stichting
mathematisch

centrum MC

AFDELING INFORMATICA IW 161/81

FEBRUARI
(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

ISSUES IN THE DESIGN OF A BEGINNERS PROGRAMMING LANGUAGE

Preprint

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kuwislaan, Amsterndam.

The Mathematical Centre , founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0.).

80 Mathematics subject classification: 68B99

M-Computing Review-category: 4.22

sues in the design of a beginners” programming language

mbert Meertens

3STRACT

Some problems are related that have been encountered in the design o

programming language for beginners. The solutions were sometimes unex-—

ected, and required doing away with preconceptions. The use of systemati

ethods has been of some help.

KEY WORDS & PHRASES: programming languages, programming language design,
beginners' programming languages, BASIC

*) This report will be submitted for publication elsewhere.

TRODUCTION

f the commonly available algorithmic languages, some are definitely

r suited to convey the algorithmic thoughts of the programmer than

s. Whatever the preferred point of view, be it structured

amming, provability of correctness or the expressibility of

action, some languages stand out for their excellence, some for
abomination.

he latter should not worry us for languages in disuse. It should,
anguages used widely. The relatively abominable FORTRAN, though far
dead, seems on its way out. Reasonable alternatives for FORTRAN

. That absolute champion, BASIC, however, is steadily marching on.

wver, BASIC has it attractive points, from the viewpoint of the

11, non-professional user.

\n attempt is under way to redress that situation, by issuing a

_ language, provisionally referred to as "B" (no relation to the

irsor of C; the "B" is only a language—name name referring to the

inknown language name). For a language to beat a rival, more is

lved than language issues. The example of FORTRAN more than goes to
this point. This paper will be restricted, however, to linguistic

-s. It is not intended as an introduction to B, but as an exposition

sme of the choices and problems encountered in the process of

yning an algorithmic language. The attempt has been to base the

tions, in a rational way, on the design objectives.

B is designed as the limit of a sequence: Bg, By, ee- The
oximation currently under construction, B, is the joint effort of
rt Dewar of the Courant Institute of Mathematical Sciences, New York
ersity, Leo Geurts of the Mathematical Centre, and the author.
ributions have been made by Peter King of the University of

toba, Jack Schwartz of the Courant Institute, and Dick Grune and

X1lint of the Mathematical Centre. The responsibility for the

ions expressed is solely that of the author.

'HF. DESTGN OBJECTIVES FOR B

The idea underlying the design objectives for B are: beat the enemy
-.ts strong points. The same idea has governed the design of FELAN
MEL & al. [4]). There is one important difference: ELAN aims

larily at the "market"” of'(introductory) education in computer

;mce, whereas B aims first of all at personal computing. The latter
not always been the case. The first approximation of B (GEURTS &
\TENS [2]) was designed when personal computing was in its infancy.
wough the design objectives themselves have remained the same, their

lct on the design has changed quite drastically.

The design objectives for B are:
iimplicity;
iuitability for conversational use;

nclusion of structured-programming tools.

e objectives are elaborated upon in [2]. The change referred to

'e is mostly concerned with the objective of simplicity. In [2], this
nterpreted as simplicity not only for the user, but also for the
ementer. It is stated that "B should be implementable on small
computers”.

The latter reflects our awareness, at the time, of the onset and

re importance of personal computing. At the same time, it reveals a
. of perception of the torrent of hardware evolution. Tomorrow”s
—~held computers are yesterday”s main-frames. Designing a language to
smoothly on eight bit 8K machines is designing for the past. In
gning By, it was decided to ignore implementation issues completely.
that we do not care about implementation complexity; for the time

g we merely disregard the feelings of prospective implementers and
entrate on the happiness of the user. Once sufficient implementation
rience for the "final" version of B is available, it may be decided
evise some features that pose undue implementation problems in

ange for little or no gain in language appeal. The impact of

L 68R on the revision of ALGOL 68 reveals that this may even help to

ove the language from the user”s point of view.
HE TYPES OF B,

In BO and B;, the types were INT, REAL, STRING and "RANGE" types
ilar to the scalar types of Pascal), and ARRAYs of scalar elements

xed by a tuple of RANGE values (but without the Pascal restriction

hought, and was the first thing tackled again in the design of B,.

le type system of By has been designed in a new way that is, in
', of interest. If a sufficiently powerful collection of types is
\ble (where "type" includes type constructors as "array"), any

d type (e.g., deque, or ternary tree) can be "simulated"” or

iented by the user. The type could also be added as a "standard”

-0 the language. This may increase the ease of use of the language.
L1 types, however, are equally helpful in this respect. Moreover,
inguage is made more complex, and possibly much so. A type system

npetitive only if it is better than each other type system in at

one respect (ease of use, simplicity).

