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ABSTRACT

The question of the desirable properties and proper definitions of the
Order-of-Magnitude symbols, in particular 0  and e,  is addressed once
more. The definitions proposed are chosen for complementary mathemati-
cal properties, rather than for similarity of form.

L brmoDuCTioN

The old order changeth, yielding place to new,
And God Urals himself in many ways,
Lest owe good custom should corrupt thc world-

Tennyson, The 14
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The issue of the proper definitions for the Order-of-Magnitude symbols would appear to
have been settled once and for all by Knuth in 111. At the end of an exhaustive discussion
the subject is, the author feels, about "beaten to death". The purpose of this communica-
tion is to point out that there is life in the old dog yeti' The dehlerations below Were
prompted by surprise that, while proving a lower bound where the precise definitions mat-
tered, matters %
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prove something about the order of magnitude of a function we do not know, like the
worst-case running time of some algorithm, we can not assume that the function concerned
does not oscillate o r
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quotient of that function and the measuring function exists at all. In such cases the order of
magnitude of a function may vary arbitrarily, depending on the precise definitions chosen.
This encourages improper use, in particular of the symbol fa. A  modification of the

• A fint %train of this note appeared in the asildist e
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Son e people felt it should also be published on a forum more accusal* on the other side of the Atbtgic, like
SWAM News.

t Charlet Kingsley, Ike Yews Ago. 1857. "I fed his bead, diem is life in die old dog yet".



proposal In (I), for the definitions of the Order-of-Magnitude symbols, appears to give a
more useful and manageable system.

2. HisrottY

The history of the Order-of-Magnitude symbols 0, 0, 8, o and to, is explored in [1]. Some
additional sources are as gallows. I n  the dassic textbook on Analysis by Whittaker 8t Wat-
son (2] the origin of the founding father 0  is given as: "This notation is due to Bachmann,
Zahlentheory (1894), p.401, and Landau, Prinuethlen, 1, (1909), p.61". The  Entyldoptitie
der Ma/hen:ass:schen Wissenscheim contains, not surprisingly, occurrences of  the Order-of.
Magnitude symbol 0  in a section on Analytical Number Theory by Bachmann himself
[3, p.6641, and also the equivalent, more ancient, relational symbols ,  a n d  >-. These
symbols correspond, more or less, to the symbols 0, e , and eo, respectively; a  [3, p. 751.
They are attributed to Du Bois-Reymond [4], and are said to hold between two functions,
only i f  the limit o f  the quotient o f  the functions exists. S o  g ( n ) 2  i f
Ern,/ (n) /  g(a) c 2 ,  0  < c <  o32, for s  e o 2 .  T h e  author of  this section of  [3],
Pringsheim, states that be uses the notation "—" also when the lirn sup and lim inf of the
quotient are distinct but still both finite and non-vanishing. So f  (n) — e n)  if

0 <  c <  lim infLU
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a-•co g(n) n - e c o  g( n)
He adds the symbol •-•-• for

a  Itf  (a) c  en), if bin"
•-.00 g(n)

Hardy used i n  the (now standard) sense of Pringsheim's ,  or Du Bois-Reymond's
with c = I,  and the sign.tle. for Du B o i s
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complete the descendancy of the Order-of-Magnitude symbols as told in f I]: 0  is intro-
duced in [9, p.2251, 8  on suggestions of R E  Tarjan and M.S. Paterson in [ I ,  Ix 20],
where the to notation also appears first.
The potential inequality of the lim sup and the lin) inf of the quotient of two functions, even
if both are monotonic, ef. (5), is both a source of discord and of the present note. I n  ques-
tions of classical Analysis this inequality was a  troublesome matter. Therefore Hardy
[6,7,8] constructed a well-behaved class of "tame" functions, the L -functions, which made
it possible to formulate the problems concerned precisely enough and to reason rigorously.
A similar class of functions was studied earlier by Liouville. Hardy [7] considers an L -
function

"essentially as the embodyment of an 'order of infinity', as ccpressing a certain rate of
increase or decrease or of approach to a limit; and fix this reason I consider only func-
tions of a real variable which are real and one-valued and (as I shall show) ultimately
monotonic, excluding altogether oscillating functions such as minx. These ideas do not
appear in Lionville; work at all. He was interested solely in problems of functional form:
sin x was for him ccacdy on the same footing as logx or ex ."

