
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 11, 323-357 (1975)

On the Completeness of the Inductive Assertion Method*

J. w. DE B~mKER AND L. G. L. T. MEERTENS

Mathematical Centre, 2e Boerhaavestraat 49, Amsterdam-lO05, The Netherlands

Received January 31, 1974

Manna's theorem on (partial) correctness of programs essentially states that in the
statement of the Floyd inductive assertion method, "A flow diagram is correct with
respect to given initial and final assertions if suitable intermediate assertions can be
found," we may replace "if" by "if and only if." In other words, the method is complete.
A precise formulation and proof for the flow chart case is given. The theorem is then
extended to programs with (parameterless) recursion; for this the structure of the
intermediate assertions has to be refined considerably. The result is used to provide
a characterization of recursion which is an alternative to the minimal fixed point
characterization, and to clarify the relationship between partial and total correctness.
Important tools are the relational representation of programs, and Scott's induction.

1. INTRODUCTION

Our paper describes an investigation in the area of the foundations of program
proving. For the statement of the problem we are concerned with, some history is

needed.
In [6], Floyd proposed a technique for proving program correctness which later

became known as the inductive assertion method. Let us call a program P correct with
respect to assertions p, q iff for all states x, y, if x satisfies p, and x is mapped by P
onto y, then y satisfies q. Floyd's technique can be phrased: I n order to prove the
(global) correctness of P with respect to p and q, it is sufficient to find suitable inter-
mediate assertions, and prove the (local) correctness of the program fragments between
the intermediate assertions. This method is justified by an inductive argument on
the number of times the loops in the program are executed. In several papers by
Manna (e.g., [11, 12]), Floyd's method was rephrased in the language of (second-order)
predicate calculus, and the following theorem stated: P is correct (with respect to

given p and q) if and only i f suitable intermediate assertions can be found. This
theorem may be viewed as a completeness theorem on the inductive assertion method.
However, the proofs in [11, 12] were not worked out, and, moreover, the theorem
was restricted to programs in flow diagram form.

* This publication is registered as Report IW 12/73 of the Mathematical Centre.

323
Copyright �9 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.

324 DE BAKKER AND MEERTENS

The present paper provides the generalization of the completeness theorem for
programs involving recursion, of which, as is well known, programs in flow diagram
form may be considered to be a special case. (The paper by Manna and Pnueli [14]
does not give this generalization, since--in the terminology of Section 2-- i t is
concerned with inclusion correctness only, the completeness of which is a direct
consequence of the minimal fixed point characterization of recursion; see below.)

The construction of the inductive assertions in the case of full recursion is rather
more complex than in the flow chart case. In fact, an infinite collection of intermediate
assertions turns out to be necessary. Structure is brought into this infinity by means
of a mechanism which indexes the assertions with traces reflecting the history of the
computation.

The basic tools for stating and proving our completeness theorem (given in Section 4)
are developed in Sections 2 and 3. In Section 2 we introduce the relational approach
to programming concepts, in particular of sequencing, selection, and while statements.
The approach allows convenient statement of program correctness, and treatment
of the following constructions. Given program P and assertion p, we are interested in:
the strongest q such that P is correct with respect to initial p and final q (denoted
by p o P) and: the weakest q such that P is correct with respect to initial q and final p
(denoted by P--+p). A number of basic properties of these operations are derived,
and a few remarks on other aspects of the relational approach are made.

Section 3 introduces (parameterless) recursive procedures. The by now well-known
results on their minimal fixed-point characterization, leading to Scott's induction
rule as important proof rule (as first stated in [18]), are derived again. However, we
chose a different approach from, e.g., that of [3] by this time exploiting the relationship
between a context-free grammar and a system of procedure declarations. In particular,
we apply the result on context-free languages as minimal solutions of systems of
equations (e.g., [7]) to the "languages" of elementary actions defined by procedures.

Section 4 brings the main result of the paper. First, the completeness theorem for
the flow chart case is proved by way of introduction. Use is made of the well-known
technique of replacing the flow chart by an equivalent system of recursive procedures
which are regular in form; i.e., each term contains at most one procedure call, and
this is the last operation in the term. A finite system of intermediate assertions, one
for each procedure in the system, suffices here. Next, the general case is treated, viz,
of a system of declarations in context-free form. This time an infinite system of asser-
tions is needed. The main step in their construction is a technique for associating
with a finite context-free system an equivalent infinite regular system. Once this is
done, the intermediate assertions are obtained in the same way as with the flow chart
case. The formalism of the just-mentioned construction is rather forbiddingly complex.
However, it is shown both that a simpler construction will not work and that there is
a way of looking at the construction which does lead to practical applications (Section 5).
An important role is played by the notion of (left and right) companions of a procedure

COMPLETENESS OF INDUCTIVE ASSERTIONS 325

call, constructs which specify the computation preceding and following an inner call
of a procedure within a tree of incarnations of procedures. These companions give
the necessary grasp on the history (and future) of the procedure call, and are defined
using the indexing mechanism mentioned above. The companions, together with
the "o" and "--~" operations of Section 2, are the main tools in the proof of the
completeness theorem for which, furthermore, Scott's induction is essential.

The result is applied in two ways. First of all, an alternative to the minimal fixed-
point characterization is immediately obtained from it. Second, the relationship
between the notion of correctness given above (actually called partial correctness by
Manna) and that of total correctness is studied. The completeness theorem is somewhat
refined, which then allows the proof of the validity of Manna's reduction of total
correctness proofs to proofs in terms of partial correctness.

As remarked at the beginning, the paper is specifically devoted to foundational
problems, and not so much to the application of the techniques of Section 4 to practical
program-proving problems. However, in Section 5 we illustrate by means of an
example--the recursive solution to the Towers of Hanoi puzzle--that our technique
does have practical applications.

As related work, besides the already mentioned paper, we should note that of
Engelfriet [5], who is also concerned with completeness results for flow diagrams.

The soundness (not the completeness) of Floyd's method for programs with
recursion was proved earlier in [3].

The present paper is a modification and extension of our technical report [4].
We acknowledge critical comments by M. Fokkinga and W. P. de Roever.

2. PROGRAMS AND RELATIONS

The starting point of the present section is the conception of a program as specifica-
tion of a mapping between states. Of course, this view has its limitations, since it
abstracts from many properties of the computation performed in transforming the
states. Therefore, in the next section, in our treatment of recursion, we will have
to say more about the connection between the relational and the computational
approach.

It is convenient to allow, at the start, nondeterministic programs, and to see the
mapping P from initial state x to final state y as a binary relation, written as (x, y) ~ P,
or, usually, as xPy. Thus, (nondeterministic) programs allow xPy and xPy', with
y@y ' .

A slight articulation of the notion of state may be useful. This is done mainly
for explanatory reasons, since almost nowhere in the sequel is this analysis of the state
really needed.

We view the state, in first approximation, as a mapping from addresses--which,

326 D E B A K K E R A N D M E E R T E N S

called by any other name (A L G O L 68) would work as wel l - - to values. As an elemen-
tary example, consider the effect of an assignment statement X i : = f (X 1 , X2 , . . . , Xn) ,
where for f one may think of any n-ary function (n / > 0). Suppose that the address
(associated with; see remark below) Xi has value a i , i = 1, 2,..., n. Then we have,
in a self-explanatory notation:

. : = i (x , ' u '

a 1 . . . a i ... a n al ... f (a I ,an) ... an/"

Remark. A more refined analysis distinguishes the identifier Xi and the address
associated with it, using, e.g., environment techniques, or the possess relationship
of A L G O L 68. Such refinement is not necessary for our present aim.

Mostly, it will not even be necessary to look as closely at elementary programs as
we have above. I t suffices to have "elementary actions" A 1 , A S , each of which
de te rmines - - in some way we do not care to analyze fu r the r - - a relation between
states. T h e reader may always "fill in," e.g., an asignment statement for such an
elementary action, but the structure of that statement will then play no part in our
story.

F rom elementary actions we build up more complex programs with associated
relations. Before we go into this, we introduce some notational conventions about
operations with relations. Let $/" be the domain of states, and let R, R1, R2 ,...,
be binary relations over Y/" (i.e., subsets of $/" • ~F'). Then we define

a. Binary operations. Composition: R 1 ; R~ = {(x, y) [3z[XRlZ ^ zR2y]}. Union:
R 1 u R2 = {(x,y) f x R l y v xR2y} . Intersection: R 1 c~ R 2 = {(x,y)] x R l y A x R 2 y }.

b. Unary operation. Conversion: 1~ = ((y , x)] xRy) .

c. Nullary operations. The empty relation ~2 = Z (the empty subset of ~F" • $~).
The identity relation I = {(x, x)] x e 3r The universal relation U = ~F" • ~//'.

co
d. The star operation. R* = I k3 R u R; R U 0i=0 Ri.

These operations are used in associating relations with programs, or, also, in the
formulation of assertions about the correctness of programs.

The programming concepts we treat in this section are: sequencing (denoted by
the "go-on" symbol " ;") , selection (i f "" then "." else) and simple iteration ("whi le"
iteration).

The first concept is immediately taken care of: Let S 1 , S 2 be two programs with
associated relations R 1 , R 2 . Then with S t ; S 2 we associate the relation R t ; R 2 .

For selection we need some special measures. Consider the conditional s tatement
i f p then $1 else $2 , where p is some Boolean expression (usually called a predicate

in the sequel). Let the relations p+ and p_ be defined by: p+ = {(x, x) [p(x) is true},
p_ = {(x, x)] p(x) is false}. I t is not difficult to verify that the relat ionp+ ; R 1 u p_ ; R 2

COMPLETENESS OF INDUCTIVE ASSERTIONS 327

satisfies the usual meaning of the conditional, i.e., x(p+ ; Rx u p_ ; R2) y iff p(x) and
xRly or ~p(x) and xRzy.

Observe that for the relations p+ and p_ we have: p+ c~ p_ = 12, p+ tJ p_ _C/,
and p+ u p_ = I iff p is a total predicate (p is defined for all states x). In the sequel,
all predicates are assumed to be total. The present notation may take a moment to get
used to. As an exercise, the reader might try to derive, e.g., properties of conditionals
such as if p then (if p then S 1 else S~) else S 3 = i f p then S 1 else $3, by proving the
equality of the associated relations. (Hint: Use p+ ; p_ = p+ n p_ = 52, and q; q = q,
for each q which is a subset of L)

The next concept we deal with is iteration, for the moment only in the form of
the while statement while p do S, with the usual semantics: Iterate S as long as p
is true (including the case "do nothing" (I!), if p is false to begin with). As corre-
sponding relation we have (assuming, again, that R corresponds to S, this assumption
becoming tacit from now on): (p+ ; R)*; p _ , also abbreviated as p �9 R.

