" and
"prepend" as the primitive operation introduces an asymmetry. The introduc-
tion of sequences by imposing associativity is quite symmetric. Th is way of
introduction gives a uniform approach, exhibiting the essential and deep simi-
larity between binary labelled trees (the S-expressions), sequences, bags and
sets. Th is can be used to express laws that apply to all these kinds of struc-
tures. T o  stress the similarity, +  will be used in all cases; a disadvantage is
that the type has then (at least in some cases) to be clear from the context.
The notation SD will likewise be used for all domains of such structures, and
not be reserved for the free S-expressions.

To prove laws, we can use the following lemma:

INDUCTION LEMMA. Let f  and g be two functions defined on SD, satisfying, for
all x ED and s and t E
(i) f 0  g O ,
(ii) f5c g .5c,  and
(iii) f s  + t  g  s +t, using the induction hypothesis

that f  s g  s and f  t g  t.
Then f  g .

PROOF. B y induction on the complexity of the function argument

If SD has no identity, then part (i) can of course be omitted. I t  is sometimes
easier, i n  particular f o r sequences, t o  replace ( i i )  and (i i i )  together b y
f s ± : i  g s - V . i ,  which gives the traditional induction on the length. Th e
advantage of the lemma as stated here is that it allows many laws to be proved
independently of the algebraic richness of SD.

To express interesting laws we first need some general operations, that also
play an important role in Backus's FP. The  notation used here for "applied-
to-all" has been taken from [4]; the APL notation is used for "inserted-in".

1. Bags (or  m u l t i
-
s e t s ) ,  
u n d e r r e p
r e s e n t e d  
i n  
m a t h
e m a t
i c s ,  
a
r
e  
u b i
q u i
t o u
s  
i
n  
c o
m p
u t
e r  
s
c i
e
n
c
e .

They differ from sequences in that the elements have no order, and from sets in that an element
can occur more than once.
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Applied-to-all. L e t  f  be a function in  D 1 --> D2. Then f *  stands
for the function in S
D
.  — }  S
D
,  
s a t i s f y i
n g

(i) p  0 =  0 ,
(ii) 5 e  "  fx , and
(iii) f *  s + t  f *  s; + f *  t

So f  is applied to each "member" (elementary component) o f its argument,
and the result is a structure of the function values obtained. Fo r example, if  s
is the set of numbers 0 through 9, then 1+ i s  the set 1 through 10. Fo r f*
to be well defined, it  is required that +  on SA have at least the same alge-
braic richness as its counterpart on SD
I
: i f  +  o n  
S D ,  i s  
a s s o c i a t i v e ,  
t h e n  
s o  
i s

+  on SD„ and so on. I f  SD
I h a s  n o  
i d e n t i t y ,  
w e  
c a n  
s i m p l
y  
o m i
t  
p a r
t  
( i
)  
f r
o m

the definition. A  similar remark can be made in most cases in the sequel: the
laws are presented for structures with identity, but can easily be amended to
cover identity-less structures.

Inserted-in. L e t  x  be  an operation in  D X D  --> D. Th e n  x /
stands for the function in SD D  satisfying
(i) i f  x  has an identity e (so that e xx x  xe x ) ,  then

x / 0  e  ,
(ii) = -  x  , and
(iii) x / s + t  x / s ;  x x / t .

So i f  x  stands fo r the conventional multiplication operation, I T
X E S  x  i s  amore familiar notation for x/s. However, inserting an operator x  in  a struc-
ture s is only meaningful if  x  has at least the same algebraic richness as the
operation +  used to construct the structure. Th is means that if x  is multipli-
cation, then the notation x / s  is not allowed i f  s is a  set, fo r (in  general)

x. Otherwise, we  would obtain contradictions like  2  x /  2 =
x / 2 + 2  =  x / 2 ;  x x/2  2 x  2 =  4. (Alternatively, we  could define the
insertion as an indeterminate expression, depending on the choice of represen-
tatives from the congruence classes induced by the laws of + . )

The classes of functions f* and x /  are special cases of the homomorphisms
definable on SD. B y  combining them in the form x / p ,  all such homomor-
phisms can be expressed. This can be stated in the form of another lemma:

HOMOMORPHISM LEMMA. Let the function gE S D
-3
'  D '  b e  a  
h o m o m o t p h i s m ,  
i . e . ,

let there exist a function f e  D —) D' and an operation x  E D' X D' ---> D' with
identity X/0, satisfying; for all xe D and s and t E SD:
(i) g 0  =  X /0 ,
(ii) g  =  fx,
(iii) g  s + t  =  g s; Xg t.
Then g  =  x / f * .

PROOF. B y  the induction lemma. Fo r part (i), we have g 0 =  X / 0  =  x / p 0 .
For part (ii), g ;  =  f x  =  X r f x  =  X / p i  Fo r  part (iii), by the induction
hypothesis g s  =  x / p s  and  g t  =  x / p t .  T h e n  g s  +t  =  g s ; X g t
x / p s ;  x x / p t  x / f * s  +t.

\ W M  .  " . ʻ
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a t  that this gives an algebraic formulation of the "Divide and Rule" para-
digm Fo r part (in) tells us that to rule a structure s that is not atomic (i.e., to
compute gs), we can divide s in two parts, rule these, and combine the results
appropriately.

The operations * and / give rise to three important new laws.
LAW 1. Let fe  D2 —
> D 3  a n d  
g  E  
D  
1  
D 2 .  
T h e
n  
( f g
) .  
p  
g
.

LAW 2. Let fe  D D ' ,  x  D X D  —>1) and X ' e D'X D' ->  D' satis#
x x  y f x ;  x ' f y  and f  x/  0 x ' /  0

Then f  x/  =  x ' /  p
LAW 3. Let X E I) XD -4 D and let +  operate on SD.

Then x /  + /  =  x /  x /  * (where these functions operate on S
s D
) .

PROOF. Th e  proof (by induction) of law I  is straightforward. L a w 2 is an
application of the homomorphism lemma, by taking f  x/  for g and x '  for x
Law 3 is an application of the same lemma, with x /  for f  and x /  +/  for g.
Each of these laws corresponds to a whole set of program transformations.
Since the law g *x+y  g . x ; + g . y  holds, and g* +/O =  + /O  (since 0 is the
identity of + ,  we have + /  0 =  0), we can apply law 2, with g. fo r f  and +
for both x  and x' ,  to obtain

COROLLARY. Let g. a SD —> SD
, T h e n  g .  
+ /  
= - -  
+ /  
g . *

The importance of the corollary is that it  has no condition to be verified, in
contrast to the complex applicability condition of the law from which it  was
derived.

This game can be continued on more complicated algebras T h e  simple
cases dealt with above, however, already give rise to  a  surprisingly fruitful
range of identities. Fo r example, the identity mentioned in Section 2, which in
functional form reads ta r/  -1-/mr* ,  age
/ ( t
a g
, /  m r )  * ,  
i n  w h i c h  
m r  
i s  
u s e d  
a s  
a

function, is derived as follows

Ca
g
e /  
+
/
m
r
*  
t  
a
g
e
/
t
a
g
e
i
.
m
r  
(
b
y  
l
a
w  
3
,  
u
s
i
n
g  
t  
a
g
e  
f
o
r  
x
)

=  a g e
/  O
s  
a g e
/
M r )
.  
(
b
y  
l
a
w  
1
)
.

This identity applies then to  trees, sequences, bags and sets. Indeed, the
transformation A  • B  is valid, irrespective o f  whether the inhabitants are
registered in orderly ledgers, or in bags. I t  is possible that l
e g e
/  i s  n o t  m e a n -
ingful on the structures considered, but then both sides of the identity are
meaningless.

A particular type of structure is obtained by taking the point domain {4 ,
containing one single element L. Assume +  is at least commutative, and define
1 ,  2. Then  each member o f  S  (,), except 0, can be written in  the form
I + +  I. I n  this particular case, associativity implies cornmutativity, since
the is  are indistinguishable. (Th is is not true if  we allow infinite structures.)
If identity, associativity and commutativity are the only laws for +  , so that,
e.g., I  + I ,  then S =  N, the natural numbers, and +  has the conven-
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tional meaning of addition. I f  idempotency holds too, we obtain a set with
two elements, 0 and 1, which will be identified with "false" and "true", respec-
tively. The meaning of +  on this domain is that of V  , the "logical or" opera-
tion.

6. Fre rmo u s VALUES
Since antiquity mathematicians have been confronted with  equations that,
although not inconsistent, were nevertheless "impossible". A  simple example
is the equation s +8 =  5. I f  a shepherd adds eight sheep to his flock, i t  is
impossible that the result is that the flock contains five sheep. A n d  yet,
discovered the mathematicians, it is possible to practise an internally consistent
mathematics with  fictitious quantities such as " 3  short". I n  this way the
notion of "number" has been extended from natural to, successively, integral,
rational, algebraic, real and complex numbers. Today we are so familiar with
all this that it  is hard to realize what triumph of intellect the invention must
have been to denote "nothing", something "non-existent", with a symbol like
"0". Wh y has mathematics gone the way of accepting "fictitious values" on an
equal footing? The answer must be that for mathematical practice the simpli-
city of the algebraic laws prevailed over semantic doubts about the necessary
extensions of the notion of "value". Nowadays, we feel no qualms in stating
that the set of primes that are also squares is empty, rather than that such a
set is "impossible". On ly  one century ago, this was not so easy. Th e  well-
known mathematician C .  DODGSON —well-known f o r  o ther than  h is
mathematical writings—advocated that universal quantification over such an
"impossible" set would stand for a contradiction. Nobody could have worded
the arguments better than he, but nothing has stopped mathematics from going
the way of algebraic simplicity, in spite of all "common sense", leading to the
currently universally accepted interpretation, which is just the reverse. So now
we have

(VX E S : p (x)) D (Nix E S': p (x)) fo r all p i f  S '  C S

The Carrollean definition would have required, instead o f " i f  S' c  S", the
much more complicated " i f  S 0  V S' 0  A  S' C S”. Ye t  it  is important
to realize that all this is a matter o f convenience, and not o f mathematical
necessity. I f ,  for example, we define <  between sets over an ordered domain
by

S <  T i f  Vs'e S:Nit T :  s <  t,

then under the present interpretation <  is not transitive, whereas i t  would
have been so, had nineteenth-century "common sense" prevailed. S o  the
advantages of the current convention are not unequivocal.

The problem that arises in the oldest-inhabitant problem treated in Section 2
if  some municipality is without inhabitants, can be solved by introducing the
fictitious value "Nobody". I n  more mathematical terms, the domain of inhab-
itants forms a semi-lattice (disregarding inhabitants of equal age), and, as is
well known, it  is always possible to add some bottom element to it. I f  we
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eral, i f  some operation x  has no identity in  its domain, we can extend the
domain by adding x/O as its identity. The  properties of x/O are completely
determined by the relevant algebraic laws. I n  particular, we see that it  is an
identity of x  from x x  x/O x / S e ; X  x/O + 0  x /
s
c  =  x .  S u c h  
a

fictitious value can drastically simplify an algorithmic description; for that rea-
son, i t  is not uncommon to find the notation co in  algorithms described in
"pidgin ALGOL". The important insight is that such a domain extension is, in
general, consistent. Inconsistencies can arise through additional laws, o r
through interference between laws involving several operations in  a domain.
To give an example of the possible pitfalls, let the operation <  be defined by

This operation is associative, since (x < y)<z < ( y  < z). Th e  function
< /  selects the first element of a sequence (or the leftmost element of a tree).
Now consider < /O ,  where 0 is the empty sequence. Then < / O ;  < x  x ,
since < / O  is the identity o f < .  B u t  from the definition o f  < ,  we have
</O; < x  =  < /O .  So  x =  < / O  for arbitrary x. The  problem arises since
the law x <  y x  has already assigned a value to a formula containing the
newly introduced identity. I n  fact, each element is a so-called right-identity of
<  ; i f  a semi-group contains both a left- and a right-identity, then it  is well
known that they must coincide. I f ,  for algorithmic purposes, a fictitious ele-
ment < / O  is desirable, we must choose between two possibilities to retain
consistency: either restrict the law x < y  =  x to x X  < /O ,  or use < / O  as a
right-identity only (in which case the law < / s  + t  =  < / s ;  <  < / t  requires,
of course, the restriction s X  0). Wh ich  solution is best depends on the con-
text.

For the applicability o f the methods o f  "transformational programming"
and especially of "programming by stepwise refinement", it  is important that
algorithmic descriptions allow a certain amount of "indeterminacy". We  may
then find descriptions like "Let x be an element of s". The correctness of the
algorithm does not depend on the element chosen, and so permits arbitrary
choice. Th is type of "arbitrariness" should not be confused with the intended
chaotic arbitrariness of pseudo-random generators. I t  only indicates a freedom
that is left in realizing the algorithm, and which can be used, e.g., to achieve a
simplification through a judicious choice of x. No w what if  s 0 ,  the empty
structure? The usual approach is then that the meaning of "Let x be an ele-
ment o f  s" is "undefined", an entity that is loved by semanticists but best
avoided by programmers. L e t  us use the symbol t o  denote an unspecified
choice: the operation of making an arbitrary choice between two values. So
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solution for y. The expression 192 may yield I ,  but may as well yield 2 (but
not 3). The operation i s  associative: (x y)Oz is equivalent to x 9 (yOz). I t
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is also commutative and idempotent. So  0 /  s stands for an "arbitrary" choice
from the structure s. Choosing from an empty structure can now be described
with the formula 0 /  O. B u t  no choice is possible, so what is the meaning of
this formula? The answer is: "Nothing". A  more learned answer is that 0/0
represents the =satisfiable specification. I n  essence, the  question is  as
unanswerable as the question what i t  means to take the square root of
The meaning of 0/0 is given by the algebraic laws it  satisfies; beyond that, it
has no inherent meaning, any more than cc, A r 2
- -
, 1  o r ,  f o r  
t h a t  m a t t e r ,

3 have one. So, in particular, its meaning is that it satisfies x 0 =  x. I n
words, i f  we may choose "freely" between x  and Nothing, then we must
choose x.

An important identity for a is

fx [ ly  = l x ;  f y  .
This corresponds to what is known in Formal Semantics as the "monotonicity"
of f  We  know then, from law 2 of Section 5, that f  II/ =  f *  A  prere-
quisite for general applicability of this law here, is, however, that the function
be "strict", i.e., that the identity f  =  WO be satisfied as well. ( I n  Formal
Semantics, a function f  is called " ( e r r o r
-
) s t r i c t "  o r  
" b o t t o m  
p r e s e r v i n g "  
i f  
f  
( x )

is "undefined" (or "the error value") whenever x is. The pseudo-value WO can
serve here, more or less, as a denotation of an "error value") Ma n y other
identities require that the functions involved be strict. Th a t  a  function is
indeed strict will sometimes follow from its definition. I n  other cases, such as
for the constant function 0 < ,  it  does not; i f  strictness is not necessary, we
have to specify what we want. I t  is, o f course, possible to take strictness of
functions as an immutable characteristic of the framework. Bu t  this is undesir-
able. I n  particular, if  0/0 is an identity of the operation El, this gives simpler
algebraic laws. Since then x0 0/0 x ,  the function x  canno t  be strict for
satisfiable x, and so the identity x  0 0/s =  0 /x0  *s requires the restriction
s O .  A  reasonable convention appears to be that a function f  is only strict
if  the algebraic identities assign no other meaning to f  0/0, or, o f  course, i f
strictness is explicitly specified. Then ^ , + ,  and all functions of the forms p
and x / ,  are strict. Moreover, =  must be strict, to prevent pathological para-
doxes as would be created by f x  i f  fx W O  then x else 0/0.

We can now define the asymmetric relation i n  terms of =  a n d  B, for
p q  has the same meaning asp p 0  q. A  consequence is that p W O  for
each p; fo r that reason programmers are well advised not to  interpret "
too literally as "may be replaced by": otherwise, "Nothing" would remain of
programming.

7. ABSTRACT ALGORITHMIC EXPRESSIONS
The expressions we have encountered until now are algorithms, in  the sense
that we could construct an automaton that accepts such expressions and—
provided that the value of all variables is known—produces a result in a finite
amount o f  time. Th e  first mathematical formulae were, likewise, computa-
tional prescriptions. When we now manipulate formulae, it  is the exception
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rather than the rule that we are concerned with the efficiency of evaluating the
formula; whether we replace x
2  —  y
2  b y  ( x  
y ) ( x  
— y ) ,  
o r  
p r e f e
r  
t h
e  
r e p l
a c e -

ment in  the opposite direction, depends on the context Likewise, we must
abandon our fixation on efficiency if algorithmics is to enjoy a fruitful develop-
ment. I n  general, developing an efficient algorithm will require that we first
understand the problem, and for this we need simple algorithmic expressions;
but to simplify an expression we have to shed our old habits I n  mathematics,
a formula like l im sup„ , „,  a r  shows that the thought o f  a  constructive
prescription has been abandoned. Fo r algoritlunics, it is similarly useful not to
cling to the idea that every algorithmic expression must be interpretable by an
automaton. A n  interesting step, that has not yet been explored, is to extend
the notion o f  "structure" to  structures whose finite constmctibility is not
guaranteed, o r is even provably impossible. So ,  fo r example, the function
infrep defined by

infrep x ; c +  infrep x
would define an infinite structure of "es.

For the time being, the primary purpose is to allow algorithmic expressions
that serve purely as specifications A n  example of a possible specification is, in
natural language, "a counterexample to Fermat's Last Theorem". Even though
we do not know, a t the time of writing, how to construct one, we can (in
theory) recognize one if it exists B u t  even the uncertainty about the existence
of a counterexample does not make the specification vague; i t  has a precise
and well-understood meaning. Allowing such "unexecutable" specifications to
be expressed in  the language of algorithmics makes i t  possible to keep the
complete trajectory, from the initial (formal) specification to the final algo-
rithm, in one unified framework Many transformational derivations start with
an expression that is theoretically executable, but not in practice; in particular,
they tend to take the form of "British Museum" algorithms, in which a finite
but exceedingly large search space is examined. A n  advantage is that one may
hope to run this initial "specification" for a very small example. A  disadvan-
tage is that it  is not always trivial to give an expression for the proper search
space; the requirement that it be finite may increase the distance from the true
specification. Also, i t  is not unthinkable that this step might introduce an
error (some relevant case not included in  the search space); particularly so
since it  precedes the formal development. I t  turns out that we can use one
particular ʻ̒ Itmexecutable" expression to  denote a  "sufficiently large" search
space. I t  wi l l  be denoted b y  " U  ", and it s  meaning is, informally, the
"universe" of all possible objects that are meaningful, i.e., of the right type, in
the given context. The  trick is that the notation P:s, where P is a predicate,
stands for the collection of elements of s that satisfy P. A  more traditional
notation is t x  ES / POO); however, " : "  works also on structures other than
sets. The meaning of {x E U I P(x)) is then understood to be the same as that
of the common notation tx / PO)). So, if  C is a predicate testing for the pro-
perty of being a counterexample to Fermat's famous claim, then C: QJ specifies
all counterexamples, and 111/C: U specifies a counterexample.
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8. SEMANTICS FOR ALGORITHMIC EXPRESSIONS
How important it  is to have a formal semantics for algorithmic expressions
depends on the degree to which we want to place confidence in the meaning-
fulness of purely formal manipulations. M y  feeling is that in the current stage,
a requirement that each proposed construction be accompanied by a formal
definition of its meaning, so that each transformation could be formally justi-
fied, would be stifling A f t e r  all, great progress had been made in ,  e.g.,
Analysis, before Cauchy developed a  firm foundation, and the paradoxes
involved in  summing divergent series have not led to disaster. Well-known
examples where theory followed the application are Heaviside's "Operational
Calculus" and Dirac's 8-notation. I n  due time, if  the approach to Algorithm-
ics investigated here proves its worth, possible paradoxes can be resolved by
introducing higher-level concepts similar to, e.g., uniform convergence, t o
tighten the conditions of some theorems.

Still, some form of semantics would help to reason about aspects of pro-
posed constructions. I t  is well known that we need extremely sophisticated
mathematical constructions to  define denotational semantics fo r expressions
involving unbounded indeterminacy, and the desire also to  a llow infinite
objects in the domain of discourse will hardly simplify matters. Th is seems to
defeat the original motivation for defining semantics in  a denotational way,
namely to define meanings in clearer terms (i.e., better amenable to formal rea-
soning) than possible under the usual operational approach. I n  our case, the
situation is even worse. Fo r  the intention is that the algorithmic expressions
serve equally well as specifications. Bu t  specifications requiring an inordinate
mathematical ability to understand them in the first place, are pretty useless.
An operational semantic definition is, of course, out of the question (but see
the next Section). A  possible approach is the following.