These L -functions will figure prominently in what follows. The  departure of the definitions
presented here from the proposal in [1] basically rests on the difference in defining IL I n



(l) the course is taken to give all Order-of-Magnitude symbols the same definitional form
Yet the choice is also a matter of usefulness in expressing the things we want to express; of
how well it fits our mathematical intuition, in particular, whether it has elegant properties
that can be relied on and used to prove statements without meticulous reference to the ori-
ginal definition. We  shall strive for complementary mathematical properties. The  use of
the symbols 0, 0  and 12 in classical mathematics, as in 16,7,11,9,101, is the same as ours (the
H-variant in Section 5). The  corresponding definitions for e  and co follow easily. The
Knuth proposals in t i t  that is, (oz), (
0
x ) ,  ( e x ) ,  
( Z i r )  
a n d  
( w g )  
i n  
S e c t i o
n  
5 ,  
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t

alternative notations for the established meaning of the well-known symbols -< , ,  ,
and ›- , respectively.

3. USEFULNESS

To dot the Ps for my formal thinkers we detect some abuse of notation.
Notations/ cenVegialL Some convenient abuse of notation is universally practised when
dealing with the Order-of-Magnitude symbols. An expression E depending on a vari-
able 11, such as n
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used to denote the finslion that m a n  to E, A a 1E1 (s0 x
2 m a y  d e n o t e  t h efunction). The intended use will be clear from the context. This allows us to write 0(11
rather than 0(An

Suppose we can prove that the running time T(a) of some algorithm exceeds R
2 i n fi n i t e l yoften and also that it is never less than a logs. We  would like to be able to say then that
T(a) Cil(a
2
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that T(n) EEO kg a), which is not very informative. We  do not want to express that the
algorithm will always exceed a (rather weak) time limit; we want to express that it will
exceed a time limit for arbitrarily large instances of the data T o  refresh the reader's
memory, we repeat here the definition for 2  as proposed by Knuth in (11. Those for the
other symbols can be found in Section 5.
(Qa) l a ( f  (a ) ) denotes the set of all g(n) such that there exist positive constants 8 and a
o with g (a ) 8 / ( a  ) for all a >ifito.

In the above example, the problem could be ascribed to our lack of knowledge about the
function 7•00. But the problem may also arise with functions that are fully known. Con-
sider

g(n) enP2(enP2ilog2log3a

We have )  < n for all n, and g(a ) = n for,, of the form 2
1
.  A l s o ,  e n )  i s  
m o n o t o n k

non-decreasing. ( I t  is easy to make a variant that is continuous and monotonic increas-
ing.) Here we would like to assert that goo ellt(a), but according to (Q
x
),  t h e  l a r g e s t
"tame" function f(s) such that g(a) E Il(f(s)) is f(s) =  a*. Nonetheless, the least "tame"
function f(n) such that g(a)e ) )  is f(n) = a. (The concept of a "tame" function plays
a crucial part here. The  lagaritionice-exponential functions or L.-functions, introduced by
Hardy [6,7,81 to calibrate the orders of magnitude, constitutes an appropriate family of
"tame" functions, cf Sections 4 and 5.) Whereas in giving an upper bound we generally
want to express that a function is in some sense confined by that upper bound, in stating a



lower bound we want to expras non-confinement. The  problem would be remedied if in
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long as all functions concerned are tame, this will make no difference.

