
Bitonic Sort on Ultracomputers
by

Lambert Meertens†

Ultracomputer Research Laboratory
Courant Institute of Mathematical Sciences

715 Broadway, 10th Floor
New York, NY 10003
Ultracomputer Note #1

March, 1979

† Matematisch Centrum, Amsterdam



ABSTRACT
Batcher’s bitonic sort (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sort-
ing n inputs in !((log n)2) stages. When adapted to conventional computers, it gives
rise to an algorithm that runs in time !(n(log n)2). The method can also be adapted to
ultracomputers (Schwartz [1979]) to exploit their high degree of parallelism. The
resulting algorithm will take time !((log N)2) for ultracomputers of ‘‘size’’ N. The im-
plicit constant factor is low, so that even for moderate values of N the ultracomputer ar-
chitecture performs faster than the !(N log N) time conventional architecture can
achieve. The purpose of this note is to describe the adapted algorithm. After some
preliminaries a first version of the algorithm is given whose correctness is easily shown.
Next, this algorithm is transformed to make it suitable for an ultracomputer.

1. Introduction
Batcher’s bitonic sort (cf. Knuth, v. III, pp. 232 ff) is a sorting network, capable of sorting n inputs

in !((log n)2) stages. When adapted to conventional computers, it gives rise to an algorithm that runs in

time !(n(log n)2). The method can also be adapted to ultracomputers (Schwartz [1979]) to exploit their

high degree of parallelism. The resulting algorithm will take time !((log N)2) for ultracomputers of
‘‘size’’ N. The implicit constant factor is low, so that even for moderate values of N the ultracomputer
architecture performs faster than the !(N log N) time conventional architecture can achieve. The purpose
of this note is to describe the adapted algorithm. After some preliminaries a first version of the algorithm
is given whose correctness is easily shown. Next, this algorithm is transformed to make it suitable for an
ultracomputer.

Definition A sequence s0,...,sn-1 of elements from a totally ordered set is bitonic if there exist i and j,

0"i"j"n-1, such that either
si" si+1"..."sj and sj# sj+1#...#sn-1#s0#s1#...#si,

or
si#si+1#...#sj and sj"sj+1"..."sn-1"s0"s1"..."si.

(If the sequence is made into a cycle by connecting the rear back to the front, this means that both ways of
going from si to sj give an ordered "run.") Note that a sequence of length " 3 is always bitonic.

Bitonic sort hinges on the following.

Lemma 1. Let s0,...,s2n-1be bitonic. For i = 0,...,n-1, interchange si and sn+1 if sn+1 < si. Then for the

resulting sequence, both s0,...,sn-1 and sn,...,s2n-1 are bitonic. Moreover, each of the elements s0,...,sn-1 is

less than or equal to each of the elements sn,...,s2n-1.

Proof: See Batcher (1968) or Stone (1971). (The proofs given are rather informal. A more formal proof
would be elementary but not very enlightening; it would proceed by distinguishing a number of cases.)

The elements to be sorted are stored in an array a[0:N-1], where N=2D for some integer D. The
indices of the array will often be written as bitstrings (binary numbers) bD-1bD-2...b0, corresponding to the



integer bD-12D-1+...+b020. The notation bH:L denotes the substring bHbH-1...bL. (Note that the subscript

runs from high to low; in order to minimize confusion, capital letters will be used for such subscripts.)

Definition. $ stands for a mapping from the set of substrings bH:L into the set of order relations " and #,

satisfying $(bH:H+1) is " and $(bH:L+10)%$(bH:L+11). One possible solution is given by

$ (bH:L) is " if bH + bH-1 + ...+ bL = 0,
$ (bH:L) is # if bH + bH-1+ ...+ bL = 1.

The symbol + stands for the ‘‘logical sum’’ or ‘‘exclusive or’’, so the summation determines the parity of
bH:L. A simpler solution is given by: $(bH:L+10) is ", $(bH:L+11) is #. (By convention, $(bH:H+1) is " in

either case.)

The assertions of the correctness proof will use three predicates, defined below. Let the array a be

(conceptually) divided into 2D-P segments of 2P elements each. The indices of the elements of a given
segment are precisely those which have a common initial bitstring bD-1:P.

Definition. Ordered (P) stands for:
within each segment the elements are sorted in $(bD-1:P)-order.

Definition. Bitonic (P) stands for:
each segment forms a bitonic sequence.

Let now each segment be subdivided into 2P-Q subsegments, or boxes, of 2Q elements each. If the
elements of a segment were sorted in some order, each element would end up in its destination box
according to that order.

Definition. In_Boxes (P,Q) stands for:
within each segment the elements are (already) in their destination boxes according to $(bD-1:P) -

order.

Lemma 2. If 0" P " D, then

(1) In_Boxes (P,P);

(2) if In_Boxes (P,0), then Ordered (P)

(3) for P#1, if Ordered (P-1), then Bitonic(P).
Proof: As to (a), In_Boxes (P,P) means that the boxes coincide with the segments. As there is only one
destination box per segment, each element of a segment must be in its destination box. As to (b), if
In_Boxes (P,O), the boxes have one element. So if within a segment the elements are in their destination
box, they must be in place and each segment is sorted. (Actually, In_Boxes (P,O) is equivalent to

Ordered (P).) As to (c), if Ordered (P-1), then for each segment of length 2P the lower half and the upper
half are both sorted in $(bD&1:P-1)- order. For the lower half bP-1 = 1, so the upper half is sorted in the

reverse order of the order of the lower half. The whole segment is then bitonic.

Ultracomputer Note 1 Page 2



Definition. ich(H:P,Q), 0" Q " P "H+1"D, stands for the following action:
for all b, interchange a[b with bQ=0] and a[b with bQ=1] if they are not in $(bH:P)- order.