Remark. Please observe that nothing is alleged to be proved here. The treatment
is intuitive; a rigorous one follows in the next section, provided the reader is willing
to agree that the while loop is a special case of recursion.

The exercises here are: T ry to prove, by manipulating with relations: (1) p * R ----
p + ; R ; p * R u p _ . (2) p , (p , R) = p * R . (3) Let R , p = a t R ; p , R
(representing the repeat statement repeat S until ~p). Prove that R �9 (P l v p~) =

(R * Pl) * P2,
As the next step one might expect the introduction of the go-to statement, either

directly, or in the form of a flow diagram specification of the flow of control. Intuitively
satisfactory treatment of these is not so easy. Since they are a special case of programs
with systems of recursive procedures anyway (more about this in Section 4), we do not
deal with these separately, but wait till after the introduction of recursion in Section 3.

We now continue our relational treatment of programs with the discussion of a
number of ways of looking at equivalence and correctness, and their relational repre-
sentation.

Equivalence is easy: Two programs P1 and Pe are equivalent iff their associated
relations are equal. For a possible objection to this definition, compare the remark
made below when we introduce the relational formulation of termination of programs.

Unless explicitly stated contrarily, we shall from now on identify programs with
their associated relations. A possible objection is that, occasionally, we shall need two
equality relations between programs/ '1 and P2, viz, syntactic identity stating that the
two symbol strings P1 and P~ are identical, and, second, semantic identity stating
that the relations (associated with) PI and P2 coincide (i.e., this is the equivalence
relation just introduced). Normally, we shall mean the second equality relation,
and we reserve the symbol " = " for this. In the few cases where we want to express
syntactic equality, we shall do so by using the symbol " ~ . "

328 DE BAKKER AND MEERTENS

The currently most-used statement of correctness is the following. A program P
is correct with respect to the (initial and final) predicates p and q iff

Vx, y[p(x) ,', xPy ~ q(y)]; (2.1)

i.e., iff for all initial states satisfying p, if P transforms x into y (note that this implies
termination of the computation from x to y), then for the final state y, q(y) holds.

This is the formulation which leads to the inductive assertion method, as proposed
by Floyd and further developed by Manna and Hoare. Relationally, we write for (2.1),

p; P C p ; q, (2.2)

or, more precisely, p+ ; P C P; q+. The + index will be dropped, however, when
we expect no confusion to arise; also, instead of p_ we will usually write ft.

We illustrate the form which the inductive assertion method takes by discussion
of a simple example; viz, the proof of

p; r �9 P _C r �9 P; q. (2.3)

We refer to Fig. 1.

FIG. 1.

t P s

The inductive assertion method for the while statement r * P.

According to the Floyd technique (which, in essence, was proposed earlier by
Turing, in [19]; we owe this reference to R. L. London), we try to find an intermediate
assertion s for which we can prove that

I pCs ,
s; r; P C_ r; P; s,

s; f C_ ~; q;
(2.4)

i.e., in order to prove the global fact (2.3), we prove, for suitable s, the local facts (2.4),
and then infer (2.3).

The soundness of this technique was shown by Floyd by an argument by induction
on the number of times the loop is executed. Manna provided the other half by a
theorem which--for this special case--amounts to: p; r * P _C r * P; q if and only if

COMPLETENESS OF INDUCTIVE ASSERTIONS 329

there exists s such that (2.4) holds. This is Manna's partial correctness theorem
[11, 12] in its simplest form. To explain his treatment of total correctness, its formula-
tion has to be refined; we shall return to this at the end of Section 4. As remarked in
the Introduction, the need for a more complete proof of Manna's theorem, together
with the desire to generalize it to full recursion, has been the main motivation of
the present paper (the other one being the investigation of the relationship between
partial and total correctness).

Hoare (almost) writes {p} P{q} for (2.1) [9]. Using this notation, he introduces
various axioms. For example, his while statement axiom essentially states again that
from (2.4), (2.3) may be inferred. The situation is somewhat different for Hoare's
assignment axiom, which has the form of something like {p(f(X)}X : f (X){p(X)};
i.e., if p(X) is true of the state after performing the assignment, then p(f(X))(the result
of substituting f (X) for X in p(X)) was necessarily true before its execution. This can
be explained by looking again at (... x . ")X : - - f (X) (. ' . x . I(~ "') and noting that
p(X)*-~p(f(a)) after, and p(f(X))~-~p(f(a)) before the assignment. The reader
who is of the opinion that this merits fuller treatment has our sympathy, but that
is not the task we have set ourselves in the present paper. We mention this axiom
mainly because it has the form of P; q Cp ; P: if q is true after execution of P, then
necessarily p had to be true before P. This brings us to a somewhat more systematic
treatment of the variants of (2.1), and the way in which the program and one condition
together determine (something about) the other condition.

Before we proceed with this, we make two remarks.
First, note that both p; p_C P; q and P; q Cp ; P are, like many more correctness

statements, all special forms of a p_CQ inclusion (e.g., for the first take xQy+--~
[p(x) --* q(y)]), so that, if one insists, one may view all correctness as simply the
inclusion of the relation associated with the program in some other relation.

The second remark is about termination (cf. [17]). When we take this in the sense of:
P terminates for initial state x iff there exists y such that xPy, we have no problems:
We write Vx 3y[xPy], or, equivalently, I C P; P, and try to prove this for the case
at hand. However, sometimes we want to be sure that all paths terminate: let P be
a program which terminates, for all input, in this strong sense. Let Q be the nowhere
terminating program (L: goto L, say). Let their corresponding relations be R and Q.
Then, though R u ~2 = R, we object to the conclusion that P u Q = P (" u " taken
as programming construct denoting nondeterministic choice), since the left-hand
side may, if the second alternative is chosen, end in an unending computation, whereas
the right-hand side always terminates. A mechanism for dealing with these problems
in terms of the notion of well-founded relations, has been proposed and exploited by
Hitchcock and Park [8]; we will not pursue these problems further here.

Now, back to correctness. We once more consider formula (2.1),

Vx, y[p(x) ^ xPy ~ q(y)],

330 DE BAKKER AND MEERTENS

and observe that it can be written in two other, equivalent, forms:

'r ^ xPy] -+ q(y)], and Vx[p(x) ~ Vy[xPy --+ q(y)]].

This leads us to the introduction of two operations, denoted by "o" and
respectively:

DEFINITION 2.1. (p o P)(x) +-+ 5y[p(y) A yPx], (P --~ p)(x) +-~ Vy[xPy -+p(y)] .

Remark. This definition includes the "extreme" cases p = ~9 and p = I, standing
for the identically false and the identically true predicate, respectively. From these
definitions we immediately infer the following lemma.

LEMMA 2.1. (1) p; P _C P; (p o p), (P - + q); P C P; q.

(2) For all p, q, i f p; P C P; q, then p o P C q, and p C_ p - . q.

(3) p o P = O { q I p ; P C _ P ; q } , P - - ~ q = O { p I p ; P C _ P ; q } .

Proof. Parts 1 and 2 follow from the definitions, part 3 from parts 1 and 2.]

We will also have occasion to use the operations p o P and P --,- q, for which we have
p o p = ('1 {q]p; P C P;q} = ('] {q l p; p C q; P}, and P---~ q = O { p I P ; p C q ; P}.
(Observe that here we used P C Q ,-+/5 _c ~, (P1 ; P2)'-' = / sz ;/51, and ~ = p forp C I.)

The basic properties of the "o" and "--~" operations are collected in Lemmas 2.2
and 2.3.

LEMMA 2.2 .

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

/'roof.

.

(1) f 2 o p = p o f J = Q .

P ; I o P = P.

p o q = p ; q = p f ~ q .

P ~ (P1 ; P2) = (P ~ P1) ~ P~..

p o (P~ u v2) = (p o e l) u (p o P2).

I f PA C_ P2 , then p o P1C p o P2 .

I f pC_q, thenpo PC_qo P.

(p u q) o V = (po P) u (qo P).

If~5 is a function, then (p f~ q) o P = (p o P) ~ (q o P) .

The proofs are immediate from the definitions. We prove only parts 2 and 4:

Vx, y[xP; I o Py ~ xPy ^ (I o P) (y) +-~ xPs A 3Z[I(z) ^ zPs]

xPy ^ ~z[zPy] +-~ xPy].

COMPLETENESS OF INDUCTIVE ASSERTIONS 331

4. Vx[(p o (P1 ; P2))(x) *-~ 3y[p(y) ^ YP1 ; Pzx]

3y, z[p(y) ^ yPx z ^ zPzx]

3z[3y[p(y) ^ y e l z] ^ zP2x]

3z[(p o P~)(z) A zP2x] ~ ((p o P1) o n2)(x)].

For " -~" we have similar properties, some of which are mentioned in

LEMMA 2.3.

(2)
(3)
(4)

(5)

Proof.

(1) P - + I = L 1 - , p : : p .

I C (Pl ~ P2) i f fp i C_ P2.
(P ~ ~2); P : - s

(/'1 ; v, ,) - ~ p : (P l (P2 - , p)) .

(15 w P2) - - p -= (Vl - ~ p) n (P2 - - - p) .

Immediate. I

When we c o m p a r e p o t 5 == O { q l P ; p C q ; P } , and P ~ p = U { q I q ; P C P ; P } ,
the question arises as to when these constructs coincide. The answer is given in terms
of the notions of functionality and totality of P: P is a function iff 15; p C I, or,
equivalently, Vx, y, z[xPy ^ xPz ~ y = z]. P is total iff 1 C p; 15 or, equivalently,
Vx 3y[xPy]. We then have:

LEMMA 2.4. (!) I f P is a function, then p o P C_ p -+ p.

(2) If, for all p, p o i 5 ~ P --+ p, then P is a function.

(3) I f P is total, then p - § p C p o p.

(4) If, for all p, P --~ p C_ p o P, then P is total.

(5) (Conclusion) P is a total function iff Vp[P --~ p = p o P].

Proof. Proof. We show only part 2. Its assumption is equivalent to:

Vp[Vx, y[xPy a p(y) --+ Vz[xPz - , p(z)]]].

Let Y0 be some element in the range of P, and let p(y) ~ y == Yo. Then we see that
the assumption amounts to: I f xPy and y = Y0 and xPz, then z = Y0 ; hence, P is
indeed a function. |

Since we are working in a relational framework, a relational version of the "o" and
"--+" operations may be of interest. For "o" this can be given directly, but for " - + "
we have to use complementation of relations with respect to 1: For p C_ I, fi ==at IIp.