5> we compiled a list of candidate types (including, e.g., bag,
, enumerated types, map, multi-valued map, queue, sequence, set,
and tree), constructed various schemes for implementing these

in terms of other types, and assigned numerical values for

tive) algorithmic importance and learning complexity of each type
or implementation complexity of each scheme. The values took into
nt, of course, that the user we have in mind is not a computer
tist. This made it possible, with the assistance of a program, to
out the non-competitive type systems from the rather large powerset

e candidate types. The resulting list of competitive systems was

. small, and it was easy, using old-fashioned human taste, to settle

ie for use in BZ'

f By might be called ALGOL 60 in BASIC-like disguise (the abstract
'] reads: "FORTRAN : ALGOL 60 = PL/I : ALGOL 68 = BASIC : ?"), By
out like SETL in sheep”s clothing. The result is that the types of

-e "numeric”, "text"”, "tuple”, "list” and "table".

jumeric values come in two kinds, "exact” (i.e., rational) and
coximate” (i.e., floating point). The distinction is made at run
. This choice attempts to combine the following desiderata:

The user must be allowed control over quantities that should not be
subject to rounding errors. (The choice for rational numbers, rather
than integers, is mainly a nicety. But there is some obvious
advantage in having, e.g., 1.25, represent an exact value.)

The user should have no need to worry about the distinction if it is
not important. (E.g., adding exact and approximate values is
allowed.)

The language has strong typing.

Coercions, i.e., automatic implicit type conversions, are deemed
undesirable.

Approximateness propagates upwards in evaluating arithmetic
expressions.

s list is not really exhaustive. It implies, among others, the
upposition that there should be some built-in treatment of

oximate numbers.)

The approach taken satisfies these five desiderata almost perfectly.
st ...; in conformance with Murphy”s Eighth Law, there is one ugly
. If x is approximate, x/x does not equal 1. For approximateness
agates, and the approximate quantity x/x cannot be equal to the

t quantity 1. It is, presumably, equal to the approximate quantity

In fact, no proper solution satisfying the desiderata (a) through
exists. As soon as one of these is lifted, a full solution becomes
ible. The fact that 1 does not equal ~1 is a violation of (b):

times the user does have to worry. We chose this solution because we
that the user should be careful anyway when comparing approximate

2s and has no business to expect exact answers.

Text values are quite ordinary strings. (The term "text"”, instead of
asoteric "string"”, was taken from HOMMEL & al. [4].) No character

2s are provided; a text of length one will do. Two subtext operators
available. If the value of t is the sequence of characters

e, C then the value of t@p, with 1 < p < ntl, stands for

n’
-++, ¢, and the value of t|£, with 0 < £ < n, is Cpy +evy Cp. A

on combination will be t@p|L. If t|£ t@(L+l) is defined (""" is
atenation), its value is t.

T'hese subtext operators may also be applied to text variables in
2t ("l.h.s.”) positions. The replacing text need not have the same

th as the text replaced.

Tuples are like structured values ("records”), but without tags for
:ting the fields. If, e.g., u and v are variables, then u,v may be

in a target position. This allows decomposition of tuples.

.ists exist for values of any type (e.g., list of list of text). A
is simply a multi-set, or bag. In an algorithmic context, given the
te between sets and multi-sets, the latter are more useful. Having
is unnecessarily complex, and even a potential source of confusion.
> we do not expect the user to be familiar with the concept of a

imcot+ +ha camantire ara ovnlainad in toarme nf ardered lictae. A

consequence is that a total ordering has to be defined on the values of

any given type. This can be done in a reasonably natural way.