4. br r um a N

For the function g(n) introduced above, we have, according to definition ( la
x
) , g(n) e wres) n 00),
but, for all c >
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Such consequence; from the definitions in [11 seem contrary to intuition. One  of the
motivations for [1] was to counter the improper use of the symbol 0  where 0 would (now)
be appropriate_ Since the appearance of this seminal paper in 1976, the use of the Order-
of-Magnitude symbols, both proper and improper, has become far more customary than
before. For  that very reason, juggling with Order-of-Magnitude symbols along the lines of
"By way of contradiction, suppose 1 (n) is not in IWO. 'Therefore, 1 (n) is in 000, and so ..."
has become mom attractive. This is so, because the meanings of the Order-of-Magnitude
symbols On the tame functions are such that 0  corresponds with < ,  CA corresponds with > ,
0 corresponds with = ,  o corresponds with <  and to corresponds with > .  Since, in prac-
tice, almost all functions am tame enough, one tends to forget that this correspondence does
not extend to all functions. However, in improper reasoning such as that above, the func-
tion f  (n) under consideration may be unknown, and not known to be tame. Rather than
to rebuke authors who indulge in such practice (while referring to [1) for definitions), we
would like to see a definition of the Order-of-Magnitude symbols that legitimizes this kind
of reasoning. Le t  the ftmction ( n )  be fixed, so that we can simply write 0  for 0(1(11)),
and similarly for the other Order-of-Magnitude symbols. The  meanings of • and 0  are
well established in mathematical practice and will not be disputed here. However, note
that under the standard definition both 0 and 0  may contain negative functions, such as
—it. For  the purpose of the discussion, it is convenient if we can restrict our attention to
the set of "non-negative functions", where a function is non-negative if it assumes no nega-
tive values for sufficiently large values of Ir. Denote this set by U. I f  f
( n  )  i s  a  n o n - n e g a t i v efunction, then each of the sets 0 ,  1  and ea is contained in U  under any reasonable
definition, including that in (11. So let us write (only here) • while meaning • tt U, and
similarly for a  The properties we want to have now are:
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and
e = ona

We can use these desirable properties as definitions. I f  one uses Knuth's definitions, the
first two of these three properties are not assured in general (but do hold if  restricted to



tame functions). The meanin,3 of 8 according to definition (EI
H
) i s  t h e  s a m e  a s  
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posed by way of remedy at the end of the previous section. I t  is a consequence of the new
definitions that

The Order-of-Magnitude symbols 0, 0, 0, ft and to) now have by and large the same gen-
eral properties as the usual < ,  < ,  = ,  >  and > .  For  example, just as we conclude x <y
from x <y and x Oy, we may conclude that g (n) G o(f (n)) from g(a) G 0 (f  OD and
g(n) % W(Ji)). However, we may (analogously to y >  x following from x <y), conclude
f  (n) E d4(g(x)) from g(n) E 0 (f (n)), but not vice versa. Similarly, if  g (n) e e(f(n))2, we
may not, in general, conclude that./(n) e 0(g (R)). Thus, we have lost a pleasant property,
since these very conclusions were valid under the definitions in [I]. However, we feel that
the gain is worth the low in the practice of reasoning with these symbols, such a switch of
roles between the measured and the measuring function is rare. The  stronger relation
g(n) e  Ott (n)), in the sense of Knuth, may still be expressed, viz. as 0(g(4)) =  W O  D.