Let g stand for the set of algorithmic expressions. I t  is assumed that, next
to the usual well-formedness criteria, other aspects, such as typability, are
prerequisites for acceptability as an expression o f g  T o  simplify the treat-
ment, we assume that S is recursive, and that S contains a recursive subset 'V
of expressions that are identified with "values" (e.g., "2 " ,  o r "A :  x -1- I" ).
Intuitively, we can interpret an expression e of g as "specifying" one, or more,
or possibly no, elements of T.  Define S  (e) to be the set {v e 1  e "speci-
fies" 17}. Alternatively, we can interpret e as a "task" to find or construct some
element o f  V.  Th a t  task might have several solutions, o r be impossible.
Define t o  mean: the task e can be solved by solving the task e'. The
relation i s  a subset of g X S W e  can think of a s  "may be transformed
to". The relation r i s  reflexive and transitive (which may be ensured by tak-
ing the reflexive and transitive closure of some initial relation). Unde r the
interpretation of an expression e as specifying elements of cV
.
, w e  w o u l d  c e r -
tainly expect e to specify a given v e 'V whenever e v .  On  the other hand, if
VE S(e) has been established, then v is a solution of the task e, so we have

It follows that R. (e) t v  ET e v } .  Th is gives a characterization of
S in  terms of I f  we define the relation C  6 X6 by e i f f  e e '
and e '  t h e n  i s  an  equivalence relation. W e  can, i n  the usual

tt1:02
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way, step from g (and eV) to the equivalence classes induced by i n  these
sets. Fo r convenience, the classes may still be denoted by some representative;
but where formerly we had to write e e ' ,  now we have e e '

When may a task e be replaced by a task e'? A  requirement is certainly that
any solution to  e ' be a solution to  the original task e. S o  r e q u i r e s

(e' ) C (e ) .  We  take this as the characterization o f i n  terms o f  ffi ,
replacing "requires" by " i f " .  Th is has some consequences. Ca l l  an expres-
sion f  "fiat" if  S ( f )  is the empty set. A n  example of a flat expression is WO
(assuming that we do not admit this pseudo-value in the distinguished com-
pany of the proper values). Then we find, for any e, e [ 1 / 0 .  B u t  0/0 can
hardly be considered a reasonable replacement for e, unless e happens to be
flat too. So, possibly, a more reasonable characterization of i n  terms of S
might additionally require the "preservation of definedness", meaning that a
non-flat expression may not be replaced by a flat one. Th is gives rise to rules
that are more complicated, which is a  reason fo r rejecting this approach.
Instead, i t  is better to accept the validity o f e 0 / 0 ,  with the consequence
that the meaning of d o e s  not correspond exactly to the intuitive notion of
"may (as a task) be replaced by". The preservation of definedness has then to
be proved separately for derivations involving I t  is generally easier to do
this once than to check it for each individual derivation step.

There is another important difference between the usual formal treatment of
the refinement relation between algorithms (see, e.g., MEERTENS [ I 9 ]), and the
relation F o r ,  in  the usual treatment, one has 0/0 e  for any e. Th is is
unacceptable here, since we would then find that each e W O .  See, however,
the notion of "total variant" of a function defined below.

If we start with some definition of n e x t  derive f r o m  that definition,
and use t h e n  to find S , this will be the original function we started with.
If, however, we start with some definition of ,  use that to define dlB and use
this function to determine t h e  latter relation may be larger than the origi-
nal one. Next  to transitivity and reflexivity, a "complete" relation sa t isfie s
a stronger closure property:

I f  Cy e e '  C  { v 9 f 1 e 1
,
} ,  t h e n  eIn this way, a relation c a n  be specified by giving an initial subset, in the

form of rules like

e
l 
0
e
2 
e
,  
,  
i  
I
,  
2
.

But this still does not give the full story. A  pleasant property of expression-
forming constructions is monotonicioi: if  C[e] stands for an expression contain-
ing e as a constituent sub-expression, and e t h e n  we want to be able to
conclude that C H  C [ e '  ]. Th is property is postulated for all constructions
admitted to our language (and so R) is excluded).

It is necessary to give a meta-rule for o n  functions, since equality o f
functions is not in general decidable. (The notion of "function" includes here
our binary operations.) A  reasonable rule appears to be:
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META-RULE FOR O N  FUNCTIONS.
Let f  and f 'E  D —>cil (where D CT),  and let fv f ' v  for all v ED U WO).
Then

This rule makes a choice between several possibilities for defining o n  func-
tions. The  possibility chosen seems to be the more manageable rule. I f  func-
tioneds (higher-order functions) can operate on functions involving indeter-
minacy, the meta-rule must be used with caution. Fo r  assuming the reason-
able id e n t it y  f O g ; x  =  f x ;Dg x,  w e  a r e  l e d  t o  conclude t h a t
f r i g  =  Ax:  ( f x ;  0 g x). No w take f  = id ( X  x x ),  g 3 <  (  =  X x : 3),
and let h X x  : x03. Then h =  f  g .  Bu t  if  F =  X0: (0  I; +02), then we
find F f 0 g  F l ; 0 1 Q g  =  1+2; 0 3+3 =-- 306, whereas Fh  =  h 1 ; + h  2 =
103; +203 =  3040506.

The converse rule " I f  f f ' ,  then f  •
f
-
' v "  r e s u l t s  
i f  t h e  
m o n o t o n i c i
t y  
p o s -

tulate is applied to function application. A  consequence is that if  f  is a partial
function, but f '  is total (i.e., never yields IVO), then c a n n o t  hold. Ho w-
ever, it  is often desirable to turn partial functions into total ones. Fo r  exam-
ple, a problem specification may prescribe that error messages be given if  cer-
tain conditions are not met. I t  may then be preferable to treat these error
messages in it ia lly as "instances" o f  IVO. C a l l  f '  a  "variant"  o f  f  i f
f v f ' v  W O  whenever f v  is not flat. A  useful curiosity is that i f  f  is
"determinate" (see below), then f ' J r .  Th is is also a sufficient condition to
show that a determinate function '  is a variant o f
f .  A  " t o t a l  
v a r i a n t " ,  
fi n a l l y ,

is a variant that is a total function.
We also need rules for function applications. Unfortunately, the simple rule

(Xx: C[x])e =  C[e]

is not enough. One  counter-example is found by considering fi n  2, where
f  X x :  x—x. Mechan ica l textua l substitution g ive s 1 0 2 ;  —102 =
—1; 0001, which, together with the above meta-rule, would lead to the conclu-
sion that function application is  no t  monotonic (or, worse, that 0  I ) .
Another problem is given by taking h 0/0, where h A x
-
.  x 0 3  i s — f o r  
t h e

moment—taken t o  be  a  strict function. Textua l substitution results i n
IVO; 0 3 =  3, which is inconsistent with the identity characterizing strictness,
namely h0/0 W O .  Therefore, the rule for function application needs the
condition that the expression for the argument is "determinate" (see below)
and non-flat if the function is specified to be strict. Th is corresponds, roughly,
to what is known as "call-by-value" semantics. Note, however, that it  is not
required to evaluate the argument; all that is needed is that we exhibit certain
properties, for which some sufficiency conditions can even be given in terms of
syntactic criteria. I f  the function definition does not involve more than a sin-
gle occurrence o f the argument, then indeterminacy o f  the argument is no
problem. The  reason that functions are non-strict by default should now be
apparent: this choice simplifies the applicability condition of the rule. No te
that for strict functions it is always safe to use the rule in the "Fold" direction,
namely C [e] ( X  x C  [x]) e.
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An expression e is determinate if, for any two values v 1 and v
2  s u c h  t h a te a n d  e v 2 ,  we have v 1 =  v

2  I t  s e e m s  
r e a s o n a b l e  
t o  
r e q u i r
e  
a l l  
v a l u
e s

to be determinate, which implies that a n d  =  coincide on 'Ir. A l l  values
are, by definition, non-flat. The function-application rule could then be stated
by restricting the argument to values (as was already done for the meta-rule),
with the advantage that the notions of "determinacy" and "flatness" need not
be used. A  problem arises, however, if  we want to define ( h ) ,  where h is as
above (but not strict). Since h is obviously indeterminate (we have both h i d
and h 3 < ) ,  we do not want to allow A x : x 03 as element of 'VI No  enumer-
able collection of determinate lambda forms, however, can capture the mean-
ing of h. Th is is related to the problem mentioned above for equality of func-
tions.

A function definition may contain several occurrences of the argument, as in
abs x i f  x<  0 then —x else x

Suppose we want to show the equality
abs 2 x e 2 x  abs e.

This is easily proved by the Unfold/Fold method:

abs 2x e ,  if  (2x e)< 0 then —(2x e) else (2x e)
if  e< 0 then 2x —e else 2 xe =  2 X il e < 0 then —e else e
2x abs e

Unfortunately, the condition for the function-application rule is not satisfied if
e is indeterminate. A n d  yet, it  is easy to see that in  this particular case no
harm is done. This insight can be generalized to the following meta-rule:
META-RULE FOR INDETERMINATE UNFOLD/FOLD.
Let C[e] and Cle l be expressions containing e as a constituent expression, and
let e occur at most once in C'  [e].
I f  there is a derivation C[e] C '  [el for determinate e, and e is uninterpreted in
that derivation, then C[e]C ' [ e ]  is also valid for indeterminate expressions e.

This allows one to use, e.g., e e  0  or l e  =  e, the latter by applying the
meta-rule in both directions. Th is meta-rule is a corollary of the rules given
above, as the following derivation shows:

C[e] ( X  x C[ x ] )  e ( X  x C '  [xl) e C '  [e]

The middle step is an application o f  the meta-rule fo r o n  functions,
together with the monotonicity property.

9. EXECUTABLE EXPRESSIONS
In going from specification to implementation, we can stop the development
when we have an expression that has an obvious translation in terms of a pro-
gram (i.e., it belongs to the "solution space"). I f  that translation is so obvious,
then we can wonder if it could not be delegated to a machine. I f  that is possi-
ble at all (and it  is certainly possible for some subset of the language 6  o f

2



algorithmic expressions), then we effectively have a  machine fo r executing
some expressions. Th is would eliminate an uninteresting step that might easily
introduce clerical errors. I t  also opens the possibility of having the machine
apply certain optimizations that are hard to express without spoiling the clarity
of the expressions, but that are nevertheless obvious (e.g., replacing recursion
by iteration, or eliminating redundant computations).

In the current stage of this work, a serious effort to define an "executable
subset" o f  the algorithmic expressions is still out o f the question. We  may
wonder, however, what properties we would require of a hypothetical machine
for executing expressions. L e t  &, 9f and b e  as in the previous section. A
possible approach is that the machine tries to  mimic ,  going through a
sequence e 1 e
2  •  
•  
•  
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machine, the forms it operates on are states, rather than expressions. I t  is real-
istic to assume that the machine may have to attach some bookkeeping infor-
mation to the expressions. T o  simplify the discussion, this possibility will be
ignored. Obviously, we may not assume that the machine is capable of accept-
ing all expressions of & as states.

Let b e  a subset of 6, standing for the "executable" expressions, i.e., the
expressions that the machine is designed to cope with. (The  letter 9 has been
chosen here because to us these expressions are programs for the machine.)
We assume that a n d  9  n 91 are recursive sets. No w  we define p —>p' to
mean: if  the machine is in the state p, it  can, possibly, switch next to the state
p'. So  --> is a subset of 9X9. There is no reason to require that the machine
be deterministic, but it  makes sense to assume that i s  at least recursively
enumerable. There must be some halting condition for the machine. A  simple
criterion is to have the machine halt if  its state is a value, i.e., a member of 'V.
This is then the output. Fo r the sake of simplicity, we require all values to be
"dead-end states", where p is a dead-end state if  no state is reachable via -->
from p. No w we have two requirements:

Soundness. L e t  --->* stand for the transitive and reflexive closure
of -4
.  
T h
e r
t ,  
f
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r  
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l
l  
p  
9  
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d  
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,  
c
V
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f  
p  
-
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>  
*
v
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Preservation of Definedness. Le t p be an arbitrary non-flat member
of 9  (where the non-flatness is with respect to &). Then (a) i f
p -->* p', and p ' is a dead-end state, then it  is a value; and (b)
there does not exist an infinite sequence o f states p
o
, p
1
, • • •

such that p p
0 - - 4 1 2
1
— >  
•  
•  
•

The first requirement is simply that the machine produce no wrong answers.
The second one requires that if  the program p, viewed as an expression, speci-
fies a result (some value), then the machine will output a value when started in
state /J. Part (a) prohibits the machine from reaching a dead end without pro-
ducing output (which, if  it  can be detected, can be interpreted as abortion of
the program), whereas part (b) forbids infinite loops. I t  is, of course, in gen-
eral undecidable whether the machine will halt if  started in a given state p, so
the proof would depend heavily on properties of ,  such as monotorticity,
and possibly of 9.
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A relation -4  satisfying the requirements for soundness and for preservation
of deftnedness, may be called an "operational semantics" for P. No te  that
different machines may correspond to different executable subsets of 6 , and
even that two machines operating on the same set 9  may differ in their opera-
tional semantics. So there is no such thing as the subset of executable expres-
sions. I n  fact, let 9  be any executable subset, with operational semantics -->
Then it  is always possible—provided that i s  sufficiently expressive—to find
some pair <e, v>e g X c
cr s u c h  
t h a t  
e  4
,
4 9  
a n d  
e  
v .  
T h e
n  
9  
U  
{ e
,  
v
}  
i
s  
a l
s o  
a
n

executable subset, with operational semantics ----> U {<e, 10}. So  there do not
even exist maximal executable subsets of 6.

The "canonical evaluation" of programs in the style of BURSTALL and DAR—
LINGTON [61 is one prime candidate for being an operational semantics. Some
expressions have obvious translations in t o  a n  imperative style , l i k e
t
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tricted t o  such programs, which could then be  "compiled" in to  "pidgin
ALGOL". Ye t  another possibility is translation into FP.

A problematic aspect is the evaluation of expressions such as x  111 y. I t  is
easy to imagine a machine that would always go to a state x/ y  if  x —> x' for
some x'. Note, however, that the machine is forced, by virtue of the require-
ment of preservation of defmedness, to try the other choice if  the preferred
choice leads to a  dead end without output. Th is corresponds, in  a  limited
sense, to what is sometimes called "angelic nondeterminism" Operationally,
however, no "nondeterminism" need be involved in this. Bu t  the same is also
required i f  the first choice may lead to  an infinite loop. Fortunately, the
machine need not decide beforehand if this undecidable contingency will arise;
it is sufficient i f  the evaluations o f  the alternatives are "dovetailed" (inter-
leaved) in a fair way, i.e., not excluding some alternative indefinitely. I n  the
context of a recursive function definition, this provides "automatic backtrack-
ing", where WO takes the role of "Fail". To  give a stronger example, consider

f x  i f  x 0  then J
.
0 0 1  e l s e  
1

It is then guaranteed that 1'0 =  I ,  since .
/
.
0 1 : 1 1  I ,  
a n d  
n o  
o t h e r

value than I  could be a possible outcome. Although this may not be the most
pleasant thing to implement, neither is it  prohibitively difficult o r expensive,
and certainly not if  occurrences of U in  "executable code" are the exception
rather than the rule. I t  will often be possible to exhibit the non-flatness of
expressions by a static analysis. I f  x is known to be non-flat, then the step
x y  --) x is allowed.

10. SOME MORE BASIC OPERATIONS
If x and y  denote two objects, <x, y> denotes an object that is a pair consist-
ing of those two objects. The  functions Tr
i a n d  7 7 ' 2  
a l l o w  t h e  
r e t r i e v a l  
o f  
t h e

components from the pair, so, e.g., Tr
2 < x ,  y >  y  
I f  x E D
I  
a n d  
y  
e  
D 2  
,  
t h e

pair <x, y> E D
I  X  D
2  I f  
o r d e r
i n g s  
a r
e  
d e fi
n e
d  
o
n  
t
h
e  
c o
m p
o n
e n
t  
d
o
m
a i
n
s ,

then the product domain is assumed to be ordered lexicographically, unless a
different order is specified.
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We have already encountered the operation < ,  which selects it s  le f t
operand: x  < y =  x. A n  important application is that x <  denotes the con-
stant function Ay: x. The operation s e le c t s  its right operand (and so x
is, for each x, the identity function id).

I f  x  is a  determinate object (meaning that no choice o f  the type i s
involved), then P?x, where P is a predicate (i.e., a function returning a truth
value), stands for x  <*P  x. Th is  formulation has probably no immediately
obvious meaning to the reader. Remember that "false" and "true" are identi-
fied with 0 and 1 =  2, respectively. So, if  Px is false, P?x x  <4 ) =  O. I f
Px is true, P? x =  x < * 1  x < * i  =  ^ x< 1  =  i  We  see now that P?x
means " if  Px then 5'c else 0”. The  operation ? is mainly (but not only) useful
as auxiliary operation to define other operations. A n  important application is
in the definition of a "filter": a  function to "extract" all members of a struc-
ture satisfying a given property. The function + / P ? *  returns the structure of
all P-satisfying members of its argument. Fo r  example, if  P x holds, but P y
does not, we obtain -1-/P?* •Cc +5, =  + / ( '  P?x; P ?  y) + /  .k +0 =
+/1 ;  +  +/O =  + 0  =  1 .  I t  is important enough to merit a shorter nota-
tion; for this, we use P : ,  which we have already encountered. Fo r  example,
the filter x= : extracts all elements equal to x. We  can then define

x  E O X  :

to test for membership of x.
Some laws that use : are:

=, + / P : *
x=  :U =

P:f* =  p (P  f): , provided that f  is determinate;
P:Q: J P  A Q; : (remember that P A Q;x P x ;  A  Q x).

The proof o f  the first, least obvious, law, i s  P : + /  =  + /  P? * + /  =
+ /  +/P? ** =  + / P :  *, in  which the middle step is an application o f  the
corollary of Section 5. The  second law cannot be proved from previous laws,
since no previous law involves U;  instead, i t  can be viewed as a (partial?)
characterization of U. The derivation of the third law is left as an exercise to
the interested reader. (Hin t :  use the meta-rule for o n  functions from Sec-
tion 8 to  show first that f x ;  <  =-
-f  x  < ,  
a n d  
n e x t  
t h a t  
P ? f  
=  f *
( 1
3  
f ) ? .
)

The last law is most easily proved by proving it first for determinate predicates
P and Q (by considering all possibilities of assigning truth values to Px and
Qx), and then using the last meta-rule of Section 8.

An example of the use of these laws is given by
xe P : U =  O x = : P : U  =  O X P : x = : U  O X P :
-
x
OX P?x =  Px.

Another important property connected with : needs some terminology. Ca ll
an operation x  E DXD—› D "selective" i f  [I x ,  i.e., fo r a ll x  and y E D,
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y. Examples of selective operations are it se lf ,  < ,  > ,  and I
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If x  is selective and x/P :s 0 / 0  for some structure s, then

The crucial step in the proof is 0/P:s x / P : s .
Another useful application of ? is in the definition of --->, where the predi-

cate p--> is defined by 0/p <  ?, in which p is a proposition, i.e., an expression
whose value belongs to the domain o f  truth values. (Since the operation ?
requires a predicate as first operand, the operation <  is used to turn the pro-
position p into a predicate.) Then p q  --) y specifies, indeterminately, x
or y, but x is only specified if p can be satisfied, and y if  q can be. Fo r exam-
ple, assume that p holds and q  does not. Then  we find p
—
> x ; 0 4 7 -
- -
>  y  = -

0/p <  ;  0 /  q < ?y 0 /  )1; 0 0/0 =  x  0 0/0 =  x.  So  the combination of
-4 with  0 gives "guarded expressions", whose meaning is not primitive but is
obtained by composing the meanings of the individual operations. No te  that

--->x =  x,since001; —>x =  0 -3 x;  01—>x.
An important law for -÷ is:

f  p--> p  —>f, provided that f  is strict.

Since p —> is obviously strict, we have p — >  (  p  - - > ) .
If x and y  are elements of a semi-lattice with greatest lower bounds, then

x l y  stands fo r the greatest lower bound o f  x  and y.  Th e  expression 1/0
stands then for the top of the semi-lattice. I f  it  has no top already, it  can be
extended with one in  a consistency-preserving way. I t  is often profitable to
identify 1/0 with WO. The operation I is defined similarly. Although it is like-
wise often useful to define I/0 [ I / O  if  the (semi-)lattice has no bottom, it  is
generally unsafe to use this device for both a n d  I if  they can appear mixed in
a formula.

On structures, we can define a default partial ordering
s < t  i f  0 0 1 ; < : t s .

So s <  t if s can be obtained by omitting some (possibly none) of the members
of t. F o r  sequences, <  corresponds then to " is a (possibly non-contiguous)
subsequence of" . F o r  sets, natural numbers, and truth values, we find as
meanings, respectively, " C" ,  the traditional " < " ,  and implication. Structures
for which the construction operation +  is associative and commutative form
now a lattice, and g ives, e.g., " n "  for sets and " A "  for truth values. The
operation I is then defined as well. Note that I/0 =  0, since 0 is an identity of
the operation

The operation <
f
,  w h e r e  
f  
i s  
a  
d e t e r
m i n a t
e  
f u n
c t i
o n ,  
i
s  
d e
fi n
e d  
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y

x <
f
-  
y  
f
x
;  
<
f
y
,

and =
f
,  >
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a total ordering, is defined by
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larly. I t  is again often helpful to define I
f
/ 0  = - - -  W O  
o r  I
f
/ 0  =  
[ I / O ,  
w i t h  
t h e

same caveat for mixed use.
Finally, we need a function *  to count the number of elements of a struc-

ture. Th is can be done by mapping each element to t, so * ;  +5' =  2+2 =
1+1 =  2. So  we can define *  as t < * .  There is a surprise, though: on sets
(and more generally, on a ll structures with idempotency) this re f u s e s  to
count properly. The problem is that * ,  as defined, is a homomorphism. Bu t
the number-of-elements function on sets is not. Th a t  "number o f  elements"
cannot be defined as a homomorphism on sets follows from the breakdown of
the law * + /  =  + / * *  (an application of the corollary of Section 5) for sets;
in particular, * s ;  +  *s for a non-empty set s differs from #s +s =  *s .  The
function t <*  is only defined on sets as a mapping to the set S (,), which is the
domain of truth values, and it tests then for non-emptiness.

11. FIRST EXAMPLE: A TEXT-FORMATTER
The following problem specification, copied from BAUER et al. [2], is a refor-
mulation (under the heading "Text editor") of the original specification (under
the heading "Line editing problem") given in NAuE[221.