Tables are like SETL maps: generalized arrays whose domain is
variable and not necessarily a range of consecutive values. In contrast
to SETL, tables are a genuine type, not a syntactic sugaring for

interpreting a set of pairs as a map. In particular, a table cannot be a

"multi-valued” map.

Originally, there were many restrictions in this type system. For
example, the elements of a tuple, list or table could only be numeric or
text values. Tables were indexed by numeric, text or a tuple. Especially
the tuples had a special status. Although we thought we had good reasons
for these restrictions (at the time the decision to ignore the ease of
implementation had not been fully mentally digested), one by one better
reasons appeared to relax these constraints. At first,rthe relaxations
tended to make the complexity worse, until we took the step that, in
hindsight, seems so obvious: the type system was made completely
orthogonal: tables may be indexed with tables, and so on. (This decision
nevertheless required reworking most of the provisional language
definition.)

As the type system stands now, we are quite pleased by it. Sometimes
the absence of extensible sequences is felt as a slight nuisance, bhut
the experience on the whole seems to justify their absence as a standard
type. The types appear in some way to span together the space of needs,
as was the purpose of the exercise. A carefully tamed "free" type was at
some time included, but abandoned later on. It has some merits, however,

that may cause it to reappear.

/,

+. STATEMENT SYNTAX

Statements in B are rather verbose. Each statement begins with a
teyword, and keywords are also used to separate the parameters of a

statement. For example, the following is an assignment statement:
PJT a+l 1IN a.

The philosophy behind this approach is given in [2]. An obvious
Irawback of verbose syntax is that the user has to key in so many
symbols. However, as is already stated in [2], the language is embedded
(n a system that is dedicated to B. In particular, the editor knows the

syntax of B. If this is combined with screen-editing facilities, it is

(O 2 S PR —— 1 - .1 1 ~ - 1 - P - -

or knows (or maybe guesses) that a PUT statement is intended, it m

ady display the IN and position the cursor at the first parameter.

In GEURTS & MEERTENS [3] it is remarked that the keyword approach
s it possible to have user—defined statement types. This option ha
ed been chosen for B,. Such statement definitions take the role of

edures. For example, the user may define
HOWTO INCR x: PUT x+1 IN x

next use this INCR statement as though it had been part of the

uage all of the time.

Since programs are entered through a B-dedicated editor, it is
istic to consider program lay-out as an integral part of the synta
articular, indentation is used to indicate grouping of statements.
ough this was already so in [2], it took us quite some time to
ngage ourselves completely from the idea that programs are prepare
ne system and parsed by a second one that need not trust its input
fact that there is no distinction between editor and parser means
no special delimiters like BEGIN and FND are needed. That BEGIN w
rfluous, we had already realized; but this was true anyway. But fo

e some time, we required END lines, as in

FOR p IN feasible:
IF p IN cand:
DELETE p FROM cand
INSERT p IN chosen
END IF
END FOR
RETURN chosen, cand.

the lines with END are pure noise. Once one gets used to it, the

owing is much more legible:

FOR p IN feasible:
IF p IN cand:
DELETE p FROM cand
INSERT p IN chosen
RETURN chosen, cand.

TRONG TYPING WITHOUT DECLARATIONS

It has been clear from the beginning that B should have strong

ar . ~ . _ff® _ % e mmm~ Lice #a a2Ad +#hAa s1enr in aennttino

errors as soon as possible. It seemed to us that this calls for
rations revealing the type of identifiers. (The FORTRAN 57 solutio:
stricting the choice of identifiers for a given type is

sptable, as is the addition of special symbols as in BASIC.)

1e of the attractive features of BASIC is the lack of declaratioms
fore, without really believing in it, we have searched for a syste
allows strong typing without declarations. (The advantage of
rations that they provide a redundancy protecting against typos ca
ten over by checks against the use of uninitialized variables and
ags for assignment to dead variables.) In some languages with

g typing, it is essential that the type of identifiers is revealed

gh a declaration. For ALGOL 68, e.g., the value yielded by

(amode block = ("abc"”, "def");
2 upb block

)

if amode is [,] char, but 1 if amode is [,,] char. But this is
ly a peculiarity. In almost all cases one can reconstruct the type

the context in which identifiers are used.

