
Constructing a calculus of programs

Lambert Meertens
CWl, Amsterdam & University of Utrecht

A large part of the effort in formal program developments is expended on repeating the same
derivational patterns over and over again. The problem is compounded by notations that
require many marks on paper for expressing one elementary concept, and 'administrative
overhead', consisting of atgorithmicatly uninteresting but technically necessary steps, like
shuffling parts of an expression around without change in computational meaning, and the
introduction of local auxiliary definitions for lack of a suitable notation for what is being
defined. This can to a large extent be avoided by developing suitable theories, including a
notation that is designed to increase the manipulability. After a reflexion on some of the
issues, the more technical part of this paper is devoted to an attempt to construct a system
of combinators that is better amenable to manipulation than the classical ones.

0. INTRODUCTION

Program construction is a mathematical activity. By 'mathematical activity' is not
meant: the actual practice of professional mathematicians, but: establishing proper-
ties of formal objects with perfect certainty, that is, as a tautology. Often the pro-
perty to be estabfished is known, but the formal object that has to enjoy the pro-
perty is only partially constructed. The programmer's task is to complete the con-
struction. This constructive type of problem is not uncommon in general mathemat-
ics, but it is the pre-eminent type in programming. The formal objects concerned
are expressions in some formal language. This includes both programs and (formal)
specifications.

Programs can themselves be viewed as specifications, in two ways. One is the
operational viewpoint: programs as specifying a process for some (abstract)
machine. The notion of efficiency is intimately tied to this viewpoint: it is meaning-
less to discuss the efficiency of a program outside the context of a mapping to a pro-
cess on a machine. Processes have 'observable' aspects (input and output to the out-
side world) and purely internal aspects, and the agreement is that (apart from
efficiency) only the observable aspects count. This makes the notion of program
optimisation meaningful.

We can also abstract from the internal process aspects by identifying observably
equivalent processes, and consider the meaning of a program as a point in the result-
ing abstract space. We then obtain the 'declarative' viewpoint of programs as
specifications. It is this viewpoint we are concerned with here. The notion of
efficiency, although still a major pragmatic concern and a motive force in our design
choices, is thereby moved out of the formal arena. The advantage is that we obtain
a rich structure of relations between programs.

Consider what is needed for constructing a program: a formal language for

67

expressing the specification as a formal object, a formal language for expressing pro-
grams, and rules that can be used to establish properties.

Let us assume that there are no a priori constraints on the formalisms. Can the
resulting freedom be used to design formalisms that make the task of program con-
struction easier?.

1. O N THE NEED FOR POWERFUL THEORIES

No mathematician could do significant work on the basis of pure ZFC, pure predi-
cate calculus, or pure lambda calculus. Instead, the starting point is a body of
theories, with definitions, notations and theorems.

Likewise, for significant program development we need powerful theories, with
definitions, notations and theorems that allow to capture large chunks of develop-
ment in a single step.

Here is a simple example. Let f be a function on the naturals, with an inductive
definition of the form:

f (0) = e ,

f (n +1) = g(h(n), f (n))

The value of f (N) can be computed with the following iterative program, in which
the result is the final value of the -variable a:

1[a : a p p r o p r i a t e - t y p e
; n : n a t
; n : : 0 ; a : : e
; d o n ~ N - ~

a : : g(h(n),a); n : : n +1
; o d

]t

A simple theorem, that has been rediscovered many times, is that under certain con-
ditions the computation may also be arranged as follows:

t[a : appropriate-type
; n : n a t
; n : = N ; a : = e
; d o n ~ O ~

n:---- n - - l ; a:---- g(a,h(n))
; o d

]1

There may be good reasons to prefer this computation schema. The conditions
under which it applies are that g satisfies the functional equation

68

g (a, g (b, c)) = g (g (a, b), c)

and e is such that

g(e,a) = g(a,e) = a

for all a.
Most introductory programming texts do not mention this simple theorem.

Should they? Its proof is straightforward enough, for example using standard tech-
niques from DI3KSTRA ~ F~IJ~r~[3] The only aspect that possibly requires some
inventiveness is the choice of the invariant, namely

g (a , f (n)) = f (N)

It might, therefore, be argued that- -s ince this fact can be derived on the spot when
it appl ies--no theorem is needed here.

If carried to its extreme, this argument denies the value of having theorems at all.
For example, it is not hard to derive the fact that

d n - - -~X ~ n ' X n - 1

when the need arises by applying standard teeb.xtiques for computing limits. The
strength of the Differential Calculus is of course that it is a calculus. It gives a
method for computing a certain kind of limits by following a set of rules rather
mechanically, using pattern matching and simple equational reasoning. This is only
possible by virtue of a suitable notation geared towards these rules.

Coming back now to the simple theorem mentioned above, a possible reason for
not formulating it explicitly is the lack of a suitable notation. As presented above, it
takes up haft a page. What is worse, the interesting part of it, from a calculus-
oriented point of view, is not so much that there are two solutions to one problem,
but that the two programs are equivalent under the given condition. It is not
difficult to imagine that in a less abstract problem setting it would be hard to see by
pattern matching that the theorem applies.

A formalism whose aim is to provide the kind of notation by which this and
similar theorems can be formulated concisely, so that they can be applied as part of
a calculus, was developed in [4, 1, 2]. The condition on g and e is precisely that they
are the operation and identity element of a monoid. It is more pleasing then to
denote g as an infix operator, say ~ , which by the monoid properties is associative.
The function f takes a natural as argument, but a slightly more general and abstract
viewpoint is that the computation has the sequence

[h (0),h (1) h (N - 1)]

as its argument, and therefore any list. The function applied to this list 'reduces' it
to a single value by combining the elements using the operation G). A short nota-
tion for this function is

,

which is borrowed from APL but expresses in addition, when applied to a sequence,

69

that its operation is that of a monoid, and thereby that there are many different ord-
ers in which the reduction can be computed.

