
References

* Unix is a trademark of Ben Laboratories.

Description of B

Lambert Meertens
Steven Pemberton

Department of Computer Science
Centre for Mathematics and Computer Science

Postbus 4079
1009 AB Amsterdam

The Netherlands

B is a simple but powerful new programming language, designed for use in personal comput-
ing. (Note: the name "Et" is only a temporary working title, and the new language bears no rela-
tion to the predecessor of C.) The foremost aim in the design of B has been the ease of use for
programmers who want to produce working programs without having to master a complex tool.
An implementation of B is available from the B group at the CWI, currently only under UNIX*
or its look-alikes, but soon (scheduled early 1985) also for the IBM-PC under MS-DOS. Remarks
concerning the implementation appear in this description between double braces ({ and 1).

This description of B originated from a text, prepared by the first author, for use in teaching
B during the Fall term of 1982 at New York University. The aim is to provide a reference book
for the users of B that is more accessible than the somewhat formal "Draft Proposal" [31. While it
is not a text book, it should also be useful to people who already have ample programming experi-
ence and want to learn B. A text book for beginners is also available from the CWI [21. An infor-
mal description of B appeared in SIGPLAN Notices W.

In this description we have tried to remain close to the Draft Proposal in order to facilitate
cross-referencing. To this end, all section numbers from section 4 onwards are the same as in the
Draft Proposal. However there are some changes in terminology. Some minor differences are

Draft Proposal: T h i s description:
textual-display t e x t - d i s p l a y
textual-body t e x t - b o d y
UST-body o p t i o n a l - l i s t - b o d y
TABLE-body o p t io n al - t ab le- fi l ler- series

But the main difference is perhaps in the treatment of "collateral":
Draft Proposal: T h i s description: E x a m p l e s
collateral-expression e x p r e s s i o n a (a , b) a , b
TYPE-expression s i n g l e - exp ress i o n a (a , b)
TYPE-TYPES-expression multiple-expression a , b
Whereas these are purely descriptional differences, there are also a few differences in content.

Where the Draft Proposal has the keyword ALLOW, B now uses SHARE; a command
READ R A W has been added; and approximate-constants may no longer consist of just an
exponent-part: E-1 must now be written 1E-1

(1) An Overview of the B Programming Language, or B without Tears,
Leo Geurts, SIGPLAN Notices 17(12), December 1982, 49-58.

[21 Computer Programming for Beginners, Introducing the B Language, Part 1,
Leo Geurts, CWI, Amsterdam, 1984-

[31 Draft Proposal for the B Programming Language,
Lambert Meertens, CWI, Amsterdam, 1981.

CONTENTS

INDEX

DESCRIPTION OF B

1. VALUES IN B
2. SYNTAX DESCRIPTION METHOD
3. REPRESENTATIONS
4_ UNITS

4.1. HOW-TO-UNITS
4.2. YIELD-UNITS
4.3. TEST-UNITS
4.4. REFINEMENTS
4.5. COMMAND-SUITES

5. COMMANDS
5.1. SIMPLE-COMMANDS

5.1.1. CHECK-COMMANDS
5.12. WRITE-COMMANDS
5.1.3. READ-COMMANDS
5.1.4. PUT-COMMANDS
5.1.5. DRAW-COMMANDS
5.1.6. CHOOSE-COMMANDS
5.1.7. SET-RANDOM-COMMANDS
5.1.8. REMOVE-COMMANDS
5.1.9. INSERT-COMMANDS
5.1.10. DELETE-COMMANDS
5.2 .1 I_ QUIT-COMMAND
5.1.12. RETURN-COMMANDS
5.1.13. SUCCEED-COMMAND
5.1.14. FAIL-COMMAND
5.1.15. USER-DEFINED-COMMANDS
5.1.16. REFINED-COMMANDS

5.2. CONTROL-COMMANDS
521. IF-COMMANDS
5.2.2. SELECT-COMMANDS
5.2.3. WHILE-COMMANDS
5.2.4. FOR-COMMANDS

6. EXPRESSIONS, TARGETS AND TESTS
6.1. EXPRESSIONS

6.1.1. NUMERIC-CONSTANTS
6.1.2. TARGET-CONTENTS
6.1.3. TRIMMED-TEXTS
6.1.4. TABLE-SELECTIONS
6.1.5. DISPLAYS
6.1.6. FORMULAS

Formulas with user-defined functions
Formulas with predefined functions

6.1.7. REFINED-EXPRESSIONS
6.2. TARGETS

6.2.1. IDENTIFIERS
6.2.2. TRIMMED-TEXT-TARGETS
623. TABLE-SELECTION-TARGETS

6.3. TESTS
6.3.1. ORDER-TESTS
6.32. PROPOSITIONS

Propositions with user-defined predicates
Propositions with predefined predicates

6.3.3. REFINED-TESTS
6.3.4. CONJUNCTIONS
6.3.5. DISJUNCTIONS
6.3.6. NEGATIONS
6.3.7. QUANTIFICATIONS

Section 1 D E S C R I P T I O N OF B

L VALUES /N B

B has two basic types of values: numbers and texts, and three ways of making new types of values from
existing ones: compounds, lists and tables. The built-in functions for operating on these values are
described in section 6.1.6 entitled "Formulas with predefined functions".

Numbers N u m b e r s come in two kinds: exact and approximate. Exact numbers are rational
numbers. For example. 1 2 5 = 5 / 4 . and (1 / 3)*3 .= 1 . There is no restriction on
the size of numerator and denominator. Approximate numbers are implemented by
whatever the hardware has to offer for fast but approximate arithmetic (floating point).
The arithmetic operations and many other functions give an exact result when their
operands are exact, and an approximate result otherwise, but the function s i n , for ex-
ample, always returns an approximate number.
An exact number can be made approximate with the - function (e.g. -1 .25): the func-
tions round. r oor and cei. i n g can be used to convert an approximate number to
an exact one. •
Exact and approximate numbers may be mixed in arithmetic, as in 4 * a ta n

Texts Texts (strings) are composed of printable ASCII characters. They are variable length.
and are ordered in the usual lexicographic way: ' a ' < ' a a ' < / b T h e r e is no type
"character": a text of length one will do.
The printable characters are the 95 characters represented on the lines below, where the
blank space preceding' 1 • stands for the (otherwise invisible) space character:

! # # $ % 8 1
1
0 * 4 - , - . /
0 1 2 3 4 5 6
7 8 9 : ; < =
> ?

SABCDEFGHIJKLMNOPORSTUVWXYZ[\] -
_̒a bc de fghi jk lmnopqrs tuv wx y zfO-

Lists

The ordering on the characters is the ASCII collating order, which is the order in which
the characters are displayed above.

Compounds A compound consists of a sequence of other values, its "fields". F o r example, the
number 3 and the text x y z ' may be combined to give the compound 3 , ' xyz
Compounds are also ordered lexicographically.
For example, (3 , ' xyz) < (3 , ' y z) < (pi , ' a a a /) F o r this to be meaning-
ful, the compounds that are compared must be of the same type. This means that they
have the same number of fields, and that corresponding fields are of the same type.
The only way to obtain the individual fields of a compound is to put it in a multiple-
target with the right number of components, as in

PUT name I N Las tiname , fi r a V n a m e , middle 'na me .

A list is a sorted sequence of values, its "entries". A l l entries of a list must he of the
same type. and this determines the type of the list. The length of a list may vary without
influencing its type. When an entry is inserted in a list (with an INSERT command), it
is automatically inserted in the list in the proper position in the sorting order_ A list may
contain duplicates of the same entry. Entries may be removed with the REMOVE com-
mand. Again, lists themselves are ordered lexicographically.

Tables A table consists of a (sorted) sequence of "table entries". Each table entry is a pair of
two values: a key and an associate. Al l keys of a table must be of the same type: similar-
ly, all associates must also be of the same type (but that type may be different to that of
the keys). A table may not contain duplicate keys. I f k is a key of the table t , then
t tk 3 gives the associate corresponding to k . Ne w entries can be made, or existing en-
tries modified, by putting the associate value in the table after selecting with the key
value, as in PUT a I N t E n t r i e s can be deleted with the DELETE command, as in
DELETE t (k). The ordering is again lexicographic.

2. S Y NTAX DESCRIPTION METHOD

The syntax of B is given in the following form: each rule starts with the name of the thing being
defined forlowed by a colon: following this are one or more alternatives, each marked with a • in front.
Each alternative is composed of symbols that stand for themselves, or the names of other rules. These
other rules are then defined elsewhere in the grammar. or possibly in the same rule. As an example,
here is a simple grammar for a small part of English:

sentence:
• declarative
• declarative , connective sentence

declarative:
• collective-noun verb collective-noun
• collective-noun do not verb collective-noun

collective-noun:
• c a ts
• dogs
• peopLe
• the poLice

verb:
• Love
• ha te
• e a t
• hassLe

connective:
• and
• but
• a t though
• because
• y e t

This produces sentences like:

DESCRIPTION OF B S e c t i o n

dogs do n o t Love th e poLic e
the poLic e hassLe dogs
cats do n o t ha te c a ts , b u t c a ts ha te dogs , because dogs ha te c a ts
peopLe e a t dogs , y e t dogs Love pe opte

You will notice that the names of rules are in a different typeface to words that stand for themselves.
In the grammar of B that follows, furthermore, rule names are all in lower-case letters, while words
that stand for themselves are all in upper-case letters, so they are easily distinguished.