LEMMA 2.5. (1) p o P -= U; p; P n L (Rememberthat U is the universal relation.)

(2) P ~ p = - f o P .

57I/II/3-4

332 DE BAKKER AND MEERTENS

Proof. Left to the reader. |

As the final lemma we need

LEMMA 2.6. R 1 C R 2 i f f Yp, q[if p; R 2 C_ R 2 ; q, then p; R 1 C R 1 ; q].

Proof. ~ is obvious. As to ~ : Choose some fixed Xo, and assume XoRly. Choose,
furthermore, po(x) ~-~ x - - x o and qo(Y) ~ xoR2y. Then Po ; R~ C R 2 ; q0 holds;
hence, Po ; RI C R 1 ; qo follows; i.e., x -~ x o A X R l y ~ xoR2y. Thus, the assumption
xoRly leads to xoR2y. Since x o was arbitrary, the proof is completed. |

COROLLAaY 2.6. If , for all p and q, R 1 is correct with respect to p and q i f f R 2 is
correct with respect to p and q, then R 1 = R 2 . (Compare this with: I f , for all Q, R 1 is

correct with respect to Q (R 1 C_ Q) i f f R2 is correct with respect to Q, then R 1 = R 2 .)

Proof. Direct from Lemma 2.6. |

As an exercise to conclude this section, we offer to the reader who is insufficiently
challenged by our elementary lemmas: Let R t =of (Io _~). R; i.e., perform R as
long as it is defined (e.g., if R is the descendent relation in a tree, R* connects the root
with all leaves). Prove that R tCtt = R ft.

3. RELATIONS AND RECURSION

The relational approach to program semantics is now extended to programs in-
volving recursion.

Our treatment of this is not essentially different from, e.g., that of [3], and may be
skipped by the reader who already knows about procedures taken as minimal fixed
points and Scott's induction and wants to proceed immediately with the main results
of our paper in the next section. However, a number of points are stressed differently;
e.g., the systematic distinction between language and interpretation is kept in the
background here. Moreover, the main result--procedures as minimal fixed points with
corresponding induction rule--is now obtained by exploiting the correspondence
between systems of recursive procedures and context-free grammars (cf. also [1]).
This has the advantage, besides the obvious one of clarification of the correspondence,
that we can rely on a well-known result in formal language theory stating that context-
free languages are minimal solutions of systems of equations, and, moreover, that
these solutions are obtained by successive approximations (see, e.g., [7]; this result
may be seen as an instance of Kleene's first recursion theorem [10]).

In a program with recursion we have a system of (mutually recursive) procedure
declarations, together with what may be called the "main" statement of the program,
which, normally, contains calls of the declared procedures. Both this statement and
the statements of the procedure bodies are supposed to have the structure as introduced

COMPLETENESS OF INDUCTIVE ASSERTIONS 333

in the previous section. That is, they are made up from elementary actions, to which
the procedure symbols are now added, by means of composition and union (where
the last construct is used to model conditionals).

More formally, a (rccursive) program T consists of a set of declarations

and a statement S; i.e., 7" -= (~ , S). Here " ~ " stands for "is recursively defined by"
(in A L G O L 60 we would write procedure Pi ; Si , i = 1, 2,..., n). Observe that .@
is a set since the order in which the declarations are given will turn out to be immaterial.

Often, we want to emphasize that the S ; , i =-: 1,..., n, or S, may contain occurrences
of the P i , i = l n, and we write S, ~- S i (P1, Pz P,,), S ~ S (P1 , P2 , P ,) .
This notation is also used in the customary way for indicating substitution: The
result of simultaneously substituting, in S, for each Ps , the statement S c~,
j = 1, 2,..., n, is denoted by S (S a), S(z~,..., S ')) .

Before we proceed with a more detailed formulation of the structure of the S i ,
one comment may be in order. The reader will have noted that our procedures are
parameterless. Admittedly, this is a restriction which leaves out of consideration some
interesting (and difficult) problems. However, we are of the opinion that a satisfactory
treatment of the various ways of parameter passing cannot be given without the
introduction of (the equivalent of) the A L G O L 68 notions of identity declaration
and proceduring, an idea which is not pursued in the present paper. In defense of
the restriction, we can only remark, first, that there is a correspondence (given below)
between parameterless procedures and the monadic recursive function schemes of,
e.g., [1], and, second, that it will appear, we hope, that even parameterless procedures
lead to interesting considerations which, moreover, are needed anyway for a full
understanding of procedures with parameters. So much for the apology.

Now we continue with a precise definition of the class of recursive programs.
We start with the class .~;,"--{A1, A 2 } of elementary actions, ~ = {P, P l ,

/5 q,..., r,...} of Booleans, and ~f : : {I, 12} of constants. (Remember that 1 denotes
the identity (dummy) statement and 12 the empty statement.) Let ~ -- .c~ u ~ t_) cg,,
and ~ (the class of procedure symbols) = {P1, P', }. Then the class of statements
over .~ and .&, denoted by c f (~ , ~) , is defined by

(I) .~ u ~ c__ ~(,o~, ~) ;

(2) if S~, Sz E .Y(.~., .~), then (Sa ; Se) and ($1 t.) $2) ~ 5P(9~, .r

Examples of programs are

(1) ({P <- ((p; (.4; P)) wp-)}, P),

(2) ({P~ <-: ((p; P.) ~3fi), P2 <= ((P; (A; /2)) u (ib; Pa))}, P1).

334 DE BAKKER AND MEERTENS

Anticipating the analysis given below, the reader may already observe that for
the P of the first example we have that P = p �9 A, and for the Pi of the second
example : Pi = P * (P * A). Moreover, as corresponding monadic function schemes
we have

(1) f (x) ~ if p(x) then f(a(x)) else x,

(2) fl(x) ~ if p(x) then fz(x) else x,
f2(x) ~ if p(x) then fz(a(x)) else fi(x).

Clearly, our definition of the class of programs causes some parentheses trouble.
However, our formal treatment does need their introduction, so that we can later
prove that we may drop them unambiguously.

Our task now is to find the relations corresponding to procedures, just as we did
before for the constructs of sequencing, selection, and simple iteration. As before,
we assume known how the elementary actions are executed, and now we must analyze
how a program, for given initial state x = x 0 , determines a sequence of elementary
actions applied successively to intermediate states x, , eventually leading to the final
state x~ = y. I n this analysis, the notion of computation point plays a useful role:

DEFINITION 3.1. A computation point is a triple (St, x, St), where St is a sequence
o f zero or more elementary actions (the empty sequence being identified with the
identity I), x is some state, and S~ is some statement in 5~'(~, ~) .

Intuitively, a computation point (S~, x, St) denotes, at each moment of the computa-
tion, that

(1) St is the sequence of elementary actions already performed,

(2) x is the current state,

(3) S~ is the remainder of the program which still awaits execution.

Using this notion, the definition of a computation prescribed by a program
T = (~, S), when applied to initial state x, follows rather naturally: Begin with
initial computation point (/, x, S) (S t ~ I : nothing has yet been executed), define
the allowed transitions between the computation points in accordance with the
intended meaning of the various program constructs, and then end with some final
(S', y, I), with S ' some sequence of elementary actions, y the final state, and Sr ------- I
indicating that nothing remains to be done.

So we need to define the allowed transitions between computation points:

DEFINITION 3.2. Let ~ be a set of declarations. A computation step is a ~-allowed
transition between two computation points (St , x, S~) and (St', x', S /) iff one of the
conditions la, lb, 2a 2e, is satisfied.

COMPLETENESS OF INDUCTIVE ASSERTIONS 335

(la) Sr ~ (R; S /) , for some R e ~ , and, moreover, xRx', and St '==- S~;
R hold. (Observe that this implies that R ~ ~ , and that, if R := p e .~, then xpx', or,
equivalently, x = x' and p(x) hold.)

Sr =- R, for some R e ~ , S / ~ / , and, moreover, xRx ' and Sz' = Sz ; R (lb)
hold.

(2a)

(2b)

(2c)

(2d)

s , . - ((&,l ; &,~); S r , 3) , S , . ' --~ (St,1 ; (&,.. ; &3)),
S t' ~ S t , x ' = x .

S r ~ (S t , 1 tO S t , 2) , S r, ~- S~. 1 or S / =: S~,2,

S (~ - S z , x ' = x .

s / = ((&a u &.~); &,.~), s / = ((&a ; &,3) w (&.~ ; &.~)),
S (=-- S z , x ' = x .

S~ 7-: (P; S~.I) , S / ~ S; Sr.a, where P ~ S 6-@,

Sz ~ :-= ~S'~ , X' = X.

(Observe that the replacement of the procedure identifier P by its body S is the
usual copy rule of procedure semantics.)

(2e) Sr~ - :P , S r ' ~ S, where P ~ S ~ ,

S t' =-2 S l , x ' = x .

EXAMPLE (not bothering for the nmment about parentheses). A sequence of
-@-allowed computation steps, where -@ is {P ~ p; A; P U fi}, is (/, x0, P),
(/, x0, p; A; P v) if), (I, x 0, p; A; P), (p, x l , A; P), (p; A, x2, P), (p; A, x2, p; A; P u f f) ,
(p; A, x2, p; A; P), (p; M;p, xs, A; P), (p; A;p; A, x4, P), (p; A;p; A, x4, p; A; P u f f) ,
(p; A; p; A, x4, p), (p; .4; p; A; if, xs , I), where

(1) p(xo) and p(x2) are true, p(x4) is false;

(2) x o = x 1 , x iAx2 , x 2 = xs , xsAx4, and x 4 = x 5 hold;

(3) we have omit ted--as we will do in the sequel-- the identity action in a
sequence of elementary actions.

The definition of the relation to be associated with program T = (-@, S) should
give no problem:

DEFINITION 3.3. Let T = (-@, S) be a program. Then (x ,y) ~ T iff there exists
a sequence of elementary, actions S' , and a sequence of .@-allowed computation steps
from (I, x, S) to (S', y, I) .

From now on, we assume the set -@ of declarations fixed, unless otherwise stated,
and we write x S y instead of x(..@, S)y . Also, we understand S 1 C S 2 or S 1 = ,S' 2 with
reference to this -@.

336 DE BAKKER AND MEERTENS

From Definition 3.3, a number of properties follow rather directly, which is why
we omit their proofs.

LEMMA 3.1. (1) ((S 1 ; 32) ; Sa) = (S 1 ; (S 2 ; Sa)) (= S 1 ; S 2 ; Sa, from now on).

(2) s l w s~ = s~ w & .