"A text, i.e. a non-empty sequence of words separated by blanks
(EL) or new line characters (NO, is to be re-structured according to
the following rules:
(1) every two words are separated by exactly one EL or NL;
(2) the first word is preceded by NL; the last character is neither

BL nor Nt.,;
(3) each line is at most MAX characters long (not counting NO;

within this range, it contains as many words as possible.
The input line is required to start with NL; further, no word must
contain more than MAX characters."

As a first step, we aim at more abstraction. Th is can be done by assuming
that a type "word" is already given, and that the function * ,  applied to a
word, wi l l  give its length (some natural number). Then  the input can be
viewed as a single "line", i.e., a sequence of words, whereas the output is a
sequence of lines. Th is abstract view makes requirements (1) and (2), the clar-
ification "(not counting NO" o f  (3) and the first part o f  the last sentence
irrelevant, since they deal with the concrete representation o f  sequences o f
lines in  terms of some character code. Mo re  important is that it  guarantees
that the algorithmic development will work for different representations. ( I f
more concreteness is nevertheless required, it  is still advantageous to split the
problem into a  more algorithmic part, and the treatment o f  the concrete
representation. Fo r the latter, mappings from the types "sequence of words"
and "sequence of lines" to the type "sequence of (character or '131] o r 'Nt!)"
have to be defined, and the abstract algorithm obtained has to be transformed



to wo rk on  th is new concrete representation. Techniques fo r effecting a
change o f  representation are given in  BURSTALL and DARLINGTON [6] and
MEERTENS 181. Hopefully, i t  will be possible in  some future to leave such
low-level transformations to an automated system.)

Next we have to make the natural-language specification more precise. The
meaning of "A text i s  to be re-structured" is best expressed as a requirement
on the relationship between the input and the output:

(0) t h e  output, "unstructured", is the original input.

Furthermore, requirement (3) is best split into two parts:

(3a) each line of the output is at most of length MAX;
(3b) each line of the output contains as many words as is possible

within the constraints imposed by (0) and (3a).

An observation can now be made: the specification is symmetric with respect
to the directions left-to-right and right-to-left. Mo re  precisely, let rev be a
function that takes a sequence as argument and returns the reverse sequence as
result. Then we have:

If a function f  "solves" (0), (3a) and (3b) (i.e., for each acceptable
input line i, i  is acceptable output), then so does rev. rev f  rev
( ,--- rev rev f  rev).

From (3b) we can derive the following requirement:

No line of the output starts with a word that would have fit at the
end of the previous line.

For, otherwise, that line contains fewer words than possible. Expressed very
informally, this means: lines are "eager" to  accommodate words as long as
there is enough room. Because of the symmetry, a solution must then also
satisfy the mirror-image "reluctant" requirement:

No line of the output ends with a word that would have fit at the
start of the following line.

But it  is not hard to  give input for which the "eager" and the "reluctant"
requirements are, together, impossible to satisfy. A n  example, if  MAX =  13, is
the input " Impos s ible . to.s a tis fy . in.both.wa y s !" .  T h e  unique
"eager" solution is then

Impossible. to
s a t i s fy . i n . . .
both.wa y s !. . .

The "reluctant" solution is different:

ImpossibLe...

to..s a tis fy .
in.both.w
a y s !
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Something is wrong. The  "reluctant" approach tends to leave as much white
space on  the first line  as possible. Th is  is, b y  application o f  real-world
knowledge, typographically undesirable. Th e  "eager" approach, in  contrast,
leaves the last line unfilled Th is  is, i f  not typographically desirable, then at
least neutral. Th is suggests to us replacing (3b) by:

(3b') each line but the last, i f  any, of the output contains as many
words as is possible within the constraints imposed by (0)
and (3a).

However, this still does not solve the "eager" vs. "reluctant" problem: just
add a 13-character "word" (e.g., "E x a spe ra t i ng 1") to the end of the exam-
ple input given above. The problem with the specification seems to reflect our
conditioning to  th ink in  terms o f  left-to-right. Whereas (0) and (3a) are
"boundary conditions", (3b) is an "objective", namely, "Do not waste more
space than necessary"; more precisely:

(3b") minimize the total white space on the output, not counting
the last line.

This approach was suggested to me by Robert Dewar. There is still a tiny
problem left: i f  the last line is completely filled, then another empty line may
be added without penalty in terms of the white-space objective. So  a second
objective, subordinate to the previous one, is to minimize the number of lines
of the output.

Now we are ready to start giving a formal treatment of the problem Th is
will be done in an unusually detailed way, comparable to the minuteness of
the steps in  S I S  (-1 -.2 )S =  1(2S) =  -1-(S S ) .  We  use the letter r  for
the input ("raw"), and c for the output ("cooked"). The  proposition that the
input/output constraints are satisfied, is denoted by r—c. I f ,  furthermore, obj
denotes the objective function, then the problem is to determine, fo r given
input r,

r  l
o
b j
/  
r
—  
:
U

In words: take  any obj-minimi7ing object c  such tha t  r—c. W e  p u t
lo b
j
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length of a single line, then —, expressing that the two constraints (0) and (3a)
are satisfied, can be defined as:

r—c + / c  r ;  A  Vio l *c

The len of a line is the sum of the lengths of its words, plus 1 for each space
between a pair of words. A  simple way to obtain this result, is to add I  to the
length of each word before summing, and to subtract I  from the sum. Fo r an
empty line, we have to define its length separately:

len() 0 ;

len1+17
, —
1 ;  
+  
+ /
( 1
+ #
)
* 1
+ ;
v
s
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For a  lin e  consisting o f  a  single word, we  have, o f  course, =
—1; +  + / (1 +  * ) =  —1; +  (1+ * )w =  * w .  Th e  objective function is
defined by

o b j  c  z  < W S  C, # 0 ,

where the "white-space" function ws gives the white space on its argument (not
counting the last line). Th e  white space left on a single line is given by the
function ws
i =  
m A x  
—
l e n
.  
T h
i s  
q u
a n
t i t
y  
h
a
s  
t
o  
b
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m
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the last. Th is gives us the definition:

wsci+/  + / w s
i
. c ' .

To make the function total, we also define
ws 0 O .

We turn now first to the question whether it  is possible to satisfy the con-
straints, not bothering about the objective. One extreme approach to satisfy
(0) is to have a one-line page, or c =  T h i s  is likely to violate constraint
(3a). Since the white space does not matter, we can try the other extreme: use
a separate line for each word. Th is would give us c =  S r.  Then (0) is, o f
course, satisfied, but what about (3a)? Since len^ =  * ,  we find

lensc =  t /  lens^ sr =  t /  (len^)sr t /  * s r

So, i f  t /  * s r  M A X ,  i.e., each word on the input is at most MAX long, we
have r—^ sr, so the problem posed is solvable. Next, we show that this condi-
tion is not only sufficient, but also necessary. I f  / 0 ,

lenl =  —1; +  + / ( 1 + * ) s l  — 1 ;  +  1 1 (1 +* ). /  =
—1; + 1 + 1 / # . /  =

In the given context, t/0 =  0, since line lengths are natural numbers. Then, if
I =  0, lenl =  0 =  t /  *  ./, so no condition! 0  is necessary for the inequal-
ity len 1 t /  * 4 .  No w we have

t /  len sc t / t /  c  =  t /  + / c

If r—c is satisfied, + / c  r  and t/lensc <  MAX, so

11 * s r =  * s  +/  -<-1/1ensc <  MAX
In conclusion,

f r  [ I / O  i f  and only if t /  * . r  <  MAX

To "synthesize" f, we must derive some properties of — and obj. I n  the first
place, empty lines can be deleted from the output without violating the con-
straints. Fo r

+ / c
1
+ 0
+ c
2  
=  
( f
/ c
1
) +
( +
/
0 )
+
( +
/ c
2
)  
=

( + / c
1
)
+ 0 +
( + / c
2
)  
=  
( +
/ c
1
) +
( +
/ c
2
)  
=  
+
/
c
1
+
c
2

Also, t/lenso =  t /  ^len° =  t/O =  0, so

. • '
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we have

So in all cases

Since

we have

1/1en.ci+o+c
2 
( 1 / 1 e n .
c
1
) 1 ( t /
I e n . o ) t
( 1 /
k n . c 2 )  
=

( 1 / 1 e n • c
1
) ? O C ( I /
l e n . c 2 )  
=  
( V 1 e
n . c
l
) t ( t /
1 e n * c
2  
)  
=

Combining these two gives

r — c
1
+ c
2  
i f  
a
n
d  
o
n
l
y  
i
f  
r  
—
c
1
+
0
+  
c
2
.

Next, we show that empty lines are always disadvantageous in terms of the
objective. T o  show this, we have to distinguish several cases, because of the
form of the definition of ws. First, we treat the case where the empty line con-
sidered is not the last line. Since

+ /W S'  *0 =  W S 1  0  =  WS1 0  =  M AX — len 0 =  M AX,

W SC 1+ 0+ C 2 =  -
1
-
/ W S I * C 1 ;  
+ M A X
+  + /
W S 1 *
C 2

+/WS1 .C1; +  -
1
- -
/ W 5 1 • C 2  
+ /
W S I *
C 1  
+
C
2  
=  
W
S  
C
I  
+
C
2

If the empty line is the last, but not the only one, we find

wsc
i 
+
/
+
0  
=  
+
/
w
s
i
*
c
l
+
/  
+
/
w
s
r
s
c
i
;  
+  
+
/
w
s
l
*
/

+ /wso c
i =  
w s c
i
+ / .

Finally, if  the whole document consists of just one empty line,

ws =  ws 0 +
0  =  + /
w s
1
. 0  
=  
+ /
O  
=  
w
s  
O
.

WS C +  0 C  2 - - -  WS C +  C 2

c
l 
+
6 
-
1
-
c
2 
(
#
c
1
)
+
(
#
6
)
+
(
*
c
2 
)  
= 
(
#
c
1
)
-
-
1
-  
1 
+
(
*
c
2 
)  
>

( #
c
1 )
+
( #
c
2  
)  
+
c
2  
,

obj c
1
+ 0 +
c
2  
>  
o
b
i  
c
l
+
c
2
.

We may conclude that i t  is never helpful to  consider output containing
empty lines. Th is can be expressed formally by inserting a filter that sifts out
pages with empty lines, e.g., by replacing U in  the definition of f  by Oe : U.
On the set of pages without empty lines, ob
.
' h a s  t h e  s a m e  
o r d e r i n g  
a s  
w s ,  
s o

we can replace o
b
i  i n  
t h e  
d e fi n i t
i o n  
o f  
f  
b
y  
i
w s
.  
W
e  
c
a
n  
n
o
w  
a
l
s
o  
u
s
e  
f
o
r  
t
h
e

len function the uniform definition

lenl — 1 ;  +  + / (1 +  *).1  ,

since we know that the function is not applied to an argument O. Th is allows
us to do some elementary mathematics. I f  c 0 ,  we can put c c '  + /, so
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ws c =  ws c' +I =  + /  ws 1 a c' =  +/(mAx—len
+/(mmc— (-1 ) + +/(1 + * ) a) ac' =
+ /  (mAx+ 1; — + /  (1 + * ) a) a c' =

M A X +  1; X  4 t e ;  -  + / + / ( 1 +  # ) * * C '  =
M A X +  1; X  * C
I
;  + / ( 1  
+  
* )  
•  
+ /
C ' .

If, furthermore, r—c, then r =  + /c,  so

len r =  len +/c =  len +/c'  =  —1; +  + /  (1+ * ) a +/c' =
+ / (1 +  * ) a +/c'; +  (-1 ) + + / (1 +  * ) a =
+ /  (1 + * ) + / c ' ;  +  len I,

so that we have

+ / (1 +  * ) + / c '  =  len r; — len

•  =

Combining these two gives us: if  r—c and c c ' +  /,
ws c M A X +  1; X *C'', -  (len r; l e n  1)

In using this formula to compare the outcome o f ws on two different non-
empty pages tha t both meet the constraints, we  can replace the  pa rt
" ( l e n  r; — len I )"  by "  + len 1", since r, and therefore len r, is fixed. Since
then, moreover, len I <  MAX+ I, the quantity * c '  prevails over len 1 in  the
comparison. Th is leads us to consider the simpler function

Ipos c' + I <  *c', len 1)

On non-empty pages, the ordering of ws is that of Ipos. I f  we also define

lpos 0 < 0 ,  0>,

we may even drop the restriction to non-empty pages.
If we combine the above findings, we obtain the following definition for f.

r r —  :0
,
14 : uThis formulation makes it possible to find solutions of f  r +1'..i) in terms of solu-

tions of J
r .  
T h e  
e f f
e c t
,  
a
s  
w
e  
w
i
l
l  
s
e
e
,  
i
s  
t
h
a
t  
o
f  
f
o
l
l
o
w
i
n
g  
t
h
e  
"
e
a
g
e
r
"  
s
t
r
a
t
e
g
y
.

We may thereby lose some other, equally optimal, solutions. Expressed in
words, the crucial idea is the following. Suppose c is the result of formatting a
given input text r. We  can "truncate" c by "erasing" the last word on its last
line, and the last line itself if  it  then becomes empty. Then the two data c-
truncated and w, together with the knowledge that c-truncated was obtained
by erasing w from an optimal solution c, suffice to reconstruct c uniquely. ( I t
is assumed that the value of MAX is known.) Moreover, c-truncated is then an
acceptable way o f  formatting r-truncated, and although i t  need not be an
optimal solution, there is no harm done by replacing it by an optimal one. I t
follows then that an optimal solution for r (since we know it  to exist) can be
formed from an optimal solution fo r r-truncated. Th is  will now be shown
more formally. We  define
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Trnc c' +1+;t'l ( I  X  0; c '  +1)0(1 =  0; —> c');
Tmc r' +;1
,
' r '(Note that the function Tmc is "overloaded" here: the two defmitions operate

on arguments from different domains.) So suppose r—c, and among all possi-
ble solutions the  lpos o f  c  is  min imal Suppose, moreover, c  X  0, so
r =  + /  c X  0 (remember that empty lines are excluded), and we can put

c =  c'±^1-1-4' 1
;r =  r ' + ); /
2
.

From r—c we  have r ' + i ,
2  =  + /
c ' ± ^ 1 ±
1  + /
c ' ;  
+ / + ; ; /
1
,  
s
o  
r
'

+1 and w
l =  
w
2
.  
( N
o t
e  
t
h
a
t  
w
e  
u
s
e
d  
t
h
e  
k
n
o
w
l
e
d
g
e  
t
h
a
t  
+
^  
i
s  
i
n
j
e
c
-

tive here. Th e  conclusion would be unwarranted if  +  were commutative or
idempotent.) We  can now drop the subscripts on w. Le t  CT =  Tmc c. Then

CT =  Tmc c'±^ /+ =  (/  X  0 ; —› c'+ i) ( /  0  ; --> c'),

in which c' and I are still to be determined. We  see that c' and / satisfy

(1 X  0  ; C T  =  + 1 )  =  0  ; - 4  CT  =  C
'
) .If CT =  0, the first alternative cannot apply (since c '+ /  0 ) ,  so then /  =  O.

Otherwise, we can put CT =  6 + /
T
,  a n d  s o

(C
T 
X  
0
;  
A
l  
•
X  
0
;  
-
-
-
4
<
c
c  
b  
=  
<
c
4
-
,  
/
7
4
)
E
1

(/ = 0; < c ' ,  =  <C
T
, 0 ) ) ,

<c', i> ( C T  X  0; A l  X  0; /
T
) ) 0  ( /  
=  0 ;  
- - - - > < C T ,  
0 ) ) .

The conditions on / have now lost their significance, since they are satisfied by
both possible choices. I f  we put

c
i 
=
.
-  
c
'
T
+
^
/
T
+
i
:
v
% 
c
2 
= 
c
T
+
1
,
f
;
,

we find that c c'+^/-141/' has to satisfy
c =  (CT X  0 ; --->c
l
) c
2

Since c has to satisfy t/len•c <  MAX, the first choice is open only if, moreover,
len I
T
+  
<  
m
A
X
,  
a
n
d  
t
h
e  
s
e
c
o
n
d  
o
n
e  
i
f  
l
e
n  
W  
=  
#
w  
<  
m
A
x
.  
T
h
e  
r
e
m
a
i
n
i
n
g

indeterminacy has to  be resolved using the minimality o f  Ipos c. I f  both
choices are still open, c
i h a s  t o  
b e  
c h o s e n
,  
s i n c
e

/pos =  (# c '
T
,  l e n  I
T
+  
<  
#
6 ,  
l
e
n  
i i
s
) )  
=

<# C
T
, 
l e
n  
W
)  
=  
l
p
o
s  
c
2

The choice is now determinate, and c =  c
T
- H - w ,  w h e r e  
*  i s  
d e fi n e d  
b y

O-H-w 4 t w ; ---c• MAX; -
> l f ) ;6 - F i r ;  w  ( l e n  I
T
+  ;  <  
M A X ;  
- 4  
C  
1  
)

(len I
T 
>  
M
A
X
;  
A  
(
#
w
;  
<  
M
A
X
)
;  
-
-
-
>  
c
2  
)
.

,



It has to be verified next that Tmc r—Tmc c. I n  the first place,

+/Trnc c =  +/Trpc c' +^1+;
,s
v =
+ / (I  X  0; ---* c' + =  0 ; =
(/ X  0 ; --> + / c '+ / ) U (/ =  0 ; ---> + /c ' ) =
(/ X  0; --->(-1-/c')+/) ( /  =  0 ; --> + /c ' ) =  + / c ' ;  + /  r '  =
Tmc r' + cy
• =  
T 1 7
2 C  
r

It is intuitively obvious that erasing words cannot increase line lengths, so that
1/ len c<  MAX implies 'Wen
,
. T m c  c - -
<  m A x .  
H o w e v e
r ,  
w e  
w i l
l  
d e r i
v e  
t h
i s

also formally, just to show how this is done. We  reinstate—temporarily —
len 0 =  O. Then

1//en•c'+6 1 / (len *c')+^ len  0 =  1/(len*c')+6 =
1/1en*c';1' 1/0 1 /1en•c' ;  0  =  l e n  •c'; T1/0 =  l e n  .c'

So

t /  len -c I /  len.c' +1+1
,
7) =  1 /
( l e n • c ' )
+ ^ l e n  
1 + 1 ;
7  
=

1/ len -c'; len  1 + l e n * c ' ;  tlen 1 =
1/(len*c'; +^len 1) =  1/ len •c' + 1 =
(1 X  0; —> le n • c '  + ( /  =  0 ; ---> I/ len .c' +0) =
(1 X  0; --41/len •c' + ( I  =  0 ; --->t/ len *c')
I /  len.(1 X  0; c '  + 1)0 (I =  0 ; -4 C
'
) =  V  l e n  
• T r n c  c

We have now Tmc r—Trnc c.
Finally, it  must be shown that replacing Trnc c in c =  Trnc c; 41- w by an

arbitrary realization o f
f  T m c  r  
d o e s  
n o  
h a r m  
t o  
t h
e  
m i n i
m a l i t
y  
o
f  
l p
o s  
c
.  
(
T
h
e

verification that the result still satisfies r—c is straightforward and is omitted
here.) I f  Tmc r 0 ,  there is no choice but taking c =  O-H- w. Otherwise, put-
ting c C T  +-w =  c'
T +  I
T
;  + - w ,  
w e  
h a v e

Ipos =  Ipos 6,+1
7
-
; -
H
-
w  =

lpos (len 1
T
+  , ; ) ;  
<  
I Y I
A X ;  
c  
1  
)  
(
l
e
n  
I
T
+  
>  
M
A
X
;  
-
-
-
>  
c
2  
)  
=

(len I
T 
+ 1
,
7 ' ;  
<
_  
M
A
X
;  
-
-
-
>  
i
p
O
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1  
)  
U  
(
l
e
n  
I
T  
+  
>  
I
v
i
k
x
;  
-
-
-
>  
l
p
o
s  
c
2

If we define

(m, n> l p o s  c
T ,we find * 6  =  m and len I

T n .  
T h e n

len 1
T 
+ 1
; ,  
=  
l
e
n  
I
T
;  
+
1
+  
#
w  
=  
n  
+
1
+  
*
w
,

and so

lpos =  ( * c '
T
,  l e n  I
T
+ 1 ' 4 ) '  
>  
=  
+
1
+  
*
w
>

lpos c
2 
=  
( *
T
T ,  
l
e
n  
1
:
;
)
>  
=  
<
4
#  
c
'
T
+
1
T
,  
l
e
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>  
-
=

<*c '
T
;  
+
1 ,  
l
e
n  
1
,
;
,
>  
=  
(
n
i  
+
1
,  
#
w
>

We can now simplify the expression for lpos c to
(n +1 + *w; M A X ;  -4 <m, n +1 +  *10)0

(n +1 +  *w;  >  MAX; -4 On +1, *  ) ) .
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This expression is non-strictly monotonic in <m, n> =  Ipos CT, so taking CT to
be a  realization o f  fTme  r, which minimizes Ipos, guarantees that Ipos c is
minimized too. Summing up, we have

f  = -  0;

Tme f  r d-cv; * w  f  Trne r - - H -  w r ;  44-w
After these lengthy preparations (but remember that most of the derivations

were aimed at exhibiting obvious facts), we can now formulate an "implemen-
tation" of f:

f f  0 0 ;

f f  r r ;  * w .

This function satisfies I f  and i t  preserves the definedness o f  fi  i.e., i f
J r  0 / 0 ,  then i f  r 0 / 0 .  The  standard technique of recursion elimination
gives the obvious iterative "eager" algorithm. No t e  also that J r
implies I f  r 0 / 0 .  Th is is a consequence of f  i f ,  since then WOJ
ri f  r 0 / 0 .  I t  is easy to define a total variant of i f  by making 41- total, e.g.
by removing the conditions "4* w; <  MAX" from its definition.