Section 2 DESCRIPTION OF B

It often happens that a part of an alternative is optional. There is a special rule for this:

em pty :•

optional-ANYTHING:
• empty
• ANYTHING

The "optional" rule is included to save many rules in the definition. For example. it stands for a rule

optional-comment:
• empty
• comment

and similar rules. (Empty produces an empty result.)

3. REPRESENTATIONS

new-line:
• optional-comment new-line-proper indent

A .8. program consists of indented lines. A new-line-proper marks a transition to a new line. An
indent stands for the left margin blank offset. Initially, the left margin has zero width. The in-
dentation is increased by an increase-indentation and decreased again by a decrease-indentation.
These always come in pairs and serve for grouping, just as BEGIN-END pairs do in other pro-
gramming languages. A n increase-indentation is always preceded by a line ending with a colon
(possibly followed by comment).

comment:
• optional-new-line-proper optional-spaces \ comment-body optional-further-comment

further-comment:
• new-line-proper optional-spaces \ comment-body optional-further-comment

spaces:
• space optional-spaces

•

Comments may be placed at the end of a line or may stand alone on a line. N o comment may
precede the first line of a unit (see section 4).
A comment-body may be any sequence of printable characters.

Example comment:
\modifie d 6 / 4 / 6 4 t o r e j e c t passwords o f Le ngth < 6

Keywords are composed of CAPITAL letters (A to Z), digits, and quotes (/ and ') . A keyword must
start with a letter. For example, A 3
1
1 3 # i s a
k e y w o r d .
Tags are composed of lower-case letters (a to z), digits. and quotes (/ and ")_ A tag must start with
a letter. For example, a 3
1
1 3
1
/ i s a
t a g .

Some other signs are composite: , * * , * / , / * , < < , >< . » , <= . <> and >= . Spaces are
freely allowed between symbols, but not within keywords. tags, numeric-constants and composite signs.
Sometimes spaces are required to separate keywords and tags from following symbols. For example,
cos y is not the same as cosy: the latter is taken to be one tag.

4. UNITS

unit:
• how-to-unit
• yield-unit
• test-unit

Units are the building blocks of a B "program". Users can define new commands, functions and
predicates by writing a unit. These units reside in a work-space.

• refinement-suite:
• new-line refinement optional-refinement-suite

When writing a unit, the specification of some parts (commands, expressions and tests) may be
deferred by using a "refinement". These refinements are then specified at the end of the unit.

4.1. HOW-TO-UNITS

how-to-unit:
• HOW TO formal-user-defined-command :

command-suite
optional-refinement-suite

formal-user-defined-command:
• keyword optional-formal-tail I

The first keyword of a formal-user-defined-command must be unique. i.e., different from the first
keywords of all predefined and other user-defined commands. So it is impossible to redefine the
built-in commands of B. I t may also not be HOW TO, YIELD, TEST. SHARE or ELSE. Oth-
erwise, it may be chosen freely. There are no restrictions on the second and further keywords.

formal-tail:
• formal-parameter optional-formal-trailer
• formal-trailer

formal-trailer:
• keyword optional-formal-tail

formal-parameter:
• tag 1

Note that, although actual-parameters (section 5.1.16) and formal-operands (section 4.2) may be
composite, formal-parameters must be simple tags.

Example how-to-unit:

DESCRIPTION OF B S e c t i o n 4

HOW'TO PUSH vaLue ON s ta c k :
PUT vaLue I N stackUtstack4-11

A how-to-unit defines the meaning of a new command (see "user-defined-commands", section 5.1.16).
The above unit defines a PUSH ... ON ... command. Once the command has been defined, it may be
used in the same way as the built-in commands. Other user-defined commands may be used in the
body of a unit even if they have not yet been defined, though they must be defined by the time the unit
is invoked.

See also: quit-command (5.1.11), share-heading (4.5), user-defined-commands (5.1.16).

Section 4.2

4.2. Y lE LD-UNITS

yield-unit:
• YIELD formal-formula :

command-suite
optional-refinement-suite

formal-formula:
• formal-zeroadic-formula
• formal-monadic-formula
• formal-dyadic-formula

formal-zeroadic-formula:
• zeroadic-function

formal-monadic-formula:
• monadic-function formal-operand

formal-dyadic-formula:
• formal-operand dyadic-function formal-operand

Functions must not be "overloaded" (multiply defined), and a user-defined function must be
represented by a tag. However, a given tag may be used, at the same time, for a dyadic-function
and either a zeroadic- or a monadic-function or -predicate. (I n other words, you may not have a
function that is both monadic and zeroadic, for otherwise it would be impossible to decide what
was meant in cases such as f + 1 . where f could be either zeroadic or monadic, and the res-
trictions also apply to combinations of functions and predicates.)

formal-operand:
• single-identifier

Example yield-unit:
YIELD (a b) o v e r (c , d) :

PUT c*c-I-d*d I N r r
RETURN (a * c + b * d) / r r , (-a *c1 -1 -b*c)/rr

See also: return-commands (5.112), share-headings (4.5), formulas with user-defined functions (6.1.6).

DESCRIPTION OF B

A yield-unit defines the meaning of a new function (see "Formulas with user-defined functions", section
6.1.6). The example given above defines complex division. (Complex numbers arc not a built-in type
of B.)
Functions may be zeroadic (no operands), monadic (one trailing operand) or dyadic (two operands. one
at the left and one at the right).

43. TEST-UNITS

test-unit:
• TEST formal-proposition :

command-suite
optional-refinement-suite

formal-proposition:
• formal-zeroadic-proposition
• formal-monadic-proposition
• formal-dyadic-proposition

formal-zeroadic-proposition:
• zeroadic-predicate

formal-monadic-proposition:
• monadic-predicate formal-operand

formal-dyadic-proposition:
• formal-operand dyadic-predicate formal-operand

Like functions, predicates must not be "overloaded", though a given tag may be used, at the
same time, for a dyadic-predicate and either a zeroadic- or a monadic-function or -predicate.

Example test-unit:

A test-unit defines the meaning of a new predicate (see "Propositions with user-defined predicates", sec-
tion 6.3.2). Like functions, predicates may be zeroadic, monadic or dyadic.
Tests do not return a value, but succeed or fail via the REPORT, SUCCEED and FAIL commands,

See also: report-commands (5.1.13), succeed-command (5.1.14), fail-command (5.1.15), share-headings
(4.5), propositions with user-defined predicates (6.3.2).

4.4. REFINEMENTS

DESCRIPTION OF 3 S e c t i o n 4.3

TEST a s ubs e t b :
REPORT EACH x I N a HAS x i n b

refinement:
• command-refinement
• expression-refinement
• test-refinement

command-refinement:
• keyword : command-suite

The keyword o f a command-refinement must be different from the first keywords of all
predefined commands, and it may also not be HOW' TO, YIELD, TEST, SHARE or ELSE. I t
may, however, be the same as the first keyword of a user-defined-command.

Example command-refinement:
SELECT 'TASK:

PUT min ta s k s I N ta s k
REMOVE ta s k FROM ta s k s

expression-refinement:
• tag : command-suite

Example expression-refinement:
s ta c k ' pointe r

IF s ta c k = R E T U R N 0
RETURN max keys s ta c k

Section 4.4

Example test-refinement:

4.5. COMMAND-SUITES

DESCRIPTION OF B

test-refinement:
• tag : command-suite

s pe c ia t'oa s e :
REPORT pos i tior i+d L i n e / L e n g t h

Refinements support the method of "top-down" programming, also known as programming by "step-
wise refinement". The body of a unit may be written using refined-commands, -expressions and -tests
that reflect the appropriate, coarse-grained, level of abstraction for expressing the algorithmic intention.
In subsequent refinements, these may be refined to the necessary detail, possibly in several steps. As
with units, there are three kinds of refinements. The differences with units are:

— refinements are bound to a unit and may not be invoked from other units;
— all tags known inside the unit are also known inside the refinement;
— no parameters or operands can be passed when the refinement is invoked.

((Currently, refinements may only occur within unit bodies, and not in "immediate commands".))

See also: refined-commands (5.1.17), refined-expressions (6.1.7), refined-tests (6.3.3).

command-suite:
• simple-command
• increase-indentation optional-share-heading optional-command-sequence decrease-indentation

A command-suite may only follow the preceding colon on the same line i f i t is a simple-
command. Otherwise, it starts on a new line, with all lines of the command-suite indented.

Example command-suite
SHARE na me /Lis t, a bbr e v i a ti on 'ta bLe
IF name i n keys a bbr e v i a ti on 'ta bLe :

PUT a bbre v i a ti on'ta bte [na me] I N name
IF name n o t ' in na me /Lis t:

INSERT name I N na me /Lis t

share-heading:
• new-line SHARE identifier optional-share-heading

Tags used as targets (variables) in a unit (except those that are formal-parameters) are by default
local to the unit. I f a target should be shared between several units, this can be indicated by
listing the tag in a share-heading at the start of the unit body. I t stands then for a global target
of the work-space. The global targets together with their contents are also called the -
p e r -manent environment", because they survive on logging Out.
A share-heading may only occur in the command-suite of a unit (and not of a refinement or
compound-command).