For the two program schemas above, one in which the reduction is performed
'from left to fight', and one in which the computation proceeds 'from fight to left'
(or in any case in the opposite direction), the operation is not required per se to be
associative. It might even be the ease that the two operands have different types,
whereas they are of the same type for an associative operator. Concise notations for
these two computation schemas are

E[~--~e and @<-t-e

The theorem, formulated with the aid of this notation, is now:

If (~ , e) is a monoid, then ~ + e = ~<-/-e

The reader familiar with [1] or [2] will recognise this as (a mildly specialised version
of) the Specialisation Lemma. The point is that in this form the theorem has the
right characteristics to being useful as ingredient in a calculus.

It is not hard to understand why having theories is important. Given a
significant piece of mathematical work, it is (theoretically) possible to make it
entirely serf-contained, theory-free so to say, by including definitions of all notations
used, and statements and proofs of theorems invoked, and again definitions and
proofs of notations and theorems used in there, down to some basic level. Theorems
and notations that are used only occasionally, perhaps once, can be expanded in
place. The result will not be pleasing. But this is how the work would look if we
did not have theories to work from at our disposal. The prevailing situation in (for-
mal) program construction is, unfortunately, not much better.

There is, therefore, reason for the hope that the currently often excessive length
of rigorous formal program developments is not so much due to the need for rigour,
but rather, at least to a large extent, to the lack of a suitable body of theories to
build upon. The experience with our, thus far modest, formalism provides some evi-
dence for this.

2. ALGORITHMICS ANONYMOUS

What now, precisely, are the characteristics that make this formalism suitable for
doing program construction by calculation? One is that it is indeed modest. As the
formalism is developed over time, more notation is added, and there is the constant
need to be extremely careful here. Unchecked, it would explode into a flurry of spe-
cial symbols.

The existing notations have been developed with an eye to conciseness of expres-
sion, taking account of what is actually often encountered. Conciseness is important
for making the recording of the development steps less laborious, and also for mak-
ing it possible in the first place to do the pattern matching needed to recognise the
applicability of some rule.

A further advantage is that the need is diminished to interrupt the smooth, linear,

70

development for doing an 'aside' sub-development. It is quite normal in a develop-
ment to single out a subexpression of the main expression, derive an equivalent form
for it, and substitute the result back. Whether and when this is done, and if so how,
is a design choice in the presentation of the argument. The subdevelopment may
precede the main development, perhaps as a lemma, or it may be a 'deferred
justification'. In principle, it could be expanded in place. A good reason for not
doing so may be the structuring of the argument. Especially if the context surround-
ing the subexpression is large, this device may increase readability by zooming in on
the symbols where the action is. If, however, that context is mainly large because of
the verbose notation, the interruption is more a matter of practical necessity than of
choice.

Given a concise notation, the choice between singling-out versus having an unin-
terrupted, linear derivation, is up to the designer of the presentation, and it is a good
thing to have this freedom. However, there are also cases where a separate sub-
development is forced for purely technical reasons. This can be an annoying inter-
rupfion of the argument. A further goal, therefore, of the formalism is to avoid this.

One important case where this phenomenon pops up is if recursively defined
names are used. By 'name' here a single symbol is meant that refers to a definition
elsewhere. In that sense, the expression '2+2 ' , although denoting 4, is not a name
for it. If a name has a recursive definition, this means that it is not possible to just
replace the name by its definiens. The latter contains further occurrences of that
name (by the definition of 'recursive definition'), and so the expression after substi-
tution mus t - - i n contrast to what happens for non-recursive definitions--stilt be
interpreted in the context of the original definition. Usually the weU-foundedness of
the recursion corresponds to a s~lit in the definition into a base case and other cases,
and this may generate then the need for a case analysis, another technical reason for
an interruption. And, finally, recursive definitions often give rise to the need of a
proof by induction, which cannot be done 'in place'.

The counterpart to this is if the solution to which a development leads requires, in
the language used, a recursive definition, and thereby a name for the recursively
defined part. Without some rather special mechanism, this also necessitates an aside
in the development.

A theoretical solution is the use of a fixpoint combinator, but the 'theoretical'
should be emphasised here; such a combinator is not particularly pleasant if it
comes to calculating with it. The approach adopted in our formalism is to provide
explicit notations for the solutions to the most frequent recursive definition patterns,
and to give a set of laws to go with it. Above, we have seen the notation ~ / ; this
is one such notation. The subexpression that before required a name, now can
remain anonymous. This extremely simple stratagem buys us a good deal of calcula-
tional manipulability. It should, in fact, be familiar to every programmer. The
'while loop'

while p do S od

is an explicit anonymous notation for the solution to this recursive definition for W:

W = i f p then S; W fi

7t

3. FURTHER CAUSES OF LABORIOUSNESS

Names are not by themselves bad, of course; attempts directed towards totally aban-
doning names lead to a tar pit. It is being forced to pick and use ephemeral names
for items that do not correspond to any abstraction worth naming, that is the cause
of much additional labour. After 'recursive' names, the next target is formed by
dummy (bound) variables, as in function definitions or lambda forms. The point
here is that a variable-free definition is at least potentially more manipulable. The
extra notation needed for denoting the dummy variables, and for delimiting the
scope, tends to get in the way- of the easy manipulation. In our little formalism one
contribution here are the so-called sections; instead of writing something like

~ x : a ~ x ,

in which one operand is fixed, leaving a monadic function, the pithy notation

a ~

can be used. This saves us many, many marks on paper. The alternative in such
cases is hardly to use the lambda notation. Presently, if the existing devices for get-
ring rid of dummy variables do not suffice, the best alternative is to interrupt the
development for a definition, like: "Putting

f x = a ~ x ,

we have . . ." and so on. Again, introducing a name here is not necessarily bad; the
bad thing is being forced to it. One form of this that is all over the existing papers
using the current formalism occurs when an operator is needed, like in: "Putting

a (g b = a ~ (f b) ,

we have . . ." and so on. The interruption is forced in this case by the lack of an
explicit, dosed-form expression for the solution (9 of the functional identity
a (g b = a ~ (f b) .