(3) (($1 W Sz); $3) = ((S~ ; S,) w ($2 ; $8)) (this will, by convention, be written
as $1 ; S~ w $2 ; $3).

(4) Similarly for left-distributivity of ";" over " w " .

(5) I f P ~ S c 9 , then P = S. (This is the fixed-point property of procedures.)

(6) xS~ ; Say (according to Definition 3.3) iff 3z[xSlz A zS2y], and xS 1 u S2y
(according to Definition 3.3) iff xS~y v xS2y (i.e., Definition 3.3 is a consistent
extension of the definitions of " ; " and " t3" of Section 2).

(7) (Monotonicity.) I f S~ 1~ C_ S~ 2~, i = 1, 2 n, then

s(s(~) S(l)~ c_ s(sl~,,. . . , s'~,~
i n j ~

(8) I f (S~ , x, S,.), (S{, x', St') is a 9-allowed computation step, then St ; S~
S[; S / .

(9) S ~- U {S'] 3x, y such that (I, x, S) (S', y, I) is a sequence of 9-allowed
computation steps)

These facts being, as we hope, satisfactorily established by the reader, we
now continue with the refinement of the analysis, leading up to the minimality of
the fixed points.

We start with the following two observations.

1. The four-tuple (~ , ~ , 9 , S) reminds one of a context-free grammar, with
~ : nonterminals; ~ : terminals; 9 : productions rules; and S: start symbol.

2. The way in which the 9-al lowed computation steps are defined--in particular,
the procedure-call step (2d, 2e)--reminds one of the production steps in the derivation
of a context-free language.

T o this we add the following by way of further introduction. Consider a procedure
P declared by P ~: p; A 1 ; P; A 2 U ft. Suppose we choose p, As , and A~ such that
we have as instances of P, in a self-explanatory notation, P ~ Ix > 0 I x : = x - - 1];
P; [x : = x + 1] • [x = 0]. Our assertion that P = Un~0 ((x : = x - - 1)n; x : = 0;
(x : = x - - 1)n) will not be surprising, nor the similarity of this expression with the
"language" {(x : = x - - 1)~; x : = 0; (x : = x + 1) ~ [n ~> 0}. We now make these
informal observations more precise.

COMPLETENESS OF INDUCTIVE ASSERTIONS 337

Let r be a mapping from statements S in ~ (~ , ~) to subsets of the language
(~ ' u ~ u ~)* , i.e., the set of all finite (possibly empty) sequences of symbols in
~ , ~ or ~ , defined as follows (identifying singleton sets with their elements).

= A, r(p) = p, , (P) = P.

; $2) = ~-($1) T(S2) (juxtaposition denoting the usual "product" of sets of .(s~
words).

. (s~ w &) = -(Sl) u ,(s~),

~-(/2) = ~ (the empty set of words),

r(I) = e (the empty word).

For ~ = {Pi ~ Si}r '~ we define r (~) = {P~ ~ S~' [i = 1, 2,..., n and S~' e ~-(S~)}.
Then for the program (.~, S) we have as the corresponding grammar (~, d u ~ , ~-(~),
r(S)). Note that there is a slight generalization involved in that the sets ~@ and ~ t3
are infinite and that T(S) is, in general, not just an element of ~ (the set of non-
terminals), but a subset of (d U .~ U ~)* .

EXAMPLE. For the program ({P ~ p; A; Pwfi},Pt.)A) we have as the corre-
sponding grammar: ({P}, {p, fi, A}, {P --+ pAP, P -+ fi}, {P, A}).

The next definition introduces the language associated with a program.

DEFINITION 3.4. Let T = (~ , S) be a program. Let T(T) ~ (~ , d U ~ , r(~) ,
r(S)) be the (generalized) context-free grammar associated with T. Then

..~(r(T)) = {S" [S" E (d u ~) * and 3S'e r(S) such that S ' ~ S"},
~(T}

where *~,(r) is defined in the usual way as derivation with respect to the grammar ~-(T).

EXAMPLE. For T = ({P ~ p; A; P U/Y}, P, we have ~q~0-(T)) = {(p/j) if i [i >~ 0}.
So far everything has been rather straightforward. The next step also seems clear:

One might at first expect that the set of all elementary actions determined by a program
on the base of Definition 3.3 would coincide with the language of Definition 3.4.
There is a slight complication, however. For example, T = ({P ~ p; A 1 u/7; A2},p; P).
Then ~-cf(~-(T)) = (ppA~, p~fiA~), but there is no x, y such that (/, x, p; P),...,
(p; fi; A s , y, I) is an allowed sequence of computation steps.

This is easily taken care of, however, by noting that those sequences of 5r
which do not occur as possible computations are necessarily equivalent with /2.
Using, for ~ = ~(~(T)) , the notation ~-1(~r for U~(s)~ S (this yields one relation,
not a set of relations!), we have as

LEMMA 3.2. r = r-I(..~(r(T))).

338 D E B A K K E R A N D M E E R T E N S

Proof. Direct from the definitions. |

Continuing with the last example, ~ (~ - (T)) = (ppAt, p~A2). Hence,

T - a (o o C # (T (T))) = p; p; A t U p; i f ; A~ = p; p; A t U f2 = p; p; A t = T.

We have now reached the point where we can apply the result of, e.g., [7], which
states that context-free languages are minimal solutions of a system of equations
the solutions for which are obtainable by means of successive approximations, starting
from the empty set.

Let ~ = (Pi ~ Si}in-- t , let S ~ S (P t ,..., Pn) be an element of 5~(~, ~) , and let
T = (.~, S). By the definition of r, "r(S) ~ - r (S) (P t , . . . , Pn) (i.e., ~'(S) is a set of words,
each of which may contain occurrences of Pt , Pn). Let

~-(S)tOl de

z(S)t~+tl =df ~.(S)(r(St)tsl T(S,)tSI), j = 0, 1,....

co
Then, by [7], -Sa(~'(T)) = [.)j=o ~'(S) [j]. Hence by Lemma 3.2,

(o) T = T--I (o~(T(T)) = T - 1 T (S) [5] .

\ 5 = 0 /

Now let S t~ _d~ ~2, S (5+t) --dr --S(J) . S~)). - - - - ~(t ,.... Then it is not difficult to verify that
S 0) = ~'-t(r(S)[J]), and, moreover,

S(J) = ~--~(~-(S)tS]) = ~--~ ~ (s) t J] = T .
5=0 5=0

Thus, we have

T = (~ , S) = ~-t ~-(S)tJ] = S(J).
j = 0

With reference to ~ once more omitted this yields

THEOREM 3.1. (The union theorem for programs with recursive procedures).

S = ~_) S Ij).
j = 0

COROLLARY 3.1. Let ~ = {Pi ~ Si}t~=a , and let Qi satisfy S i (Q1, . . . , Q ,) c_ Qi ,
i = 1, 2,..., n. Then P~ C Q i .

COMPLETENESS OF INDUCTIVE ASSERTIONS 339

oo
Proof. We use that Pi = Si (Lemma 3.1.5), and that Si = Uj=o S~ j). Then

using induction on j , for each i = 1, 2,..., n,

S!O) = .O _C Qi

s~ j+,) = s , (s~ (;) s(~ ,)) _c s , (o l ,..., 9 ,) _c 9 ,
oo

(by monotonicity (Lemma 3.1.7) and the induction hypothesis). Thus, ~Jj=0 S~ ~) _C O~,
whence Pi C_ Oi , i = 1,..., n, follows. |

COROLLARY 3.2. (Minimal fixed-point property). Let ~ be as before. Then

(/)1 , Pn) = 0 { (01 On)] s i (o1 , ' " , On) = O i , i = l , . . . , n}.

Proof. By Lemma 3.1.5 and Corollary 3.1, the Pi are fixed points of the Si which
are included in all fixed points; hence, they are minimal fixed points. |

The next corollary is an easy consequence of Corollary 3.2, and deals with
correctness in terms of inclusion (P cO) ; it is stated for comparison with similar
results to be given in Section 4, for correctness in terms of assertions (p; P C P; q):

S " COROLLARY 3.3. Let ~ = {Pi ~ i}i=1

(1) (Correctness in terms of inclusion.)

Vj = 1,..., n, O~[Pj C Q~ iff 3Ol', O, '[S,(Q~', O , ') C_ Of , i = 1 n, a n d O / C__ Qj]].

(2) (Characterizing recursion in terms of inclusion correctness.) VR1 ,..., Rn,

[Vj = 1,..., n, Qj[Rj C_ Q~ iff 3QI',..., Qn'[Si(Q~',..., Q , ') c_ Q~', i = 1,..., n, and Q/C_ Q~]]

/ff Yj = 1,..., n [Rj = Pj]].

Proof. Part 1 follows from Corollary 3.2, and part 2 from part 1. |

The next main application of the union theorem is in the proof of Scott's induction
rule, which plays an important part in Section 4 (and elsewhere in proofs about
recursion; see, e.g., [2, 3, 13, 15]).

THEOREM 3.2. (Scott's induction rule). Le t ~ = {Pi ~ S~}i~ 1 . Let

Sz -~ Sz(P1 ,..., P ,) and Sr =-- Sr(P~ ,..., P ,)

be two statements satisfying the two conditions:

(1) s~(~,..., s?) = s,(~,..., ~).
(2) I f S~(X~ X ,) C S r (X 1 , . . . , Xn) , then S l (S l (X 1 ,..., Xn), . . . , S n (X 1 ,..., Xn)) C

S r (S I (X 1 , . . . , Xn),. . . , S n (X 1 ,..., Xn)) .

Then we have that S , ~ S~(P 1 P,,) C Sr(P 1 ,..., P ,) =_ S r .

340 DE BAKKER AND MEERTENS

Proof. As before, for $ 6 5 f (~ , ~) , let S (~ = Q, S (j+l) = S(S(lJ),... , S~)) . By
condition 1, we see that SI 1) C S(~ 1). Then, using condition 2 (with Y2 for Xi) , we infer
that S,(SI(g2,..., [2),..., S,(~, . . . , [2)) C_ S,.(Sx(s Y2) S,(~2 Y2)), i.e., that
S~ ~) _C S~). Repeating this argument we obtain that S (j)* _C o r.r j = 0, 1, 2,..., and

co .

the desired conclusion S~ = U~=0 S~ J) _C Uj=0 S(}) = S~ follows by the union
theorem. 1

Remark. The induction theorem is easily seen to go through for sets of inclusions
instead of for just one inclusion S, C S~.