Example share-heading
SHARE na me /Lis t, a bbre v i a ti oni ta bLe

[
c
o
m
m
a
n
d
-
s
e
q
u
e
n
c
e
:

• new-line command optional-command-sequence

The execution of the command-suite of a yield-unit or expression-refinement must end in a
return-command, and return-commands may only occur within such command-suites.

The execution o f the command-suite o f a test-unit o r test-refinement must end in a report-,
succeed- or fail-command, and these may only occur within such command-suites.

Example command-sequence
I F name i n keys a bbr e v i a ti oni ta bLe :

PUT a bbre v ia tion'ta bLe (na me] I N name
IF name n o t / i n na me /Lis t:

INSERT name I N na me 'Lis t

S. CO MMA NDS

Commands may be given as "immediate commands", directly from the terminal, or may be part of a
unit. I f commands are given as immediate commands, they are obeyed directly. A n y targets in the
command are then interpreted as global targets from the permanent environment. With in a unit, tar-
gets are local, unless they have been listed in a share-heading (see above).
I f the user presses the interrupt key while a command is executing, execution is aborted, and the user is
prompted for another immediate command.

command:
• simple-command
• control-command

5.1. S IMPLE-COMMANDS

simple-command:
• check-command
• write-command
• read-command
• put-command
• draw-command
•to choose-command
• set-random-command
• remove-command
• insert-command
• delete-command
• terminating-command
• user-defined-command
• refined-command

terminating-command:
• quit-command
• return-command
• report-command
• succeed-command
• fail-command

5.1.1. CKECK-COMMANDS

check-command:
• CHECK test

DESCRIPTION OF B S e c t i o n 4.5

Section 5.1.1 D E S C R I P T I O N OF B

Example check-command:
CHECK i > . 0 AND j > . 0 AND < = n

When a check-command is executed, its test is tested. I f the test fails, an error is reported and execu-
tion halts. Otherwise, no message is given and execution continues. Check-commands may be used.
for example. to check the requirements of parameters or operands on entry to a unit. The liberal use
of check-commands helps to get programs correct quickly.

5.1.2. WRITE -COMMANDS

write-command:
• WRITE new-liners
• WRITE optional-new-liners expression optional-new-liners

new-liners:
• / optional-new-liners

Examples of write-commands:
WRITE / /
WRITE / / 'G i v e a v a l ue i n th e ra nge 1 th r o u g h \ n ʻ :

The expression is converted to a text and written to the screen. Each / gives a transition to a new
line. Note that you write no comma before or after the Is .
With the exception of adjacent texts, values that are adjacent are written separated by a space. Com-
pounds within other values (within lists, tables or other compounds) are written with commas between
their fields, and where necessary, the whole surrounded by brackets. Similarly, inner texts are written
enclosed by quotes. Compounds and texts not within other values are output without commas, brack-
ets and quotes. Thus,

gives

WRITE 0 , I , 1
, ' , 2 ,
' ! ' ,
' ! '
,
3

WRITE (I ; 2) , W a ' , / 1) ') : (' b
1
, / e) ; (' 1 : 0 ' .
/
a 1
1
) : (' a ' ,
1 : 0 '))
/

0 I , 2 ! I 3 (1 ; 2) ([' e , (" b " , ' a ') ; (" b " , ' a ") ; (' a ' , " b "))

For formatting purposes, see the operators >>, <<. and ›< in section 6.1.6, "Functions on Texts", and
the conversions in text-displays in section 6.1.5, -
D i s p l a y s " .
5.13. READ-COMMANDS

1 read-command:
• READ target EG expression
• READ target RAW

Examples of read-commands:
READ n , s EG 0 ,
READ L i ne RAW

The execution of a read-command prompts the user to supply one input line.
If an EC part is present, the input is interpreted as an expression of the same type as the expression fol-
lowing EG. (Usually, the example expression will consist of constants, but other expressions are also
allowed.) The input expression is evaluated in the permanent environment (so local tags of units can-
not be used) and put in the target. T o input a text-display (literal), text quotes are required.

If RAW is specified, the target must be a text target. Th e input line is put in the target literally. N o
text quotes are needed.
If the user presses the interrupt key instead o f supplying a value, the read-command, and in fact the
whole program, is aborted. Th is is useful for entering a sequence of data of unspecified length.

5./.4. P UT-CO MMA NDS

put-command:
• PUT expression I N target

Example put-command:

The value of the expression is put in the target. Th is means that the value will be held in a location for
the target, until a different value is put in the target, or the target is deleted. I f no such location exists
already, it is created on the spot. Here, as in other cases, the types must agree. ((Th is is currently not
checked in general.)) See also the sections on various kinds of targets below (section 6.2).

51.5. DRA W-CO MMA NDS

draw-command:
O DRAW target

Example draw-command:
DRAW r

A random approximate number (from —0 up to, but not including, - I) is drawn and put in the target.

5.1.6. CHOOSE-COMMANDS

choose-command:
• CHOOSE target FROM expression

Example choose-command:
CHOOSE e x i t FROM e x i t s [c u r re n t ' r o o rn]

The expression must have a text, list o r table as value. Th is value must not be empty. A n item is
drawn at random from the value (characters from a text, entries from a list and associates from a table)
and put in the target. The item is not removed from the value.

5.1.7. SET-RANDOM-COMMANDS

PUT a +1 , ((I , (1 . . a }) I N a , b

set-random-command:
• SET "RANDOM expression

Example set-random-command:
SET'RANDOM ' Mo n t e C a r l o ' , r u n

DESCRIPTION OF B S e c t i o n 5.1.3

The (pseudo-)random sequence used for draw- and choose-commands is reset to a point, depending on
the value of the expression.

Section 5.1.8

SAX REMOVE-COMMANDS

remove-command:
• REMOVE expression FROM target

Example remove-command:
REMOVE task FROM tasks

The target must hold a list, and the value of the expression must be an entry of that list. The entry is
removed. I f it was present more than once, only one instance is removed.

5.1.9. INSERT-COMMANDS

DESCRIPTION OF It

insert-command:
• INSERT expression IN target

Example insert-command:
INSERT new'task IN tasks

The target must hold a list. The value of the expression is inserted as a list entry. I f that entry was al-
ready present, one more instance will he present.

5.110. DELETE-COMMANDS

delete-command:
• DELETE target

Example delete-command:
DELETE t I i l , u [i , j]

The location for the target ceases to exist. I f a multiple-target is given, all its single-targets are deleted.
If a table-selection-target is given, the table must contain the key that is used as selector. The table en-
try with that key is then deleted from the table. I t is an error to delete a trimmed-text-target (e.g..
tea).

5-1-11. QUIT-COMMAND

quit-command:
• QUIT 1

A quit-command may only occur in the command-suite of a how-to-unit or command-
refinement, or as an immediate command.

Example quit-command:
QUIT

The execution of a quit-command causes the termination of the execution of the how-to-unit or
command-refinement in whose command-suite it occurs. I f it occurs in a command-refinement, the exe-
cution of the invoking refined-command is thereby terminated and the further execution continues as if
the refined-command had terminated normally. Otherwise, the execution of the invoking user-defined-
command is terminated and the further execution continues similarly.
Given as an immediate command, QUIT terminates the current session. All units and targets in the
permanent environment survive and can be used again at the next session.

5.132. RETURN-COMMANDS

return-command:
• RETURN expression

Example return-command:
RETURN (a * 0 4 -b* d) / r r , (-a * c i -4 1 * c)/ r r

The execution o f a return-command causes the termination o f the execution o f the yield-unit o r
expression-refinement in whose command-suite it occurs. The value of the expression is returned as the
value of the invoking user-defined function o r refined-expression. Return-commands may only occur
within the command-suite of a yield-unit or expression-refinement.

5.1_13. REPORT-COMMANDS

report-command:
• REPORT test

Example report-command:
REPORT i i n keys t

The execution of a report-command causes the termination o f the execution o f the test-unit o r test-
refinement in whose command-suite i t occurs. T h e invoking user-defined predicate o r refined-test
succeeds/fails if the test of the report-command succeeds/fails. I f the invoker is a test-refinement, any
bound tags set by a for-command (see section 52.4) or a quantification (section 6.3.7) will temporarily
survive, as described under REFINED-TESTS (section 6.3.3).
Report-commands may only occur within the command-suite of a test-unit or test-refinement.
The command "REPORT test" is equivalent to

SELECT:
test: SUCCEED
ELSE: FAI L

5.1.14. SUCCEED-COMMAND

succeed-command:
• SUCCEED

Example succeed-command:
SUCCEED

The execution of a succeed-command causes the termination of
refinement in whose command-suite i t occurs. T h e invoking
succeeds. A s with report-commands, bound tags temporarily surv
Succeed-commands may only occur within the command-suite of
The command SUCCEED is equivalent to REPORT 0 = O.

