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It is well known that any initial data type comes equipped with a so-called
map-functor. We show that any such map-functor is the composition of two
functors, one of which is —closely related to— the data type functor, and the
other is —closely related to— the function p (that for any functor F yields an
initial F-algebra, if it exists).

Notation
Let K be a category, and F : K -+ K be an endo-functor on K 4 Then pF denotes "the"
initial F-algebra over K , if it exists. Further, ,F(K) is the category of endo-functors on
K whose morphisms are, as usual, natural transformations; and FM(K) denotes the full
sub-category of .9K) whose objects are those functors F for which oF exists.
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and we denote by F t G the mono-functor defined by z(F t G) =  ZF t ZG, Object A when
used as a functor is defined by zA = A for any object z and fA = id A for any morphism
f. (An alternative notation for A t I is the 'section' At.) In the examples we assume that
X, *, it, A form a product, and +, 1, I, v a co-product.
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used to define (A in) = (Fm, /40.) The instance of 0 that has to be taken in the right-hand
side of (2) is OGos : GMF GPG; the typing OP : Fo G P  is then easily verified. In order to
prove that I '  satisfies the two other functor axioms, we present a lemma first.
(3) Lemma F o r  ( k : F -4 G and 1/) : AG A ,

(F1 OM =  (0; PG); 01 In •
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Proof (Within this proof we use the law names and notation of Fokkinga & Meijer [II.
The reader may easily verify the steps by unfolding f : 4* -
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rtiquired equality

FUSION
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true.

(End of proof)
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It is also dear that ids' --. Id. Thus, _o is a functor, _
0
' :  . T
o
, ( K )  - +  K .

(4) Remark Another corollary of the lemma is this: for # : F G  we have that te;
f
f i s
a catamorphism whenever f is a cat amorphism. (The typing determines that the former
is an F-catamorphism, and the latter a G-catamorphism.) 0

Let us look at some 0 : F G  and see what 4,16 is.
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of) naturals and pG = zero v six. We find
,
o
.te =  (FI  id + *; zero v suc) -  size :  L  -* N.

El

Example Another non-trivial choice is F -  G -  A + I, so that FA' = GP = the (set of)
non-empty binary join tiees over A, and isF = tip viol's. Apart from the trivial Id
: F  ' - ' 4  G
I
we have ek := id +  D4 : F •-, G where N = * A*. We have

el =  ( i d  -I- M; tip v join) =  M I  =  reverse.

Since _Is is a ftmctor, we have a simple proof that reverse is its own inverse:
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reverse; reverse
;

= f u n c t o r  axiom
(P)
m= e a s y :  tom —  id

Id"
= id.

11=11• 1.

Notice also that by Remark (4), reverse; f is a catamorphism whenever f i
s .Example L e t  f be a bi-functor and let F = M I  and G = it i .  Take =  !fid : i t i .
Then

-  1:1A t !  t id; g l  1 )  =  shape ( =  !-map).

Factorizing map-functors
Let t  be any bi-functor for which ti(A t I) exists for all A. Recall that the map-functor
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for f : A —• B. We shall now define a functor :  K . 1
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for any f  : A --• B. (That ft is a natural transformation is easily verified; it also follows
from laws NTRF TRW, NTRF ID, NTRF BI-DISTR from Fokkinga Se Meijer [1].) Indeed

At" =  ( A  t =
= I d ) "  =  (11 t t  id; p(13 =  r  •

so = tp.
Remark I t  can be shown that J  is just curry(t)• (Here curry() is the well-defined
functor from the category A x B C  to the category A ( 1 3  C ) ,  where each
arrow denotes a category of functors with natural transformations as morphisms.) Thus,
given bi-functor t, we can express its map-functor without further auxiliary definitions as
curry(t) composed with m. 0
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