his has led us to finding a system for B, in which it is always
ble to reconstruct the type of identifiers from the context. This
ment should be slightly weakened in two respects.

he first is that it may be possible to assign types to the

ifiers consistently in more than one way. This happens, for

le, in

PUT {} IN x
IF x = {}: WRITE “yes”.

it is clear that the type of x is "list of something”, but the
thing” cannot be deduced from the text (assuming x is not used
wise). But in such cases the net effect is the same for each type

nment, so we do not care. It also happens in
PUT a IN a,

. other assignments to a are made. But then a is not initialized,
. is illegal by itself (and is checked statically).
'he second is that statements defined with HOWTO may be truly

‘ic. The definition

HOWTO SWAP a WITH b: PUT b, a IN a, b

work for any type, as long as the two parameters have the s
. So no type can be assigned to a and b. Instead, the requir
if HOWTIOs are expanded as macros to an arbitrary depth, con
assignment remains possible. This raises some hard question
cidability is lurking around the corner (LANGMAACK [5], GEHA
rtheless, for B,y this appéars to be decidable without undue

rictions. Only after the last sentence was written down, did
or become aware of the work on type polymorphism by MILNER |
ough this is described for an applicative language, it appea
11y applicable for a language as B. In fact, the situation i
ler there, since the items carrying a polymorphic type are n

ted as values in B.

There is one point where an unconventional step had to be ta
1d the system. If a value comes into being through an operat
r values, it is sufficient if the result type is only depend
operand types, which is the case in B,. We may thus concentr
spots where values appear directly. This can happen in two w
Jne is through a constant denotation (literal). This is no »
e constants in B2 immediately reveal their types, with one
ption: for empty lists or tables. This case has been treated
The other case is when a value is obtained through interacti
t. There is no a priori way to determine the type. Therefore
ired that the READ statement reveals the type of the (expect
t. A first attempt required the presence of a "type specifie
2 the size of the syntax for specifiers turned out not
bstantial. This was not very satisfying; it meant the user h
n a lot of (relatively weird) syntax for this one purpose. L
ound another solution, made possible by the fact that for ea
xplicit notation can be given. The type is now specified by
iding a "sample”: an expression of the same type. So one has

e, €8,
READ n, v EG 0, {"~}

is a numeric variable and v is a list of texts. (The consta

not do in this case.)

The same EG mechanism is used to allow optional type informa

pecified in other contexts. For example, in

HOWTO REMOVE e FROM f EG {e}:

— - ——— e — ——Ar

specification gives (redundant) information about the type

tionship between the parameters.
JRMULAS

Just like "procedure calls” and "statements” are unified in B,, so
"function calls” and "formulas”". A new operator or function is

oduced by a YIELD unit:

YIELD fac n:
PUT 1 IN f
FOR i IN {l..n}: PUT f*i IN f
RETURN f

The tuple mechanism gives a natural way to introduce more

meters:
YIELD abs (x, y): RETURN sqrt (x*xty*y).

parentheses are only required since the formal parameter is an

icit tuple; the definition might also have run:

YIELD abs z:
PUT z IN x, ¥y
RETURN sqrt (x*xty*y).

ither case, the user may apply this operator in a sequence as

PUT a, b IN ¢
PUT abs ¢ IN r.

The user might also prefer a dyadic operator:
YIELD x dyabs y: RETURN abs (x, y).

For some reason or other, the priorities of operators are a trouble
in algorithmic languages. An extreme solution as in APL is not

active; the more so since B, is not really expression-oriented.

ay, it is unacceptable if 2*n+l really means 2*(n+l) (although it

ainly helps in making the users feel they belong to an esoteric

). The MABEL solution (KING [6]) of requiring parentheses as soon 3s
ral operators are involved, combines the virtues of simplicity and

r resistance. Still, it seems a bit harsh to require parenthesizing

*m¥*n.