5.1.15. FAIL-COMMAND
fail-command:
• FAIL

DESCRIPTION OF B S e c t i o n 5.1_12

the execution of the test-unit or test-
user-defined predicate o r refined-test
ive.
a test-unit or test-refinement.

Section 5_1./5 D E S C R I P T I O N OF B

Example fail-command:
FAIL

The execution of a fail-command causes the termination of the execution of the test-unit or test-
refinement in whose command-suite it occurs. The invoking user-defined predicate or refined-test fails.
As with report-commands, bound tags temporarily survive.
Fail-commands may only occur within the command-suite of a test-unit or test-refinement.
The command FAIL is equivalent to REPORT 0 = 1

5.1.16. USER-DEFINED-COMMANDS

user-defined-command:
• keyword optional-actual-parameter optional-trailer

trailer:
• keyword optional-actual-parameter optional-trailer

actual-parameter:
• identifier
• target
• expression

The keywords and actual-parameters must correspond one to one to those of the formal-user-
defined-command of one unique how-to-unit.

Examples of user-defined-commands:
CLEAN UP
DRINK me
TURN a UPSIDE DOWN
PUSH v ON ope ra nd's ta c k

A user-defined-command is executed in the following steps:
1. Any local tags in the how-to-unit that might clash with tags currently in use are systematically re-

placed by other tags that do not cause conflict.
2. Each actual-parameter is placed between parentheses (and) and then substituted throughout the

unit for the corresponding formal-parameter..
3. The command-suite of the unit, thus modified, is executed.
The execution of the user-defined-command is complete when the execution of this command-suite ter-
minates (normally, or because of the execution of a quit-command). Afte r the execution is complete.
the local tags of the unit are no longer accessible.

5.1.17. REFINED-COMMANDS

refined-command:
• keyword

The keyword of a refined-command must occur as the keyword of one command-refinement in
the unit in which i t occurs. Tha t command-refinement specifies the meaning of the refined-
command.

Example refined-command:
REMOVE ' MILT I PLES

A refined-command is executed by executing the command-suite of the corresponding command-
refinement. The execution of the refined-command is complete when the execution of this command-
suite terminates (normally, or because of the execution of a quit-command).

52. CONTROL-COMMANDS

control-command:
• if-command
• select-command
• while-command
• for-command

1
52.1. IF-COMMANDS

if-command:
• IF test : command-suite

Example if-command:

The test is tested. I f it succeeds, the command-suite is executed: if it fails, the command-suite is not
executed.
(If something should be executed on failure too, or there are more alternatives, you should use a
select-command instead.)
The command " XF test : command-suite is equivalent to:

SELECT:
test : command-suite
ELSE: \ do nothing.

52.2. SELECT-COMMANDS

IF I < 0: PUT - i , - j I N i
, j

select-cormnand:
• SELECT: alternative-suite

alternative-suite:
• increase-indentation new-line alternative-sequence decrease-indentation

alternative-sequence:
• single-alternative
• else-alternative
• single-alternative new-line alternative-sequence

single-alternative:
• test : command-suite

else-alternative:
• ELSE: command-suite 1

DESCRIPTION OF B S e c t i o n 5.1.17

Section 5.2.2 D E S C R I P T I O N OF B

Examples of select-commands:
SELECT: S E L E C T :

a < 0 : RETURN - a a < 0 : RETURN - a
a 0 : RETURN a E L S E : RETURN a

The tests of the alternatives are tested one by one, starting with the first and proceeding downwards,
until one is found that succeeds. The corresponding command-suite is then executed. ELSE may be
used in the final alternative as a test that always succeeds. I f all the tests fail, an error is reported.

52-3. WHILE-COMMANDS

while-command:
• WHILE test : command-suite 1

Example while-command:
WHILE x > 1: PUT x /10 , c4-1 I N x , c

If the test succeeds, the command-suite is executed, and the while-command is repeated, and so on, un-
til the test fails, or until an escape is forced by a terminating command. I f the test fails the very first
time, the command-suite is not executed at ail.

52.4. FOR-COMMANDS

for-command:
• FOR in-ranger : command-suite

in-ranger:
• identifier I N expression

Example for-command:

is equivalent to

FOR i , j I N keys t : PUT t fi , j] I N t ' [j , i]

The value of the expression must be a text, list or table. One by one, each item of that value (charac-
ters for a text, list entries for a list and associates for a table) is put in the identifier, and the
command-suite executed. For example,

FOR c IN 'ABC': WRITE ' L et t er i s ' , c /

WRITE ' L e t t er i s ' , ' A ' /
WRITE ' L e t t e r i s ' , ' B ' /
WRITE ' L e t t er i s ' , ' C ' /

If t is a table, then FOR a I N t : TREAT a " treats the associates of t in the same way as

FOR k IN keys t :
PUT t i k] I N a
TREAT a

The tags of the identifier of a for-command may not be used as targets or target-contents outside such
a for-command. They are "bound tags", and lose their meaning outside the for-command. There is
one exception to this rule: i f a for-command is used in a lest-refinement, and within the for-command a
report-, succeed- or fail-command is executed, the currently bound tags will temporarily survive as

described under REFINED-TESTS (section 6.3.3).

See also: quantifications (63,7).

6. EXPRESSIONS, TARGETS AND TESTS

6.1. EXPRESSIONS

In B, the evaluation of an expression cannot alter the values of targets that currently exist, nor can it
create new targets that survive the expression. I f an expression appears to alter a target. it effectively
modifies a local "scratch-pad" copy of that target, and the change is invisible outside the expression.

expression:
• single-expression
• multiple-expression

single-expression:
• basic-expression
• (expression)

basic-expression:
• simple-expression
• formula

simple-expression:
• constant
• target-content
• trimmed-text
• table-selection
• display
• refined-expression

tight-expression:
• simple-expression
• zeroadic-formula
• (expression)

right-expression:
• tight-expression
• monadic-formula

Examples of basic-: simp le -: tight-: righ t-expressions:
a a a a
—a — a
a+b

(a+b) (a + b)

DESCRIPTION OF B S e c t i o n 5_2.4

The various kinds of expressions that are distinguished here serve to define the syntax in such a way
that no parentheses are needed where the meaning is sufficiently clear.

multiple-expression:
• single-expression, single-expression
• single-expression, multiple-expression

Section CI D E S C R I P T I O N OF B

Examples of multiple-expressions:
1, i a b e
(1 , 0) , (0 , 1) , (- 1 , 0) , (0 , - i

The value of a multiple-expression composed of single-expressions separated by commas is the com-
pound whose fields are the values of the successive single-expressions.

6.1.1. NUMERIC-CONSTANTS

numeric-constant:
• exact-constant
• approximate-constant

exact-constant:
• integral-part optional-fractional-part
• integral-part
• fractional-part

integral-part:
• digit
• integral-part digit

digit:
• 0
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9

fractional-part:
• d i g i t
• fractional-part digit

approximate-constant:
• exact-constant exponent-pan

exponent-part:
• E optional-plusminus integral-part

plustninus:
• +
• -

Examples of exact-constants: approximate-constants:
666 2 . 9 9 7 9 3 E 8
666. 2 . 9 9 7 9 3 E + 8
3.14 1 E - 9

The value of an exact-constant is an exact number. For example, 1 . 2 5 stands for the exact number
5 /4 . The value of an approximate-constant is an approximate number. The exponent-part gives the
power of ten in floating-point notation. For example, 1 .2345E2 and —123.45 are (approximately)
the same, because 123 .45 = 1 .2 3 4 5 -0 0 **2 .

6.11 TARGET-CONTENTS

target-content:
• tag

The value of a target-content is the value last put in the target whose name is the given tag.

6.13. TRIMME D-TE X TS

trimmed-text:
• tight-expression @ right-expression
• tight-expression I tight-expression

Examples of trimmed-texts:
t@p
t 11
tlei@p

The value of the tight-expression must be a text T, and that of the right-expression must be an integer
N.
If the sign between the expressions is @, then the value of the trimmed-text is that of I after removing
the first N— I characters. For example. ' Lamp I ight'@4 i p L i g h t ' . N must be at least I and at
most one more than the length of T.
If the sign between the expressions is I then the value of the trimmed-text is the text consisting of the
first N characters of T. For example, ' s c a r f ace/15 = ' s c a r f N must be at least 0 and at most
equal to the length of T.
Note that the tight-expression itself may be a trimmed-text again. For example, 'de pa r tm e nt' I 6@3
= 'de pa r t 'E a ' p a r t ' .

6.1.4. TABLE-SELECTIONS

I table-selection:
• tight-expression (expression

Example table-selection:
t (i , j]

DESCRIPTION OF B S e c t i o n 6.1.1

The value of the tight-expression must be a table T. and the value of the expression between the square
brackets must be a key K of T. The value of the table-selection is then the associate of the table entry
in T whose key is K.