Some final remarks to this example: The  length of the derivation is mainly
due to  the small steps taken, but also to some degree to  the presentation,
which emphasized the algorithmic analysis and synthesis. I f  one were to
"guess" the defmition of if, then the verification is somewhat shorter. Note, in
particular, that the need to handle U did not arise.

The final development phase was an example of "Formal Differentiation"
(or "Finite Differencing") (PAIGE [23], PAIGE and KOENIG [2.4]). Th is  term
stands for a widely applicable technique for improving algorithms. I t  is o f
special interest here because it  is often especially fit  to  the improvement of
high-level algorithms that have been (semi-)automatically synthesized. Th e
essential idea is that of "incremental" computation. L e t  x/ be the result of
applying a "small" variation to x. Fo r many functions f, it is more efficient to
compute the value of f x '  from the result of f x  and the variation, than to com-
pute it  afresh. I t  can be seen that this is a special case of the "Divide and
Rule" paradigm. I f  x  is the result o f  sequentially making small variations,
then f x  can also be computed sequentially. A  challenging problem, no t
addressed here, is to develop general algebraic techniques for deriving expres-
sions for "formal derivatives". Fo r a not very general but interesting algebraic
technique, see SHARIR [26].

The eager strategy (also known as "greedy" strategy) is a special case of for-
mal differentiation in  the context o f optimization problems. A  higher-level
derivation would have run, schematically: (i) show that f  satisfies the condi-
tions of some "eagerness" theorem; (ii) apply the theorem to give i f  as imple-
mentation. There  appears to  be a  relationship with  matroid theory here
(KoRTE and LavAsz[16]). I t  remains t o  be investigated i f  th is can be
expressed conveniently in the framework pursued here. I f  so, it  would be a
good example of the "higher-level" theorems aimed at. A  different choice for
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the objective function (e g , minimize the sum of the squares of the white space
on each line) would have invalidated its applicability. Still,  an important gain
in efficiency is possible for many other objective functions (e.g., for the least-
squares objective), namely by applying the technique o f dynamic program-
ming. A n  algebraic approach t o  t h is  technique ca n  b e  found  i n
CUNINGHAME-GREEN [7], and a  specific application o f  this approach in  an
algorithmic development in MEERTENS and VAN VLIET [20].

12. SECOND EXAMPLE: THE AMOEBA FIGHT SHOW
The following problem is of interest because it is the first problem that I tried
to tackle algebraically without already knowing a  reasonable algorithm fo r
it—or seeing one immediately. I t  was passed on to me by Richard Bird. I t s
origin is, as far as I know, a qualifying exam question from CMI.J. Since I do
not know the original formulation of the problem, it  is given here in a setting
of my own devising.

What with the rising prices of poultry, a certain showman has modernized
his Amazing Life-and-Death Rooster Fight Show, and replaced his run of prize-
fighting cocks by a barrel of cannibalistic amoebae. A s  is well known, amoe-
bae have an engrossing way of tackling an opponent: it  is simply swallowed,
hide and hairy I t  follows from the Law o f Conservation o f  Mass that the
weight of the winner then increases by that of the loser. Each show stages a
tournament between n amoebae (where n is some positive natural number),
consisting o f  a  sequence o f n - 1  duels (two amoebae staged against each
other). A t  the end o f  the tournament, a ll that remains is the final victor
(although it  encompasses, in some sense, all losers). The  showman wishes to
maximize the throughput of his enterprise by minimiTing the time taken by
one show. The time needed for a single duel, he has found experimentally, is
proportional to the weight of the lighter contestant (about one minute for each
picogram). A t  the start of a show, the amoebae are lined up in a microscopic
furrow. Each two adjacent fighters are kept apart by a removable partition.
(This set-up has been chosen thus because of limitations in the state of the art
of micro-manipulation. Fo r similar reasons, the initial arrangement cannot be
controlled.) Each time a partition is removed, the two amoebae now confront-
ing each other engage in a life-and-death duel.

6 , ,
'Charl i e

(4pg )

FIGURE 3. F i v e amoebae l ined up before the tournament (magnification: 500 X )

1. For  amoebae, this terminology is not entirely appropriate. T he  hapless victim is, i n fact,
engulfed by  the attacker's bulging around and completely enveloping it, membrane and pseudopo-
dia.
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The showman thinks the best strategy is to  have, each time, the lightest
amoeba fight against its heaviest neighbour. H i s  assistant suspects that it  is
better to choose the pair whose weight difference is largest. I n  the situation
sketched in  figure 3, these two strategies give rise to  the same sequence o f
duels. First ,  the showman removes partition 4, and Delta and Echo fight.
After 3 minutes, Echo has consumed Delta. Next ,  partition 3 is lifted, and
Charlie enters the arena against Echo. Th e  unequal battle takes 4  more
minutes. E ch o  weighs now, after having feasted o n  Delta and Charlie,
15+3+4 =  22 picograms. Th e  next step is the removal o f  partition 1. I t
takes Bravo 5 minutes to gobble up Alpha. When the last partition is taken
away, the battle o f the champions starts. I n  spite o f  Bravo's putting up a
heroic resistance, pseudopod after pseudopod wraps around its body, and after
19 exciting minutes the last visible part disappears into Echo's innards. The
whole tournament has taken 3+4+5+19  =  31 minutes. Unaware of the fact
that a different sequence of duels would have required less than half an hour,
the showman and his assistant start clearing the house for the next show.

Let us see if  we can do better. The  process of amoeba fusion in a tourna-
ment creates a tree structure o i top ofthe original sequence of amoebae. Fo r
the example, that tree is A +B; + C+ D+ E ,  where A stands for Alpha, etc.
Each node corresponds to a sub-tournament. Since the structure of the tree
gives sufficient information to determine the tournament, even if  the elements
are not amoebae, i t  is simplest to  work directly with  the sequence o f  the
weights of the amoebae. L e t  w I, for a given tournament tree t, stand for the
final weight of the champion of t, d i  for its duration, and wd t for the pair
(WI, d  F o r  the trivial case of a one-amoeba "tournament" we have

wd;
s
ti 
w
d
o  
w  
(
w
,  
0
)
.

Then we find

wortL-FIR =  wdt/:, xwdtR,

where the operation x  is given by

(wL, x  < f t ,  d/z) < w L + w R ,  di,+dR+wL1wR).

(The operation x  is commutative, but, of course, not associative.) So, by the
homomorphism lemma, we can express wd by

wd x /  wd
oThe function d can be re-defined as ir

2  w d .  I f  T s  
i s  t h e  
s e t  
o f  
a l l  
p o s s i b l
e  
t o u r
-

nament trees that can be put on top of an initial configuration s, the problem
can be specified as: Determine l
a
/  T s .  T h e  
p r o p e r t y  
c h a r a c t e r
i z i n g  
a  
m e m
b e r

t of Ts is s + / ^  .t, in  which the inserted operation +  introduces associa-
tivity. Then

T s ( s  + / ^  .):U

It would be possible, o f course, to develop an algorithm for determining T,
after which we  would have an  algorithm f o r the whole problem. B u t
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computing Ts for large values of * s  is very inefficient; the number of binary
trees with n endpoints is of the order Et (4
11
n  - 3 / 2  ) .  I t  
w i l l  t u r n  
o u t ,  
m o r e o v e r ,

that we do not need an explicit construction of Ts in the derivation. I t  is also
obvious that dynamic programming gives us a polynomial algorithm. I n  such
cases it  is generally easy to transform an algorithm for a function of the form
1/ (  =  A l )  to an algorithm for I
f
/ .  T h e r e f o r e ,  
w e  
c o n c e n t r a t
e  fi r s t  
o n

simplifying 1/ d* T.
Let us first t ry some simple cases. I n  minimization problems such as the

present one, it  often pays off to switch to a seemingly more conventional alge-
braic notation that exploits the algebraic properties of the two operations 1 and
+  (CumNGHAME-GREEN[7]). Fo r not only are both associative and commu-
tative, but together they are also distributive: x  +y,tz =  x + y ; l x + z .  I f  we
denote the operation +  the way a multiplicative operator is usually written in
mathematical formulae, namely by juxtaposition of its operands (so we write
ʻʻxy" instead of " x + y"), and we use then the—now free—symbol " + "  to
denote the operation 1, then the distributive property referred to above is writ-
ten as x ( y +  z) x y + x z ,  in  which "multiplication" takes precedence over
"addition". Th is is purely a notational convention, but the advantage is that
we can apply our experience in handling and simplifying formulae of this kind.
Unconventional identities, however, are x0  =  Ox =  x (since the meaning is
still addition) and x+0  =  0 +x  =  0 (in which it is assumed that all numbers
involved are non-negative; a property preserved by the two operations). So we
have, in  particular, x  +xy =  x0 + xy  =  x (0 + y )  =  x0  =  x: a  term cancels
other terms of which it is a factor. The special case x + x  =  x of the identity
x +xy =  x expresses the fact (which we knew already, o f  course) that the
operation +  i s  idempotent. Th e  expression fo r x  i n  th is new notation
becomes now:
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t
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,  
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)  
X  
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R  
,  
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>  
<
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i
,
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R  
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(
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t
-  
M
)
>  
•

If the initial amoeba weight configuration is 1:1
,
1 ,  t h e  d u r a t i o n  
o f  t h e  
( t r i v i a l )

tournament is, o f  course, O. F o r  a  configuration s  =  + W
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that we obtain, fo r a  general configuration o f  n  weights, the "sum" o f  a ll
"products" of the members of each subset of size n —1 of the set of amoebae.
First, we return to the notation using " + "  for addition, and "1" for taking the
minimum A n  expression like (w
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In the general case, we expect to find
d. T s + / s ;  —1/s

A moment's reflection will show why this is a lower bound for the duration of
any tournament on s. Fo r in a tournament, each contestant but one is eaten,
and its weight is then counted at least once. So the best possible is that each
weight of the less fortunate contestants is counted exactly once, and that the
one contestant not counted is as heavy as they come. The  next question is if
we can prove that this formula is correct (and not only a lower bound) for the
general case. Fo r this, we do not need the full-fledged expression for Ts, but
only a simple property:
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Next, we must show that this lower bound is attainable (which is trivial for a
single amoeba). Th e  method is again by induction. Write  s
If we take for t
R a  d -
m i n i m i
z i n g  
m e
m b e
r  
o
f  
T  
s '
+ 3
,  
w
e  
fi
n
d  
f
o
r  
d  
t
R
,  
b
y

using the hypothesized formula for d t
R
,  t h e  e x p r e s s i o n

w
i
+
(
±
/
s
'
+
/
n
;  
—
V
s
'
+
c
v
„
)  
+
/
s
;  
—
V
s
'
+
,
„
.

Similarly, taking t
L  , I ,
d
/ T ; t / '  
1  
+ s ' ,  
w e  
fi n
d

d t
L
+
1 ,
) '  
(
+
/
,
1
+
s
'
;  
—
1
7
;
t
1
s  
1
+  
=  
+
/
s
;  
—
1
/
1
:
t
s
)
1
+
s
'

4"W m m o m m t g

Vd .Ts d  ,
1
+ t
R
; l d  
=

(±/ s ;  —1/s'+;1„)1(±/s; —1/1;1
1 + s ' )+/s + 1 : ; , „  ; 1  +s' ) + / s  ; t / s

The proof shows that it is possible to organize the tournament such that (a)
an amoeba of (initially) maximum weight will emerge as champion and (b) the
loser of each duel is putting up its first appearance (and so is not burdened by
the weight o f any fellow amoebae it  has devoured). I t  follows immediately
from (a) and (b) that each amoeba, except the one destined to be champion,
enters the stage only against the future champion. Conversely, i t  is now
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obvious that any tournament with this property is optimal. Th e  step from
here to a  linear-time algorithm is simple, i f  not trivial. One  possible algo-
rithmic formulation is

Id/ Ts s  ,

where t is defined recursively by

t ;1
'1 
;t v
i
<
m
R
;  
t  
R
)
0
(
w
„
<
m
i
,
;  
t  
L
;

where L  C 1
,
1 + s ' ,  
t /
L ,  
R  
=  
s
'  
+ c
v
„ ,  
m
R  
=  
t
/
R
.

The correctness follows directly from the preceding proof, since i t  has been
shown that d ts =  d s T  s.

Our showman is probably more interested in a simple method that tells him
when to lif t  which partition, than in determining a tree. I t  should be obvious
that we can advise him to remove, each time, any partition keeping the heavi-
est amoeba apart from a neighbour. I t  is not hard to derive this formally from
the given expression for t.

13. CONCLUSION
An attempt has been made here to convince the reader that the ideal of a dis-
cipline of "Algorithmics" can be realized. I f  the account was possibly uncon-
vincing, then, I  suspect, a major culprit is perhaps the shock of being exposed
to a set of unfamiliar squiggles. I n  my first endeavours, exploring the sugges-
tions of BIRD tzti, I  found that the only way to proceed was to translate the
formulae continually into familiar "operational" concepts. Now,  after having
played with these notations for some time, I  find myself applying transforma-
tions without being conscious of an operational meaning. The reader is invited
to try and undergo the same experience. A  good starting point is to derive

= + /  + / (1 < * P ? )
, , , , ,
.This is a meaningful and useful transformation; the two formulae are readily

translated into "pidgin ALoot,", and the resulting programs are each about 10
lines long.

Much work has to be done to develop the current set of concepts and nota-
tions beyond the in it ia l attempts presented here. Important points are the
discovery and formulation of "algebraic" versions of higher-level programming
paradigms and strategies, and the development of techniques to assess some-
thing like the concrete "complexity" o f  an expression in  the absence of an
operational model in  which time and space are meaningful notions. Other
issues to be investigated are the introduction of infinite objects, o f ways to
express some form of concurrency, and of suitable notations for handling alge-
braically more complex structures than the ones dealt with here.
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"The  me t h o d  e mp l o y e d  I  w o u l d  g l a d l y  e x p l a i n ,
Wh i l e  I  h a d  i t  s o  c l e a r  i n  my  h e a d ,

I f  I  h a d  b u t  t h e  t i m e  a n d  y o u  h a d  b u t  t h e  b r a i n - -
But  muc h  y e t  r e ma i n s  t o  b e  s a i d . "

You c a n  p e r h a p s  i m a g i n e  my  d i s a p p o i n t me n t  wh e n  I  h e a r d  f r o m  R i c h a r d  t h a t
he h a d  d r o p p e d  t h i s  wh o l e  a p p r o a c h  bec aus e  h e  f o u n d  i t  wa s  g e n e r a l l y
u n u n d e r s t a n d a b l e  t o  a u d i e n c e s .  S u b s e q u e n t  p r e s e n t a t i o n s  o f  t h e  A l g o -
r i t h m i c s  p a p e r  a t  WG 2 . 1  me e t i n g s  s t r o n g l y  s u g g e s t e d  t h e  s ame t o  me:  I
hav e p r e s e n t e d  b a s i c a l l y  t h e  s ame t a l k  t h r e e  t i m e s  a t  t h r e e  c o n s e c u t i v e
me e t i n g s  ( t h a t  i s ,  o n c e  p e r  m e e t i n g ) ,  m a i n l y  w i t h  t h e  e f f e c t  o f  d r a w i n g
b l a n k  s t a r e s  o r  q u e s t i o n s  l i k e  i f  I  t h o u g h t  " o r d i n a r y  p r o g r a mme r s "  w o u l d
e v e r  b e  a b l e  t o  u n d e r s t a n d  t h i s .  S t i l l ,  I  s t u b b o r n l y  r e f u s e d  t o  b e l i e v e
t h a t  t h i s  wa s  d u e  t o  s o me t h i n g  e l s e  t h a n  l a c k  o f  f a m i l i a r i t y ,  a n d ,  o f
c ou rs e ,  my  wa y  o f  p r e s e n t a t i o n ,  w h i c h  t e n d s  t o  b e  a  b i t  d e n s e .  A f t e r
a l l ,  mo s t  o f  i t  i s  n o t  h a r d e r  t h a n  muc h o f  h i g h - s c h o o l  ma t h e ma t i c s .

So I  p l o d d e d  o n  u n d a u n t e d ,  a n d  c o n t i n u e d  t o  p r e s e n t  e x a mp l e s .  T h i s  p a p e r
was p r e s e n t e d  a t  t h e  me e t i n g  i n  P o n t - A - Mo u s s o n ,  h e l d  i n  S e p t e mb e r  1 9 8 4 .
I  h a v e  " mo d e r n i z e d "  t h e  n o t a t i o n  ( m a i n l y  b y  n o t  u s i n g  t h e  g e n e r i c  -  a n d  +
f o r  s t r u c t u r e s ,  b u t  [ • ]  a n d  -H- f o r  s equenc es ,  a n d  s o  o n ) ,  a n d  i n s e r t e d
many  mo r e  p a r e n t h e s e s  t h a n  a r e  s t r i c t l y  n e e d e d  g i v e n  my  c o n v e n t i o n s .

Wi t h  t h e s e  c h a n g e s  i t  s t i l l  d o e s  n o t  mak e f o r  e a s y  r e a d i n g .  N e x t  t o  t h e
f a c t  t h a t  t h e  i n f o r m a t i o n  d e n s i t y  i s  o f  c o u r s e  a  l o t  h i g h e r  t h a n  i n  mo s t
o t h e r  s t y l e s ,  I  t h i n k  t h a t  t h i s  i s  m a i n l y  s o  b e c a u s e  t h e  d e v e l o p me n t  a s
g i v e n  i s  j u s t  a s  i t  o c c u r r e d  t o  me ( w h i c h  i s  a l s o  t h e  c a s e  f o r  t h e  A l g o -
r i t h m i c s  p a p e r ) .  T h e  d e v e l o p me n t  i s  a  m i x t u r e  o f  p a r t s  t h a t  a r e  s p e c i fi c
t o  t h e  p r o b l e m  a t  h a n d ,  a n d  p a r t s  o f  a  muc h w i d e r  a p p l i c a b i l i t y  b u t  wh e r e
some n e c e s s a r y  t h e o r y  i s  d e v e l o p e d  a s  i t  w e r e  o n  t h e  fl y ,  a n d  t h e n  n o t
ev en i n  a  g e n e r a l  f o r m  b u t  t a i l o r e d  t o  t h e  s p e c i fi c  p r o b l e m .  ( N o t e ,  i n
p a r t i c u l a r ,  t h e  s i m i l a r i t y  b e t we e n  t h e  d e v e l o p me n t  o f  t h e  " s m a l l e s t
u p r a v e l "  h e r e  a n d  t h e  t e x t - f o r m a t t e r  p r o b l e m i n  t h e  A l g o r i t h m i c s  p a p e r . )
As a  c ons equenc e ,  t h e  s t r u c t u r e  o f  t h e  d e r i v a t i o n  i s  o b s c u r e d .  I t  i s
p o s s i b l e  t o  g i v e  a  muc h c l e a r e r  e x p o s i t i o n  i f  a  mo d i c u m o f  t h e o r y  i s
d e v e l o p e d  fi r s t .  R i c h a r d  B i r d  h a s  d o n e  e x a c t l y  t h a t  f o r  s ome o f  t h e s e
k i n d  o f  p r o b l e ms ,  a n d  b y  a p p l y i n g  t h e  n o t i o n s  a n d  t h e o r e ms  f r o m  h i s
" Th e o r y  o f  L i s t s "  my  d e v e l o p me n t s ,  o r  a t  l e a s t  s u b s t a n t i a l  p a r t s ,  c a n  b e
d r a m a t i c a l l y  s i m p l i fi e d ,  w h i l e  ma k i n g  t h e  p r o o f  o b l i g a t i o n s  muc h  c l e a r e r .
Even w i t h o u t  t h i s ,  t h e  u s e  o f  t h e  " d i r e c t e d  r e d u c e "  n o t a t i o n  wo u l d  a l -
r e a d y  h a v e  h e l p e d  t o  s t r u c t u r e  t h e  p r e s e n t a t i o n  ( i n  f a c t ,  f o r  b o t h  P r o b
-l e ms ) .

O t h e r  p a r t s  wh e r e  s ome s t a n d a r d  t h e o r y  i s  w a i t i n g  t o  b e  d e v e l o p e d  a r e  t h e
c o n s t r u c t i v e  i n v e r s i o n  o f  c e r t a i n  t y p e s  o f  f u n c t i o n s  a n d  t h e  l i n e a r i z i n g
o f  c a l l  t r e e s ,  a s  i n  t h e  " l o n g e s t  c ommon s u b s e q u e n c e "  p r o b l e m,  b y  c o l -
l e c t i n g  a r g u me n t s  f r o m  d i f f e r e n t  c a l l s  t o g e t h e r .  A  muc h n i c e r  wa y  t h a n
t h a t  u s e d  h e r e  i s  t o  r e c o g n i z e  t h e  f a c t  t h a t  i f  t h e  b a s i c  r e c u r s i o n  p a t -.
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t e r n  o f  s ome f u n c t i o n  f  i s

f  x  =  e  /  f  *  c h i l d r e n  x

( i n  wh i c h  t h e  " l e a v e s "  a r e  o m i t t e d  f o r  t h e  s a k e  o f  s i m p l i c i t y ) ,  t h e n  we
c an e x p r e s s  f  a s  h o c a l l _ t r e e ,  w h e r e

c a l l _ t r e e  x  =  c a l l _ t r e e  *  c h i l d r e n  x

and h  i s  a  homomorph is m s a t i s f y i n g

h t  =  0  /  h  *  t .