The solution that has been adopted for B, is to require

nthesizing whenever the priorities are not established by standing

and might matter. This is achieved by not assigning simple

to operators, but a priority interval instead. This interval
a "fuzzy" priority. If the precedence decision is independent
ice of priorities from the intervals, the expression is

. Otherwise, parentheses must be inserted. User-defined
are always assignedvthe maximal interval.
able expressions are, e.g., m*n/d+c+l, a-b+l and 2*sqrt x.
le are a/2*b, a/2/b and sqrt 2*x, to give just a few examples.
the editor warns the user on the spot that parentheses must
e ambiguity.

a bit surprising that such a simple device as priority

could be tuned to give such reasonable results.
ORS

are only useful if there is some easy way to step through
inally, there were two ways for stepping through a list, one
t) in the normal, and one (REVO alist) in reversed order (word
ded). The second form followed an idea from MEERTENS [8], and
ted to the scalar type requirement for table domains in Bgy .
requirement is relaxed, the convenience of the additional form
justifies the extra cdmplexity.

yword OVER was changed to IN for B,. For example, the

R i IN a: INSERT i IN b

t a into b. This was done after it had already been decided to

tified tests: the test

ME 1 IN a HAS i < O

f a contains a negative element (and sets i to stand for the
he first such element, if any). Instead of SOME, also EACH and

owed.

the domain of a table had to be defined as a RANGE type in order
the table. With a dynamic domain, this no longer applies. But

1d be some way for the user to go through a table domain. As-a
mpt, a domain operator was introduced: []t gives the list of

such that t[i] is defined. So we could write:

RiIN []t: «o0 &

11

witching to a seemingly unrelated topic, we wanted some simple but

ful mechanism for text parsing. A first attempt was a "FITS test”

e form
e FITS S By, eee 5 Vgt to»

e a text expression, vj variables and t; tests. (The keyword FITS
appearing and disappearing in the design of B, each time with a
rent meaning.) The whole test succeeds if an assignment of text

s tov > v is possible, such that e = vl"...“vn and all of

s
ests tl succeed. If several successful assignments were possible,
exicographically first one would be returned.

ow this would have filled an appreciable part of the syntax for one
alized capability. Moreover, it was unlike anything else in the

lage. Then we realized that we almost had the capability already

., right under our hands. For the semantics were exactly those of

SOME vy, +++ , vy IN 277 HAS t; AND ... AND t,

‘ded some suitable expression for the ??? could be substituted. This

sssion should be a list of all n-tuples sy, -..- , S, such that e =

.78 A provisional notation for this list was e/n (e divided in n

°

n
5). This raises the problem that the type of e/n is dynamically

ident on n, which is incompatible with strong typing. If the form
only allowed in this context, the problem would disappear; in fact,
1 is then redundant, since there are exactly n bound variables.

This triggered the solution adopted now. It is illustrated by the

owing example:

s -
°

WHILE SOME h, s, t PARSING sent HAS s = 7,
INSERT h IN words
PUT t IN sent.

ent contains a comma, the parsing will be found that positions s at
first comma (so h will not contain a comma). If sent does not
ain a comma, the test fails. If sent originally held the text

kory,dickory,dock”, the effect is that of

INSERT “hickory” IN words
INSERT “dickory” IN words
PUT “dock” IN sent.

. is the most complicated feature in By; it is, however, quite

vfnl. Tte <emantics can be explained in already familiar terms. At

same time, it takes away the nagging problem that a simple statement

PUT “memory is becoming cheap” / 24 IN m
:atens to blow up even gigabyte systems.

When OVER and REVO were originally introduced, and when they were

aced by IN, we did not think of the construction as a generator.

1 PARSING, we clearly have a generator. It is quite natural then to
a generator INDEXING to go through all indexes of a table. For

iple,

FOR i INDEXING c:
IF c[i] > max: PUT max IN c[i]

ies a partial Procrustean operation to the elements of c.

Such a decision may seem simple. But it has many ramifications. One
hat the domain operator should be abolished. This is no great loss.
ection of programs shows that in practice it is never used in a

ement like
PUT []t IN tdom.

the operator was used in other ways. Previously, the way to delete

ndex from the domain was
DELETE i FROM []t,

g []t as a pseudo-target. This had worried us, since the counterpart
INSERT i IN []t

d not be admitted. Some other notation has to be devised for this

tion, removing at the same time the unorthogonality.

The meaningful test
i IN []t

has to be replaced by some other notation. One solution is a test
DEFINED t[i],

h can also be put to other uses (e.g., DEFINED sqrt -1). Another

tion that is considered is derived from the observation that the

13

x IN a

» viewed as an abbreviation for
SOME i IN a HAS i = x.
could introduce a test

x INDEXING t,

a similar abbreviation. A not particularly helpful, but harmless,

quence is that there should then also be a PARSING test.