5. FORMAL ANALYSIS OF PROPOSALS

The definitions proposed in (1) look as follows.
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0 = e U e n n d  12 = 9  uw.

o(f (n)) = (gI V  a>0
3 ..
)
.0  1 , ,  >
0  g  
( n ) I  
<  
S f  
O A  
) ;

OVOID '  ( g I 3
o > o
3
. , > o V a > • •
1 1 1 ( n ) 1  
4  
8
f  
0 )
1  
)
;

ili(l(n)) = (g I 3
6
,
0
3 . „
)
.
0
1 1 " , [ 0 1 )  
<  
a f  
( a
) ]

(V 3 8
>
o V , ,
,
s >
0 3 .
> •
. ( g
( n )  
>  
i
l
f  
(
n
)
)  
)
;

11(f (n)) =  tg  I 3 &
> 0
1 1 . .
)
.
0
3 . . . t  g
( n )  
>  
a f  
( n )
1  
)
;

doU OD '  tz I v5>oviis>03.›.1g(s) > 8
.1
.
(n )1 ) •

We shall compare the two proposals using the set of calibrating L -functions defined in 161.
Definition. The L -functions are the smallest class of real one-valued functions of a real vari-
able n, containing the constant functions and n, and closed under the arithmetic operations,
exp and log. The requirement of an L -function being real one-valued is satisfied if it is so
for all values of a greater than some no.



The fundamental theorem on L.-functions in [6,7,8] then is as follows.
Theorem. Arp lefiriwtion is uttimote0 continuous, of constant sign, and monotonk and tends, as
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As Hardy remarks, if  f  and g are I. -functions then f  /g is an L-fimction. Thus, the
second part of the theorem is a mere corollary of the first part; for it follows that f  /g must
tend to infinity, or to zero or some other limit. I n  the family of L-functions, therefore, the
K-or-H choices of definitions for the Order-of-Magnitude symbols do not matter; the
theorem is insensitive to the variations of definitions above. The  theorem ensures that the
L -functions are suitable for the purpose of calibrating the order of increase of functions,
since they are totally ordered by the Order-of-Magnitude symbols. That is, 0, 0, 0, Et and
6) have precisely the same roles on the set L-functions as < ,  < ,  = ,  >  and >  have on the
rational%
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Figure. The top line depicts die ordered set of L-funetions. The subsets of the set 01
functions induced by the different Order-of-Magnitude symbols, with respect to the wild
function g(*) = e x p A c t p
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In the figure we sketch the meaning of the several proposals, couched in terms of the tame
Z. -functions J
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script the symbols with H or K , to distinguish the different proposals referred to, whenever
the intended meaning is not clear from the context. Thus, f  E lax(g) it g ,  and so
forth. For a tame function g the wild middle gap (where f  g  and f  g )  shrinks to zero
and the K- and H-definitions coincide. The  wilder a function, as compared to a tame class
like the la-functions, the more the two defining methods will differ. The  reader should con-
struct such a picture for the function a n )  = exp Or inn), or, more difficult, for a function
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former. While  g and g cover a segment of the ordered set of L -functions, by being of
irregular increase, g2 falls in a gap in the ordered set of L -functions; that is, although the



increase of the function does riot oscillate from that of one L -function to that of another,
there is no L.-function capable of measuring it [61. The question present; itself, whether the
family of L -functions is rich enough a class to calibrate the functions we meet and wish to
calibrate. According to Hardy [6, p. 32]

"._ it is possible, in a variety of ways, to construct functions whose inesesse cannot be
treasured by any L-funetion. I t  is none the lem. true that no one has yet succeeded in
defining a mode of  incresse which is genuinely independent o f  all logarithmico-
exponential modes. ... No function has yet presented itself in analysis the laws of whose
increase, in so Ear as they can be stated at  all, cannot be stated, so to say, in
logaridunico-exponential tarns. I t  would Sc natural to expect that the arithmetical
functions which occur in the theory of numbers might give rise to genuinely new meow
of increase; but, so far as analysis has gone, the evidence is the other way."

Thus, really wild functions appear to have been a rare species. Seldom seen in the wild, they
had to be cultured under laboratory conditions. This state of affairs may be unchanged in
the realm of mathematical analysis. However, in computer science the area of algorithms
and computational complexity has enriched the taxonomy of "orders of infinity" with a
non
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is tame enough, but that its rate of increase is far slower than is expressible by unbounded
L -functions.
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