4. RECURSION AND INDUCTIVE ASSERTIONS

This section brings the generalization of Manna's treatment of partial (and total)
correctness, and an application of the result providing an alternative characterization of
recursion, using a certain property expressed in terms of inductive assertions instead
of the minimal fixed point property used in Corollary 3.3.

The main tool of the section consists in the enrichment of the inductive assertion
method with an indexing of the assertions in such a way that the index can be considered
as a trace of the history of the computation. Such rather complex structuring of the
assertions turns out to be necessary for the only-if part of the theorem: p; P _C p ; q if
and only i f suitable intermediate assertions can be found.

To bring out the difficulty, we once more consider formulas (2.3) and (2.4). We saw
that if ~s[p C s, s; r; S C r; S; s, s; ~_C F; q], then p; r * S C r * S; q, which is easily
shown once it is seen that r �9 S = (r; S)*; f. Conversely, the proof that if p; r �9 S C
r . S; q, then 3s[p C s, s; r; S C r; S; s, s; f C f; q] follows by taking s = p o (r; S)*,
and applying the properties of Lemma 2.1:

(1) p z p (~ I zpo ICC_p o (r; S)*, using the definition o f / , Lemma 2.2.3,
the definition of the * operation, and Lemma 2.2.6, respectively.

(2) (p o (r; S)*); r; S C r; S ; (p o (r; S)*), or, by Lemma 2.1,
(po (r; S)*) o (r; S) __C_po (r; S)*, or, by Lemma 2.2.4,
p o ((r; S)*; r; S) _Cp o (r; S)*, or, by Lemma 2.2.6,
(r; s)*; r; S C (r; S)*,

and the last inclusion follows from the definition of the * operation.

(3) (p o (r; s)*); e_ce; q,
(p o (r; S)*) o f _C q,
p o ((r; s)* ; e) c q,
p o (r , S) C_ q;
p; r * S C r . S; q,

and the last inclusion follows by assumption.

or, by Lemma 2.1,
or, by Lemma 2.2.4,
or, by Definition r . S,
or, by Lemma 2.1,

COMPLETENESS OF INDUCTIVE ASSERTIONS 341

In the more general case of flow diagrams, to be dealt with presently in our rephrasing
of Manna's theorem, the argument is stated in somewhat more general terms, but not
essentially differently. However, for the generalization to full recursion, the above-
mentioned extension with indexed assertions is needed.

We first give the details of Manna's approach. Two versions of Manna's theorem
on partial correctness are given; first a weaker one, and, at the end of this section,
a stronger one which is needed for the treatment of total correctness.

The weak version is first pictorially phrased as follows. A flow diagram P is partially
correct with respect to the predicates p and q if and only if the following condition is
satisfied. There exists a selection of points rr i , i = 1,..., n - - 1, in the diagram, such
that intermediate assertions (p = P o) P l , P 2 , ' " , P n - 1 , (Pn = q) can be found,
attached to the points rr i , for which we have that, for all i, j , 1 ~ i, j ~ n, each Pid
(part of the program between ~r i and rg) is partially correct with respect to Pi and p j ,
and, moreover, each part of the program is included in at least one of the Pid �9

The formalism developed in Sections 2 and 3 allows a less pictorial statement,
together with a complete proof, of this theorem. We give these as preparation for the
extension to programs involving full recursion, to which the remainder of the section
is devoted.

We use the well-known fact that each flow diagram can be represented by an
equivalent recursive program scheme such that the system of declarations (more
precisely, the associated grammar (Section 3)) is regular in form.

EXAMPLE. Consider Fig. 2. This diagram may be represented by ({P1 ~ A1 ; P2,

1)2 ~ Pl ; A2 ; Pz k-) fil ; Az ; P4 , Pa ~ P2 k3 fi2 ;A3 ; P 4 , Pa ~ P 3 ; P3 t-)/Sz},/)1)-

FIG. 2.

+

Example of a flow diagram represented by a set of (regular) procedure declarations.

Remark. Such translation is (first) mentioned, e.g., in [16]. I t is not difficult to see
that the result can be obtained by the following process (only briefly sketched here).

342 DE BAKKER A N D MEERTENS

1. Consider the flow diagram in a natural way as a finite automaton.

2. Construct the associated regular grammar.

3. Translate the grammar back into a program scheme, essentially by the
operation T -1 of Section 3.

Using the representation of flow diagrams by regular schemes, we can now give
a precise statement of our first version of Manna 's theorem:

THEOREM 4.1. (Completeness theorem with regular inductive assertions). Let p, q
�9 " A n be two predicates. Le t ~ = {Pi ~ Ai.x , Px td Ai.~ , P2 tA ... u Ai.~ ; P~ w i.~+x}i=l

be a regular declaration scheme. The program (~ , P1) is partially correct with respect to
p, q i f and only i f there exist Pl , P2 ,..., P~+I such that

t P -CPl,

Pa+I _C q,

and p i ; A i . j C _ A i , j ; p j , i = l , . . . , n , j = l n - 7 1 . (4.1)

Remarks. (1) The general form of the ~ can be specialized by taking some of
the A~.j as I or s

(2) The freedom in the choice for the ~ i , in P, in the flow diagram formulation
is found back in the freedom of constructing ~ by, if necessary, considering sub-
programs of P as elementary Ai.~..

Proof. (1) I f part. Assume (4.1). We shall prove that p i ; P i C_ P i ; Pn+l ,
i = 1,..., n, by an application of Scott 's induction rule. Pl ; Q _C g2; P~+I is clear. Next,
we verify: I f p~ ; X i C_ X i ; P~+I , i : 1,..., n, then Pi ; (A i , 1 ; X1 k.) " '" k.) A i . n ;

X~ w A~.,+I) C_ (A~,I ;)(1 U "" t3 A~,, ; X , ~3 Ai,~+l) ;p ,+l , i = 1 n. This follows
from Pi ; Ag.~ ; X j C_ A~.j ; p~ ; X j C_ Ai. j ; Xs ; P,+a , by (4.1) and the induction
hypothesis, respectively. We conclude that, indeed, Pi ; Pi C_ Pi ;P~+I �9 Hence, by
(4.1), p; Pa C_p, ; P a C P ~ ; p,+l_C P1 ;q.

(2) Only-i fpart . Assumep; P1 C P1 ; q. Two constructions for thepj are possible�9

(2.1) Let P ,+I = a t / , and pj = a t p j ~ q, j = 1,..., n -71 . We verify (4.1):

From p; P1 _C P1 ; q we derive p _C (P1 ~ q) = P l . Also,

P n + l = Pn+l -~ q = I --~ q = q.

T o show that Pi ; Ai,j C A,,j ; p~, we have to verify (P, --+ q); A~.j _C Ai.j ; (Pj ~ q), i.e.,

Vx, v[Vz[xPiz --+ q(z)] t, x A i , j y --~ Vt[yPj t --~ q(t)]].

COMPLETENESS OF INDUCTIVE ASSERTIONS 343

Assume Vz[xPiz ~ q(z)], xAi.~y and yPjt. Then xAi.j ; Pit, hence xPit, and q(t)
follows, proving (4.1).

(2.2) The second construction uses the "dual" system of procedures

{QJ ~ Q1 ; A15 k.) "'" U Qn ; A,~.~ U Aj}y.+~ a with A 1 : / , Aj : g2, j = 2,..., n + 1.

Example: Referring again to Fig. 2, we have Q1 ~ I , Q2 ~ Qt ; A1, Q3 ~ Q2 ; Pl ;
A2 u Q, ;P3 , Oa ~ Oz ;iYl ; Aa u Q3 ;fiz ; A3, Q5 ~ Qa ; Pz u Qa ; fla. Note that
the P~ denote computations from intermediate nodes in the flow diagram to the final
one, whereas the Q~ denote computations from the initial to intermediate nodes. In
general, we have for the Q's: Q~ ; P~ c P1, and Qj ; P~ C Qn+x , j = 1, 2 n -~- 1.
T a k i n g j = n + 1 and j = 1 in the first and second inclusions, respectively, and
using the definitions of Pn+l and Q1, we obtain that/)1 = Qn+l. (The proofs of these
statements are omitted, since they are special cases of theorems given below.) We
define pj = p o Qj , j = 1, 2,..., n + 1. The reader will have no difficulty in verifying,
analogously to construction 1, that these ps indeed satisfy (4.1). We also observe that
p o Qj _c Pj - , q, j = 1,..., n + 1, which again, will be proved later in a more general
form. |

After thus having settled the flow diagram case (regular recursive schemes), we
now face the problem of extending the theorem to recursive schemes in general.

Without lack of generality we assume that each declaration scheme H is of the form

{Pi ~ Si 1 I J S i , 2 (.j , , , Si ,Mi}in=l , (4.2.1)

with M~ some integer />1, and each S id , j = 1 M i , of the form

Si.~ = A(i , j , 0); P(i, j , 1);...; A(i , j , Ki.j -- 1); P(i, j , K~.~); A(i , j , K~.j), (4.2.2)

with A(i , j , k) 6 d , P(i ,L k)~{P1 ,-.-, P~}, and Kid some integer ~ 0 (if Ki.i = 0,
Si.j is just A(i, j, 0)). Specialized forms of the H are again obtained by suitable restric-
tion of certain of the A(i, j, k) to I or D. Observe that each occurrence of some Pt
in some Si.j is uniquely identified by the triple (i,j, k) with P(i , j , k) = Pz.

A number of definitions and notations will be employed:

1. First we need a name for the set of index triples with respect to (as will from
now on be tacitly assumed) the declarations H as given in (4.2.1) and (4.2.2):

y = { (i , j , k) [1 ~ i ~ n , 1 ~ j ~ M i , 1 ~ k <~ Ki.j}.

2. Each P(i, j , k), for (i, j , k) ~ Z, is some element of {P1 ,-.-, P~}- Hence our
definition of the function h: 27 ~ {I, 2,..., n}: h(i,j, k) = l iff P(i, j , k) = P~.

344 DE BAKKER AND MEERTENS

3. Suppression of indices will be used below to improve the clarity of the proofs.
To begin with, we will use as shorthand for the system

l Mi)n
: P i "<= U Si . j l ,

j=l) "=1

with Si,~ as above, the notation

P ~ A(0); P(1);...; A (K - - 1); P(K) ; A (K) , (4.3)

where both the i- and the j- index have been suppressed.

An important role will be played in what follows by the idea of using index-triple
sequences as trace of the history of the computation. We define the following subsets
of 27* (the set of all finite sequences of elements of 27, with e denoting the empty
sequence):

T = T l U T2 t.J "" t .) T n ,

where the sets T i , i : 1,..., n, satisfy the system of equations

I Mi Ki,~

Ti ~- {~} U U e (i , j , k) T~(~.~.k)
5=1 k=l i=l n

or, alternatively, each T i is the language produced by the grammar

G i = ({T 1 ,..., T,}, 27, R~, Tr

with R i consisting of the rules T i --~ e, T i - ~ (i , j , k) Th(i.~,k) , for (i , j , k) e27.