Section 6:1.5

6.13. DISPLAYS

' display:
• text-display
• list-display
• table-display

text-display:
• / optional-text-body
• " optional-text-body 1/

The text-displays / / and A'# stand for the empty text. A text-body may be any sequence of
printable characters (see section I under 'Texts') and conversions (see below). However, in a
text-display in the ' ... ' style, any single quote ' in the text must be written twice to give " .
Otherwise, i t will signal the end of the text-display. Similarly, in a text-display in the " ... "
style, any double quote 1
/ i n t h e
t e x t
m u s t
b e
w r i t t
e n
t w i
c e
t
o
g i
v e
'
1
.
F i n
a l l
y ,
t
h
e
b a c
k -
q u o
t e

,.. must be written twice too, giving % % . Otherwise, it signals a conversion.

conversion:
• % expression

The requirement that some signs be written twice does not hold inside a conversion. For exam-
ple, 1 ' t V a / 3 " is proper, whereas 1
% t (" a " r /
i s n o t .Examples of text-displays:

'He s a i d: ° C i o n " t ! ' "
°He s a i d: " D o n ' t ! " '
' a t t i t u d e i s ʻa/1E3% k m'

DESCRIPTION OF B

The value of a text-display is the text composed of the characters given between the enclosing text
quotes. I f the text-display contains conversions, the expressions of these conversions are evaluated first
and converted to a text in the same way as for a write-command. For example. since

WRITE 239e4649

causes the text 1111111 to be written, the text-display

'239 ti me s 4649 giv e s %2 3 9 *4 6 4 9 '
1

is equivalent to

'239 time s 4649 giv e s 1111111
1

The quotes and conversion-signs that had to be written twice according to the above rules correspond
to one character of the resulting text. For example. the number of characters in " x " y " z ' is 6, be-
cause it consists of one x , one ' character, one y , two "
c h a r a c t e r s , a n d
fi n a l l y o n e
z .
A n o t h e r
w a y

to specify the same text is Ine y " z " .

fist-display:
• { optional-list-body }

list-body:
• list-filler-series
• single-expression single-expression

The ambiguity in, e.g., (1 . . . 9) , is resolved by parsing it as Cl 9) .

list-filler-series:
• list-filler
• list-filler ; list-filler-series

list-filler:
• single-expression

Examples of list-displays:

(x l ; x 2 ; x S)
(1..n-11

The value of (} is an empty list. (lit may also be an empty table: see below.)
The value of a list-display containing list-tillers is the list whose entries are the values of those list-
fillers. I f values occur multiply, they give rise to multiple entries in the list.
For a list-display of the form I p . . q) , p and q must both be integers, or both be characters (texts of
length one). The resulting value is then the list of all integers or characters x such that p < x < q.
For example, (1 . . 4) = (1 ; 2 ; 3 ; 41 and (
1
a / . .
1
0
1
1 = (
1
a
1
; 1
b
1
; 1
c
1
) .

If p > q. the list is empty, but this is only allowed if p and q are adjacent. I f there is an intervening
integer or character x (such that p > x > q), an error is reported.

table-display:
• I optional-table-filler-series I

table-filler-series:
• table-filler
• table-tiller; table-filler-series

table-filler:
• I expression] : single-expression

Examples of table-displays:

f (i , j) : 0)
([0]: () ; [l] : (0))
((name]: (month, day, year))

DESCRIPTION OF B S e c t i o n 6.1.5

The table-display 0 stands for an empty table. Otherwise, each table-filler gives a table entry with
key K and associate A, where K is the value of the expression between square brackets, and A is the
value of the single-expression following the colon. The result is then the table containing these table
entries.
If there are different table entries with the same key, an error is reported. Multiple occurrences of the
same table entry, however, are allowed. The extra occurrences are then simply discarded.

Section 6_ I .6

6.1.6. FO RMULAS

I
z
e
r
o
a
d
i
c
-
f
o
r
m
u
l
a
:

• zeroadic-function

monadic-formula:
• monadic-function actual-operand

I
d
y
a
d
i
c
-
f
o
r
m
u
l
a
:

• actual-operand dyadic-function actual-operand

The parsing ambiguities introduced by these rules are resolved by priority rules, as follows:
I. I f there is no parsing ambiguity (as in 1 + s i n x). no parentheses are needed.
1 If the order makes no difference (as in a *b*c . a e bic or a'sb'sc), no parentheses are need-

ed.
3_ The five arithmetic functions * * . * . i . + and - have their traditional priority rules:

* * comes before * . I . + and -
* and / come before + and -
combinations of + and - are computed from left to right.

Note, however, that a * * b* * c , a /bite and a / b / c are wrong.
4. The function # has a high priority, higher than the five arithmetic functions, and the function

- has a higher priority than all other functions.
5. All other functions, in particular " . . <<. ><. >> and all tags (like s i n or fl o o r) have

no established priority and may be used
— having formulas as operands only if these operands are parenthesized (except as in,

e.g., exp -x , because of point I above, or as in -1 » 2 0 because of point 4):
— in operands of other formulas only i f these operands are parenthesized (except as

above).

None of a / b / c , a / b * c and s i n x +y is a correct formula. Each of these can be made
correct by inserting parentheses, depending on the intention: either (a / b) / c or a / (1 3 /c), ei-
ther (a / b) * c or a / (b * c) . and either (s i n x) + y or s i n (x + y). Note that because of
point 5 above s i n (x)+1 is just as wrong as s i n x + I i n spite of what other programming
languages might lead you to expect.
The function St has been given a high priority since expressions like Itt+1 are so common, that
it would be a nuisance to have to parenthesize these, and more so since # (t+1) is meaningless
anyway. The reason for the high priority of the function - is to make -0 , for example. for all
practical purposes behave as a constant.

zeroadic-function:
• tag

1
monadic-function:
• -
• +
• -
• * /
• / *
• #
• tag

dyadic-function:
• +
• -
• *

DESCRIPTION OF B

actual-operand:
• single-expression

Examples of zeroadic-formula: monadic-formula: dyadic-formula:
pi

Formulas with user-defined functions

DESCRIPTION OF B S e c t i o n 6.1.6

a t a n (y / x) x a t a n y

A formula whose function is defined by a yield-unit, is evaluated in the following steps:
1. A copy is made of the current environment (the value of all targets), and all computations during the

evaluation of the formula will take place in this "scratch-pad copy".
2. Any local tags in the yield-unit that might clash with tags currently in use are systematically replaced

by other tags that do not cause conflict.
3. Each actual-operand is evaluated and put in the corresponding formal-operand, used as a (new) tar-

get.
4. The command-suite of the unit, thus modified, is executed.
The evaluation of the formula is complete when the execution of this command-suite terminates be-
cause of the execution of a return-command; the value of the formula is the value returned.

Formulas with predefined functions

A. Functions on numbers

-x r e t u r n s an approximate number, as close as possible in arithmetic magnitude to x .

x+y r e t u r n s the sum of x and y . The result is exact if both operands are exact.

+x r e t u r n s the value of x_

x -
y
r
e
t
u
r
n
s
t
h
e
d
i
f
f
e
r
e
n
c
e
o
f
x
a
n
d
y
.
T
h
e
r
e
s
u
l
t
i
s
e
x
a
c
t
i
f
b
o
t
h
o
p
e
r
a
n
d
s
a
r
e
e
x
a
c
t
.

-x r e t u r n s minus the value of x . The result is exact if the operand is exact.

x*y r e t u r n s the product of x and y . The result is exact if both operands are exact.

x /y r e t u r n s the quotient of x and y . The value of y must not be zero. The result is exact
if both operands are exact.

x * *y r e t u r n s x to the power y . The result is exact if x is exact and y is an integer. I f x
is negative, y must be an integer or an exact number with an odd denominator. I f x
is zero, y must not be negative. I f y is zero, the result is one (exact or approximate).

Section 6.1.6 D E S C R I P T I O N OF B

n r oo t x r e t u r n s the same as x * * (1 /n)

root x r e t u r n s the same as 2 r oot x , the square root of x.

abs x r e t u r n s the absolute value of x . The result is exact if the operand is exact.

s ign x r e t u r n s - I i f x is negative, 0 if x is zero, and I otherwise.

fl o o r x r e t u r n s the largest integer not exceeding x in arithmetic magnitude_

cei L ing x re turns the same as - L o o r - x .

n round x re turns the same as (1 0 * * - n) l i f Loop (x*10**n+ .5) F o r example. 4 round p i
3.1416. The value of n must be an integer. I t may be negative: (-2) r ound

666 7 0 0 .

round x r e t u r n s the same as 0 round x ,

a mod n r e t u r n s the same as a - n * f Loor (a /n), that is, the remainder after dividing a by n
(Both operands may be approximate, and n may be negative, but not zero.)

/ * x r e t u r n s the "denominator" of x , that is, regarding x as the fraction p/ q. the smallest
positive integer q such that q * x is an integer. The value of x must be an exact
number.