E FINAL COMPOSITION

s has been clear from the exposition, composing a Jlanguage is not

y a matter of putting ingredients together and stirring till the

t is a smooth paste. It would be helpful to language designers, if
top-down design method existed for algorithmic languages. If such a
d exists, it has escaped our attention. The requirement for

ing a method as "separation of concerns” is that the relevant

rns be separable. The whole experience of language design points in
‘ferent direction: seemingly innocent minor decisions may quite
sectedly work major havoc in seemingly unrelated corners. A well
ysed language is one in which the "features"”, although orthogonal,
themselves to easy combination in many natural modes of expressing
~ithmic thought. This means that the whole language is a tightly
fabric, threatened by loose ends.

lhe best aid to systematic language design, until now, is the

iigm of orthogonality, that derives its name from the title of
NIJNGAARDEN [12], but whose essence can already be found in

[11]. Experience shows that its application requires skill, if not
rtise. It is interesting to see that the evolution of B has been in

direction of more orthogonality, mainly by virtue of the quest for

licity.

For part of the work in designing B,, a new systematic approach has
used: the method described in section 3 to select the type system.
method is more widely applicable; it can be used, e.g., to find a .

er system of string operations from a large set of candidates. Work

n progress to apply another systematic method for the final

shing of the whole language.

The idea has been used before by the author in a composition

.cise of a different nature: composing a string quartet with

itional harmony (MEERTENS [7]). The same idea is applicable here. In
bare essence, it boils down to considering all combinations of all
rnatives for the microscopic design decisions. For each combination,
eck list is inspected of potential unacceptable or undesirable
equences. For each transgression, a fine is imposed. The combination
collects the minimal totél fine, comes out as the winner.
This method is, of course, NP-complete. In practice, however, it is
cted to be feasible with the aid of some heuristics, since many
gn decisions form relatively independent small clusters. Still, this
utational complexity is indicative of how hard it is to design a
uage. The example of the five reasonable desiderata for the numeric
es, only four of which could be satisfied simultaneously, is just

example of the problems a language designer may run accross.

It would be misleading to call such methods "language design by
uter”. The real skill goes into identifying the decisions, weighing
importance and merits of various approaches, and identifying harmful
inations. Only a dumb, but hard, part of the work is left to brute
e. It is expected that the first-time "winner" will mainly serve to
deficiencies in the input to the program, and that several

ations will be needed to come up with a nice product. Indeed, the
cise may point out directions we have overlooked. If anything, the
od requires that human prejudice is made explicit. The algorithm

1f is, like Justice, blind-folded.
RENCES

GEHANI, N., Generic procedures: an implementation and an

undecidability result, Computer Languages 5 (1980) 155-161.

GEURTS, L.J.M & L.G.L.T. MEERTENS, Designing a beginners”
programming language, in New Directions in Programming Languages

1975, 1-18, (S.A. Schuman, ed.), IRIA, Roquencourt, 1976.

GEURTS, L.J.M & L.G.L.T. MEERTENS, Keyword grammars, in
Implementation and Design of Algorithmic Languages, 1-12,

(J. André & J.-P. Banitre, eds), IRIA, Rocquencourt, 1978.

HOMMEL, G., J. JACKEL, S. JAHNICHEN, K. KLEINE, W. ¥OCH &
K. KOSTER, ELAN - Sprachbeschreibung, Akademische
Verlagsgesellschaft, Wiesbaden, 1979.

LANGMAACK, H., On correct procedure parameter transmission in

higher programming languages, Acta Informatica 2 (1973) 110-142
{ING, P.R., MABEL manual, University of Manitoba, 1978.

MEERTENS, L.G.L.T., The imitation of musical styles by a computer,
in Information Processing 68, Proc. of IFIP Congress 1968,

Vol. 1, xxiv-xxv, North-Holland Publ. Co., Amsterdam, 1968.

MEERTENS, L.G.L.T., Mode and meaning, in New Directions in
Programming Languages 1975, 125-138, (S.A. Schuman, ed.), IRIA,

Roquencourt, 1976.