I f  i s  n o w,  f o r  e x a mp l e ,  a s s o c i a t i v e  a n d  i d e mp o t e n t ,  t h e n  we  may  p e r -
f o r m r o t a t i o n s  i n  t h e  t r e e  a n d  c u t  a wa y  s ome d u p l i c a t e  b r a n c h e s .  T h e  a d
-v an t age  i s  t h a t  we  d o  n o t  h a v e  t o  t h i n k  i n  t e r ms  o f  d y n a mi c  s t r u c t u r e s ,
b u t  a r e  o n  t h e  f a m i l i a r  g r o u n d  o f  homomorph is ms  o n  d a t a  s t r u c t u r e s .
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Some more more examples of algorithmic developments

Lambert Meertens
Centrum voor Wiskunde en In formatica

Amsterdam

O. PRELIMINARY
This paper is not self-contained. The notations and concepts used are explained in reference [3]. I t
has been prepared as a working paper for WG

A new addition is the B function. I t  is the functional inverse of the function a/ and expresses on
the language level the meta-level breadth function I n  [3] it  was stated that this function could not
be admitted to the language, since this destroys monotonicity. However, 13 is a useful acquisition, and
since refinement steps e e '  are rare, it is better to allow one exception to monotonicity. Refinement
of expressions involving B is possible, as long as it does not happen inside an argument of B. I t  turns
out possible to give a simple calculus for juggling with, and in particular, eliminating B. The  major
rule is of course
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calculus. Rules of the B-calculus will nevertheless be freely applied. Usually their justification will be
intuitively obvious. (Bu t  some seemingly obvious transformations are unsound, as I  have noticed, so
beware.)

1. LONGEST COMMON SUBSEQUENCE
A subsequence of a given sequence is a sequence that can be obtained by deleting any number of ele-
ments from the original sequence. The  remaining elements need not be contiguous in  the original
sequence. So the sequence

The problem is: given two sequences s and t, to determine the longest common subsequence of s and
t. So, if  ,s' " s c a r e c r o w "  and t  " t  a r ry town", the answer is "a r row". Note  that there may
be different common subsequences o f  th e  maximum length, a s  between " b a t h t u b "  a n d
" o e rtu rb a te " ,  namely " b a t "  and " tub" .  I n  such a case, any of these is an equally acceptable
result. So the result to be determined is in general indeterminate.

There is an obvious dynamic-programming solution that will run in time 8  (*s. *t).  Th is is also
the worst-case running time of the best known methods, but on the average "practical" case they may
do much better. The problem has been treated by (among others) HUNT & MCILLROY [1], who wrote
a widely used program fo r finding a  minimal set o f  differences between two files—which is an
equivalent problem. A  linear-space algorithm was given by HIRSCHBERG [2]. The purpose of treating
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this example is not to find better solutions, but simply to examine how well the method can deal with
it. The  problem of determining the longest upsequence is a special, simpler case of the current prob-
lem.

Let s i t denote the longest common subsequence of s and t. (The  operation 1 is not defined on
sequences in [3], so we can freely use this symbol. However, the choice of this symbol is not just
whim, for 1 on two sets returns the largest common subset.) Then

st I , /  s 1X\ t ,

where s t  stands for the set of all common subsequences of s and t. T h
e  p r o p e r t y  o f  b e i n g  
a  s u b s e -
quence of s is expressed by the predicate s › ,  so we have

Then

Then
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Remark. Whether we "recurse" through s or t, or through the beginning or end of an argument, is of
lesser importance, because of the symmetry of the problem A  choice is made, however, in not using
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have to consider subsequences of two parts of t simultaneously. The price is that we hereby lose the
possible interpretation that we are determining the largest common subtree.

If we look at the second term of the last form, a sequence of the form [x] * 5
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tail of t following the first occurrence of x, if any, in t, and the (fictitious) value IV [] if  no x occurs in
t, where we put

r -WAIVE] =  E  I =  t /  [ ] fo r all r and s

If we denote that longest tail by post
s t ,  w e  h a v e[ ]

1
.  
I  
=

(Exl-H-s)it =  (s it ) t ,  ([x]-H- sJ, post
s t ) .If  we replace here "  = "  by "  " ,  we have an effective ("executable") specification, provided post

s i seffectively defined. Some practical remarks: the two arguments of i are always, respectively, an initial
part of the original sequence s and a final part of the original sequence t. I n  a practical implementa-
tion, s and t could be globally available and the arguments passed could just be indices of s and t.
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indices o f  t. Wi t h  the canonical evaluation scheme, however, this is st ill inefficient: we find an
exponential number of nodes in the computation tree. We  do much better if  we recognize the fact
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that many sub-applications of I will have the same arguments, and do not recompute these, e.g. by
using a table to store previous results. With  this simple change we have (a slight improvement on) the
obvious dynamic-programming method. To  do still better in a "practical" case, we have to look how
the applications of I unfold into a tree. Fo r  this we use a brief notation, in which, e.g., "a(airbT)"
stands for "[a] 4F (a [ r ,  b ] *  ,
r ) ) "  T h e n  
w e  
h a v e ,  
e . g . ,

abalga rbT

balg a rbT a ( b a l  r bT)

/
alga rbT b ( a l T )

Here (***) is superior to (*), and (**) is at least as good. Th is can be used to prune the tree by snip-
ping (*) off. Another example is shown by

obalabso rbT

ba

alab so r bT * I s °  r bT)

In this case, (*) is at least as good as ( *).  Finally, in
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(**) is at least as good as (*). Th is is intuitively obvious: in  two sequences that start with identical
elements, we may pair these off. Curiously, this case is the hardest to prove formally.

In the general case, the nodes of the tree have the pattern (still using the brief notation) y
z
( s I T , ) ,

where all nodes on the same depth have the same value for s. Non-competitive nodes can be dis-
carded. To  express this optimization, we must replace the recursion pattern by one carrying a collec-
tion of "candidates", being pairs (7, T). We  define
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If we can compute cc, we can also compute I, using
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t )
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gives the two possible ways in which an application of ca n  develop. We  must define then
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E3(p --> x), for determinate p and x, stands for " if  p then (x) else t  )"). Then
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s cc Li /succ
x * CWe have now an effective definition of cc, not depending on

This was only a standard exercise in replacing a recursion pattern that spreads out into a tree by a
linear-branch pattern, in  which, instead, the argument spreads out The  non-competitive candidates
have to be weeded out still. I n  particular, we would like to define a function weed, such that

s cc C s  cc weed C

We can look for a definition of the form

weed ;

weed (C U CO) (w e e d  C) ec

The necessary conditions can be derived by starting to prove (by induction) that C may be replaced
by weed C. We  write, for brevity, W for weed C. So, assume s cc C c c  W. Then
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We can safely start to define
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The next step is to try something like
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in which cc gives the competitive candidates between w and c. No w we choose to represent W as a
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but probably inefficient, final program.) The correctness criterion for cc is
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So it is sufficient if
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An immediate solution is given by

cc(w, c) [ w t „
j ;  c ] ,but this is not too helpful, since the definition o ff ;  involves 1, which is what we are trying to define in

a computationally better way. Each method that always replaces w and c together by just one candi-
date must take s into account and will require substantial effort. I f  we do not want to consider the
particular current value of s, the correctness criterion for cc is
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so w need not be included then. I n  the reverse case, c need not be included (but we must include at
least one o f  the two, since we do not want to  loose definedness). Moreover, if ,  fo r some t ,
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This last optimization is o f interest i f  consists o f one element. I t  is then best expressed as a
modification to  the succ, function, namely by replacing " ((y,  T))" in  the definition o f  succ
x b y"B(x X  first T ( 1 ,  T))", in  which i t  is understood that firsa l is  some fictitious value such that
x X  first H for all proper values x.

The efficiency improvement aimed at is certainly obtained, fo r the weeding ensures that the y-
components of W have strictly increasing lengths, so * W  is bounded by *s.  I n  a practical impera-
tive implementation, the computations of weed and of -Hisucc
x
•  c a n  b e  m e r g e d .  
S u c h  
m e r g i n g s  
c a n

be obtained by a simple unfold/fold, but this is somewhat boring and yields no further simplification.
Also, on non-Von architectures this is possibly no improvement anyway. To  sum up the findings, we
have

where
si t a l  I ,  Oh
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weed H H ;

weed (W -H[e]) (we e d  W)Gic ;
F.
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[](9c [ c ] ;
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I have not eliminated B here, mainly since this would mess up a clear specification, but note that it is
supposed to return a sequence in  this context. No te  also a final optimization in  the definition of
[ I c c I V

2. SMALLEST UPRAVEL
A ravel of a given sequence is a bag of subsequences that "shuffled" together can give the original
sequence back. F o r  example, the sequence "accompany" can be raveled into "am", " copy"  and
"can", as follows:

a c c o m p a n y

a
c o  p

a n

A ravel is an upravel if all its elements are upsequences, i.e., strictly increasing. The above ravel is not
an upravel, since "can" is not increasing. (Fo r the examples, we have a  <  b  <  •  • • .) A n  upravel
is given by "an", "a cm" and "copy". Each sequence has of course at least one upravel, by turning
each of its elements into a one-element sequence. O f  all the possible upravels, we want to determine
one with the least number of elements.

A possible application is in  sorting sequences that are almost in order already, or that have been
formed by catenating a small number of (almost) sorted sequences or by merging such sequences
according to some irrelevant criterion. I n  such a case, one can sort a sequence by merging the ele-
ments o f  an upravel. Th e  condition "strictly increasing" should then o f  course be replaced by
"weakly increasing". Th is makes only a marginal difference.

To proceed with a formal development, we first define what it  means to shuffle two sequences s and
t:

[ I3 *t

s3*[] , s ;

[x]-ft-s; [ y ] - H - t  p d -i-i-(s3 *([y] -i i-I )) [I [ y] -H-(([x l-H-s)t ).
So the first element of a shuffle of s and t  (unless s and t  are both empty) is the first element of at
least one of s and t, and the rest of the shuffle is then a shuffle of s and t but with that first element
removed from one of the two. The operation 3* is obviously commutative, and (somewhat less obvi-
ous) associative. A  shuffle of a whole bag of sequences u is then given by 3:*/u. I f  we want to have
all possible shuffles, we can use the B function. I  just give the results of applying the B-elimination
calculus:

shuffles u B  * / u  =  3 * / { - }  *u.

U / ( 1 7 -
1 8
v
2
) S X T ;

t 1 3 ( H  t )  B  t =  {t }

s
i
E
d
]  
B
(
s
*
[
]
)  
=  
B
s  
=  
(
s
)
;
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([x]-H-s) B  ([y]-++-t) B([x1-1-Es) ( [  t )  =
BUx1-11--(s m([yl-f f -t ))0 [A41 -(([x] *s)mt)) =
B([x]-41--(sM([yl-fl-t))); U B(L)11-H-(([x]-H-s)t)) =
([xl-R-).B(s t ) ) ;  U ([  y ] * ).B (([ x1 +- s)Mt) =
([x]-H-).(s B  ([y]-4-t)); U ([y]-1-1-)4([xl-li-s)M
B t ) .Here, S X T is the Cartesian product of S and T. Since S X {x} =  (id, x <)•S,
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U
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U
/  
(
-
)
*
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=  
S
,

so the singleton set (H),  consisting of an empty sequence, is an identity of this operation M,  and we
have M / 0  =  H ) .

A bag u is a ravel of a sequence s if s shuffles u. The property of being an upsequence is tested by

up H  T

up ([x]-H- s) ( x  <  first s) A up s

Here we put first H l / H ,  which is larger than all proper values. The smallest upravel is now
sus L I (  A/up.)< (s shufiles)< U.

If u is an upravel of s, then so is (HX  )<Itt. Since, moreover, ( &  ).1u •<„ u, we can insert a filter
([1a)4  in  the definition of su in front of 11.l to  sift out ravels containing the empty sequence. A n
arbitrary upravel that does not contain the empty sequence is now given by

upravel s 0 /  ( A / up.)< (s E shuffles).1(H).(1U ,

A general paradigm for synthesizing an effective definition of su is the incremental strategy. No te
the formal resemblance to the text-formatter problem. Some informal reasoning shows that a prop-
erly truncated smallest upravel of some sequence is a smallest upravel of the truncated sequence, so
there is hope. Truncation is here the removal of the first element of a sequence, and proper trunca-
tion requires the removal of sequences of an upravel that become empty through truncation. Ho w-
ever, a  problem is that in  general the smallest upravel of a given sequence cannot be formed by
extending just any smallest upravel of the truncated sequence. Fo r example, although "a t"  and "e"
form a smallest upravel of "ate" , it  cannot be extended to form the (unique) smallest upravel " f  t"
with "ae"  of " fa te " .  Whether an upravel u can be extended with an element x without increasing
its size, depends on the collection first .0 of the first elements of the sequences of u. The extension is
possible if  (and only if) ( x <  )<1 first u  is not empty. I n  constructing u, we do not want to " look
ahead", i.e., take the value of x into consideration. (Th is is the essence of the incremental strategy.)
So we can try to apply a selection among the possibly many upravels of the smallest possible size to
keep first su in  some sense as "large" as possible, so that the widest possible range of x's can be
accommodated in a size-preserving extension. I f  this ordering would be total, we could just refine the
operation L i n  the definition of su to take the new ordering as a subordinate criterion in the selec-
tion.

So we try
s u s s u ' s ,

where su's is the function realizing the restricted selection process:

su' s fi
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(
H
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4
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in which the ordering on the codomain o f  firsts i s  st ill t o  be determined. F o r  u  to  satisfy
[ ] E shuffles u, =  0/shuffles u must be satisfiable. (A  property p is "satisfiable" if  p 1 . )  So

[ =  0 /  shuffles u =  0 /B * / u  =

must be satisfiable. Fro m here on I  will not repeat "must be satisfiable". I t  is easy to see from the
definition of m that s M t = H  if  and only i f  s and t  are both empty. So  M/ u  H  if  and only
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in which 4) has t o  be  determined. L e t  us first  treat the simpler case as though the part
fi„, . )/ ( A /up.)<I" above simply read "W" .  We  want to have then

0 / ( [ x ]
-
i i
-
s ; E s h
u j fi e s
) < ( [ ]
0 • 1 1 i  
=  
x
e
o  
0
/
(
s  
e  
s
h
u
l f
i
e
s
)
<  
(
H
O
<  
U
.

Proceeding as above, we want to determine u' satisfying

[x]-1-1-,s =

where u such that s ,  / u  and H u  is known. (Th is is the constructive counterpart of the usual
inductive hypothesis, so we may dub it the "constructive hypothesis"). We  can rewrite 3 * /  in such a
way that it becomes explicit which elements can go to the front, by "computing" split ,  where

split ,  (first, tail).

(The function tail is, of course, defined as tail [x]-H-s s . ) We  can push split inwards, provided we
can find an operation s u c h  that

split s t  ,  splits; s p l i t t
.We find (by unfolding )  for non-empty sequences:
(x, t )  ( x ,  s (  [y] -H-- t))0(y, ( [x] -H- s) I ) .

Since split is ill-defined on empty sequences, we cannot hope to extend 3* , to accept empty operands.
(Actually, this can be done, but this requires much ado about "Nothings" with magical properties.)
Fortunately, H is the identity of s o  we can insert, without change of meaning, a filter to suppress
empty sequences in u.

It is easy to see that

1T1 s
/  
s p
l i t  
fi
r
s
t
.

If we define

if A / ( H
,  ) . u
.  
I f  
u  
s a t
i s fi
e s  
[
]
e  
u  
t
o
o
,  
3
*
/
u  
[  
[  
i
f  
a
n
d  
o
n
l
y  
i
f  
A
/
(
F
<
)
.
u
,  
i
.
e
.
,  
u  
=  
<  
>
.  
S
i
n
c
e  
<  
>  
i
s
,

trivially, a bag of upsequences, we can define
su'<> H .

We can try to find an incremental development by putting
sulx1-14- x e s u '  s ,

Trne, u T r
2
0 / ( x  
v
1
) - 1  
B  
/
s p
l i
t  
u  
,

we obtain (or should obtain; I  must confess that I have not attempted to do this in detail for lack of
time and interest) by unfold/fold:

shuffle u s h u f  ([W)<lu  ;

shuf u u  <  - 4 [ ]  u  - - - > f ,  0/first u

f ,  x x  *  shuffle Trite, u

Tmc,(<[x]> u )  u

Tmc„(< [x]-1-1-v> U u) < v >  Li u.

The last two line gives an indeterminate definition, since both left-hand sides match if v H .  More-
over, in both lines the argument is a bag, and there may be several ways to bring a member starting
with x  in  front. N o w  =  shuffle u. N o w  we see that u '  must be such that XE first.u' and
Trno, u' u .  So  u' e x t ,  u, where ext
x i s  t h e  
f u n c t i o n a l  
i n v e r s e  
o f  
T r n e
x
,  
s o  
b y  
s i m p l
y  
" s w a p p
i n g "

the argument with the right-hand side, we have
ext
x 
u
"  
<  
[
x
]  
>  
U  
u
"
;
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Then

e x t
x
( < v
>  
L
i  
u
"
)  
<
E
x
1
4
1
-
v
>  
L
i  
u
"
.

This definition is again indeterminate, and this is essential. We  see that x e first I t '  is automatically
satisfied. Also, if  H u ,  then H Et u'. So we have now

x s
o 
u  
e
x
t
.
,  
u
.

This would be fine for determining arbitrary ravels. To  get an upravel, we define
x e
l 
u  
i
f
u
p  
(
x  
(
9
c
,  
u
)
;

ifup u A  / up .0 —> u

It is understood here that if there are several choices in matching an application to the left-hand side
of an indeterminate definition, only choices should be made whose right-hand sides are not flat, i f
possible. The definition is sufficiently effective, since there is only a finite number of possible match-
rugs in the definition of ext
x f o r  a n y  
g i v e n  
a c t u a l  
a r g u m e
n t ,  
s o  
a
n  
a u t o
m a t o
n  
c o
u l
d  
s i
m p
l y  
t
r
y  
t h
e s
e

one by one until one is found that does not lead to a dead end. We  could, if  we wanted to, rewrite
the definition in  such a way that no dead end could be encountered in  the canonical evaluation.
Instead, we will only simplify matters somewhat. A f te r some unfolding of ifup (x e
o u ) ,  w e  r u n  i n t othe formulae:

A / up.(<[x]> Li u") ---> < [x] > U u";

A /up.(<[x]--H- v > Li u") [ x ]  -FE v > U u".

By the constructive hypothesis, A  / up. u" is satisfied for the first formula, so its guard is satisfied as
well. F o r  the second formula, we know that A  / up.(<v> Li u"), so its guard can be simplified to

<  first v. We  redefine ext
x n o w  a sext

x 
u
"  
[
x
]  
U  
u
"
;

ext
x 
(
<
v
>  
U  
u
"
)  
x  
<  
f
i
r
s
t  
v  
<
[
x
]
-
1
-
F
v
>  
L
i  
u
"
.

xe
l 
u  
e
x
t
x
u
.

Now for the hard part. The u' to be determined has also to be (* ,  first *)-minimizing, where we may
use the constructive hypothesis that u minimizes that same function. We  start by defining a partial
ordering on collections of first elements of the sequences of an upravel that captures as much as we
can summon of the ability to accommodate prospective x's to be prepended. The lower in the order-
ing, the more accommodating. I t  is assumed here that first., applied to a bag, yields another bag (for
reasons that will become apparent), so the domain of the partial ordering to be defined consists of
pairs of bags. We  use the symbol <  for the partial-ordering relation. Then we require:

< > <  b

(<[xl> b )< . (< [ x l>  c )  i f  b  -<c ;

<[xl> <  <Eyl> i f  x  y  (sic).

Of the three properties that are needed for a relation to be a partial ordering, namely (i) s <s, (ii) if
s <  t and t  <s, then s t ,  and (iii) <  is transitive, parts (i) and (ii) follow from the requirements.
Part (Hi) does not, so <  is defined as the transitive closure of the initial relation satisfying the require-
ments. Note  that if  we can find a minimum in a set of values according to this partial ordering, then
the function *  will be minimized as well. So if  we accomplish what we are trying to do, we can for-
get about *  and simply take Ifirst..

Once we start comparing according to < ,  we hope to be comparing values of the form first•ext
x u .It is then helpful to have a function repl

x s u c h  t h a tfirst ext
x u  
r e
p t ,  
fi r
s t  
.
0
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0
By the usual method (unfold/fold), we find a solution:

repl
y 
b  
<
[
x
]
>  
b

repl„(<[y]> b )  <  y < [ x ] >  Ub
.If <  captures indeed accomrnodatingness, we must now find

I f  repl, 1
0 b
2
,  
w h
e r e  
b  
1  
a
n
d  
b
2  
a
r
e  
b
o
t
h  
d e
t e
r m
i n
a t
e ,  
t
h
e
n  
b  
1  
<  
b  
2  
o
r  
b
2  
<  
b  
i
•

The proof is left to  the indefatigable reader. I t  follows that <  is total, i f  restricted to  pairs o f
operands from B  repl
y b ,  s o  
t h e  
m e a n i
n g  
o f  
I /
B  
r e p
l
y  
b  
i
s  
d e fi
n e d
,  
w h
e r
e  
i
t  
i
s  
u n
d e
r s t
o o
d  
t
h
a
t  
a

minimal element is selected according to the <-ordering. Furthermore, we have

I f  b 1 <b2, then I /B  repl
y 1 3
1 • - • < z  , t /
B  r e p l
y  b
2
.

Again, I  leave the burden of proof to the undefeatable peruser, to whom I might as well dedicate the
paper. (Seriously, I  am interested in a snappy proof; one in the style of that of the 4CT I can gen-
erate myself.)