Each T i consists of those sequences of 27" which satisfy

(1) The first triple, if any, has i as its first index.

(2) Successive triples (i , j , k), (i ' , j ' , k ') are connected by the requirement that
i ' = h (i , j , k).

Each element T i e T~ may be viewed as defining a path in the tree of incarnations
of the procedures with Pi as root, or, alternatively, ~-i represents the stack of currently
active procedures, each triple in ~'i representing one procedure call. This interpretation
explains the requirement that i ' = h (i , j , k) , since i ' is the index of that procedure that
is located in place (i, j, k) of the scheme.

EXAMPLE. Let ~ be {P1 ~ A1 ;/)1 ; As ; /)2 ; Aa u A 4 ;/)2 ; As , /)2 ~ A6 ; P1 ;
A 7UAs}. Then 2 7 = { (1 , 1 , 1) , (1 ,1 ,2) , (1 ,2 ,1) , (2,1,1)}; also, h(1 ,1 ,1) = 1,
h(1, 1, 2) = 2, h(l, 2, 1) = 2, h(2, 1, 1) = 1. Possible r e T are: E, (1, 1, 1), (1, 1, 1)
(1, 1, 2)(2, 1, 1) or (2, 1, 1)(1, 2, 1)(2, 1, 1), etc. The sequence r a = (1, 1, 1)(1, 1, 2)
(2, I, 1) represents the calling structure of Fig. 3.

C O M P L E T E N E S S O F I N D U C T I V E A S S E R T I O N S 345

FIG. 3.

PI

AI ; P1 ; A2; P2 ; A3

AI;PI ; A2 ; P2; A3

A tree of incarnations of recursive procedures with associated index-triple sequence.

The index-triple sequences are exploited in the introduction of the notion of
companions of the procedures Pi : They depend on the history of the computation,
represented by the index sequence ~-, and come in four kinds: left-left: La,'i; left-right:

o , i . ~ , i . L~ , right-left: and right-right: o,i. R~ , R , . Anticipating their precise definition, they
are intended to have the meaning: For some s ~ 0, let

rio = (i0, J0, ko) "'" (is, Js , k~) e T~. _C T,

and let i = h(is , j s , ks). As we saw above, "rio keeps track of a specific path through
the tree of incarnations with Pi as root, leading to the inner call of P~. Then the
computation prescribed by La~ i is precisely the computation initiated by the outermost

�9 0 . " " O , i 7 % i . call of Pi , up to, but not including, thin mner call of Pi �9 Moreover, L~ = L~ , Pi �9
0 . �9 �9 �9 i 0 �9 i 0

Furthermore, R$~ is the computation following after, but not lncludlng,,the tuner call
of Pi , until completion of the outer call of Pi is achieved, and R / " = Pi ; R " .

�9 ~ , i . . . o , i C �9 . o io . io Fxnal!y., L~.,0 , P r , R ~ _ P*0" (Compare Fig. 4 and the example following the next
ctelanltlon.)

FIG. 4.

Pi 0

. P i - -

L~,i~ <:1
10 l 0

Left and right companions of Pi in a tree with root P%.

These notions are now defined precisely, followed by the proofs of their intended
properties. Let ~ be of the form (4.3)�9 We define two (infinite; see below) systems

346 DE BAKKER AND MEERTENS

of procedures , one with p rocedure symbols a.i o,i {L, , L , }i=x r , and one wi th the
t~" Lh'h(i'l'k) and symbols {R~a'~, Rp,it, ~i=1 , , ~T �9 As abbrevia t ion we use L~a',~ ins tead - - ~ r ,

s imi lar ly for the o ther symbols . (I t should be no ted tha t r(i,j, k) is the resul t of
conca tena t ing the index- t r ip le sequence r wi th the index- t r ip le (i,j, k), whereas
h(i,j, k) is the resul t of app ly ing the funct ion h to (i,j, k).)

DEFINITION 4.1 (Companions) . Fo r each i : 1, 2 n, r e T:

(a) (Lef t companions)

Lad ̀ ~ I , (4.4.1)

L~:~ ~,~. L , , A(0) , (4.4.2)

L,,k+xa'h ~ ~,,kr~ A(k), k = 1, 2 K - - 1, (4.4.3)

M~ t a ' ~ ' A (0) ' if K ~ j = 0 , L~ ' ~ 0 ,L~ , . (4.4.4)
~=~ (L~~ A(K), if K,.~ > 0.

(b) (Right companions)

R~ "i ~ I, (4.5.1)

R~:~ ~ A(k); ~,~ R~.k+l, k = l , 2 K - - l , (4.5.2)

R,,K 0'~ ~ A (K) ; R , 0'', (4.5.3)

M, I A(0) ; o,~ R~ , if K i j = 0 ,
R ~ ' ~ ~ J ' (4.5.4)

~=~ (A(0) ; R~a:~, if K,..~ > 0.

Remark. T h e first appearance of infinite sys tems mer i t s a commen t : I t t u rns out
to be a s t ra ight forward ma t t e r to general ize all cons idera t ions of Sect ion 3 to infinite
systems, inc luding in par t icu lar the union and induc t ion theorems. Th i s is worked
out in [4], bu t omi t ted here, since no special difficulties are involved.

A n example of some companions : Le t ~ = {P ~ A 1 ; P ; A 2 ; P ; A 8 ~3 Ar W e
have for the left companions (res t r ic t ing the index s t ruc ture to a s impler one, as is
sufficient in this example) :

F o r r e { 0 , l)* : L~ ~ I , La0 ~La,'AI, , La, l ~L~ , ' A 2 , L~ <=L~ ,'AaULa, ", Aa"
Hence, e.g.,

L , ~ = L ; ; A a u L , a ; A 4 = (Z~l ; A 3 U L a l ; A,) ; A n u I ; A ,

= L ~ ; A 3 ; A a ~3Lg ; A 2 ; A 4 ; A 3 W A4
. . . . k . / (L g x ; A3 UL~ ; A4); A 2 ; A 4 ; A 3 U A 4
. . . . u .." u L ~ ; A 4 ; A 2 ; A4 ; A8 U A 4
. . . . ~3 ... ULa~ ; Ax ; A 4 ; A 2 ; A4 ; A3 U A 4
= "" w -" u A~ ; A 4 ; A 2 ; A 4 ; A 3 u A 4.

C O M P L E T E N E S S O F I N D U C T I V E A S S E R T I O N S 3 4 7

This suggests that L ~, : - P, which will indeed follow as one of the by-products of the
first companion theorem:

THEOREM 4.2 (First companion theorem).

(a) La~'i; Pi : : L~ "i, i -= 1,..., n, r e T.

(b) P i ; R , " ' i = R * , '~, i - 1 n, ~-ET.

Proof. We prove only part a, part b being symmetric. Besides the system {La, '~, L~'i},
r l " - a , i f - ~ , i / (the - we introduce--for the sake of the present proof only-- the system t ~ , ~ , j

denoting an alphabetic variant, and not complementation), defined by: For i ==- 1,..., n,
r E T ,

L,a" ~= I, (4.6.1)

a , h h i L, ' ; L,.~ ~ A(0), (4.6.2)

1,,,~+~'h ..~ ~,.kr~ A(k), k = l , 2 K - - 1 , (4.6.3)

f o.i <= Za.i; P i" (4.6.4)

We shall prove that {La, 'i -a,i LO,i ___ s 1 :: - t ~ , - " , / " J i = l , ~ , r E T "

Part 1. __C. By Corollary 3.1 it is sufficient to show that the]2 satisfy the defining
inclusions of the L-system. For the L a this is immediate, since (4.4.1)-(4.4.3) are
identical (apart from the -) to (4.6.1)-(4.6.3). For the s176 the proof runs as follows.
We have to show:

IL,a'i', .4(0), if K i ~ =: 0,
s _D U ' (4.7) t-"'~' �9 A (K) , i f Ki,~ > O. j=l Z,~. K ,

I f Ki.~ = O, then by definition of ~ , A(O) -- A(i , j , O) :-= Si.j C__ P~. Hence, L,a'*;
C L ~'i" -- L ~~ . -~'~" Pi D]2~'~; A (0) _ ~ , P; by (4.6.4). I f K,..j :> 0, then L", '~ bv (4.6.4) = L, , _

A(0); P(1);...; P(K); A (K) by (4.6.2) =]2a,:]; P(I); . . . ; P(K); A (K) by (4.6.4) = / o ;] ;
A(1);...; A (K) by (4.6.3) - : L~, 2,-a'h" P(2);...; A (K) : - - L~'h',.r, A (K) , whence (4.7)
follows.

Part 2. ~. We show that the L satisfy the defining inclusions for the L. For the
L a this is again direct from the definitions. For the L ~ we must show that L ~,''; P, C L ~
for which we use Scott's induction rule on the PC : It is sufficient to show: I f

a.~. CLO.fi (L~ , X ~ _ ~ ,~-~ r ,

57xlxx/3-5

3 4 8 D E B A K K E R A N D M E E R T E N S

then {L~di; A(0); X(1);...; X(K); ~,i A (K) CLr }i~1 ~r. I f K = 0, this follows from
(4.4.4). I f K > 0, thenDvi; A(0); X(1);...; A (K) = L,.,1,;~'h" X(1);... ; A (K) _C (hypothesis)

o,h. A(1);...; A (K) C ... C L ",r This completes the proof of the first companion L1-~1, - - ,t �9

theorem. |

COROLLARY 4.2. L~ 'i = P i , R;~j i = P i .

Proof. Put ~- = �9 in Theorem 4.2, and use Laj i = R~163 i = I . |

The next theorem combines the left and right companions into one construct.
I t is, for convenience, phrased for r = r 1 e :/'1, but generalizes directly to indices
j r

THEOREM 4.3 (Second companion theorem).

{La,'~i; P i ; R$; i C_ P1}i=l ~r~

prov ided that i f r~ = �9 then i = 1.