MILNER, R., A theory of type polymorphism in programming, J. of
Computer and System Sciences 17 (1978) 348-375.

TRACTON, K., 57 Practical Programs & Games in Basic, Tab Books,
Blue Ridge Summit, 1978.

VAN WIJNGAARDEN, A., Generalized ALGOL, in Symbolic Languages in
Data Processing, Proc. of an ICC Symp., 409-419, Gordon and
Breach, 1962; also in Annual Review in Automatic Programming,

Vol. 3, 17-26, (R. Goodman, ed.), Pergamon Press, 1963.

VAN WIJNGAARDEN, A., Orthogonal design and description of a forma:
language, Report MR 76, Mathematical Centre, Amsterdam, 1965.

NDIX A: A By and a B, program e siev henes.
The following By program is co rom [2

BEGIN
CONST n IS 1999
RANGE sievesize FROM 2 TO

RANGE primality HAS prime, ime
ARRAY (sievesize) a TYPE p ty
FOR i OVER sievesize PUT p N a(i)
VAR k TYPE int, kmult TYPE size
PUT 2 IN k
WHILE k*k FITS kmult

BEGIN

VAR kl TYPE sievesize

IF k FITS k1, a(kl) = DO sie

PUT k+1 IN k

END
sieve:

BEGIN

PUT nonprime IN a(kmul
WHILE kmult+k FITS kmu nonpr 1t)
END
FOR i OVER sievesize
IF a(i) = prime
BEGIN
NEWLINE
PRINT i
END
END

This problem was certainly not ted in ' the
siness of By The algorithmic t is ¢ easily,

gh, in By:

the B

eleme

TE n:

2..n}, 2 IN primes
k*k <= n:

JT k*k IN kmult
HILE kmult <= n:

IF kmult IN pri
PUT kmult+k IN

UT (k+l) min prime

primes

s program is algor
ven above. The for

st y that is at le

ELETE

ally s

cmin y

FROM p

y diff

's the

from

st

NDIX B: A BASIC and a B) program for tabulating a recurrent

sequence.

The following program is copied from KENTON [10]. It has been
cted because for this problem none of the "strong" points of By,
as manipulation of lists, apply. For purposes of fair comparison,

keywords have been rendered in lower case.

10 REM This program computes a table of Fibonacci numbers
20 PRINT "Enter first term”

30 INPUT a

40 PRINT "Enter second term”

50 INPUT b

60 PRINT "Maximum number of terms =
70 INPUT n

80 PRINT

90 PRINT "Table of Fibonacci numbers"”
100 PRINT "Term no.","Fibonacci number"”
110 LET k=1

120 PRINT k,a
130 LET k=2

140 PRINT k,b

150 LET k=k+l

160 LET g=a+b

170 PRINT k,q
180 LET a=b

190 LET b=q
200 TIF k>=n THEN 220

210 GOTO 150

220 PRINT "Maximum numbers of terms reached"

230 PRINT

240 PRINT "Type 1 to continue, 0O to stop”
250 INPUT £

260 IF £=1 THEN 280

270 STOP

280 PRINT

290 GOTO 20

300 END

The following B, program is not an exact transliteration; it

ains an obvious improvement that might also be applied to the BASI

should nsidered that part of the thesis motivatin

of B 1 BASIC invites clumsy programming.

N TABULATE FIBONACCI NUMBERS:
PUT “yes” IN cont
WHILE cont|l = “y~:
WRITE / “Enter first term:
READ a EG O
WRITE / “Enter second term:
READ b EG O

WRITE / “Maximum number of terms = ~

READ n EG O
WRITE // “Table of Fibonacci numbers”
PUT “Term no. ~, ~Fibonacci number” °
WRITE / ct”cf
PUT length ct, length cf IN 1t, 1f
FOR k IN {l..n}:
WRITE / (k>>1t//2)~(a>>(1t+1f//2)
PUT k+1, b, atb IN k, a, b
WRITE / “Maximum number of terms reac
WRITE / “Do you want another table?
READ cont EG ~7

T ogram shows some "formatting”: the formula
of le representing the value of x, right adjust

with).

P

xad

Lid
£ry

i |
€