What we need here are combinators that allow expressing that solution in terms
of components like ~ and f The 'classical' combinators S and K will make any-
thing variable-free, but they do not have the desirable manipulative properties. If it
is sometimes nice that 'there is only one thing you can do', these combinators virtu-
aUy force us on a single development track: they act only at the head of a tree, and
most of the steps are just shuffling to get things up there. There is also the other
direction, in which combinators are not expanded but introduced, and here there are
usually too many possibilities, and no heuristics for choosing among these. Worst of
all, in proving the equivalence of two combinator expressions, the standard tech-
nique requires introducing dummy variables for unsatiated combinators.

The basic problem here is that the basic operation of the classical combinator
calculus (and also of the closcly rclated lambda calculus) is application instead of
composition. Application has not a single property. Function composition is asso-
ciative and has an identity clement (if one believes in the 'generic' identity function).

72

Often seemingly minor notational issues make a huge difference. A well known
example is the use of infix notation for associative operators. If much use of the
associative property is made (and for function composition it is), the just sufficiently
ambiguous infix notation

f o g o h

saves one calculation step for each case.
In [4] a notational suggestion was made, not followed in [1] and [2], for a further

ambiguity-on-purpose. It is the device called 'apposition' there, to denote function
application and composition in the same way. This saves us the trivial step in

f (g(x)) = (fog)(x)

There is a problematic aspect to this notational trick (dubbed, with another port-
manteau, 'complication' by Bird): it requires knowing the types of the constituents
to parse the train f-apposed-to-g-apposed-to-x. In a polymorphic context, it is in
general impossible to guarantee that x wilI not be substantiated with a function,
which would radically alter the meaning. So apposition is not so substitutive as is
desirable.

4. WHITHER, APPOSITION?

Apposition may perhaps be madness, but there is some curious (Dutch?) method to
it. A close relative is the silent 'lifting' of operators to functions, another notational
device in [4] that has not met with universal acclaim, whereby each operator
could be overloaded to also denote the operator ~ such that

f ~ g = Xx: (f x)~ (gx)

The relationship can be seen if we consider an operation that does not use its left
operand. If the lifting is not denoted, the definition reads then: ~ applied to g is

composed with g. This suffers from the same problems as apposition does. The
most irritating thing here is that these problems are real, but encountered rarely in
practice (at least until now). The extra steps needed on giving this up are also real,
and very frequent. One theoretically sound way of saving this device is to agree that
also constants in the formalism are silently lifted to constant functions, so that '2',
for example, is the name of the function

~, x: "the successor of the successor of zero"

As the circumlocution in the body shows, we have lost the name for the number
itself. This is not appealing; who wants to live with spurious identities like
2o3 = 2?

There is something in common to many of the (usually minor) annoying prob-
lems in the use of the formalism. They all point in the direction of the need of a
suitable system of combinators for making functions out of component functions
without introducing extra names in the process. Composition should be the major

73

method, and not application. Among the further desirable properties is that the sys-
tem should not be opposed to a typing discipline. (The classical combinators do not
permit any reasonable form of typing.) e Also, less effort should be needed for
'administrative' steps that serve to bring the 'data' in the expression to the spot
where the action is (typica~y a substantial part of the work). In particular, the
choice between the asymmetric 'Curried' view on the type of a function with two
arguments, say

and the flat view

r

should be reasonably light-weight, and there should be no built-in bias for the first
of the two for operators. Finally, it is desirable that functions can as easily and
gracefully deliver a tuple as result as they will take it as an argument, facilitating
composition.

The remainder of this paper is devoted to an attempt to construct such a set of
combinators. The starting point is a type system that centres on functions t,qking
(typed) tuples as arguments and giving tuples as result. The notion of combinator is
next taken rather literally; it is examined how such functions can be combined,
more or less as if they were wheeled in as physical boxes with output lines that can
be connected to the input lines of other boxes.

5 . A T Y P E SYSTEM

We start with a typed universe of 'plain values', not containing tuples or functions.
From the plain types we construct 'singleton types', 'tuple types' and 'function
types', in a mutually recursive fashion. Greek letters, possibly adorned with sub-
scripts, will serve as variables that stand for types. Specifically, o, -r, u and o~ wilt be
used for tuple types, and or, fl and V for singleton types.

Each function type is formed from an out-type (for the codomain) and an in-type
(for the domain), both of which are tuple types. If o and "r are two tuple types, then

denotes the function type with out-type o and in-type ~. A more conventional nota-
tion would be -r ~ a.