Proof. Throughout the proof we require that if r 1 = �9 then i = 1. We shall prove
the, by Theorem 4.2 equivalent, inclusions

~ ' "~ - i = 1 n, r l e t lp rovided (4.8)
L "'i" R ~ C P1 \ TI , "r 1 --

We prove (4.8) by (infinite) Scott induction by showing that: I f

x h , h h ,h
~'1,1 ; R T I , 1 Q" P 1 ,

X a'h �9 R a'h C/)1 k 1, 2 , . . . , K - - 1, r l , k + l , ~ ' l , k + l - , =

X~ R~'I i C P 1 ,

then

I; R2 .~ c_ p~ ,

X ~'i' A(0); R ~'~ C P1 -r 1 ~ rl,l- ,

X ~ " A(k); ~,h ~1,/~ ' R ' l , k + l _C P1 , k = 1 , . . . , K - - 1,

(X ~'i" A(O) (3 X "'h �9 R 0'~ C Px . , .~, 7 . ~ , A (K)) ; ~, _

COMPLETENESS OF INDUCTIVE ASSERTIONS 349

We have (a) I; R~ '1 C (Corollary 4.2) I;/)1 - P1.

a,h (4.5.4) a,i. Ra,i C/)1 by the first three hypotheses. (b) X~,~'/" A(0); R~I,I_C X~I , ,~ _ ,

(c) and (d) follow similarly by the definitions and hypotheses. |

The companion constructs are the central tool in our statement and proof of the
generalized inductive assertion theorem. We use the following system of inclusions,
with respect to the ~ of (4.3), and using assertions indexed in the same way as the
indexed procedure letters above:

p / ; .a(O) C A(O); r

p / ; 3(0) c n(o); p'r

qkr, k ; A (h) ~ A (k) ; p h k + l ,

h . A (K) C A (K) ; q~ q~',K , -- "

k ~ 1,..., K - - 1, I

K = 0 ,

K > 0 ,

Call the system of these four inclusions J (~ , p~, q~). Then we have

THEOREM 4.4 (Completeness theorem with generalized inductive assertions). Let
p, q be two predicates. Let ~ be as in (4.3). (~, Pa) is partially correct with respect to p
and q iff there exist p~ , q~ such that

I P and J (~ , / i . (4.9)
_Cp~,

P*x' qr leTx
l qe C if then 4=1 q, ~rl=E~

Proof. Throughout the proof we require that if r I ~ e, then i = 1.

(1) I f part. Assume (4.9). We show that P~I ; P /C P / ; q~l' Once this has been
established, the desired result follows from p; P1C pX, ; P1C Px ; ql, C P 1 ; q. By
Scott's induction rule, it suffices to prove: Ifp~ 1 ; Xi _C X/ ; qix' then

i P~I ; A(0); X(1);...; X(K); A(K)C_ a(0); X(1);...; X(K); A(K); q~l"

Verification of this is direct from the definitions and the assumed inclusions in

P I, 9;1)-
(2) Only-if part. Assume p; P I C - P 1 ; q . We have, as in Theorem 4.1, two

possible solutions for the P~I ' q~l "

First construction:

p/~ af oL ad i = 1 n, r l ~ T 1
=p ~-1 ~

q/1 df oLO. ~ i = 1 n, r x ~ T x : P ~1 ~

350 DE BAKKER AND MEERTENS

Second construction:

= ~ q, i 1,...,n, r l ~ T 1,

q i l d f o,i , - -R~ --~q, i = 1 n, r1~7" x.

We prove only the first solution.

- - I (a) p~ = p oL, a'~ = = p o I - - p ; hence, p - - p , .

(b) q~ =-- p oL~ '1 ---p o P1 ; hence, q~ = p o P1C_ q follows.

(c) Proof of p~, ;A(0) C A(0); q / (case K = 0): We have to show that
p o La~; A(0) ~ A(0); ~-~ oL ~ , which is direct from (4.4.4).

(d), (e), (f) The remaining cases follow from the definition of J (~ , p~l, q,",),
and (4.4.2), (4.4.3), and (4.4.4), respectively. |

COROLLARY 4.3. (1) l f P 1 is partially correct with respect top, q, then

{poL~ . iC a.i ~oLO, iC o,i ,~ _ R , , - -~ q , r , , _ R , , - - ~ q } i = l i ~ r t

(2) For each system {p~, ,x~r ~ , qil};=l such that J (~ , P~I' q$)' we have

{p~lCRa.i--~ oLo.iC - - r l q ' P r l - - qrl}i=X l ~ r t "

Proof. (1) p oLa~ '~ C R~ '~ --+ q is equivalent with p; L~'~; R~ a'~ CL~'i; Ra/~; q, and
this follows from Lag'f; R~; i ~_ 1>1 (Theorem 4.3) and the partial correctness of P1 with
respect to p, q.

(2) The technique of this proof is similar to that of the previous ones, which
is why we omit it. II

One might wonder whether the complex structure of the assertions used in this
proof is really needed. The following remarks show that this is indeed the case.
Consider as an example the procedure P declared by P ~ At ; P; A 2 ; P; A 3 u A4 �9
Suppose first that all partial correctness properties of P could be proved using a format
with only two inductive assertions, as suggested by Fig. 5a.

FIG. 5a.

- - " i ;"
i
!

I

. , p

A f in i t e , a n d i n c o m p l e t e , s y s t e m o f i n t e r m e d i a t e a s s e r t i o n s .

COMPLETENESS OF INDUCTIVE ASSERTIONS 351

We shall use Io(p, q, Ax_4) as the name for the system of four inclusionsp; A 1 C A 1 ;
p, q ; A 2_CA2;p, q ; A a C A s ; q , and p ; A 4 C A 4 ; q . We now argue as follows.
Consider the two sets

M 1 = {S: Vp, q[i f lo(p, q, Ax_,) thenp ; S _C S; q]),

M~ = {S: S _C (A~ u A~ ; As*; Az)*; A~ ; As* }.

I t can be verified that 3/1 -- M2 �9 Now let Po, qo be a pair of assertions such that
Po ; P C P; qo, but, for some S O E M 2 , not Po ; So C_ S O ; qo. Clearly, such Po, q0, So
always exist. Then, since Mx = 3//2, So ~/141, and we see that Io(Po , qo, A1-4) does
not hold, since, otherwise, Po ; So _C S O ; qo could be inferred. Thus, we conclude
that Po ; P _C P; qo is a partial correctness property which is not provable with the
simple structure as in I o .

Next, let us consider the infinite, but not sufficiently refined, system of inductive
assertions as suggested by Fig. 5b. We then argue essentially as above, with obvious
changes in/1//1, and changing M 2 to {S: S _C (] {X: X = A 1 ; (X; A2)*; X; A a u A~}}.
The details of this case are left to this reader.

FIG. 5b.

\F

A n infinite, b u t still incomplete , sys t em of in termedia te assert ions.

We now continue with the application of Theorem 4.4 to obtain an alternative for
the minimal fixed-point characterization of recursive procedures:

COROLLARY 4.4. Let ~ be as before, and let R 1 , . . . , R , be arbitrary statements. Then

r
u 1 n,pr qC~) [pro; R 1 C R ~ ; q(~) i #

such that t pa) C P~'
tq, ~ C_ qm,

i f f Vl = 1 n [R~ = Pz].

Proof. Follows from Theorem 4.4 and Lemma 2.6.

, q ~ , } i = a n , ~ e r z

and t l ,~r~] J (~ . P . ~ .q.~)~=l , . J

We conclude our paper with a discussion of the notion of total correctness and its
relationship to partial correctness.

352 DE BAKKER A N D M E E R T E N S

P is totally correct with respect to q i f f Vx 3y[xPy A q(y)]. To explain the relation-
ship with partial correctness, we once more consider the simple while statement r , S.
In the beginning of this section we saw that r �9 S is partially correct with respect to p
and q iff there exists s such t ha tp C s, s; r; S C r; S; s, and s; g C 5; q; i.e.,

Vx, y [p (x) A x r �9 S y --,- q(y)]

+-> 3s[Vx[p(x) --+ s(x)] A Vy, Z[s(y) A r (y) A y S z -+ s(z)]
A Vt[s(t) A -nr(t) --+ q(t)]].

We are interested in particular in the case that p is identically true. Suppose we could
prove, for such p, the following stronger version of (4.10):

Vx[Vy[x r �9 S y -+ q(y)]

+-+ 3sis(x) A Vy, z[s (y) A r (y) A y S z --+ s(z)]
A Vt[s(t) A -nr(t) --+ q(t)]]]. (4.11)

From this we may conclude, by replacing q by -~q, and negating both sides:

V x [- & y [x r , S y - -+ -~q(y)]

+-+ -n3s[s(x) ^ Vy, z[s (y) A r (y) A y S z --+ s(z)]
A Vt[s(t) A -nr(t)--+ -nq(t)]]].

Now observe that ~ V y [x r �9 S y -+ -nq(y)] +-+ By[x r �9 S y A q(y)] ; i.e., r * S is totally
correct in x with respect to q. Thus we see that if we could prove (4.11), then, writing
- , B s # (x , s, -nq) for its right-hand side, we could justify the inference of total correct-
ness of r �9 S in x with respect to q from the proof of -~3sS(x, s, ~ q) , i.e., from the
negation of partial correctness (in the refined sense) of r * S in x with respect to (the
identically true p and)-7 q. This inference seems to be the essence of Manna's treatment
of total correctness.

We therefore will prove an extension of the generalized inductive assertion theorem,
yielding the equivalent of (4.11) in the general case:

THEOREM 4.5 (Total correctness).

Vx [V y [x P l y --> q(Y)]
L

rp~(x),
+-+ Sp$, , q$1 [Vt[q~(t) --~ q(t)],

Proof.
by

1~ 'rl=E , t h e n ~=i 2

We give only the --~ part. Choose some fixed xo, and let p ~ , q~1 be defined

/,~ =d~ {(~o, Xo)) o Z,l~'~,
i d f oLO, i

q-, = {(Xo, Xo)} "1"

COMPLETENESS OF INDUCTIVE ASSERTIONS 353

(Note that {(Xo, Xo) } _C I is indeed an assertion.) We show that

(1) p~(xo) holds:

p~(Xo) = ({(Xo, Xo)}o L~;1)(Xo) = ({(Xo, xo)}o I)(xo) = {(Xo, Xo)}(Xo),

and {(xo, Xo)}(Xo) is clearly satisfied.

(2) Vt[ql~(t) --~ q(t)], i.e., Vt[({(Xo, x0)}o L~ --~ q(t)], or

Vt[~y{(xo , x0)}(y) ^ y P l t -+ q(t)],

or Vt, y [y = x o ^ yP1 t --+ q(t)], or Vt[xoPlt --+ q(t)], which holds by assumption.

(3) The proof that J (~ , P$1 ' q*~l) holds is similar to that of Theorem 4.4, and
is omitted. |

With this last theorem we hope to have clarified the precise status of the notion
of total correctness, thus achieving the last goal of our paper.