* / x r e t u r n s the corresponding "numerator" with the same sign as x . the same integer as
(/ * x)* x . So, if x is exact, x = (* / x) / (/ *x)

p i r e t u r n s approximately 3.1415926535...

s in x r e t u r n s an approximate number by applying the sine function to x , with x in radians.

cos x r e t u r n s an approximate number by applying the cosine function to x , with x in radi-
ans.

ta n x r e t u r n s the same as (s i n x) / (c os x)

x a ta n y r e t u r n s an approximate number p h i , in the range from (about) - p i to s u c h
that x is approximated by r * c os p h i and y by r * s i n p h i , where r
root (x*x+y*y) T h e operands must not both be zero.

atan x r e t u r n s the same as 1 a ta n x .

returns approximately 2.7182818284...

exp x r e t u r n s approximately the same as e * *x .

Log x r e t u r n s an approximate number by applying the natural logarithm function (with base
e) to x . The value of x must be positive.

b Log x r e t u r n s the same as (Log x) / (tog b) , that is, the logarithm with base b of x.

B. Functions on texts

t" u

t n

x « n

x » n

f t

e t t

min •

e rain t

DESCRIPTION OF B S e c t i o n 6.1.6

returns the text consisting of t and u joined. F o r example, ' n o w ' " h e r e
1 ='nowhere '.

returns the text consisting o f i t copies o f t joined together. F o r example,
' F i I 1
" ' 3
=
' F
i !
F
i
!
F
i
!
1
_
T
h
e
v
a
l
u
e
o
f
n
m
u
s
t
b
e
a
n
i
n
t
e
g
e
r
a
n
d
n
o
t
n
e
g
a
-

tive.

converts x to a text and adds space characters to the right until the length is n. For
example, 123<<6 = '1 2 3 I n no case is the text truncated: if n is too small, the
resulting text is as long as necessary. The value of n must be an integer, but x may
be of any type. See write-commands, section 5.1.2, for details about converting values
to texts.

converts x to a text and adds space characters to the right and to the left, in turn, until
the length is n. For example. 123><6 = 1 2 3 I n no case is the text truncated.
The value of n must be an integer, but x may be of any type.

converts x to a text and adds space characters to the left until the length is n. For ex-
ample, I 23>>6 = 1 2 3
1
. h i n o
c a s e
i s
t h e
t e x t
t r u n c
a t e d .
T h
e
v a
l u
e
o
f
n
m
u s
t

be an integer, but x may be of any type.

C. Functions on texts, lists and tables

keys t r e q u i r e s a table as operand. and returns a list of all keys in the table. F o r example,
keys ([1]: 1 ; (4) : 2 ; (9) : 3) = (1 ; 4 ; 9) .

accepts texts, fists and tables. For a text operand. its length is returned. and for a list
or table operand, the number of entries is returned (where duplicates in lists are count-
ed).

accepts texts, lists and tables for the right operand.
For a text operand, the first operand must be a character, and the number of times the
character occurs in the text is returned. For example. / ' 4 .
For a list operand, the number of entries is returned that are equal to the first operand
(which must be of the same type as the list entries.)
For example. 3 * (1 ; 3 ; 3 ; 4) = 2 .
For a table operand, the number of associates is returned that are equal to the first
operand (which must be of the same type as the associates in the table.) For example,
3 * ((1): 3 ; (2] : 4 ; (3) : 3) = 2 .

accepts texts, lists and tables. For a text operand, its smallest (in the ASCII order)
character is returned, for a list operand, its smallest entry is returned, and for a table
operand, its smallest associate is returned. F o r example. Mi n ' uscu e / = ' c '
minfl ; 3 ; 3 ; 4) = 1 , and min{ (1): 3 ; (2) : 4 ; (3) : 3) = 3 . The text. list
or table must not be empty.
To get the smallest key of a table t , use min keys t .

accepts texts, lists and tables for the right operand.
For a text operand, the first operand must be a character, and the smallest character in
the te x t exceeding th a t character i s returned. F o r example. / i / m i n
'm i s s i s s i ppi '

For a list operand. the smallest entry is returned exceeding the first operand (which

Section 6.1.6 D E S C R I P T I O N OF B

must be of the same type as the list entries.) For example, 3 min (1 ; 3 ; 3 ; 4) =
4.
For a table operand, the smallest associate is returned exceeding the first operand
(which must be of the same type as the associates in the table.) For example, 3 min
{ E n : 3 ; [2) : 4 ; [3] : 3) = 4 .

There must be a character, list entry or table associate exceeding the first operand.

max t and a r e like min, except that they return the largest element, and in the dyadic case the
e max t l a r g e s t clement tha t i s less than the first operand. F o r example. i t a ' m a x

=

n t h ' t re quire s an integer in 11 # t f o r the left operand. and accepts texts, lists and tables
for the right operand. I t returns the n'th character. list entry or associate.
In fact, n t h ' o f t , for a text t , is written as easily tain I 1 F o r a table, it is the
same as t [n t h ' o f (k e y s t) 1. which is something different from t [n] , unless, of
course, keys t = . . t t) . For a list. i t h ' o f t is min t . •

6-13_ REFINED-EXPRESSIONS

refined-expression:
• tag

The tag of a refined-expression must occur as the tag of one expression-refinement in the unit in
which it occurs.

Example refined-expression:
s ta c k 'poi nte r

A refined-expression is evaluated in the following steps:
1. A copy is made of the current environment (the value of all targets). and all computations during the

evaluation of the expression will take place in this "scratch-pad copy
-
.

2. The command-suite of the corresponding expression-refinement is executed.
The evaluation of the refined-expression is complete when the execution of this command-suite ter-
minates because of the execution of a return-command; the value of the refined-expression is the value
returned.

See also: expression-refinements (4.4).

6.2. TARGETS

target:
• single-target
• multiple-target

single-target:
• basic-target
• (target) •

basic-target:
• tag
• trimmed-text-target
• table-selection-target

DESCRIPTION OF B

For the use of a tag as target, see below under IDENTIFIERS. For other kinds of targets, see below
under the appropriate heading.

multiple-target:
• single-target, single-target
• single-target, multiple-target

Examples of multiple-targets:
nn , t 2
(x0, y 0) , (x 1 , y l) , (x 2 , y 2) , (x 3 , y3)

If a value is put in a multiple-target, the value must be a compound with as many fields as there are
single-targets separated by commas in the multiple-target. The successive fields are then put in the suc-
cessive single-targets. I f it makes a ditrerence in what order the fields are put in the single-targets (as in
PUT 1 , 2 IN x , x where the final value of x might be either 1 or 2), an error is reported (but
this is currently not checked)).
Note that the meaning of PUT a, b IN b , a is well defined (provided that a and b are defined and
have values of the same type): first the value of the expression a , b is determined, and that value is
next put in b , a. Note also that the meaning of PUT t (i l t (j) I N t E j l , t l i J is well defined,
even if i and j have the same value. For although in this case a value is put twice in the same target.
that value is the same each time, so the order does not matter.

62-1. IDENTIFIERS

identifier:
• single-identifier
• multiple-identifier

I
s
i
n
g
l
e
-
i
d
e
n
t
i
f
i
e
r
:

• tag
• (identifier)

multiple-identifier:
• single-identifier, single-identifier
• single-identifier, multiple-identifier

Examples of identifiers: s i n g l e - i d e n t i fi e rs :
a a
(a) (a)
(a, b , (c , d) l (a , b , (c , d) l
a, b , (c , d)

All identifiers can be used as targets, but the converse is not true. For example.

FOR a(1) I N (1 —3): WRITE a

Section 6.2

is wrong, because a (1) , although a target, is not an identifier. I f something is put in a target that is a
tag, and no location for that tag exists already. it is created first. I f the location is created locally (the
tag did not occur in an immediate command and was not listed in a share-heading), the location will
cease to exist when the current unit is exited. For putting in multiple-identifiers, see multiple-targets in
section 6.2.

Section 62.2

6.2.2. TRIMMED-TEXT-TARGETS

DESCRIPTION OF B

trimmed-text-target:
• target right-expression
• target 1 right-expression

Examples of trinuned-text-targets:
tsp
t 11
t I °Sp
t@pl (q--p+1)

The target must hold a text T, and the value of the right-expression must be an integer N.
I f the sign used is @, then the trimmed-text-target indicates a location consisting of the positions of T
starting with the N'th position. N must be at least I and at most one more than the length of T. For
example, after

PUT 'c om pute r ' I N t t
PUT ' a s s ' I N t t e 5

t t will contain the text 'compass'
I f the sign used is I . then the trimmed-text-target indicates a location consisting of the first N charac-
ters of T. N must be at least 0 and at most equal to the length of T. For example, after

PUT 'c om pute r ' I N t t
PUT / n e ' I N t t i 4

t t will contain the text 'n e u te r ' .

Note that the target itself may be a trimmed-text-target again. For example. after

PUT 'c om pute r ' I N t t
PUT "m" I N ttLa411

t t will contain the text 'commuter ' .
Some useful special cases: PUT " I N t I I removes the first character of the text in t :
PUT I N t@(#ti-1) appends a period to the text in t

6.23. TABLE S E LE MO N-TARG E TS

table-selection-target:
• target [expression)

Example table-selection-target:
t (i . , j)

The target must contain a table. The value of the expression is a key IC, to be used as selector. For
each key in the table, there is a location for the corresponding associate. I f K is an existing key of the
table, the location for the table-selection-target is that of the associate corresponding to K. I f a value
A is then put in the table-selection-target, the original associate held in that location is superseded by
A. I f K is not an existing key and a value A is to be put in the table-selection-target, a new location is
created, and the (original) table is made to contain a new table entry consisting of K and A. K must
be of the same type as the other keys of the table, and A of the same type as the other associates.