A tuple type is formed from a finite sequence of zero or more singleton types.
Its width is defined to be the length of that sequence. Let a sequence be given of n
singleton types oti, 0 ~< i < n. The corresponding tuple type has then width n. If
0 < n, it is denoted by

O/0~Otl~ • . . ~Otn_ 1

This resembles the n-ary operation ~ × ~ X • -- X ,~ of the Cartesian product, but
here the operation , is considered to be 2-ary and associative. For example,

74

and

0/, B, e ,

(a , B) , ~ , ,

all denote the same tuple type. So if o and "r are tuple types, then so is o,% Its
width is the sum of the widths of o and I". On purpose the notation does not distin-
guish between singleton types and tuple types of width 1. These are identified. We
need a special notation for the (unique) tuple type of width 0, for which the symbol

will be used. Under the operation , , the tuple types form a monoid, with iden-
tity element i (so o,1 and l ,o both denote the same type as o).

FinaJly, the singleton types consist of the plain types, together with the function
types.

Here is a BNF grammar for the 'type expressions' as described above, assuming a
predefined metasyntaetic variable (plain type):

(function type) :: = ((tuple type) ~ (tuple type))

(tuple type) :: = (tuple type),(tuple type) I (singleton type) J

(singleton type) :: = (plain type) I (function type)

What this grammar does not express, of course, is t h a t , is associative and has iden-
tity 1.

The parentheses in the first syntax nAe are needed to distinguish between, e.g.,
the function types

and

((o,-- r) v)

If no ambiguity can arise, these parentheses may be dropped. They also serve to
distinguish between, e.g., the tuple type

and the function type

which is interpreted as (0/,0) ~ ('r,B).
The various new kinds of types are inhabited by values, exactly in the way that

would be expected. So a value of type 0/~B,Y, for example, is a 3-tuple consisting of
an a-, a B- and a y-value. There is exactly one, not very interesting, value of type].
A function of type o ~ ~- yields a o-tuple when provided with a r-tuple as argument.
The width of o is called the out-width of the function, and the width of ~" its in-width.
It is not assumed that functions are total.

The type system can be made polymorphic in a way that has become usual, with,

75

for example, a generic identity function ' id ' of the polymorphic type a <---a. How-
ever, such type polymorphism will only be exercised with the constraint that
refinement of polymorphic types preserves the widths involved. As we shall see, it is
essential that the out- and in-widths of functions denoted by expressions can be
determined from those of the constituents, and the superposition of type polymor-
phism must not break this. We use the notation

~n = aO,al, .- • ,an-I

for the unrestrained polymorphic type of width n. For each width n there is a
different generic identity function

idn: ~,n ~ -~,, ,

and idl is usually abbreviated to just id.

6. THE FUNCTION WORLD

From now on we are only interested in functions. Here are some schematic pictures
of functions:

The functions are depicted as boxes. The argument tuple is fed into a box through
the lines at the top, and the result tuple appears at the bottom. By convention, the
flow in these schemas is always from high to low, so that there is no need to put
arrowheads on the lines. The boxes are labelled with names for the functions. Let
us consider them one by one.

The function P takes a singleton argument and delivers a singleton result.
The function A has in-width 0. Its argument is the uninteresting 0-tuple, which

is the only inhabitant of the type L Since it carries no information, there is no need
to show the 0 incoming lines more vividly. Functions with in-width 0 are called
sources.

A source, like this function A, can be thought of as modelling a (constant) value
in the function world. The result of A is a 2-tuple, or pair, of some type a, fl. The
type of A itself is then a, fl ~-- ~. The names of sources, that is, functions with in-
type i, will in general be taken from the initial part of the alphabet.

The function ~) has out-width 1 and in-width 2. As the example shows, the
names of functions may be special symbols. Some more examples of symbol names
are ~ , Q , , and / . Functions with symbol names are also called 'operators'.
Some of these symbols, like -H-, denote by convention a specific function. For
example, -H- stands for sequence concatenation; it has type [o] <-- [o],[a]. Others,
like ~ and Q , have no fixed meaning. They are true variables, just like P and
A. The ordering of the incoming lines is significant. If the type of ~ is tr <-- t~fl,

76

the a-value is supposed to be carried by the left in-line, and the t-value by the right
in-line. Similarly, the out-lines of a box carry from left to right in order the single-
ton values of which the output tuple is composed.

The last function can be called a terminator, or sink. It accepts a value but
delivers no information. In general, a sink is any function whose out-type is I. A
sink is (up to polymorphic type refLuement) fully determined by its in-width. The
name of the unique sink of type i (--a, _L, is thus chosen because of its graphical
representation of the function as terminator. It bears no relationship to the bottom
of a lattice. For the sink of in-width n we shall use the name / n .

Not depicted above is _L0, the sink of in-width 0, the only sink that is also a
source. This is the dullest function imaginable. It has some marginal theoretical
interest though. Another name for this function is ido.

7. SERIAL COMPOSITION

We want to have a set of combinators that form functions from given functions. For
the purpose of combining functions, they are black boxes. A combinator cannot
'inspect' a function. From a mathematical point of view, a combinator is nothing
but a higher-order function, but here these combinators are emphatically not con-
sidered to live in our function world. The most important combinator is serial com-
position. We shall also encounter parallel composition. If used without
qualification, plain 'composition' will mean: serial composition.

Below we see the serial composition of a few boxes.

f f

t
I
I

I
1

t
I

I

I

I

I

I

L

This composite will be expressed as P - ~ • A • _L, in which • can be pro-
nounced as 'dot'.

The purpose of the dashed box is to suggest that we can abstract from the details
of the composition, and treat this as one new box:

77

I,

1
For the composite to be meaningful, the out-type of each box has to be compatible
with the in-type of the box it interfaces to. In a polymorphic setting this may entail
refining these types. It is understood then that the tmifying type substitutions are
consistently performed throughout the type of a box. In the schematic pictures it is
always assumed that the components have types for which the whole combination is
meaningful.