If we put

H  fi r s t *  . ( A /up.)4(s shuffles)<([]q)-(1U

,  first —13 upravel s ,

the constructive hypothesis is

first .0 H

We want to show that u '  =  Ifirst. /8  ext
x u ,  w h e r e  u  
i s  t r e a t e d  
a s  
fi x e d  
( d e t e r m i n a
t e ) ,  
i s  
a  
fi r s t

minimizing element of B upravel ([x]41- s) then. Fo r arbitrary fixed u", we have

first I fi
rs t
.  /
E 3  
e x
t
x  
u
"  
=  
4
/  
fi
r
s
t  
*  
.  
B  
e
x
t
,  
u
"  
I
/
B  
f
i
r
s
t  
*
e
x
t
,
u
"  
,
t
/
B  
r
e
p
i
x
fi
r
s
t  
u
"
.

So

first .u' ,  first * I
fi
„ , .  / B  
e x t
x  u  
=  
I / B  
r e p l
y
fi r s t  
*
u  
I
/
B  
r e p
1 , 1
/ 1 1  
<

I / B  rep!,,0 /  first * B  upravel s I / B  rep:, 0/B first *upravel s =  I / B  r e p l
r
fi r s t . u p r a v e l  s
first *Ifirst. /B ext, upravel s fi r s t .  Ifirst / B  upravel s ) .

This is what we wanted to show.
The bottom line is that we can define ED in the definition of su' by

eu f fi
r s
t
.  
/
B  
e
x t
,  
u

Remember that ext
y w a s  
d e fi n e d  
b y

ext, u <  [x] ) U u

ext, (<v) U u) <  first v <[x]-1-Fv> U u

If (x <)<1 first .0 <  ), then the second part does not apply, so xeu < ] x ] >  U u. Otherwise, the
first part is not of interest, since it  extends the size of the upravel and so certainly does not yield a
first *-minimizing result I f  there are several matchings to the second part, it  is easy to see that one
yielding a first i-minimi7ing outcome is the one with a minimal choice for y,  the replacee in rep l
y
.
This makes it possible to define s o  that it directly realizes a fi r s t
,
- m i n i m i A n g  e x t e n s i o n .

In conclusion, the "program" is
sus • su ' s  ;

su' [] <

su'([xl-H-s) XEDS1.1' S

Nammaamomammiamommarammmemma
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" co u x<r---><Pc1 )L lu tb c. ->--r-->x
where r J r / fi r s t  *lc

x<D,(<[r]-1-1-0 U u) < [ x , d -H -v )  U u.

v o m a x a m a g g r „  M M I E M M i t a N  V t . „
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The B o o t s  a n d  t h e  B r o k e r  we r e  s h a r p e n i n g  a  s p a d e - -
Each w o r k i n g  t h e  g r i n d s t o n e  i n  t u r n :

But  t h e  B e a v e r  we n t  o n  ma k i n g  l a c e ,  a n d  d i s p l a y e d
No i n t e r e s t  i n  t h e  c o n c e r n .

Somehow o r  o t h e r  R i c h a r d  p i c k e d  u p  i n t e r e s t  i n  my  " s q u i g g l e s "  a g a i n
( r e a l l y  h i s ,  i f  h e  h a d  n o t  d i s o wn e d  t h e m) .  I t  c a n n o t  h a v e  b e e n  t h e  g e n -
e r a l  a c c l a i m  t h e y  me t  w i t h  a t  my  p r e s e n t a t i o n s  t h a t  made  h i m  d o  s o .
Maybe i t  wa s  t h e  e a s e  w i t h  wh i c h  I  k e p t  p u l l i n g  f u n c t i o n s  a n d  o p e r a t o r s
t o  t h e  l e f t  o r  p u s h i n g  t h e m t o  t h e  r i g h t  ( w h i l e  w r i t i n g  t h e  f o r m u l a s
u p s i d e - d o wn )  o v e r  a  b e e r ,  e v e n  a f t e r  many  b e e r s ,  t h a t  c o n v i n c e d  h i m  o f
t h e  c o n t i n u e d  v a l u e  o f  t h i s  a p p r o a c h .

M a M M M U M M W M U
U
M M A M

Any way ,  a t  t h e  P o n t - A - Mo u s s o n  me e t i n g  a  t a s k  f o r c e  wa s  s e t  u p  t o  t r y  a n d
ag ree  o n  a  c ommon n o t a t i o n ,  i n  wh i c h  R i c h a r d  a n d  I  we r e  j o i n e d  b y  Da v i d
Wi l e .  W a y  b a c k  i n  1 9 7 3 ,  D a v i d  h a d  wo r k e d  o n  a  c l o s e l y  r e l a t e d  a p p r o a c h
t o  l a n g u a g e  d e s i g n ,  u s i n g  fi n i t e  a n d  i n fi n i t e  s e q u e n c e s  ( s t r e a ms )  a s  t h e
s eman t i c  b a s i s .  ( I  wa s  a wa r e  o f  h i s  wo r k  a l l  t h e  t i m e ;  I  c a n  remember
t h a t  I  wa s  d i s a p p o i n t e d ,  wh e n  v i s i t i n g  CMU i n  1 9 7 5 ,  t o  fi n d  h i m  n o  l o n g e r
t h e r e . )

Due t o  t h e  f a c t  t h a t  D a v i d  c o u l d  " j o i n "  u s  o n l y  b y  e l e c t r o n i c  m a i l ,
whereas  R i c h a r d  a n d  I  me t  i n  p e r s o n  f o r  a l t o g e t h e r  a  f a i r  a mo u n t  o f  t i m e ,
h i s  i n fl u e n c e  o n  t h e  r e p o r t  a s  d e l i v e r e d  b y  t h e  t a s k  f o r c e  h a s  p r o b a b l y
been muc h l e s s  t h a n  i t  o t h e r w i s e  w o u l d  h a v e  b e e n .

The p a p e r  wa s  d i s c u s s e d  i n  a  q u i t e  fi t t i n g  c o n t e x t :  o n  a  b o a t  ( g o i n g  down
t h e  A ms t e r d a m- Rh i n e  Ca n a l ,  a n d  p a s s i n g  B r e u k e l e n  d u r i n g  t h e  p r e s e n t a t i o n ;
f o r t u n a t e l y ,  t h e  r u d d e r  a n d  t h e  b o w s p r i t e  d i d  n o t  bec ome e n t a n g l e d  d u r i n g
t h e  v o y a g e ) .  T h i s  wa s  i n  A p r i l  1 9 8 5 .

Nex t  t o  c o r r e c t i n g  t y p o g r a p h i c a l  a n d  o t h e r  s i l l y  e r r o r s ,  I  h a v e  a l s o  u p -
d a t e d  t h e  n o t a t i o n  f o r  fi l t e r  h e r e  f r o m  " : "  t o  " 1  " ,  a n d  g i v e n  t h e
d i r e c t e d  r e d u c e s  a  r e a l  a r r o w ,  i n s t e a d  o f  o n l y  a n  a r r o wh e a d .
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A common basis for algorithmic

specification and development

1

1. INTRODUCTION
This report, prepared for members of Working Group WG 2.1, summarises the results of two meet-
ings between Lambert Meertens (LM) and Richard Bird (RB) held in Amsterdam on Jan 5-11, 1985
and in Oxford on Feb 15-25,1985. David Wile (DW) was kept informed of the progress of these dis-
cussions by electronic mail, but due to difficulties with that medium, not all his contributions were
received in time to incorporate into this summary.

Our initial objective in holding these meetings was to try to agree on a common basis, formulate
general concepts, and suggest concrete notations fo r a—as yet unborn—Science o f  Algorithmics
based on transformational programming. No t  surprisingly, this ambitious programme of work was
not realised. Although there was mutual agreement about the general importance and philosophy of
the approach, there were differences of attitude about notational style and many areas where no firm
conclusions could be reached in the time available. Indeed, it  was felt early on that a reformulated
objective would be more appropriate, namely to present to the Working Group concrete issues for
further discussion, elaboration and refinement. B y  focusing attention on certain key areas, from
semantic foundations to specific notations, we hope to provide input to WG 2.1 to continue its work.

2. BACKGROUND
There is a style of algorithmic specification and derivation with the following commonly observed
characteristics: it  is based on simple notions of function definition and application, the functions are
homomorphisms on structures, and derivations proceed, in part, by using general algebraic identities.
Several people are actively pursuing transformational developments in  this style. They feel that a
more traditional 'mathematical' style of manipulation is appropriate for many steps in the treatment
of algorithmic problems by transformations. We  do not know yet how widely applicable such a style
is; in  particular whether it  is only really suitable for small problems of a highly algorithmic flavour.
However, for these kinds of problems at least it is certainly a valuable tool. One can express intricate
transformations succinctly and substantial transformations precisely.

In spite of the observed similarities of approach mentioned above, there are also differences. There
are variations in the concepts used, differences in notation for identical concepts, and wide divergence
in general syntactical conventions. Since familiarity with notation is essential for ready comprehen-
sion of any transformational treatment of a problem, this disparity is a severe hindrance, and means
must be sought to alleviate it.

Naturally, before one can discuss specific notations, one has to agree on a common framework and
what predefined concepts are chosen for emphasis. These two aspects are closely related and mutu-
ally dependent, but for the purposes of organisation we have divided the rest of the report into four
sections: Framework, Specific concepts, Notation and Laws.
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3. FRAMEWORK
Broadly speaking, the syntactic framework we envisage is an equational language o f  expressions
involving functions, primitive objects and structures o f  various kinds. Certa in  equations between
expressions are to be regarded, in a suitable sense, as the definition of new objects, functions, or struc-
tures. Possibilities for a concrete syntax are discussed in Section 5. The semantic framework is more
problematic. On e  major candidate is a  fixed-point semantics fo r a  core language, together with
transformational semantics for extensions. Th is is the a p p r o a c h ,  at least in part. Alternatives
are a purely algebraic semantics, or an axiomatic semantics based on some formal proof system.

The choice o f  a suitable semantics is dominated by two major considerations: the question o f
indeterminate values and the means of defining new generic structures, including infinitary structures
such as is provided in a number of current functional languages. We  deal with these in turn.

3.1. INDETERMINACY
A long time was spent discussing the question of whether some notion of indeterminacy should be
allowed in the expression language. Fo r the purposes of discussion it was agreed to confine attention
to the desirability or otherwise of using one or more types of choice operator in the specification and
derivation of algorithmic expressions. I n  particular, we did not consider the problem of using indeter-
minacy to model concepts o f concurrency. I t  was certainly felt that some form of indeterminacy
enabled a number of derivations to be expressed more naturally at the element level rather than the
set level. The  importance of avoiding over-specification, allowing one to postpone design decisions
until a suitable stage in the development process, was also recognised. However, it  was also appreci-
ated that any attempt to incorporate indeterminacy involves more or less severe problems of semantic
description. Three possible approaches to indeterminacy were identified for future discussion by the
Working Group:
(1) Avoid it altogether and encapsulate indeterminacy through the medium of set constructions alone.

In this approach, exemplified in the treatment of the text formatter problem (Bird [2]), one just
formulates the set of all solutions to the problem under consideration, and then selects a particu-
lar member of it  by some further synthesis step. Questions of indeterminacy are resolved at the
transformational level, and no notion of arbitrary choice is present in  the expression language.
The main advantage of this method is that the semantics of the expression language are simpler.
On the other hand, it then becomes necessary to extend the definitional requirements for the func-
tions and objects involved in the specification beyond the purely equational into general predi-
cates about set membership. Also, the synthesis of the one-element-of step does tend to duplicate
much of the reasoning about the all-elements-of solution.

(2) A llow an indeterminate-choice operator i n t o  the notation, but le t i t  always denote some
definite, though as yet unspecified, operator. The only property of U one is allowed to assume is
that it is selective. I n  other words

xfIly =  sel(x, y)
for some suitable function sel that selects one of its arguments (the smallest, or the left-most, or
the funniest). The  advantage of this method is again semantic simplicity, but once one realises
that different occurrences of 0 must all be given the same eventual interpretation, certain laws
that one might deem desirable are no longer valid. Fo r instance, the laws

x0 y =

f (xl]  y) ( f  x)0(f y)
cannot be both valid. (Take f  x and y  such that x y ,  y  and f  y x . )  Different uses
of 0 must be given different colours to ensure consistency. A lso  the notion of refinement i s
more problematic in this context. Nevertheless we believe it is possible to turn this device into a
useful vehicle, and RB is currently attempting a clean treatment of the formatter problem based
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on the approach.
(3) A llow 0 in  the notation as denoting arbitrary choice, as recommended by LM. There are various

subdivisions of such an approach: angelic versus demonic indeterminacy, the decision as to how
to model functions (as single functions from objects to sets of objects, or sets of object to object
functions), among others. Th e  advantages o f  arbitrary choice have been illustrated in  Meer-
.tens (3], but there are definite complications in  giving a denotational semantics of higher-order
functions and infinitary structures (both involving non-fiat domains) based on fixed points.

Developing point (3), we considered what properties one would like of a choice operator. The follow-
ing properties of 0 seem desirable, but are mutually incompatible:
(a) A  well-defined notion of refinement ( )  which is reflexive and transitive and such that all con-

structs are monotonic with respect to
(b) The property that x y  ( x  y )  =  x.
(c) The laws that 0 is commutative, associative and idempotent; note that this, together with (b),

implies reflexivity and transitivity of ,  whereas, conversely, (b) together with reflexivity of
would imply idempotence of 0.

(d) The law x 0 y x ,  which would follow from (b) and (c).
(e) The requirement of referential transparency. Th is is closely related to the validity of unrestricted

unfolding of definitions Th e  difficulty in maintaining referential transparency is illustrated by the
failure of such assertions as (x y )—(x 0 y) =  O. Approach (2) above keeps this property.

(f"")The law f(x y )  =  ( f  x)0( f y), or its weaker counterpart in which =  i s  replaced by N o t e
that the latter would follow from (a) and (b).

(g) The law (x y )  A (x z )  implies x ( y 0  z). Th is would follow from (b) and (c).
(h) The law V x: f x  g x  implies g .  The other direction would follow from monotonicity. Th is

law concerning the extensionality of refinement would seem particularly important.
The mutual incompatibility, even if (e) is dropped, is shown by the following example. Define

F15 =  (01)+01)2);

f x  =  3 +x ;

g =  6 —x

h =  ( f x )  ( g  x).

We first show that (1' f) H (F g) =  9.

F f  ( f 1 ) + ( f 2 )  (by the definition of F)

= 4 +5  (b y the definition o f
f )= 9  (by elementary computation).

(F f)B (F g) =  909

= 9  (by c: idempotence).

On the other hand, we show that (F f) H (F g) 8 .  To  show this, we need an auxiliary lemma:

f  Og f  (by d).

( f  Og)x ( b y  the above and a: monotonicity).

( f  Og)x •  g x (similarly, also using c: commutativity).

3
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( f  Elg) f  x) U (g x) (from the above by g)
x (b y the definition of h).

f  Ogr h  (f rom the above by h).

Now we proceed:

(F f)0  (F g) F ( f  Dg) (by f: strong version)

F h (b y  the lemma and a: monotonicity)

(h 1) ( h  2) (by the definition o f
f )(f1)-1--(g 2) (by the definition of h and c and d)

4+4 (by the definitions o f
f  a n d  g )8 (by elementary computation).

So the combination of (a-d) and (f-h) leads to the consequence that 9 8 ,  which is unacceptable, and
at least one more desirable property must be dropped.

3.2. THE DEFINITION OF STRUCTURES
We obviously need a coherent and simple way of combining old structures to make new ones. Fo r
the sake of simplicity we confined our attention to the single example of the tree-sequence-bag-set
hierarchy of LM [3] and considered one possible approach to defining these structures. There are two
points to bear in mind about the example:
(1) Unlike the data type constructors of, say, HOPE and Miranda, the structures form a hierarchy in

which the associative, commutative and idempotent laws are introduced one by one. These laws
thus ensure that each structure in the hierarchy is a refinement of the next higher one. Modulo
these laws, each element structure is a free structure. Since free structures are not capable of
further refinement by the imposition of new identities, any decision to make a structure free must
be made explicit in the notation.

(2) Operations such as map and filter are not only polymorphic, they are also structure-generic, to
coin a word. Fo r example, map can be applied to sets, sequences, trees and bags. A  major objec-
tive in trying to describe type hierarchies is to be able to introduce such generic operations at the
right level of abstraction. A n  alternative approach was noted here but not pursued in any detail.
Since map and reduce are examples o f  homomorphisms, i t  may prove possible to  treat the
specification of homomorphisms of structures as a primitive means of definition. We  would like
to see further discussion of this approach.

The particular line we investigated was the following. We  define a 'system' to be a tuple (possibly a
singleton) consisting of some (possibly none) types and some (possibly none) operations involving
these types. A s  well as constant types, type variables are also allowed. A  'module' (for want of a
better word) is a static function which may take a system as argument and returns a system as result.
Thus module definitions are just like function definitions, and conform to the same general principles
of syntax, except they are statically rather than dynamically evaluated. Fo r example:

module groupoid(A) ( S ,  ^: A -*  S, op +  : S S  S )

defines a structure for each type A (itself a singleton system), providing a new type S, a function '  for
injecting into the new type and +  as a binary operation on the type. (The type S S  S  used here,
to be parsed as S --)(S --->S), is the 'Curry'd type corresponding to (S X S)--> S. Notation and other
matters o f concrete syntax are still open questions; in  particular, how one is to denote operators
rather than prefix functions in the signature.)

A system can be built from another system by taking quotients modulo given laws. We  suppose
these laws might have to be restricted in some way—to positive conditional equations for instance—

•kbw•
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which is allowed since sequences are a groupoid.
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but do not want to pursue this. A s examples of the kind of refinements we have:

law assoc(op +  : A — * A — * A) ,  (V x, y, z e A: (x +y)+  z x  +(y + z))

module sequences(A) ,  free ((S, ^, +  ) modulo assoc (+)

where (S, ̂ , + )  =  groupoid(A))

module bags (A) ,  free ((S, ̂ , +  ) modulo assoc (+), comm (+)

where (S, ^, + )  =  groupold(A))

and so on. A  type constructor, Sag say, can now be specified by a definition
(Seq(A), El, -11-) =  sequences (A).

This device allows one to choose different symbols for the operations of a type in different contexts.
We can now give system-generic definitions of operators. Fo r instance

module reduce (groupoid(A)) ,  (op / :  (A —A —* A)—* S —*A)
modulo (V e EA >  A >  A, xEA,  s, tE S:

/^x x  A

0/(s + t) ( e / s ) e ( 0 / 0 )

where (S, ^, + )  =  groupold(A)

In a particular context we might have something like

- • •  • • where =  reduce (sequences (A))

5

We now list some queries about such an approach:
(1) Do  we need final as well as initial (=  free) models? ( I n  an in itia l model, ground terms are

unequal unless they are, by the laws, provably the same. I n  a final model, ground terms are equal
unless they are provably different.)

(2) Should one allow restrictions on parameters? A re  such restrictions part of the type? (Note that
there is a problem in the definition of reduce: if, say, e /  is applied to a sequence, the laws given
imply that e is associative on the range of e/. The laws suggest, however, that the function e /
also e xists f o r  sequences i f  e  i s  n o t  associative. W e  co u ld  possib ly h a ve

(o modulo assoc( ) )  E
A  —  *  A  
— >  A '  
i n  
t h e  
d e fi n i t
i o n  
o f  
r e d
u c e
,  
b
u t  
t h
e n  
i
t  
w o
u l
d  
n
o  
l o
n g
e r  
b
e

system-generic.)
(3) How is one to  generalise the above to infinite structures, and how should one annotate the

definitions to obtain all desirable combinations (finite alone, finite and infinite, or just infinite)?
The question is related to the problem of which semantic framework is proposed for the concepts.

(4) Can one give other useful examples of this kind of structure hierarchy?
(5) I n  the examples, the structures have been defined without identity law for + ,  which would intro-

duce the empty structure '0'. A  generic definition of 'map' must have a law f* 0 =  0, but this
would make * unusable for structures without identity. I n  LM's approach to algorithmics, 'ficti-
tious values' play an important role, such as I/O, the least element of an empty structure, which is
an identity element for the operation 1, corresponding to co. These are explained by domain
extensions I s  i t  possible to  have such extensions in  the approach under discussion without
tremendous fuss?

(6) I n  general, we must deal with partial functions and therefore with 'error values'. Wh a t  is a
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pleasant way of doing this?
(7) What are the ramifications of allowing other than equational laws? No te  that 'free' introduces

other laws already, so that the problem can even occur i f  a ll explicit laws are equational.
Assume, for example, that a free system natural has been defined for natural numbers. No w con-
sider:

module natlet (sma ll ish :N)

modulo (V n e N:

ppred(0) ,  0 A

ppred(suc(n)) n  A

ppred(smallish) ,  0)
where (N, 0, suc) ,  natural

In each model smallish is either 0 or 1, and presumably derivations are only valid if  they are valid
for both possibilities. Bu t what are the exact semantics?

(8) The algebraic model of finitely generated terms breaks down for functions, whereas in the exam-
ple of reduce the ®, although a function, was treated as an object Intuitively, the meaning seems
sufficiently clear. I s  there some way of giving a precise semantic definition?

4. SPECIFIC CONCEPTS
To a large extent the idioms of a language are dominated by what concepts one chooses to emphasise,
even though others are easily definable. Below we suggest—in no particular order of importance—a
number of specific concepts to be included in any framework for Algorithmic& Concrete notations
are also suggested, but formal definitions within the expression language are avoided in many cases,
basically because this would involve commitment to a particular syntactic style about which we would
prefer to postpone discussion until the next section.

The list of concepts with 'predefined' notations should, preferably, be small and be confined to
functions and operators that come up again and again in diverse derivations. I f  a function is less ubi-
quitous but still rather general and useful, and not easily expressible in  terms of other predefined
functions and operators, its inclusion may also be warranted. A n  important criterion is also whether
there are associated laws that are helpful in derivations.

Whereas RB and L M feel that the predefined infix operators should preferably be single symbols,
DW prefers longer operator names. Moreover, L M does not like predefined names that are English
words.