Lemma 3. If 0"Q"P"D, then

{Bitonic (Q+1)&In_Boxes(P,Q+1)} ich(D-1:P,Q) {Bitonic(Q)&In_Boxes(P,Q)}.

Proof: This lemma is a generalization of Lemma 1 for sequences whose length is a power of two.
(Lemma 1 is obtained from Lemma 3 by taking P=D and Q=D -1.) The generalization follows by apply-

ing Lemma 1 to each (bitonic) box of length 2Q+1 in a segment of length 2P. The boxes are then "refined"
by splitting each box into two halves (each of which receives again a bitonic sequence), and its elements

are divided over the two new boxes of length 2Q according to $(D-1:P)- order. Since the elements were

already in their destination boxes of length 2Q+1, they now reach their destination box of length 2Q.

First version of the algorithm:
{In_Boxes (0,0)
{Ordered (0)}
for P = 1,2,...,D do

{Ordered (P-1)}
{Bitonic (P) & In_Boxes (P,P)}
for Q = P - 1, P - 2,...,0 do

{Bitonic (Q+1) & In_Boxes (P,Q+1)}
ich (D-1:P,Q)
{Bitonic (Q) & In_Boxes (P,Q)}

end for Q
{In_Boxes (P,0)}
{Ordered (P)}

end for P
{Ordered (D)}.

Correctness proof: Each of the verification conditions is either trivially satisfied or is an immediate
consequence of Lemmas 2 and 3. The final assertion Ordered (D) asserts that the whole array is sorted in
"- order.

If the operation ich(D-1:P,Q) could be realized in time !(1), the algorithm would take time !(D2).
If the elements of the array a are stored in consecutive processors of an ultracomputer, it is, however, not
possible to compare two arbitrary elements immediately, since not all processors are directly connected.
Consecutive processors are connected, so operations of the form ich(H:P,O) operate in time !(1). Other
connections are the shuffle lines, connecting each processor bD-1:0 to the processor '(bD-1:0) = b0bD-1:1.

Through this connection, the following parallel assignments take time !(1):
shuffle: for all b, a[b] :=a['(b)];
unshuffle: for all b, a['(b)] :=a[b].

The two operations permute a and are each other’s inverse.

Ultracomputer Note 1 Page 3



Let shuffleQ stand for the null action if Q= 0, and for shuffle Q-1; shuffle if Q # 1. So shuffleQ stands
for:

for all b, a[b] : =a['Q(b)].

Let unshuffle Q be defined similarly.

Lemma 4. ich (D-1:P,Q), where 0"Q"P"D, is equivalent to

unshuffleQ; ich (D-Q-1:P-Q,0); shuffleQ.

Proof: The operation ich(D-1:P,Q) stands for:
for all b, interchange a[b with bQ=0] and a[b with bQ=1] if they are not in $(bD-1:P)-order.

Using the assignment rule, this is seen to be equivalent to

for all b, a['Q(b)] := a[b] (or unshuffle Q);
for all b, interchange a['Q(b) with bQ0]

and a['Q(b) with bQ=1]
if they are not in $(bD-1:P) - order;

for all b, a[b] :=a['Q(b)] (or unshuffle Q).

Substituting in the middle part '-Q(b’) for b, using bR='-Q(b’)R=b’R-Qfor R, we obtain

for all b’, interchange a[b’ with b’0 =0]
and a(b’ with b’0 = 1]

if they are not in $(bD-Q-1:P-Q)-order.

This is exactly the meaning of ich(D-Q-1:P-Q,0).

Using Lemma 4, the algorithm may be transformed to:
for P = 1,2,...,D do

for Q = P-1,P-2,...,0 do
unshuffleQ;
ich (D-Q-1:P-Q,0);
shuffle Q

end for Q
end for P.

This intermediate version would require time ((D3).

Lemma 5. For K#0

LOOP K) for Q=K,K-1,...,0 do unshuffleQ; S(Q); shuffleQ end.
where S(Q) is any statement depending on Q, is equivalent to
unshuffle K+1;LOOP’K, where
LOOP’K) for Q = K,K-1,...,0 do shuffle; S(Q) end.

Proof: By induction on K. LOOP0 and unshuffle; LOOP’0 reduce to an obvious equivalence. For larger

K, we see that LOOPK is equivalent to

Ultracomputer Note 1 Page 4



unshuffleK; S(K); shuffleK; LOOPK-1

by moving the first execution of the loop body outside. By the inductive hypothesis, this is equivalent to

unshuffleK; S(K); shuffleK; unshuffleK; LOOP’K-1

which again is equivalent to

unshuffleK+1; shuffle; S(K); LOOP’K-1.

Moving shuffle; S(K) inside the loop, we obtain

unshuffleK+1; LOOP’K.

By this lemma, we finally obtain

Algorithm for bitonic sort on ultracomputers
for P = 1,2,...,D do

unshuffleP;
for Q = P-1,P-2,...,0 do

shuffle;
ich (D-Q-1:P-Q,0)

end for Q
end for P.

This algorithm clearly takes time ((D2) = (((log N)2).

Remark. The idea of using shuffles to implement bitonic sort is described in Stone [1971].

2. References
K.E. Batcher [1968] Sorting networks and their applications. Proc. AFIPS Spring Joint Computer Conf.,
pp.307-314

J.T.Schwartz [1979] Ultracomputers. Preprint, Computer Science Department Courant Institute of
Mathematical Sciences, New York University, New York.

H.S.Stone [1971] Parallel processing with the perfect shuffle. IEEE Trans. on Computers, v. C-20, pp.
153-161.

Ultracomputer Note 1 Page 5