If P has out-width m and in-width n, then we have

P = i d m , P = P ' i d n

In the schematic diagrams, a function idn will not be shown explicitly as a box, but
corresponds to any group of n adjacent collateral lines.

Thus far, it was tacitly assumed that the widths at each interface are equal. Such
balanced serial composition is just the usual function composition. However, we will
move on to a generalisation in which the widths do not have to balance. But first
another form of composition is introduced.

8. PARALLEL COMPOSITION

The following picture depicts parallel composition:

This parallel composite will be expressed as PIIAII~IIA_, where tl is pronounced
'para'. We may abstract as before:

,_1 I I
PIlAII tlJ-

I I I I

The out-width of a parallel composite is the sum of the out-widths of the com-
ponents, and likewise for the in-width.

Like serial composition, parallel composition is associative. There is also an identity
element of II, namely id0. Two further simple laws relating identity functions and

78

sinks to parallel composition are:

idm+ n : idmHid n ,

and

A-m÷. = A-roll-t-.

We now come to a law relating serial and parallel composition. In a mixed
expression, involving both the combinator II and the combinator • , the first will
take precedence. In fact, serial composition has the lowest priority of all combina-
tors that will be introduced here. For the others no relative priorities are defined,
and so parentheses will be needed to specify grouping in mixed expressions.

Now the promised law. If the compositions involved are balanced, the following
law holds:

/ l IFo gllG = (f , g)l l (F° G)

(The requirement that the two compositions of the r.h.s are balanced is sufficient to
guarantee balanced composition in the 1.h.s.) In the terminolog~¢ of [2], tl abides
with • The abide property is illustrated in the picture below:

t~
t

.J I_]d

This law is not particularly important, but it serves to pose the question: What
exactly do we mean by equality of two box expressions, built with (box) combina-
tors? This could be defined in terms of a semantic domain involving functions, but
a much simpler answer is possible: Two box expressions are equal i f the combinators
specify networks with identical topologies between the component boxes. This gen-
erates an algebra of boxes and combinators. If for certain boxes further properties
are specified, for example, 'P is idempotent ' (that is, P ° P = P), we can take the
free algebra modulo these properties.

The box algebra is of course what we are interested in. There is some didactic
advantage in the fact that various properties can be illustrated by diagrams, but
proving complicated properties by pictures becomes laborious.

79

9. SERIAL COMPOSITION REVISITED

We shall now extend the definition of serial composition so as to allow unbalanced
composition of boxes. This will be done by reducing it to balanced composition.
The idea is the following: if the interfacing widths in a serial composition differ, the
box with the deficit is 'stretched' to the required width by extending it to the right,
by means of parallel composition, with an identity function whose width makes up
the deficit. This can be defined more formally. Let the operation --" between two
naturals be defined by

m' - -n -.-- (m t n) - n ,

in which t denotes the operation of taking the maximum of the two operands, and
- is conventional subtraction. It is immediate that

Also,

(m ' - - n) + n = (n = m) + m

(m "--n),~(n "--m) = 0

Let now P and Q be two functions, and let m be the in-width of P and n the out-
width of Q. Then we define

P • Q = (Pl l idn ._m)° (Qllidm._n)

The parallel composition with identity functions of the appropriate widths balances
the composition in the r.h.s. If we apply this to a composition that was already bal-
anced, the r.h.s, reduces to

(P l l i ~) • (Q l l i ~) ,

which, since ido is the identity of lt, gives us back the 1.h.s.. So the new definition
extends the original meaning in a uniform way.

The diagram below shows this in action for each of the two ways in which a
composition can be unbalanced. Here F has out-width 2 and in-width 4, whereas G
has out-width 2 and in-width 1.

l I F I
I

I
I
I
!

t
I

.,.I

Note that the composite to the left resembles so-called 'partial parametrisation',
especially if the box G is replaced by a source. In particular, it is the case that

F o (All B) -- (F o A) . B ,

80

provided at least that A is a source.
The important property making this more general form of serial composition use-

ful is that this combinator is still associative. The composition combinator has an
identity element, namely id0, which was also the identity of parallel composition.
(Note that id -- idl is not an identity element, unless we restrict the domain of •
to functions for which neither the in- nor the out-type is 1.)

There is a price to be paid for the additional flexibility afforded by the generali-
sation. It is the obligation to keep track of the widths. Quite a few of the laws
involving composition have conditions on the widths concerned, for example of the
pattern: 'provided that the in-width of P is at least the out-width of Q'. There is an
opportunity for human errors here if the (usually boring) verification of such condi-
tions is unduly omitted. In a mechanical system for providing assistance to reason-
ing with equalities of box expressions, the verification could be delegated to general
type checking.

10. INPUT SHARING

The next combinator will allow several boxes to share their inputs. As a purely aux-
iliary group of generic functions we introduce first, for each natural n,

An: -~n , -~ . ~ ~ n ,

which produces a 2n-tuple from an n-tuple by joining two copies together. The fol-
lowing diagram shows A3 :

As before, we first define a balanced form of 'sharing', and extend the definition
next to the general case. Let P and Q be functions with compatible in-types, which
implies in particular that they have the same in-width. Let n be that in-width. Then
we define

P,Q = (PItQ) " An

In words, the input to P~Q is fed to both P and Q, and the output of P~Q is then
obtained by joining the two resulting output tuples. Both (idlt_l_) and (±llid) have
out-width 1 and in-width 2, so

(idll-l-),(-l-Ilid)
has out-width 2 and in-width 2. It is easily seen (by 'proof by picture') to be id2. If
the two parallel composites are switched, thus:

81

(± l l i d) , (i d l l - t -) ,

we find again out-width 2 and in-width 2. This function switches the two com-
ponents of a pair. It has polymorphic type

For the general case, in which the components do not have to have the same in-
width, let m be the in-width of P and n that of Q. The requirement on the in-types
becomes now that P{lidn__m and Qt{idm_.. have compatible in-types. This amounts
to compatibility of the first m $ n components of the two in-types. For serial compo-
sition, balance was achieved by stretching. Here we trim instead the input for the
less demanding box to the required length. The function

e } { - l - n - - m

has the same out-width as P, but in-width m ~ n. We define now for the case that
m 7 6 n :

P , Q = (Pil±n._m),(QliLrn._n)

As for the earlier combinators, ~ is associative and has identity id0. The effect of
is illustrated by:

L t

The line forked off to the left from the third in-line at the top is not shown; it would
run into a _1_.