5. AN APPLICATION

After having obtained--in the form of the completeness theorem-- the main result
of our paper, we now indicate a way of applying this result in a proof of program
correctness. We shall prove the correctness of the wellknown recursive solution
of the Towers of Hanoi problem. A proof based directly on the indexing mechanism
of Section 4 might be possible, but it would be very awkward. Instead, we reformulate
Theorem 4.4 in such a way that practical application becomes feasible. We shall not
do so in full generality, but restrict ourselves to the problem at hand, leaving the
formulation of the general case to the reader.

Remember that the Towers of Hanoi puzzle is concerned with the following.
There are three piles of disks, with, initially, N disks at pile 1, say, positioned in
such a way that each disk is smaller than the disk below it. The problem is to move
the N disks from pile 1 to pile 3, say, where pile 2 may be used for temporary storage,
in such a way that the constraint that a disk be smaller than the disk below it is obeyed,
at each of the three piles, at all intermediate positions (including, of course, the final
one).

Let f (f rom) , v (via), t (to) be three variables with distinct values in {1, 2, 3}, let n
be an integer 9 0 , and let move (n + 1, f , t) be the elementary action of moving
disk n + 1 from pile f to pile t. The recursive solution of our problem is then given
by the procedure P declared as follows (the notation, insofar as it is not yet introduced,
should be self explanatory).

354 DE BAKKER AND MEERTENS

P ~ In > 0 In : = n - 1; (/, v, t) : = (f, t, ~)1;
P;

[(f, v, t) : = (f, t, v); move(n + 1,f , t); (f, v, t) : = (v,f , t)];

P;

[(f, v, t) : = (v, f , t); n : = n -[- 1]

k.)

In = 0].

(5.1)

Observe that P has the format of

P ~ A 1 ; P; A s ; P; A~ u A 4.

For P in this form, Theorem 4.4 simplifies to

p; pC_.P; q
iff
~{Pa, qa}a~{0,1}* such t h a t p C_p,, q, C q, and

Vp, q {pa;Al~_CA1;pao) (5 , 2)

lq~0 ; A~ _c A~ ;po l l
t ~: ; A3 C- A3 ; q~ ~

; A 4 _C A 4 ; q~]~E{0.1}*

The generalization of this referred to above is the following. We observe that in
(5.2) we are concerned with a set q/" = {0, 1}*, and operations f , g: ~ --~ ~e" defined
by f (~) = a0, g(a) = ~1. Now the particular structure of "fit', f, and g plays no role
in the proof of the if part of (5.2). In fact, we readily see that (5.2) can be restated as

p; PC_P; q
iff

such that p C p(%), q(%) C q,
Vp, q and (5.3)

p(~r); A~C_A 1 ; p(f(cr))]
q(f(cr)); Az C A2 ; p(g(cr)) I
q(g(~)); A3 _C A~ ; q(~) {

p(~); A, = A, ; q(~) 1o~,~

This formulation gives us the key to the proof of the correctness of (5.1). First
we define the structure of the states on which the procedure P of (5.1) operates.
Each state x is a 5-tuple

x = (n, f , v, t, (d 1 , dN)),

C O M P L E T E N E S S O F I N D U C T I V E A S S E R T I O N S 355

with n an integer, f , v, t as above, and (dl ,... , du) an N-tuple of variables with values
in {1, 2, 3}. I f dj has the value i, 1 ~ i ~ 3, this indicates that in state x disk j is
located at pile i. To be more specific, let us consider the case in which N = 7 and
we are at a certain intermediate state x ~ (4, 3, 2, 1, (3, 3, 3, 3, 2, 1, 3)). To this
state we then have Fig. 6 as the corresponding picture, and this picture describes
the situation in which we have to perform the subtask of moving the four disks on
top of pile 3 to pile 1 (via pile 2).

&
1 2 3

FIG. 6. Intermediate state x = (4, 3, 2, 1, (3, 3, 3, 3, 2, 1, 3)).

Next, we describe the structure of the parameter a which occurs in the assertions
p(a), q(a). Each a is a 5-tuple

= (~, 4, 8, *, (av+l *N)).

Its meaning is explained after the definitions of the p(a), q(a), which are as follows.

I n = v , f = 6 , v = f l , t = ~ , l
1 < ~ j ~ ,

p(a)(x) ~ d~ = la~, v - E l <~ j ~ n,

~, 1 ~ j ~ v , .
q(a)(x) = dj = 3~, v + l ~ j ~ n,

These definitions are to be interpreted as follows. For state x and parameter a, p(cr)(x)
and q(a)(x) are true before, resp. after, performing the subtask of moving the n upper-
most disks from pile f to pile t: p and q differ only in the conditions imposed upon
the dj , 1 ~< j ~ v. For these j, if n has current value v, then dj = ~ (current value
o f f) , before, and dj = r (current value of t), after performing the subtask. All other
variables are unchanged, and their current values are stored in the parameter a.

Next we define the functions f and g:

f (c r) = (v - - 1, q~, ~',/3, (q~, 3~+a , ' " , 3N)),

g (' 0 = (~ - - 1, ~, ~, ~-, 6-, ~+~ , ' " , 8~)) .

356 DE BAKKER AND MEERTENS

Finally, a 0 is defined as

% = (X , 1 , 2 , 3 , ()) .

Note that, according to the definition of p, q, and %, we then have

p(ao)(X) = { n = N , f = 1, v = 2 , t = 3 , d s = 1 (1 ~< j~<N)} ,

q(ao)(X) ={n = N , f = 1, v = 2 , t = 3 , a s = 3 (1 ~< j~<N)} ,

and our aim is to use (5.3) in order to show that if p(%)(x) holds before execution
of P, then q(%)(x) holds after its execution, thus establishing the correctness of P.
We have to verify the four conditions p(a); A 1 C .d 1 ; p(f(cr)),..., p(a); A 4 _C A4 ; q(a),
with the definitions of the p, q, or, x, A 1 ,..., A 4 filled in. Below we write out the first
three inclusions, omitting the trivial case of the fourth, and writing {p} S{q} as short-
hand for p; S C S; q.

(1) n = v , f = ~ , v = f l , t = r , a s= 3s ' v + l <~j<~N, '

In > 0 I n : = n - - 1; (f, v, t) : = (f, t,v)],

(2)

n = v - - 1 , f = (~ , v = r , t = f i , as= , j = v ,
[f6 s, v + l <~j<~N,

n = v - - 1 , f=ck , v = r , t = f i , a s= , j = v ,
[t3j, v + l <~j<~N,

[(f, v, t) : = (f, t, v); move(n + 1,f, t); (f, v, t) : = (v,f, t)],

n = v - - l , f =fi , v = ~ , t = r , ds= r, j = v ,
3s, v + l <~j<~N,

(3) n = ~ - l , / = ~ , v = , L t = ~ - , d ~ = ~-, j = , , ,
~j, ~ , + 1 <~i<~N,

[(f, v, t) : = (v,f, t); n : = n + 11,

n = v , f = ~ , v = f l , t = T , ds= ~ , v + l <~j<~N,"

The reader will have no problem in verifying that inclusions 1-3 are satisfied. Thus,
we can indeed apply (5.3). Adding to this the observation that the formalism excludes
both illegal intermediate positions and illegal moves, we have proved the correctness
of the Towers of Hanoi program.

COMPLETENESS OF INDUCTIVE ASSERTIONS 357

REFERENCES

1. E. A. ASHCROFT, Z. MANNA, AND A. PNUELI, Decidable properties of monadic functional
schemas, J. Assoc. Comput. Mach. 20 (1973), 489-499.

2. J. W. DE BAKKER, "Recursive Procedures," Mathematical Centre Tracts 24, Mathematisch
Centrum, Amsterdam, 1971.

3. J. W. DE BAKKER AND W. P. DE ROEVER, A calculus for recursive program schemes, in
"Automata, Languages and Programming" (M. Nivat, Ed.), pp. 167-196, North-Holland,
Amsterdam, 1973.

4. J. W. DE BAKKER AND L. G. L. T. MEERTENS, Simple recursive program schemes and
inductive assertions, Report M R 142, Mathematisch Centrum, Amsterdam, 1972.

5. J. ENGELFltIET, Recursion induction and Floyd's method, Memorandum 25, Twente
Technical University, Enschede, 1971.

6. R. W. FLOYD, Assigning meanings to programs, in "Mathematical Aspects of Computer
Science" (J. T. Schwartz, Ed.), pp. 19-32, Proceedings of a Symposium in Applied Mathe-
matics, Vol. 19, American Math. Soc., Providence, 1967.

7. S. GINSBORC, " T h e Mathematical Theory of Context Free Languages," McGraw-Hil l ,
New York, 1966.

8. P. HITCHCOCK AND I). M. R. PARK, Induction rules and proofs of termination, in "Automata,
Languages and Programming" (M. Nivat, Ed.), pp. 225-251, North-Holland, Amsterdam,
1973.

9. C. A. R. HOARE, An axiomatic basis for computer programming, Comm. Assoc. Comput.
Mach. 12 (1969), 576-580.

10. S. C. KLEENE, "Introduction to Metamathematics," North-Holland, Amsterdam, 1952.
I I. Z. MANNA, The correctness of programs, J. Comput. System Sci. 3 (1969), 119-127.
12. Z. MANNA, Mathematical theory of partial correctness, in "Symposium on Semantics of

Algorithmic Languages" (E. Engeler, Ed.), pp. 252-269, Lecture Notes in Mathematics,
Vol. 188, Springer, Berlin, 1971.

13. Z. MANNA, S. NESS, AND J. VUILLEMIN, Inductive methods for proving properties of pro-
grams, Comm. Assoc. Comput. Mach. 16 (1973), 491-502.

14. Z. MANNA AND A. PNUELI, Formalization of properties of functional programs, J. Assoc.
Comput. Mach. 17 (1970), 555-569.

15. Z. MANNA AND J. VUILLEMIN, Fixpoint approach to the theory of computation, Comm.
Assoc. Comput. Mach. 15 (1972), 528-536.

16. J. McCARTHY, Towards a mathematical science of computation, in "Proceedings of the
IFIP Congress 1962," pp. 21-28, North-Holland, Amsterdam, 1963.

17. R. MILNER, An approach to the semantics of parallel programs, to appear.
18. D. SCOTT AND J. W. DE BAKKER, A theory of programs: Notes of an IBM Vienna seminar,

unpublished, 1969.
19. A. M. TURtNG, On checking a large routine, in Report of a Conference on High-

Speed Automatic Calculating Machines, pp. 67-69, University Mathematical Laboratory,
Cambridge, 1949.