(a) Map: (A B )  ----> Struct A S t r u c t  B.
An infix operator '*'. Fo r example

p[a, b, c] • ,  V  a, f  b,

(Note: the type given for 'map' is the 'Curry'd version o f  ((A B )  X Struct A) --> Struct B .)
LM's notation '• ' was rejected because it is likely to be concretely represented as S i n c e  it will
often occur at the end of a clause, it  is too easily confused with the full stop. Remark: the map
operator can be generalised to  accept other structures bu ilt  f rom one carrier type as right
operand.

(b) Filter: (A -4  Bool) ---> Struct A ---> Struct A.
An infix operator '4'. A s examples

even <1 (1, 2, 3) ,  (2),

odd <1[1, 2, 1, 3] [ 1 ,  1,31

(c) Reduce: (A – A  A )  -4 Struct A

-
-
'
%
;
.
-
4
1
.
A
•  
'
;
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An infix operator F o r  instance
®/[a,b, c] a o b o c .

See [3] for further details.
(d) Left accumulate: ( D  --> R ---> R) R  --> Seq D —3 R.

Right accumulate: (R D  R )  ---> R S e q  D R .
Infix operators 'z' and '
7
C  F o r  
i n s t a n c e

o
l
/
e  
[
a
,  
b
,  
c
]  
a
o
(
b
o
(
c
o
e
)
)
,

co-/e [a, b, c] ((co a )o b )e )c.

We do not particularly like the notations but cannot think of better alternatives. The  'starting
element' e can be placed in subscript position whenever convenient, that is, one can write 7
4, a n d5
,
L
e
. 
T
h
e
s
e 
o
p
e
r
a
t
o
r
s  
g
i
v
e  
'
a
s
y
m
m
e
t
r
i
c  
f
o
r
m
s
'  
o
f  
'
r
e
d
u
c
e
'
.  
I
n  
p
a
r
t
i
c
u
l
a
r
,  
i
f  
o
/
s  
a
n
d 
e  
e
/
[
]  
a
r
e

defined, then oAs =  o
l
, L
e
s  o / s .

(e) Specific structure building operations.

(f)

Suppose (0, ̂ , + )  =  groupoid(A).

There are two reasons for having strucpre-specific names next to the generic names. One is that
frequent dictions like + / " .  o r I  +2+3 are ambiguous if  the result type of ^ is not specified. I n
unambiguous cases the additional redundancy may aid the interpretation. Th e  second is that
writing I +2+ 3 is more awkward than writing [1, 2, 3]. The generic names can be used instead of
the structure-specific names if one wishes no commitment as to the specific structure, or if no con-
fusion can arise.

We would have liked a notation in  which there is a simple relationship between the graphic
symbols for the brackets and those for U  etc. We  could, however, not find a nice set of symbols
with such properties. The best we could come up with is the set

This would have meant giving up using the round parentheses for normal grouping, which we
deemed unacceptable. I t  would also be nice if  symbols for structure inclusion could be derived
from the structure-specific forms of + .  Whereas the relationship between the signs ' U ' and ' C'
suggests a notation for bag inclusion too, an extension to sequences based on -14-' is impossible.

RB also suggests ' ; '  as the Lisp cons, i.e. cr,x [ a ] 4 1 -  x. Although L M is not averse to
predefining an operator for this oft-occurring diction, he feels that we must then also supply a
notation for x 41- [a
],  a n d  
t h a t  
t h e  
g r a p h
i c s  
f o
r  
t h
e  
t w
o  
o p e
r a t
o r s  
s h
o u
l d  
b
e  
e
a
c
h  
o t
h e
r '
s  
m
i
r
r
o
r

image. Moreover, he is loathe to give up his parenthesis-dispelling use of ';'.
Repeat: (A B )  —› A ---> Seq B
A prefix function. Fo r instance

repeat f  [ x ,  fx,  f  (f  x), - • • J.
This function makes it  possible to build infinite sequences. A n  infinite sequence of l's, e.g., is
given by repeat id 1. The result of the 'program'

( )  U
[1 U

> V

generic name 0
sets t • }
bags <  > < - >
sequences [  ] E - 1
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d o p x --3 x : ,  f x  od; x

can be written as first (---i p)<I repeat fx,  in  which first gives the first element o f  a sequence.
However, the equivalence becomes dubious i f  f  becomes undefined for arguments for which p
does not hold.

LM would prefer 'rep' to 'repeat', and DW would prefer an infix operator.
While: (A ---> Bool) --> Sect A —> Sect A.
A prefix function. Fo r instance,

while even [2, 4, 2, 1, 2] =  [2, 4, 2].

If p is total, while p s can be expressed, using the function a (see (t)), as last.(( A / )0(p *)) a  s.
Meertens doesn't like 'while', while Wile would prefer an infix operator. Th is is also reasonable

because of the resemblance to the filter; see (b).
(h) Tuples (elements of Cartesian product).

We suggest ',' as a syntactic n-ary infix operator, where n 2 .  There are no specific tuple brack-
ets (the 'e  and '>' have already been given to bags), but this syntactic operator has a very low
priority, so that one is forced to write parentheses in almost all positions, and certainly between
structure-parentheses like ' f '  and T.  Thus (a, b, c) is a triple, and (a, b, c, d) a quadruple. A s
projection functions we can think of no better notation than IT
1 ,  / T
2
,  e t c . ,  o r  j u s t  
' f s t ' ,  ,
" s n d ' ,  e t c .

(i) Z ip :  Seq A ---> Seq B S e q  (A ><B).
An infix operator, notation not decided. Fo r example,

[a, b, c] zip [x, y, z] [ ( a ,  x), (b, y),(c, z)].

The operands must have equal length. Alternatively, the length of the result might be that of the
shorter of the two sequences. Although the binary case is the most frequent one, it  is possible to
generalise this to an n-ary operator. A  possible notation might then be '„'. The notation for this
concept in [4] and [5] is 'with'.

(j) Transpose: Struct (Seq A) S e q  (Struct A).
A prefix function 'trans'. Fo r instance

trans qa, b, c],[d, e, [ ( a ,  d>, (b, e>, (c, P].

All elements of the argument must have equal length. I f  the argument is a sequence s, then trans
trans s s .  Alternatively, we might have, e.g.,

trans ([a],[b, c, d],[e, f  ]> ,  [(a, b, ( c ,  P, (d>],

that is, the structure of all first elements, followed by the structure of all second elements, etc. To
save the property trans trans s s  for sequences, we should then require that the lengths of the
elements of s form a non-increasing sequence.

(k) Composition: (B —> C) ( A  -4  B) ---> (A ---> C).
An infix operator 0. We have (fog)x f ( g x ) .  See also section 5.

(1) Length (size): Struct A N .
A prefix function '4e, so 4t[a, b, c] 3 .

(m) Closure.
We feel this is an important function, but are in a quandary as to the exact type the function
should possess. The two possibilities are

(1) (Set A S e t  A) S e t  A S e t  A;
(2) (A  -4  Set A) —> Set A S e t  A.

laM ai. agiaM , M aat i i iM UM W
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applications we encounter the second case. Also, Clo
i f  c a n  b e  
e x p r e s s e d  
a s  
(  U  
/  )  
o  
( r e p e a t  
g )

(see (f)), where g S =  S U( f S ) .
(n) Optimisation functions.

For minimisation and maximisation we suggest infix operators a n d  F o r  instance,

(314)1(51,6) =  5.

The function 1 /  selects the least element of a structure. These two operations are coupled to
whatever order relation ' < '  is defined on the operands domain. A  question is whether these
operations should be generalised to work on (semi-)lattices, with 'I ' standing for ' A ', and f o r
' V '

We would also like to have functions for 'a (or all) f-minimising (-maximising) element(s)'.
This awaits resolution of the treatment of indeterminacy.

(o) Conditional.
A 2n-aq operator pair, as in p ---> x D y a r  z .  I f  no indeterminacy is allowed, the guards
must be mutually insatisfiable, or the expressions following ' —› ' must have the same value. Note:
these operators a re  supposed t o  have lo w  syntactic p rio rity,  s o  th a t  w e  ca n  wri t e
x y —> — > y  +I .

In view o f the frequency o f forms like p —› x11--p  —› y (in  which p may be a  complicated
expression), some notation for 'if t h e n  e lse '  would be nice, like an asymmetric 'choice opera-
tor', say El:, so that we can write p---> y .

(p) K  combinator.
This is a function for turning a value v into the constant function X x: v, which is often needed.
If the infix operator <  selects its left operand, then we could use the notation v <  (a  'section'),
as in [3]. However, we do not like this notational trick, nor do we like 'K' itself.

(q) Switching operands to operator.
A notational device: x 0, y =  yox. Fo r example: reverse s + , / [ • ] • s .  The same device could
be used for functions too: f
z
x  y  f y x .  
A n  
a l t e r n a t
i v e  
s u g g e
s t i o n  
i
s  
t
o  
u s
e  
t
h
e  
n o t
a t i
o n  
o
—
,  
o
r

possibly i ,  which should be more familiar to mathematicians.
(r) Turning operators to functions.

Another notational device: (:  )x y =  xoy.  D W  is quite averse to this notation, and recommends
the use of an explicit conversion operator.

(s) Turning functions to operators.
This is useful for supplying an operand to operators like /  o r L. Simply allow f /  to mean ®/,
where xey =  f x  y_

(t) In it ia l parts of sequence: Seq A --> Seq(Seq A)).
A prefix function. Fo r instance

a [a, b, cl [ [ a ] ,  [a, b],[a, b, c]].

Note that the initial empty sequence is not included, so that *o a  --= * .
Question: do we also need final parts:

w[a, b, el ,  b ,  cl,[b, c],[c]l?

(u) First, last: Seq A ---> A.
Tail, head: Seq A —› Seq A.
For first and last element of a sequence we could use < /  and >>/, as in [3]. On  the other hand,
we wou ld  l ike  suggestive pa irs o f  notations f o r  (first ,  t a i l )  a n d  (head, last),  where
(first s)-H-(tail s) =  (head s)-H-(last s) =  s for non-empty sequences s.

It is understood that existing standard mathematical notation is allowed as well, although some care
must be exercised lest confusion arise between different sets of conventions. I n  particular, we have:
•  Arithme t ic expressions, like ax
2  + b x +  c .  
H o w e v e r ,  
t h e  
s y m b o l
s  
a n d  
h a v
e  
b e
e n  
p r e e
m p t e
d

for algorithmic purposes; possible alternatives are '•' and ' -f  A  potential source of confusion is
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also the parsing of x +y —z.
•  S e t  formers, like ((i, i n  N, jn  N : 1 < i < j < n ) .  No te  that { f x  Ixes: p x) can be written as

pp<s, and i t  is recommended that set formers be used only if  no convenient such expression
exists. We  also recommend the use of forms like (1.. n). Also, set formers can be generalised to
other structure formers by using other brackets, as in SETL: [(*s, >>/s)ls a t :  s ,  reverse sl.

•  Lambd a  forms, such as An EN: (n-(n +1))+2. I f  the domain is sufficiently clear, we can abbre-
viate this to A
n :  ( n -
( n  
+ 1 ) )
+ 2 .

•  Quantifications, such as V n E N : f  n O .  Note that V x p  s can be written as A/p •s.

The following concepts were considered, but rejected for separate predefined notation:
•  Sca n  (the ' \  ' of APL): use o/a.
•  L i m i t  (repeat until convergence): use closure if appropriate (see (m) above).
•  Shuffle (indeterminate merge) of sequences: probably not important enough for inclusion.
•  Un less, until: use o p ) - 1  and while(---
, o p ) .
Not discussed, bu t possibly important are: (a ) a  notation fo r finite maps (functions with  finite
domains) and an operator for function update; (b) a sort of Cartesian product for structures (named
'cross' in  [5]); f o r example {a, b, c)X[d, e] { [ ( a ,  d), (a, e)],[(b, d), (b, e)],[(c, d), (c, e)]); (c) an
explicit notation for function application, say 'appl', as in appl.([f, g, h] zip [x, y, z]) [ T x ,  gy, h z];
(d) notations for 'pattern matching', binding variables in a pattern to actual values; both in function
definitions, in 'where' clauses and in conditions; (e) other devices that can replace the awkward pro-
jection functions.

5. NOTATION
The question of concrete syntax for expressions was debated at length during our meetings and was
the source of much (good-natured) conflict. Since matters of syntax are to a large extent questions of
personal taste and cultural background, it seems appropriate to preface this section with some histori-
cal remarks.

In 1973 DW had developed a language emphasising the relationships between program structures
and data structures, with a small but powerful set of operators, mainly directed towards (possibly
infinite) streams and trees H.  I n  particular, we find 'sections' there as a useful device. Th is work has
not had any noticeable immediate follow-up. I n  1981 RB  presented to  the Nijmegen meeting of
WG2.1 some notational suggestions for transformational programming W. Apa rt  from reinventing
map and filter and suggesting concrete operator notations, the proposed syntax was rather free wheel-
ing. Subsequent presentations at various UK  universities convinced him that the syntactical conven-
tions were totally alien to audiences, prone to ambiguity and generally unworkable. RB  then adopted
an alternative notation broadly in agreement with Turner's suggestions for KRC (henceforth called
KRC style). Meanwhile LM took RB's original proposal, modified and refined it, and gave an unam-
biguous grammar. L M  has since used this syntactic style in a number of publications and presenta-
tions, and found it  convenient, succinct and transformation friendly. RB ,  working with the KRC-
style, came to similar conclusions with that notation. During  our meetings we tried to resolve this
situation, but were unable to do so in a satisfactory manner. Wit h  the insertion of one or two brack-
ets the terminal productions of the KRC-style appear to be a strict subset of the L M style, but the
problem is that common terminal productions are sometimes assigned different meanings in the two
styles. There is also the question of taste. L M  prefers to carry out manipulations at the function
level, to which his notation is more suited. I n  particular, the use of an explicit composition operator
can be avoided whenever the context makes it  clear which interpretation is intended. R B  prefers to
carry out many derivations at the point level, with only occasional references to functional identities.
Experiments were performed trying to do essentially the same derivation in the two styles. The con-
clusions were interesting: in  neither derivation did brackets proliferate, but this was entirely a conse-
quence of the point versus function decision. The rest of this section is devoted to short expositions
of the two alternative proposals, followed by a short exposition of DW's preferred style, with an
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Bird's Proposal. Ignoring productions involving explicit set, tuple and sequence constructions, the
proposed syntax follows these rules:

expression :: = term (op term) I term op I op term I op
term :: = (p rimary) primary
primary :: = constant I identifier I ( expression )

The notation '(...)' stands here for zero or more repetitions of the enclosed part, whereas the '(' and
')' are literals. A n  'op' is an operator.

With the exception of sections—expressions of the form 'term op', 'op term' and 'op'—such a syn-
tax conforms to the generally recognised KRC style. Function application (a 'term' applied to a 'pri-
mary') is left associative and binds tightest; the other operators are all right associative and of equal
binding power (but lower than application). Fo r example, f x  +  y is parsed as ( f  x) + y. The alter-
native of providing explicit precedence rules between operators is not precluded.

A section like x + stands, o f course, fo r the function X y: x +y, and + y  stands for X x: x +y.
Used by itself, +  stands for X x: A y: x +y.

Advantages of this style are (a ) simplicity; (b) familiarity to programmers of the KRC persuasion;
(c) type independence, by which is meant that the rules of syntactic composition are not dependent
on the types of the components.

Possible disadvantages include: (a) the composition operator 0 has at all times to be made explicit;
(b) operators which take operators as left arguments (such as reduce) have to be written with those
operators in brackets—for example, (+  )/ rather than + / ;  (c) sections have to be bracketed—e.g.,
( f o o +  rather than foo**. Note  here that '(op)' denotes a prefix function, not operator, so that, e.g.,
(+ )  x y  is meaningful and denotes x +  y. I t  follows that operators now never take operators as left
arguments, o n ly  functions. He n ce  greater flexib ility i s  achieved a n d  one can  write ,  e.g.,
sort ,  insert4H, where insert is a function with its usual KRC definition.

Meertens' Proposal. The  proposed syntax for the same part of the language can be given as:

expression :: [ o p ]  (factor) factor o p
factor :: = primary (other-op)
primary :: = constant 1 identifier I op op-op I ( expression )
op :: = op-op I other-op

The same notation as above applies, and, moreover, d e n o t e s  an optional occurrence o f the
enclosed part.

This is the same notational style as has been used in previous examples by LM, but with sections of
the form +y  added. The meaning of an 'apposition' f  x depends on the types o f
f  ( w h i c h  m u s t  b e  afunction) and x (which could be a function). I f  x is a meaningful argument to f  then the meaning is
f  applied to x. Otherwise, the meaning is f  composed with x. Th is has some theoretical background,
insofar as a non-function x could be viewed as a 0-ary function, and then functional composition
yields the 0-ary function corresponding to f  applied to x. (The word 'apposition' can be understood
not o n ly  i n  i t s  usual meaning o f  'juxtaposition', b u t  a lso  a s  a  portmanteau wo rd  f o r
'application' + 'composition'. I t  has been pointed out that a more apposite portmanteau might be
'complication'.)

The operators are divided into two disjoint classes: 'op-op' for operators taking an operator as left
operand (notably y'),  and 'other-op' for the other operators (like '+ ').  B y  allowing 'primary', next to
'op', for the left-operand of 'op-op's, it  is likewise possible to allow insert[.]. A  formula like x + y is
allowed, but although it  has the same meaning as one would expect, it  has the unexpected parsing
x + applied to y.

The major difference with Bird's approach is that the expression f  +  y is likewise allowed, but
this time has the same meaning as f (x  +y).  Also, f g x  is allowed with meaning f (g x),  which in
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6. LAWS
Unfortunately, time did not permit us to draft this section.

REFERENCES
1. R .  S. Bird. Some notational suggestions for transformational programming. W G  2.1 working paper

NI.J-3 (unpublished), 1981.
2. R .  S. Bird. Transformational derivation of a text formatter. (unpublished), 1984.
3. L .  Meertens. Algorithmics — Towards programming as a mathematical activity. W G  2.1 working

paper ADP-3, 1984. To  appear in: Mathematics and Computer Science, CWI Monographs Vol. 1
(J. W. de Bakker, M. Hazewinkel and J. K. Lenstra, eds.), North-Holland, 11/1985<<U.

4. D .  S. Wile. A  Generative, Nested-Sequential Basis for General Purpose Programming Languages.
CMU Dept. of Comp. Science, Pittsburgh, 1973.

5. D .  S. Wile. Generator Expressions. WG  2.1 working paper ADP-8, 1984.

Bird's approach would require the parentheses.
Advantages of this style are: (a) greater 'substitutivety' and fewer trivial derivation steps: from a

functional identity f  g  one may conclude that f x  g x  without having to change the syntactic
form of f
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for e xa mp le ,  f  , g h  a n d  h x  y  i m p l y  f x  g y  i n  f e w e r  s t e p s  t h a n
,  (g0h)x ,  g(h x) g  y; (b ) although + / .  +/x,  e.g., may indeed be abstruse and require

familiarity of this style to be interpreted, it  is still felt to be more readable than ( ( -0 / * ) . 0 -y  x or
(0(--1-)/* ). )0 (0 -y))x,  which hide the patterns involved rather than disclose them, and are, moreover,
tedious to write if they have to be copied in derivation steps.

Possible disadvantages include: (a) the grammar is more complicated; (b) people familiar with the
KRC style are apt to misinterpret f  +  y as ( f  x) + y—but on the other hand, the converse applies
to Birds' approach fo r APL-fandom; (c ) without contextual knowledge, in  partit-ular the types
involved, f  x cannot be interpreted (composition or application?); for example, an expression f  (g x) y
can, depending on the types of f  and g, stand for either f  ((g x)y) or ( f  (g (x))y ,  and due to generic
types an explicit composition operator may be required for genuinely ambiguous cases.

Wile's Proposal. Rather than giving a syntax description here, let it  suffice to say that DW prefers
postfix functions. A  possible grammar might be the mirror image of LM's grammar F o r  example,
+ / p ip s  would become s• f<p/ + , o r rather s obtain f  when p accrue + .  F o r  some operators, the
operands would stay as they are; in  particular so for (co n d it io n a l ,  see (o) in  section 4). Prefix
function like 'repeat' and 'while' (see (f ) and (g) in  section 4) would become infix operators. F o r
more examples of the style, see [5].

Advantages of this style include: (a) the parsing is from left to right again and so is more natural;
in particular, a formula like a + b — c regains it  usual meaning; (b) LM's syntax favours sections in
which the operand precedes the operator, and so makes one use for instance 0>, although the section
<0  would be more natural; in this style, the latter becomes the favoured form; (c) using longer opera-
tor names gives a considerable help to human interpreters.

Possible disadvantages are: (a) it  is one more step away from mathematical tradition; (b) longer
operator names tend to get tedious in transformational developments.

Vks,
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TWO EXERCISES FOUND I N  A  BOOK ON ALGORITHMICS

waiimagiammaimata

So e n g r o s s e d  was  t h e  B u t c h e r ,  h e  h e e d e d  t h e m n o t ,
As h e  w r o t e  w i t h  a  p e n  i n  e a c h  h a n d ,

And e x p l a i n e d  a l l  t h e  w h i l e  i n  a  p o p u l a r  s t y l e
Whic h t h e  B e a v e r  c o u l d  w e l l  u n d e r s t a n d .

The l a s t  p a p e r  o f  t h i s  r e a d e r  was  fi r s t  p r e s e n t e d  o n  t h e  A p r i l  1 9 8 5  b o a t ,
and a g a i n ,  e x a c t l y  o n e  y e a r  l a t e r ,  a t  t h e  B a d  ' r a i z  Wo r k i n g  Co n f e r e n c e  o n
Prog ram S p e c i fi c a t i o n  a n d  T r a n s f o r ma t i o n .