11. TYPE INFERENCE RULES

The following rules show how the type of a box expression built with •
can be deduced from the types of its components.

P : o <-- ~-~o~
Q: ~-<-v

P • Q : o ~ - v,~o

P : o <-- "r

Q : 'I'~o) <-- u

, [I a n d ,

82

P : o 0 <-- r 0

Q : ~rl <-- ~'1

PIIQ : oo,ol ~ "to,r1

P: o 0 ~-- r~w P: o 0 ~-- r

Q : ol ~ ~ Q : o 1 ~ r , w

P) Q : o0~o 1 ~- r , w P , Q : o0~o 1 ~- r,w

For • and , there are two rules, corresponding to the two ways of possible unbal-
ance. For example, if we have

A: o~-~

P : r ~ - - v

we can use the second rule for . , with (P , Q) : : (A , P) and (o,%oJ, v) : :
(o, ~, % v), to deduce

A . P : o ~ r ~ - v

If we compute the types of A liP and A ,P, we find in both cases the same type.
It is possible to merge each of the rule pairs by introducing a (partial) tuple 'sub-

traction' operation, akin to -" on naturals. By building up a small theory for this
operation it becomes possible to prove, for example, that the expressions
(P • Q) • R and P • (Q • R) (if any of the two is typable) have the same type
without the extensive case analysis that would otherwise be required.

12. LAWS

We sum up here, without proof, some important laws for the combinators • , l[and
, . We need a convenient way to denote conditions on the laws.

The notation P ~ Q means: the in-width of P is at most the out-width of Q.
Similarly, P ~ Q means that the in-width of P is at least the out-width of Q. Equal-
ity of these widths is denoted as P ~ Q. The composition in P • Q is balanced if
and only if P ~ Q. Note that these relations are not transitive, and that ~ is not
reflexive. However,

(P < _ Q) A (P ~ Q)

equivales

P ~ Q

If A occurs, it stands for a source. The letter denotes (implicitly) the condition
A ~: ido.

(LO) " , I I and , are associative, with identity element ido

(L1) idm+n = idm[tidn

8 3

(L2) If i d m ~ P , then idm • P ---- P

(L3) If P11-idn, then P ° idn = P

(L4) _hm-k n ~ .J_mlt..]-n

(L5) If id0: , :P:~idn, then P = ' • d - n

(L6) A . e = AIIP = A , P

(L7) PItA = P,A

(L8) P . _L n = J-nllP

(L9) If p:~q and P ~ : Q , then (p • q)l](P • Q) = pUP • qllQ

(L10) If P : ~ Q , then P ° Qt[R = (P . Q)IlR = PIIR • a

(Ll l) If idm:,,:P, then PI]Q = id,nllQ • P

(L12) If P ~ i d n , then A_n~P = P,A.. n = P

(L13) If P ~ Q , then (P~ Q) ,R = P ° Q,R

(L14) If in-widthP ~ in-width Q, then P,(QIIR) = (P,Q)IIR

(Lt5) If P : ~ R and Q : ~ R , then P , Q . R = (P . R) , (Q . R)

These laws do not constitute a carefully selected set; it would be interesting to create
a nice (independent and complete) set of basic laws. The criterion for inclusion
above was more practically inspired. For example, (L11) is essentially a variant of
(L10). It is included because it is often applicable in this form, and saves us then
one rather trivial step.

13. FORMUI_AE AND SECTIONS.

We introduce some special notations concerning operators, that is, functions denoted
by special symbols (non-tags). Throughout this section the variable @ stands for an
operator with in-width m +n, and P and Q for functions with, respectively, out-
width m and n. Furthermore, A and B denote sources, also with, respectively, out-
width m and n. We define:

P ~ Q -~ ~ . P ,Q

P ~ = ~ • ellidn

O Q = • • idm[IQ

All the compositions involved are balanced. The first form, in which two 'operands'
are supplied, is called a 'formula'. The next two forms are a 'left section' and a
'right section'. If the expressions for the operands P or Q are not simple tags, they
must be enclosed in parentheses to prevent ambiguities. This is also needed if they
are themselves operators: does $ ® mean ® • (ellid) or • • (idll®)? The first

84

meaning can be specified by (@) ®, and the second by @ (®). However, if @ is
an associative operator (see below), then the meaning of (@) @, and @ (@) is the
same (and, as follows from (L16) below, equal to @ • @), and it is harmless then
to drop the parentheses.

These special notations are useful for various reasons. In the first place, alge-
braic properties from the 'value world' are inherited in the function world. For
example, in the usual definition of @: e <--- e~ o being associative, namely

a @ (b @ c) ---- (a@b)@c ,

the operands are assumed to range over all values of the type o. Now this is
equivalent to the property that

F @ (G @ H) = (F @ G) @ H ,

where this time the operands range over all functions with out-type o. Symmetry
(commutativity) and idempotence are likewise inherited.