63. TE S TS

Tests do not return a value, but succeed or fail when tested_ I n B, the testing of a test cannot alter the
values of targets that currently exist, nor can it create new targets that survive the test, with the excep-
tion of the temporary survival of bound tags as described under QUANTIFICATIONS (section 6.3.7)
and REFINED-TESTS (section 6.3.3).
If a test appears to alter an existing target, it effectively modifies a local, "scratch-pad" copy of that tar-
get, and the change is invisible outside the test.

test:
• tight-test
• conjunction
• disjunction
• negation
• quantification

tight-test:
• (test)
• order-test
• proposition
• refined-test

right-test:
• tight-test
• negation
• quantification

The various kinds of tests that are distinguished here serve to define the syntax in such a way that no
parentheses are needed where the meaning is sufficiently clear.

63.1. ORDER-TESTS

order-test:
• single-expression order-sign single-expression
• order-test order-sign single-expression

order-sign:
• <
• <=
•
• <>
• > .
• >

(The order-sign <> stands for "not equals")

Examples of order-tests:
(i ' , Y
.
)
>
(i
,
j
)

' 0' <= d <=
fa <= f (x) > = f b

DESCRIPTION OF B S e c t i o n 6.3

The single-expressions are evaluated one by one, from left to right, and each adjacent pair is compared.
As soon as a comparison does not comply with the given order-sign, the whole order-test fails and no
further single-expressions are evaluated. Th e order-test succeeds if a ll comparisons comply with the
specified order-signs.

Section 6.3.1 D E S C R I P T I O N OF B

Note carefully that an approximate number is never equal to an exact number, so, for instance, i f you
want to compare an approximate number a for equality with an exact number e , you should write

I F a - e :

This also allows you to test if a number is exact or not:

SELECT:
x - x : WRITE 'Approx i ma te '
ELSE: WRITE 'E x a c t '

631. PROPOSITIONS

zeroadic-proposition:
• zeroadic-predicate

monadic-proposition:
• monadic-predicate actual-operand

dyadic-proposition:
• actual-operand dyadic-predicate actual-operand

zeroadic-predicate:
• tag

monadic-predicate:
• tag

1 dyadic-predicate:• tag

Propositions with user-defined predicates

A proposition whose predicate is defined by a test-unit, is tested in the following steps:
1. A copy is made of the current environment (the value of all targets). and all computations during the

testing of the proposition will take place in this -
s c r a t c h - p a d c o p y
-
.

2. Any local tags in the test-unit that might clash with tags currently in use are systematically replaced
by other tags that do not cause conflict.

3. Each actual-operand is evaluated and put in the corresponding formal-operand. used as a (new) tar-
get.

4. The command-suite of the unit, thus modified, is executed.
The testing of the proposition is complete when the execution of this command-suite terminates be-
cause of the execution of a report-, succeed- or fail-command; the proposition succeeds or fails accord-
ingly-

Propositions with predefined predicates

e i n t a c c e p t s texts, lists and tables for the right operand. I t succeeds if e l tt > 0 succeeds.
in other words, if the value e occurs in t

e n o t ' in t i s the same as (NOT e i n t) •

6.3.3. REFINED-TESTS

I
r
e
f
i
n
e
d
-
t
e
s
t
:

• tag

Example refined-test:

A refined-test is tested in the following steps:
1. A copy is made of the current environment (the value of all targets), and all computations during the

testing of the test will take place in this "scratch-pad copy".
2. The command-suite of the corresponding test-refinement is executed.
The testing of the refined-test is complete when the execution of this command-suite terminates because
of the execution of a report-, succeed- or fail-command, and the refined-test succeeds or fails according-
ly.
Any bound tags set by a for-command or a quantification (see 6.3.7) at that time will temporarily sur-
vive for those parts that are reachable only by virtue of the outcome of the test. This is so that you
can turn any test into a refined-test with the same effect.
For example, in

divisibLe: REPORT SOME d I N (2 . .n - 1) HAS n mod d = 0 ,

the bound tag d is set to a divisor of n if the refined-test succeeds, and since the part n > d **2 is
only reached after success, d may be used there. The same is true for the write-command using d.
The line after (indicated with three dots), however, can be reached if the divisibility test fails. So there
d has ceased to exist.

See also: test-refinements (4A).

6.3.4. CONJUNCTIONS

conjunction:
• tight-test AND right-test
• tight-test AND conjunction

Examples of conjunctions:

6.33. DISJUNCTIONS

special/case

IF d ivisibLe AND n > d **2: WRITE d

disjunction:
• tight-test OR right-test
e tight-test OR disjunction

DESCRIPTION OF B S e c t i o n 6.3.3

a > 0 AND b > 0
i i n keys t AND t [i] i n keys u AND L A
-
g i n < > ' d u m m y 'The tests of the conjunction, separated by AND, are tested one by one, from left to right. As soon as

one of these tests fails, the whole conjunction fails and no further parts are tested. The conjunction
succeeds if all its tests succeed.

Section 63.5 D E S C R I P T I O N OF ft

Examples of disjunctions:

The tests of the disjunction, separated by OR. are tested one' by one, from left to right. As soon as one
of these tests succeeds, the whole disjunction succeeds and no further parts are tested. The disjunction
fails if all its tests fail.

6 3 A NEGATIONS

Example negation:

a <= 0 OR h <= 0
n = 0 OR s [1] = s [n] OR t [1] = t [n]

negation:
• NOT right-test

NOT a s ubs e t b

A negation succeeds if its right-test fails, and fails if that test succeeds.

63.7. QUANTIFICATIONS

quantification:
• quantifier ranger HAS right-test

quantifier:
• SOME
• EACH
• NO

ranger:
• in-ranger
• parsing-ranger

I
p
a
r
s
i
n
g
-
r
a
n
g
e
r
:

• multiple-identifier PARSING expression

Note that the identifier of a parsing-ranger must be a multiple-identifier (like p , q , r): it may
not be a single-identifier (like pqr). Moreover, each of the single-identifiers (like p) must be
plain tags. The reason is that this determines the number of parts which the value of the expres-
sion must be split into (see below).

(For in-rangers, see for-commands, section 5.2.4.)

Examples of quantifications:
SOME p , q , r PARSING Li ne HAS q i n (- 0 . 0 9 0 . 0
EACH i , j I N keys t HAS t [i , j] = t [j ,
NO d I N (2 . . n - 1) HAS n mod d = 0

1

The tags of the identifier of a quantifier may not be used as targets or target-contents outside such a
quantifier. They are "bound tags", and lose their meaning outside the quantifier, except as described
below.

The meaning of quantifications will first be described for the case of SOME I N
The value of the expression must be a text, list or table. The items (characters, list entries or associ-
ates) of that value are assigned one by one to the identifier, and the right-test is tested each time. The
quantification succeeds as soon as the right-test succeeds once. I t fails only if the text, list or table is

exhausted and the right-test has failed each time.
If the quantification succeeds, the bound tags set at that moment will temporarily survive and may be
used in those parts that are reachable only by virtue of the outcome of the test.
For example, in

I F (SOME d I N (2 . . n - 1 1 HAS n mod d = 0) AND n > d * * 2 : WRITE d

the bound tag d is set to a divisor of n i f the quantification succeeds, and since the part n > d * * 2 is
only reached after success, d may be used there. The same is true for the write-command using d.

- So. if n has the value 77. 7 will be written, since the test n mod d 0 succeeds the first time when
d is set to 7 (and 7 7 > 7 * *2). The line after (indicated with three dots), however, can be reached if
the divisibility test fails. So there d
. h a s c e a s e d
t o
e x i s t
a n d
m a y
n o t
b e
u s e d
.

The meaning of a quantification SOME i d I N t L t HAS prop can also be described as the meaning
of the refined-test t e s t ' if' g i v e n a test-refinement

te s t ' i fis om e :
FOR i d I N t i t :

IF prop: SUCCEED
FAIL

The meaning of EACH i d I N t i t HAS prop is the same as that of NOT SOME i d I N t t t HAS
NOT prop. I n other words, an EACH quantification succeeds only if its right-test succeeds each time.
The meaning of NO i d I N t t HAS pr op is the same as that of NOT SOME i d I N t l . t HAS
prop. I n other words, a NO quantification succeeds only if its right-test fails each time.
The rules for temporary survival are the same as for SOME. S o an EACH or NO quantification will
only have set its bound tags on failure. Thus, in the following, the bound tag d survives into the
ELSE:

SELECT:
NO d I N (2 . . n - 1) HAS n mod d = 0 :

WRITE 'p r i m e '
ELSE: WRITE ' d i v i s i b l e by ʻ d "

DESCRIPTION OF B S e c t i o n 6.3.7

If PARSING is specified, all p2rsingc of the value of the given expression are tried, instead of its items.
The value of the expression must be a text. A -
p a r s i n g " o f a
t e x t i s
a w a y
o f
s p l i t t i n g
i t
i n
p a r t s .
T h e

text is split in all possible ways in as many parts as there are tags in the multiple-identifier. and each
split is put in that identifier, whereupon the right-test is tested. For example,

SOME p , q , r PARSING 'a bra c a da bra ' HAS (p = r AND # p > 3)

will succeed with p and r set to 1
a b r a
1 a n d q
s e t
t o
' c a d ' .
I f
t h e
t e s t
p
>
3
i s
o m i t
t e d ,
t h
e

quantification will succeed with the uninteresting result that p and r are set to " and q to
'abracadabra '.

