Map-functor Factorized

Maarten Fokkinga, CWI & UT, Lambert Meertens, CWI & RUU

February 18, 1991

It is well known that any initial data type comes equipped with a so-called
map-functor. We show that any such map-functor is the composition of two
functors, one of which is —closely related to— the data type functor, and the
other is —closely related to— the function g (that for any functor yields an
initial F-algebra, if it exists).

Notation

Let K be a category, and F : K — K be an endo-functor on K. Then ufr denotes “the”
initial r-algebra over K, if it exists. Further, 7(K) is the category of endo-functors on
K whose morphisms are, as usual, natural transformations; and F,(K) denotes the full
sub-category of F(K') whose objects are those functors F for which pr exists.

For mono-functors f,6 and bi-functor { we define the composition Fe by z(rG) = (zF)e,
and we denote by F 1 ¢ the mono-functor defined by z(F { 6) = zF } z6. Object A when
used as a functor is defined by zA = A for any object z and fA = id, for any morphism
f. (An alternative notation for A {1 is the ‘section’ At.) In the examples we assume that
X ,x,7,a form a product, and +,i,{,v a co-product.

Making p into a functor

We define a functor # : F,(K) — K that is closely related to u, and has therefore a closely
related notation. For any F,c € Obj(F.(K)) and ¢ : F — G we put

(1) f* = target of uF

(2) ¢ = (Fldips) : ¢ — 6"

Notice that by (1) we have ur : F*F — F“. (Some authors in the Squiggol community are
used to define (L, in) = (F*,uF).) The instance of ¢ that has to be taken in the right-hand

side of (2) is ¢gu : G#F — G*c; the typing ¢* : F# — c* is then easily verified. In order to
prove that * satisfies the two other functor axioms, we present a lemma first.

(3) Lemma For¢:fF— G and : A — A,
(Flg:¢) = (¢ us)i(sl).

17

Proof (Within this proof we use the law names and notation of Fokkinga & Meijer [1].
The reader may easily verify the steps by unfolding f : ¢ 5 ¥ into ¢ f = fri1, and using
$:F 6= (Vf:ufrig=gifc).)
required equality
= FusioN
(ol) : pipc 5 ¢y
= NTRF TO HOMO, ¢:F > 6
(ol ¥): ps = ¢

CAaTA HoMO

true.

(End of proof)

It is now immediate that * distributes over composition. For ¢ : F > cand 9 : 6 > H
we have ¢i¢ : F > H and

(v
 (F| ¢ ipm)
= Lemma (3), noting that i un : H*6 — v*
(i) (ol pum)
" gy
It is also clear that id” = id. Thus, ¥ is a functor, *: F,(K) — K.

(4) Remark Another corollary of the lemma is this: for ¢ : F —» ¢ we have that ¢*: f is
a catamorphism whenever f is a catamorphism. (The typing determines that the former
is an F-catamorphism, and the latter a G-catamorphism.) O

Let us look at some ¢ : F — 6 and see what ¢* is.

Example Probably the most simple, non-trivial, choice is F,6 := 1+ AXI, 1+1and ¢
:= id + 7. Notice that F* = the (set L of) cons-lists and pF = nil v cons, ¢* = the (set IN
of) naturals and puc = zero v suc. We find

¢ = (Flid +Fizerovsuc) = size : L— N
: O

Example Another non-trivial choice is F = 6 = A + 1, so that £* = ¢* = the (set of)
non-empty binary join trees over A, and ufF = tip v join. Apart from the trivial id : F > g,
we have ¢ :=id + M :F - 6 where M = 7 a r. We have

¢ = (id+Mitipvjoin) = W/ = reverse.

Since * is a functor, we have a simple proof that reverse is its own inverse:

18

reverse: reverse
g
= functor axiom
(¢ 6)*
= easy: MM = id
1d”
id.
Notice also that by Remark (4), reverse: f is a catamorphism whenever f is. O

Example Let { be a bi-functor and let F = Afland ¢ = 1{1. Take ¢ = !'fid : At1 — 111
Then

¢ = (Aty!'tidip(1f1) = shape (= !-map).

Factorizing map-functors

Let be any bi-functor for which u(A 1 1) exists for all A. Recall that the map-functor
induced by 1 , ¥ say, is defined by

A®” = target of u(At1)
f° = (At1 ftidu(Bin) : A" - B®

for f : A — B. We shall now define a functor ': K — F,(K) in such a way that composed
with #: F,(K) — K it equals the map-functor @ : K — K. To this end define

A' = Af1
f' = ftid : Af1-Bi1 (with (ftid)e = ftidc)

for any f : A — B. (That f' is a natural transformation is easily verified; it also follows
from laws NTRF TRIv, NTRF ID, NTRF BI-DISTR from Fokkinga & Meijer [1].) Indeed

A" = (At1)* = A"

fie = (fFtid¢ = (At1l fridp(Bin) = f=.
So w = tpu.
Remark It can be shown that 'is just curry(}). (Here curry(.) is the well-defined
functor from the category A x B — C to the category A — (B — C), where each
arrow denotes a category of functors with natural transformations as morphisms.) Thus,

given bi-functor {, we can express its map-functor without further auxiliary definitions as
curry(f) composed with . O

References
[1] M.M. Fokkinga and E. Mejjer. Program calculation properties of continuous algebras. December 1990. CWI, Amsterdam.

19