A second reason for having these notations is that they encode (implicitly) infor-
marion about the widths. This makes it possible to formulate laws that can be
applied without having to verify width conditions separately.

Here are some laws for formulae and sections with a source as operand.

(L16) A@ = ~ , A

(L17) A @Q = A @ , Q

(L18) P @ B = @ B . P

We show how these laws can be derived. For (L16):

A ~

= (definition of left section }

• . Allid.
= ((L6))

• A • id n

= ((L0), (L2))

@ . A

Now (L 17) is easily derived:

A @ Q

-- (definition of formula)

@ • A , Q

= ((L6))

@ . A . Q

85

= { (L16) }

A E) , Q

For (L18) we have:

P ~ B

= { definition of formula }

• P~B

= ((L7) }

+ • ell B

= ((L l l) }

@ • i d m l l B • P

= { definition of right section }

@ B • P

It is often desirable to have the mirrored version of an operator also available as an
operator. Here we encounter a (not entirely unexpected) weakness of the tuple view
adopted. What we want, basically, given an operator

is to define a mirrored version

which is also an operator. However, the type former , leaves no seam when joining
two tuple types, so it is not possible to define once and for all, for all operators,
what the meaning of mirroring is. In malay cases, however, the desired split in ~-, v is
clear enough; often it will be in the middle, either because the in-type is of the form
a,/3, with width 2, or of the form 070. In any case, we assume here that we know
how the in-type of • should be split, namely into "r and v, and that the width of ~" is
m and that of v is n. Then, by definition,

=

We have:

Q ~ P

~ P

Q ~

(-Lnl l idm)~(idn l l -Lm)

= P O Q ,

= P @ ,

= ~ Q

86

14. LOCKING

We come now to a box construction that is less combinatorial in nature, called lock-
ing. Locking resembles lambda abstraction and 'quoting' (as in LISP), but also cur-
rying.

Let P be a function of type o +-- r,w, and let n denote the width of r. Then we
can 'lock' P, leaving in-type r, by writing

(P " ?n): (o <-- ~0) <-- r

The notation will shortly be explained, but first the meaning. This is a higher-order
function; if fed with a r-tuple, it produces a box (function) of type o ~- ~. This box,
when provided with an o:-tuple, yields that result that is produced by P when
presented the r-cum-o,-tuple in one go.

Now the notation. The ?n is a dummy, or placehoIder, for the r-portion of the
argument to P. Dummies are only allowed inside a (- - -) form, called a locked
expression, or for short a lock. Within that form, it is a box expression, formally
typed

?n: -yn ~ 1

(in which the polymorphic type may be refined to some more specific type like r ~ i
for P above). So a dummy is formally a source. We put further

?m+n = ?mll?n = ?re" ?n = ?m,?n ,

and use ? for ?1 • Furthermore, ?0 = id0, and so it may be eliminated as being the
identity of each of the combinators.

The information in the subscript n of ?n is crucial. For example, if we have
P: a +- fl,r, we can form three ~ e r e n t locks:

(t ') : < - # , r) , - - t ,

(P " ?): ,

(P • 72): (a<-- l) ~'- fl 'T

The scope of a dummy is the body of the locked expression in which it occurs,
with the exclusion of other locks therein contained. Within its scope, all the laws
that apply to sources may be applied to a dummy, such as (L16), giving us

? ~ = ~ . ? ,

or (LlO), giving

? . ? l i P = (? . ?) t iP = ? l l P . ?

There are important constraints, though. The first is an injunction against swapping
dummies. In particular, dummies must not trade places by the rules for a mirrored
operator; for example,

F = (?+?>

87

has in general quite another meaning than

G = (?~?>

If ~ has type a ~ a, f l , then F would have type

(a I) <--- a,B ,

whereas G would be typed

(a 1) B,a

The (L*)-taws given earlier are safe, however, even i f they appear to swap. An exam-
ple is provided by (Ll l) , which can be instanfiated to give

,9 n * P = idnllP • ?n

This allows us to shift dummies around, and it is valid even if P contains dummies.
The explanation is that the dummy swap (if any) is only 'optically' present in the
linearised box expression, and does not correspond to a swap in the topology of the
network. For the human ease of application of rule (L19) given below, it is
nevertheless helpful never to swap dummies, whether 'safe' or not.

A similar constraint must be exercised if algebraic properties of boxes are given,
not only symmetry, but also having a zero, etc. For example, if for a given function
P and given source C the property is known that

P . A = C

for all sources A of in-width 1, this must not be used to simplify P • ? to C. A valid
identity in this case is

p . 9 = C ° / ° 9

in which the dummy, although 'sunk', is still visible. Like money, dummies may not
be duplicated or embezzled. The (L*)-laws given earlier are also safe in this respect,
with the exception of (L15) if the duplicated component contains dummies.

The following law allows moving a function across the boundary of a lock.

(L19) If P and R are dummy-free, and i d m x R ~ i d n , then

(P " ?m ° Q} • R = (P • R • ?n • Q)

'Dummy-free' refers to dummies bound to the lock at this level; dummies of locked
expressions contained within P or Q do not count. By combining this repeatedly
with (Ll l) , a bunch of functions can be moved across in one go. So as not to bur-
den the exposition with excessive notation, here only the version with three functions
is given, but the general pattern should be clear enough:

If all Pi and R i are dummy-free, and idmi ~ R i ~: idni , then

(e o . ?toO" e l . ?ml " e 2 . ?,r,2 " Q) • ROIIRIl IRe

(P O . R O , ?no" P 1 . R I , ?nl " P2 . R 2 . ?n2" Q)

88

By supplying a source of the appropriate width, the body of a locked expression can
be made dummy-free. If P : o < - r is dummy-free, then (P/ has type (o <-- ~-) <--- 1[, so
it is still a higher-order function. Something further is needed to set the locked
function free.