The t i t l e  r e fl e c t s  t h a t  o l d  g u i d i n g  c o n c e p t  i n  t h e  s e a r c h  f o r  t h e  g e n u i n e
A h s t r a c t o :  a n  a d v a n c e d  b o o k  o n  a l g o r i t h m i c s .  T h e  e x e r c i s e s  h e r e  a r e
r a t h e r  e l e me n t a r y ,  o f  c o u r s e ,  b u t  o n e  mu s t  s t a r t  s omewhere .

I f  t h e  a l g o r i t h m i c  d e v e l o p me n t s  h e r e  a r e  e m i n e n t l y  mo r e  r e a d a b l e  t h a n  i n
t h e  o t h e r  p a p e r s ,  t h i s  i s  n o t  o n l y  d u e  t o  t h e  g r e a t e r  s i m p l i c i t y ,  b u t
a l s o  o r  m a i n l y  t o  R i c h a r d ' s  i n fl u e n c e .  Y o u  s e e ,  I  w i l l  a l wa y s  r e m a i n
s o me t h i n g  o f  a  h a c k e r ,  I ' m  a f r a i d ,  w h e t h e r  I  w r i t e  my  p r o g r a ms  t h e  " o l d "
way  o r  d e v e l o p  t h e m f o r m a l l y .
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1. INTRODUCTION.
A major test of a good notation is how suggestive i t is of new relationships between the objects
described, and how susceptible i t is to the manipulations required to establish such relationships
formally. Indeed, i f  the associated calculus is sufficiently attractive to use, new relationships can
come to light simply by the process of manipulating formulae.

The term 'algoritlunics' was coined in [Geurts& Meertens 2]: 'Suppose a textbook has to be writ-
ten for  an advanced course in algorithmic& Which vehicle should be chosen to express the algo-
rithms? Clearly, one has the freedom to construct a new language, not only without the restraint of
efficiency considerations, but without any considerations of implementability whatsoever.' I t  was
elaborated upon in [Meertens 3], and stands now for both a notation and a calculus for manipulat-
ing algoritlunic expressions, designed with the aim of meeting the criteria enunciated above. Algo-
ritlunics corresponds, broadly speaking, to what is currently known as Transformational Program-
ming, but the level of abstraction is arguably higher than one would normally encounter, and a
wide range of specific notation is emphasised. The subject is stil l in its infancy and i t is not the
purpose of the present paper to give a comprehensive account. Instead we want to present, in as
simple and direct a fashion as possible, two exercises in manipulation as they might appear in some
future book on Algorithmic& I f  i n studying these problems and their solutions, the reader is by
turns puzzled, intrigued and finally enlightened as to the real possibilities for  a useful calculus of
algorithm derivation, then we shall have achieved what we set out to do.

In order to describe the two problems without further preamble, i t is necessary to refer to certain
concepts without giving them a formal definition; consequently the statement of exactly what is
provided and what is required will not be very precise. The first part of the paper is devoted to
developing enough of the calculus of algorithrnics to remedy this deficiency. W e shall then be in a
position in the last two sections both to state the two problems precisely and solve them simply by
a process of formula manipulation.

Problem 1. The reduction operator '  of APL takes some binary operator a on its left and a vec-
tor x of values on its right. The meaning of e/x  for x =  [a, b, ,  z] is the value aebe • • • (9 z.
For this to be well-defined in the absence of brackets, the operation a has to be associative. N ow
there is another operator '  '  of APL called 'scan'. I ts  effect is closely related to reduction in that
we have

e \ x =  [a, aeb, aebec, ,  aebe • - • z ]  .
The problem is to find some definition of scan as a reduction. I n  other words, we have to find
some function f  and an operator a so that

e \  x =  ( 1
-
a ) o  ( J
.  
b ) o  
•  
•  
-  
( ;
. *

Problem 2. Thi s problem was suggested to us by Phil Wadler. Define a line to be a sequence of
characters not containing the newline character NL. I t  is easy to define a function Unlines that con-
verts a non-empty sequence t of lines into a sequence of characters by inserting newline characters
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between every two lines of I. Indeed, [Alines can be written as a simple reduction as described in
Problem I. Since Unlines is injective, the function Lines, which converts a sequence of characters
into a  sequence of  lines by  splitting on newline characters, can be specified as the inverse of
Unlines. The problem, just as in Problem I ,  is to find a definition by reduction of the function
Lines.

It is worth remarking that neither problem, both of which are fairly simple to solve, is just an
academic exercise of no practical relevance; both illustrate quite serious and important concerns in
computation. The former seeks to replace a quadratic time algorithm with a linear one, while the
latter is an instance of the problem of finding a computationally effective definition of some opera-
tion, given only an effective definition for  i ts inverse. This problem arose i n interactive text-
formatting.

2. NOTATION
Our formulae will be (equations between) expressions. The class of allowable expressions (actually,
a simplified version) is described below. Certain equations are taken as definitions of the operator
or function appearing on the left hand side; these equations may define the function recursively.
As simple examples we have

fact n =  x / [ 1 . . n ]

fib 0  =  0

fib I  =  I
fib (n  +2) =  fi b (n +1) + fib n

The class of expressions is given by the following BNF syntax, in which the meta-brackets •(' and
'y signify zero or more occurrences of the enclosed part, and signs in double quotes are literals.

expression ::=- term (op term) I term op I op term I op
term ::=  (primary) primary
primary ::=  constant I identifier 1 " ( "  expression " ) "  I "E" expression-list 1 "
expression-list ::=  expression { " ,"  expression)

Here, 'op' is short for  'operator'. W e shall use symbols such as e, o, /  and • to denote operators.
The precedence rule between operators is that all have the same precedence and all are right associ-
ative. (So aG)boc means a a (boc).) This is the convention adopted in [Bird 1]. Function applica-
tion is denoted by a space; this operator is of higher precedence than others and is left associative.
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familiar to many functional programmers, being copied from Turner's KRC [41.
The forms (term op), (op term) and (op) are known as sections. I f  they stand alone, no brackets

are needed. A  presection, of the form (x o), is a prefix function with the property
(xo)y x e y .

A postsection, of the form (0x), is a prefix function with the property
(ox)y =  y ex .

A full section, of the form (a), is a prefix function with the property
(0)xy =  xoy.

Certain operators, for  example the reduction operator ' /  ' of Problem I, expect operators as their
left argument. However, productions such as a/  are not allowed by the foregoing grammar, and
one has to write (e) /. I t  is a harmless abuse of notation to permit the brackets to be dropped in
such a situation, and we shall henceforth do so.

This is all there is to say about syntax. The equal precedence and right-associative rule for all
operators except application takes a little getting used to, but turns Out to be very convenient, at
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least for  formulae not involving common arithmetic operations, where other precedence rules are
deeply ingrained.

3. STRUCTURES AND HOMOMORPHISMS.
As was stated before, e/[a, b, ,  z1 =  a  eb e • • • ez, in which no brackets are needed i f e is
associative. Henceforth we shall require e to be associative i f used in reductions. This means that
it is unnecessary to specify the order in which the reduction is performed: left to right, right to left
and recursive computation b y  spl i tting i n  tw o halves al l  yield t he same result. Suc h
'underspecifications' are generally helpful i n algorithmic developments, since they allow one to
explore various strategies. I n  fact, i t  may be argued that the imposition of  an order i f  i t  is
irrelevant is an overspecification, an undue commitment that may stand i n the way of a useful
transformation.

Since the computation order for reduction by an associative operator e is immaterial we can give
a symmetric recursive characterisation of Es/, which can be taken as its formal definition. Let  *
stand for  sequence concatenation, so [a, b] 4- [c, d, el =  [a, b, c, d, e]. Al so let the identifiers x
and y stand for arbitrary sequences. Then

e/  [a =  a ;
E /  ix -4- y) =  ( e/x ) e( e/y ) .

If the operation
. 4 9  
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Otherwise, such a reduction is undefined and x and y must not be empty.
The sequence concatenation operator i s  associative. Associativity is also the requirement on

e for  Es/ to be meaningful. This is, of course, not a coincidence. W e may, likewise, define reduc-
tion over a set, so that (Oa, b, ,  z} a e b e  • • • ez. The formal definition is similar to the
one for  sequences, with I.}  replacing [•I and U  replacing -W. N ot  only is set union associative,
but also commutative and idempotent. These are precisely the requirements that Es has to meet in
order to make the given definition of reduction over sets unambiguous. I n  general, one may con-
sider structures that are built by taking singletons from some domain and by applying a binary con-
struction operation to previously erected structures. I n  the absence of specific properties for  the
construction operator, we obtain the set of binary trees whose leaves are labelled with atoms. As
we have seen, familiar algebraic properties give other familiar data structures: sequences and sets.
The algebraic properties of associativity and cormnutativity together yield yet another familiar data
structure: bags or  multisets. This means we can give a generic definition of  reduction, and also
obtain generic algorithmic laws and developments that have, as yet, no commitment to a choice of
specific data structure. As  the examples in the present paper are only concerned with sequences,
this point will not be elaborated upon here.

The identity law (which is an algebraic property that the construction operation may, or may not,
have) corresponds to the empty structure (tree, sequence, bag or set, as the case may be). I t  may
happen, and indeed i t often does, that an operation e has no unit, but that an algorithmic develop-
ment naturally leads to forms eVx in which x may be empty. Thi s  is a common nuisance that
would require special measures to cater for  'exceptional' cases, causing complication of the algo-
rithmic specifications under consideration, which has to be dragged along in the development. For -
tunately, i n many cases i t is possible to employ an expedient stratagem: extend the domain of le
with a 'fictitious value', an adjoined element, that assumes the role of the missing unit. For  exam-
ple, the binary operation of taking the minimum value of two operands has no unit in the domain
of real numbers. By  adding a fictitious value, which we might call co, we can assign a meaning to
the minimum reduction of an empty structure. This can help to simplify algorithmic developments,
and sometimes very much so. I t  is not uncommon that such fictitious values only have an ephem-
eral role in a derivation. This is similar to the mathematical 'trick' of solving problems concerning
real numbers through a temporary excursion into the complex domain

Another high-level operation is the map operator ' •' , which takes a function on its left and a
sequence, or  in general a structure, on its right and replaces each element by its image under the
function. F or  example, we have p[a, b, ,  zl f  a, f  b, ,  z l .  As  for reduction, we can
give a recursive characterisation:

R a i  =  [ f a ] ;
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4. LAWS
We give, without proof, some simple laws about homomorphisms.

•

i ' ( - "FY)  =  ( P ; O
-
I f  ( f 9 ' ) -

For an empty sequence, we must have f41 -=  [1.

DEFINITION. A  function ii defined on sequences over a given domain is a 'homomorphism' i f there
exists an operation e) such that, for all sequences x and y over that domain:

h(x-11-y) =  hx fahy .
If h is defined on empty sequences, then, moreover, h[ l  must be the (possibly fictitious) unit of e).
The generalisation to other structures is obvious. Both reductions and maps are examples of
homomorphisms. This is immediate from their recursive definitions. For  a given homornorphism h,
the operation ED is uniquely determined (on the range of h) by h, and we shall refer to i t as 'the'
operation of h. The operation of a reduction Es/ is, of course, e. That of a map p  is -
H
-  N o t  a l l
functions on structures are homomorphisms. A  counterexample is the 'number of elements' func-
tion *  on sets. On sequences and bags, however, *  is a homomorphism. Moreover, all injective
functions are homomorphisms. The importance of homomorphisms is essentially the same as men-
tioned before for reductions: they allow a variety of computational strategies, among which such
important paradigms as iteration (left-to-right construction) and divide-and-rule. The assumption is
that (i) (and h on singleton structures) are relatively cheap to compute. The formulation of a func-
tion as a homomorphism shows then also how to develop an incremental approach, as in formal-
difference methods.

Although there are other homomorphisms than reductions and maps, these can be viewed as the
stuff homomorphisms are made of:

HOMOMORPHISM LEMMA. A  function h is a homomorphism i f  and only i f  there exist an operation e)
and a function f  such that h =  le/I0( f- ) .

PROOF. The ' i f '  par t follows straightforwardly from the definitions o f  reduction, map and
homomorphism. For  the 'only i f'  part, use induction on the size of the argument sequence, taking
for Ee the operation required by the definition of homomorphism and putting f  =  ho I' ], in which
the function 11 turns an element into a singleton sequence.

For short, we say then that h is the homomorphism (q),f ). The reduction a)/ is the homomorphism
(6), id), in which 'id' stands for the identity function, and the map f  can be written as ( * ,  [• ]4) .
Although certainly not al l  of  algorithrnics can be reduced or  mapped to the construction of
homomorphisms, this is a major constructive paradigm.

LAW I. ( f o g ) .  ,,, ( p ) o ( p ) .

LAW 2. Let f, (0 and co' sails& f (xey) =  ( f  x)e'( fy) and f(ED/H) e ' l  [I
Then R V )  =  (
0 3 1 V ) o ( P )  
•LAW 3. Let h be a homomorphism with operation e.
Then ho(-H-/) =  (o/).(11•)

Laws 2 and 3 are applications of the homomorphism lemma. For  the proofs we refer to [3]. Law 3
can also be derived as a special case of law 2. The second condition of law 2 may be left out i f the
functions in its conclusion are not required to work on empty sequences. Fr om  law 3 we also
derive

COROLLARY. (a)  (e)/)0(-H-/) =  (e)/)0((e/)-)
(b) ( P ) o( * / )  =  (
-
W / ) o ( ( P ) ' )  
•
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Conversely, law 3 follows from the successive application of (b) and (a) of the corollary (using the
homomorphism lemma), followed by an application of law 1. From these laws and the corollary
one can derive many standard program transformations. F or  example, some forms of loop fusion
can be viewed as an application of law I, and, as we shall see, filter promotion can also be derived
from these laws. The importance of the corollary is that in contrast to laws 2 and 3 i t needs no
applicability condition.

As example, we give a simple application of  law 2. Define the function last on non-empty
sequences by last (x [ a ] )  =  a. I f  we define the operator ›> by a ),L
, =  b ,  t h e  f u n c t i o n  
l a s t  c a n
be expressed a s  a  reduction: l as t  =  > /  L e t  f  b e  a  s tr i c t function, t h a t  i s ,
f  'undefined' =  'undefined'. (Note that ›> / [] is undefined.) Since f  (a =  f  a) > ( f b), law 2
gives us now:

folast =  fo(>>/)  =  ( / ) . ( f . )  =  last o(f.) .
The following plays no role in the exercises to follow.

Let Pox  be the notation for filtering the sequence x with the predicate P. F or  example, i f even is
the predicate testing for the property of being even, then even< [I, 2, 3, 5,81 =  [2, 8]. I t  is easy to
see that a filter is a homomorphism, with operation S o  we have, by law 3,

(P<)0(*1)  (
-
H
-
i ) o ( ( P
. 1
) • ) •

This corresponds to the filter-promotion or  generate-and-test paradigm: rather than filtering one
huge structure, we can divide i t into smaller structures, filter each of these, and collect the out-
comes.

5. THE S C A N
-
R E D U C E  
P R O B L
E M .

First of all, we must give a precise definition of the scan operator ' \  T h i s  is done with the help
of a function a that takes a non-empty sequence x and returns the sequence of non-empty initial
subsequences of x, arranged in order of increasing length. W e have

a[a] =  ( I )
a(x f y )  =  (a x)41-( x
- H -  )  •  
a y  
(
2
)

and now we can define

69\ x ( 69 / ) •  a x ( 3 )
The task before us is to find a homomorphism (e, )  so that

e \ x  =  0 / f .  x ( 4 )
First we determine f:

f a  =  0 / [ f a  I ( d e fi n i t i o n  o f  / on singletons)
= 0 /  f. [a] ( d e fi n i t i o n  o f  .)
= \  [a ] ( b y  (4))
= (69/) • a [al ( b y  (3))
= (
9
/ )
•  
[
a  
i  
(
b
y  
(
I
)
)

[69/ [a 1 1 ( d e fi n i t i o n  o f  •)
= [a]  ( d e fi n i t i o n  o f  / on singletons).

Next we determine w by calculating xoy. Suppose x 0 /  f. x'  and y =  o/ f . y ' ;  equivalently, we
have x =  9 \  x' and y  =  69\ y'. W e may assume that x'  and y'  are non-empty sequences. Then

xey =  ( o/f•  x' ) e ( 0/f. y' )
0
/
(
f
•  
x
'
)  
)

= ett" . ( x ' *  y' )
=
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and we are done.

•  (4y) • a (x' -H- y' )
•  ( o/) •  (ax')4F (x'41-) • ay'
= ( (e/)  • a x' ) -W (a/)  • (x' 4F ) • ay'

x oy  =  x  [ N L ]

o/ f •  / x s  =  xs.
First we determine f  for arguments a N L :

f a  =  eV[ fa]
= o /  f• [a]
= o / P  H a n
= [ t a l l

Also

fNL =  o/U N LI
= 0/ f •  [NL]
= o/ f •  [] PAL]  [ ]
•  o / P  0)
/ E H ,  
[ I I
= LEI, Ell

(by (3))
(by (2))
(definition of •).

In the last line, ( e/)  • o f  =  e \  =  x, and (e/)0(x'-H-) =  ( (e/x' )o)e(e/) , so that
xoy x  4F ((e/x'  ) e) • (e/)  • ay'

x * ( ( e/ x ' ) o) • y ,
using definition (3) again. The last expression still contains a reference to x' , which remains to be
eliminated. W e note that x'  is the last element of the sequence a x'. So, using the rule found for
last in Section 4 from law 2, e/x '  =  0/last (a x' ) =  last ( (V)  • a x' ). By  definition (3), the argu-
ment of last equals o\  x' =  x, and so 0/x'  =  last x. Hence

xoy =  x *  ((last x)(1)).y,

6. T H E  LINES—UNLINES PROBLEM.

Suppose CH is some set of characters, including the newline character NL. Let  CH' =  CH— {NO.
The function Unlines has type Seq
+ ( S e q  
C H ' ) - 4 S e q  
C H ,  
a n d  
i s  
d e fi n e
d  
b y

Unlines =  03/ ( 1 )

The reason we insist (Alines takes a non-empty sequence as argument is that the operator o does
not have a unit, i.e., e / [ ]  is not well-defined. I t  is easy to show that Unlines is injective, that is,
Unlines xs =  Unlines ys implies as =  ys, and so we can specify the function Lines to be

Lines -= U nl i nes .  (
3
)

The task before us is to find a homomorphism ( 0,f)  so that Lines x =  e/ f •  x. W e shall discover
the definitions of o and f  simply by making use of the identity Lines(Unlines xs) =  xs, or, in other
words,

(definition of / on singletons)
(definition of .)
(definition of / on singletons)
(by OD.

(definition of / on singletons)
(definition of .)
(as l ]  is unit of * )
(definition of o and /)
(by OD-
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aaaO= Oaalf t iMEMN,

(2)

(4)

Next we must determine 0. Since each argument of o is a non-empty sequence we need only con-
sider the definition of ( xs*  [x ]) e ([y]-14-ys). W e have

(xs-W[x])0( (y]-1-Eys)
= (
0
/ P  
(
D
/  
x
s  
[
x
]
)  
(
V  
P  
(
D
A
Y
]  
*
y
s
)  
(
b
Y

=  e / ( / '  V x s * l x 1 ) *  ( f • (
I V E Y  I  * Y s )  
( d e fi n i
t i o n  
o
f  
/
)

aa
aa
?
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= et i "  IED/xs -
H
-  -
H
-  
f e /  
E Y  
4
f
-
. )
,
$ )  
( d
e fi
n i
t i
o n  
o
f  
.
)

((es
, 
x
s
)  
(
e
/  
i
x  
]
)
)  
0
9
/  
[
Y
]
)  
(
4
9
/
Y
s
)
)  
(
d
e
f
i
n
i
t
i
o
n  
o
f  
/
)

= 0 /
.
/ .  
( e
/
x s
)  
-
H
-  
[
N
I
L
]  
(
e
/  
[
x  
]  
)
4
F  
(
e
/  
[
y  
]
)  
4
4
-  
[
N
L
]  
-
H
-  
(
e
/
y
s
)  
(
d
e
f
i
n
i
t
i
o
n  
o
f  
e
)

= e / f .  (e/xs)41- [NI] -
i
-
i
-  [ x  4 1 -
y 1 )  
*  *
( e /
y s )  
( d e fi
n i t i
o n  
o
f  
/
)

=- e / f .  (e/xs) e (e/ [x )  e (e/ys) ( d e fi n i t i o n  o f  e)
= e / f .  e/xs t x  -ff-y -H-ys ( d e fi n i t i o n  o f  /)
= xs *  [x -H-y]-H-ys ( b y  (4)),

and we are done. N ote that the above derivation actually juggles with some potentially fictitious
values. W e have assigned no meaning to Es/ ,  and yet the term e/xs appears above in a context
where i t is not required that xs be non-empty. N o confusion can arise because e does not have a
unit in Seq CH, so e/  [1 is adequately defined by the properties it must have I t  is consistent with
these properties to add the laws

( e/ [1) *  [Ntl =  ltsal (  /  [ ]) [ ] ,
which shows how to do actual computations in the extended domain (Seq CH) 0 /  []) . N ote
also from the definition of ® that its unit must be [H I ;  for example, we can calculate

( x s *  [ x po [H I =  (xs-H- [xpe([11141-
= xs -H- [x -H- [1] *  [

xs -H- [x]
This fol lows al so fr om  Lines El =  0 /  [1 a n d  Unlines [[ ] ]  =  [ ] ,  Since w e fi nd 0 /  [I =
Lines (Unlines [[ ] ])  [ E l ] .
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