To give another example,

PUT ' a man, a pLa n, a canal.: pa na ma !' I N pa l indrome
WHILE SOME hd , x , t l PARSING paLindrome HAS x
1
n o n " L e t t e r :

PUT h c r t l I N paLindrome
WRITE pa tindrome /

e non" Le tte r : REPORT i tx = 1 AND x n o t ' i n f ' a " . . / e)

will successively find and remove all non-letters from the text in pa t indrome finally leaving the text

Section 6.3.7 D E S C R I P T I O N OF B

lamanaptanacanatpanamai (T h i s is not a recommended way, because it will be very slow. There
are equally simple and much faster ways to achieve the same effect. The example is only chosen to il-
lustrate the possibilities of PARSING.) No te that the test # x = 1 here is essential. I f it is omitted,
the program will go into an endless loop "removing" empty texts x from p a l indrome.
The meaning of SOME p , q , P A RS I NG wh o te HAS p ro p may more precisely be described as
follows. L e t p a rs ings stand for a list, containing all compounds with the same number o f fields as
the multiple-identifier p , q , s u c h that those fields (which are texts) joined together give the text
whole. Fo r example, in

SOME p , q , r PARSING ' a b ra c a d a b ra ' HAS (p r AND # p > 3)

the list p a rs in g s will begin with

(" " , ' a b ra c a d a b ra '); (" , ' a ' , ' b ra c a d a b ra /); --- •

contain somewhere in the middle

(' a b r a ' , ' c a d ' , ' a b r a
1
) ;and end with

(la b ra ca d a b r
1 ,
' a ' ,
'
)
('
a b r a
c a d a
b r a '
,
"
,
"
)
1
•

The effect of the quantification is then the same as that of

SOME p , I N p a rs in g s HAS p ro p .

The meaning of EACH or NO is accordingly defined.

See also: for-commands (5_2.4).

INDEX

actual-operand 6.1.6
actual-parameter 5.1.16
alternative-sequence 5.2.2
alternative-suite 5.2.2
ambiguity 6.1.5, 6.1.6
approximate 63.1
approximate-constant 6.L I
approximate number I
associate I , 5.1.6, 5.2.4, 6.1.4,

6.1.5, 6.1.6, 6.23, 6.3.7
basic-expression 6.1
basic-target 6.2
bound tags 5.1.13, 51.14. 5.1.15,

52.4, 6.3, 6.3.3, 63_7
brackets 6.1.6
character 1 , 5.1.6, 5.2.4, 6.1.5,

6.1.6. 6.3.7
check-command 5_1.1
choose-command 5.1.6
command 5
command-refinement 4.4, 5.1.11,

5.1.17
command-sequence 4.5
command-suite 4.5
comment 3
compound 1. 6.1, 6.2
conjunction 6.3.4
control-command 5.2
conversion 6.1.5
convert to a text 51.2, 61.5,

6.1.6
decrease-indentation 3
delete-command 5.1.10
denominator 6.1.6
digit 6.1.1
disjunction 6.3.5
display 6.1.5
draw-command 515
dyadic 4.2. 43
dyadic-formula 6.1.6
dyadic-function 6.1.6
dyadic-predicate 63.2
dyadic-proposition 6.3.2
else-alternative 5.2.2
empty 2
empty list 6.1.5
empty table 6.1.5
entry 1
equal 6.3.1
exact 6_3_1
exact-constant &LI
exact number I
exponent-part 6.1.1

DESCRIPTION OF B

expression 6.1
expression-refinement 4.4, 4.5,

5_1.12, 6.1.7
fail-command 4.5. 51.15, 6.3.2,

6.3.3
field
for-command 52.4
formal-dyadic-formula 4.2
formal-dyadic-proposition 4.3
formal-formula 4.2
formal-monadic-formula 4.2
formal-monadic-proposition 4.3
formal-operand 4.2
formal-parameter 4.1
formal-proposition 4.3
formal-tail 4.1
formal-trailer 4.1
formal-user-defined-command

4.1
formal-zeroadic-formula 4.2
formal-zeroadic-proposition 4.3
formula 4.2, 4.3, 6.1.6
fractional-part 6.13
function 4.2, 43, 6.1.6
further-comment 3
global 4.5, 5
how-to-unit 4.1, 5.1.11, 5.1.16
identifier 6.2.1
if-command 5.2.1
immediate command 5. 5.1.1
in-ranger 5.2.4
increase-indentation 3
indentation 3
insert-command 5.1.9
integer 6.1_3, 6.1.5, 6.1.6
integral-part &LI
interrupt key 5, 51.2
key 1, 61.4, 6.1.5, 6.1.6. 6.23
keyword 3, 4.1, 4.4, 5.1.16.

5.1.17
list 1
list-body 6.1.5
list-display 6.1.5
list entry 1. 5.1.6, 5.1.8, 5.1_9.

5.2.4, 6.1.6, 6.3.7
list-filler 6.1.5
list-filler-series 6.1.5
local 4.5, 6.1.6, 6.2.1
location 5.1.4, 5.1.10, 6.2.1, 6.2.3
monadic 4.2. 4.3
monadic-formula 6.1.6
monadic-function 6_1.6
monadic-predicate 6.3.2

monadic-proposition 63.2
multiple-expression 6.1
multiple-identifier 61.1
multiple-target 6.2
negation 6.3.6
new-line 3
new-line-proper 3
new-liners 5.12
number 1, 5.1.5, 6.1.6, 6.3.1
numerator 6.1.6
numeric-constant 6.1.1
optional-ANYTHING 2
order 1, 63.1
order-sign 63.1
order-test 63_1
overloading of functions and

predicates 4.2, 4.3
parentheses 6.1.6
parsing-ranger 63.7
permanent environment 4.5,

5.12, 5.1.11
plusn3inus 6.1.1
predelmed functions 6.1.6
predefined predicates 63.2
predicate 42, 4.3
priority 6.1.6
proposition 4.3, 6.3_2
put-command 5.1.4
quantification 6.3.7
quantifier 6.3.7
quit-command 5.1.11. 5.1.16,

5.1.17
quote 6.1_5
random 5.1.5, 5.1.6, 5.1.7
ranger 6.3.7
read-command 5.1.3
refined-command 5.1.17
refined-expression 5.1.12, 6.1.7
refined-test 5.1.13, 5.1.14, 5.115,

6.3.3
refinement 4.4
refinement-suite 4
remove-command 5.1.8
report-command 4.5, 5.1.13,

6.3.2, 6.3.3
return-command 4.5, 5.1.12,

6.1.6, 6.1.7
right-expression 6.1
right-test 63
scratch-pad copy 6_1, 6.1.6,

6.1.7. 6.3. 6.3.2, 6.3.3
select-command 5.2.2
set-random-command 5.1.7

Index

Index D E S C R I P T I O N OF

share-beading 4.5
simple-command 5.1
simple-expression 6.1
single-alternative 5.2.2
singe-expression 6.1
single-identifier 6/.1
single-target 6.2
spaces 3
succeed-command 4.5, 5.1.14,

6.3.2 6_3.3
table 1
table-display 6.1.5
table entry 1, 5_1.10, 6.1.4, 6_2.3
table-filler 6.1.5
table-filler-series 6.15
table-selection 6.1.4
table-selection-target 5_1_10,

6 ./3
tag 3, 62_1
target 45, 5.1.4, 5.2.4, 6.1.6, 62,

6./1
target-content 6.1.2
terminating-command 5_1, 52.3
test 4.3, 6.3
test-reftnement 4.4, 4_5, 51_13,

5.1.14, 5.1.15
test-unit 4.3, 4.5, 5.1.13, 5.1.14,

5.1.15, 6.32
text 1, 6.1.6
text, list and table 5.1.6, 5.2.4,

6.1.6, 6.32, 6.3.7
text-display 6.1.5
tight-expression 6.1
tight-test 6.3
trailer 5.1.16
trimmed-text 6.1.3
trimmed-text-target 6 2 /
type 5.1.4, 6/.3
unit 4
user-defined-command 4.1,

5.1.16
user-defined-function 4.2, 51_12,

6.1.6
user-defined-predicate 4.3,

5.1.13, 5.1.14, 5.1.15, 6.31
while-command 52.3
work-space 4, 4.5
write-command 5.12
yield-unit 4.2, 4.5, 5.1.12, 6.1.6
zeroadic 4.2, 4.3
zeroadic-formtda 6.1.6
zeroadic-function 6.1.6
zoroadic-predicate 6.3.2
zeroadic-proposition 63.2