15. UNLOCKING

Unlocking resembles application (or LISP eval), but also serves for uncurrying
(when used in a left section). In this last aspect it is the counterpart of locking.

For each pair of naturals m and n we define a generic operator

@ , . , ~ : o ~ (. ~ o ~) , 0 ~ ,

in which the width of o is m, and that of w is n. The semantics are apparent from
the type. Note that the in-width of the operator is n + 1.

Let Q be a function of type (o ~ o 0 ~ z, and let m and n as before denote the
widths of o and w. Then we can 'unlock' Q by writing

Q@m,n: o ~- ~-,oJ

The information in the subscripts m and n of @ is also contained in the type of its
left operand. If this information is known from the context, the subscripts may be
dropped. The notation Q @ implies then that Q has out-width 1, its out-type being
some function type. Note, however, that more information is needed here than just
the in- and out-width of Q, in particular the in-width of its out-type. By repeated
unlocking, this need to know the widths can go arbitrarily deep into the type.

The major relationship linking unlocking with locking is given by:

(L20) If P is dummy-free, and P ~ idn , then

(P • %) @ = p

We also have, so to speak, the converse of (L20), which allows us to express any
higher-order function explicitly as a lock:

(L21) If Q has a function type as out-type, and in-width n , then

Q -- (Q@ • ?n)

16. DISCUSSION

The objectives that had been set out at the start seem to have been achieved: the
system is indeed centred around composition, is not opposed to typing, and has a
relatively fair-handed treatment of, for example, both operand positions of an opera-
tor. The system comes with a rich (perhaps too rich) set of laws. If we use the
names for values of the value world to name the corresponding sources in the func-
tion world, we get 'apposition' and 'lifting' for free, without the earlier semantic
ambiguities.

A price is paid for all this-- i t is seldom that something really comes for flee. In

89

this case the price consists of conditions on most of the laws that are boring to ver-

The interest, if any, of this system is probably not in its theoretical properties. It
has been constructed with a practical purpose in mind. The final judgment, there-
fore, must be how well it stands up in actual use. In particular, the question is if the
additional convenience of the improved manipulability outweighs the inconvenience
of the application conditions. As of now, the system has not yet been put to
demanding tests. Some simple tests have been passed, but a lot more is needed
before it can go into beta-test. The version presented here is not the first version;
almost all notations, and several of the defimtions, have undergone minor or some-
times dramatic changes since the inception of this line of research, and some combi-
nators included at some time have been abandoned. In each case, the guiding prin-
ciple has been to increase manipulability.

Several shortcomings are known that have not been pointed out. Some cherished
notations of the formalism that served as the starting point, and also as a point of
reference, do not fit in well. Most notable are the reduce notation, ~ / , and the map
notation, f , . The problem is that the operators / and • are not composed with, but
applied to the (functional) operands. The notations introduced in this paper would
require writing these as (~) / and { f) , , which is unacceptable. It is possible to
introduce a special exemption here, which is kludgy, or to generalise this in some
way, which unfortunately takes away some of the present simplicity of the system.
Although in many cases less administrative overhead is needed than with any of
several alternatives tried, and most of the time not even the surrogate variables pro-
vided by the dummies of a lock are needed, there are some examples where dummy
variables do the job noticeably" better than the anonymous ?-dummies used here. (A
'proof by picture' assigns essentially a name to the anonymous data, if only in the
form of a pair of positions connected by a line on paper.)

Under the most liberal (semantic) definition of type-correctness, it is not decid-
able if an expression formed in this system can be typed. In each decidable typing
discipline, some semantically unproblematic expressions are untypable. Without
some restriction (as by a suitable typing), it is also undecidable if expressions are
equivalent, and so there cannot be some canonical normal form. This is just as in
the lambda calculus. It seems that next to locking and unlocking, also at least some
duplicating An-function, possibly disguised as (idllid), is a necessary ingredient for
the undecidability results.

ACKNOWLEDGEMENTS

The work reported here could not have been done without the inspiration provided
by the unrelenting criticism of Richard Bird, but also, and much more so, by the
elegant way in which he forged some of my earlier stumbling approaches into fine
tools. It should be clear, however, that he is entirely without blame concerning the
combinatorial tricks perpetrated here. Further inspiration came from many people,
including Jeroen Fokker, Maarten Fokkinga, Netty van Gasteren, Johan Jeuring,

90

Doaltse Swierstra, Nico Verwer, Jaap van der Woude, and Hans Zantema. The sup-
portive context provided by the STOP project, sponsored by the Dutch National
Facility for Informatics (NFI) and the Netherlands orgsnization for scientific
research (NWO), is gratefully acknowledged.

REFERENCES
1. R.S. BIRD. An introduction to the Theory of Lists. Logic of Programming and

Calculi of Discrete Design (M. Broy, ed.) 5-42. NATO ASI Series Vol. F36,
1987. Springer-Verlag.

2. R.S. BIRD. Lectures on Constructive Functional Programming. Lecture notes,
International Summer School on Constructive Methods in Computing Science,
Marktoberdorff, 1988.

3. E.W. DI/KSTRA, W.H.J. FEIJEN. A Method of Programming. Addison-Wesley,
1988.

4. L. ME~R~NS. Algorithmics mTowards programming as a mathematical activity.
Proc. CW1 Syrup. on Mathematics and Computer Science, CWI Monographs Vot.
I (J.W. de Bakker, M. Hazewinkel and J.K. Lenstra, eds.) 289-334, North-
Holland, 1986.

