. AB30 p 90 -
AB30,3.4 :
On the pgeneration of AIGOL 68 proprams involving infinite modes

L.Meertens

0. _m‘croduct ion

Certain proper AIGOL 68 (particular—)progra.ms, ey
besin struct chain = (ref chain link); skip end, can only be. generated
according to the rules given in the Report on the Algorithmic Iangwmge
AIGOL 68 (1), by producing, in an infinite number of steps, & mode of
infinite length. It has raised objections that this generation process 1is
not finite and, therefare, not constructive. Moreover, G.S.Tseytin has
shown (2) tiat the definitions in the AIGOL 68 report do not preclude an
interpretation of equality between infinite modes in vhich, e.g., the .
mcdes specified by the mode—irdications & and b defined by the declaration
mode a = proc (&, &) &, b = proc (=, &, g) a a.re eqtnl although these are
clear ly intended to be different. : .

The purpose of this note 1s to sketch a process ‘t;hat a.llows the -
generation of such progrems in a finite, constructive way, and yet without
need to clange the syntax and the metaproduction rules in the AIGOL 58
repart (with one annoying exception).

“1. The steges of the generation process

The generation process is described in ’chree stages (1 1 up to 1 3),
-each stage ylelding the material to be used in the next stage. This does
not imply that it is necessary to complete the first stage first, and next
the second stage, and so onj on the contrary: vhenever the process cannot .
" be continued due to shortage of material, the cwrrent stage my be = -
interrupted in order to generate new material; it is even- possible to
integrate the first two stages in the last stage, but this necessitates .
quite some administration Circumve.nted in the apprcach described here. -

Before ve start one cl-ange in the metaproduction rules of (‘l) has to
be mde: rule 1.2.5.f iIs replaced by - . .
NOTION: AIPHA; MODE; NOTION. AIPHA, NOI‘ION MODE
It is & nuisance that this change introduces unnecesea.ry &mbiguities in
the process of generating the program (but not on the semmntic level).
These anbiguities can be circumvented, but - only-in a cumbersome way;
we would have t0 vrite out:- - :
NOTION: library prelude; li‘brary postlude, declaration prelude;
label; label aequeme, etc.

'1'.1. Generation of "snecif'ic" metanotions and their ' '
.. - Qecific production rules

. Ve proceed from the.set of production rules of the metalangmge,
obtained in 1.1.k of (1). (Actwally we need only a.finite. subset).
A specific metanotion is & metanotion followed by the deciml notation
of & natwal number; e.g., MODE17. Associated with.a. specific metanotion .
is its specific production rule, obtainable from e production rule. for
tlat metanotion by inserting after that metanotion, as it appears before
- the colon, the nunber of tlat specific metanction and some, erditrarily-
chosen, natwral number after each metanotian appearing in the direct
production (the part after the colon). E.g., the specific production rule

AB30 p 91

of MODE17 mipght be
: 10D 17: MOOD3.
and that of FIEID]
FIZID1: MODE18 field TAG23. _ ’
In this example, MOOD3 is-the direct production of MODE17. The set of
specific metaproduction rules cannot, of course, contain both
IOWPER1: lower. and . o
. IOWPER1: upper., as only one of these can be the specific
praduction rule far LOWPER1. For any program only & finite nunmber of
specific metaproduction rules has to be generated.

1.2. Generation of "norm.l" production rules of the strict]ahmagg

We proceed from the set of "unfinished" production rules of the strict
- languwge, as obtainable from 1.1.5 of (1) when 1.1.5.a.Step3 (1.e.,

" replacing & metanotion by one of its terminal productions) is skipped.
These unfinished prodution rules are turned into normal production rules
(of the strict languwage) by inserting after each metanotion appearing in -
" them & natural nunber, with the understanding that after all occwrrences
of a given metanotion in some rule the same natural number is inserted.

So actual LOWPER1 bound: strict LOWPER1 bound. and o
actual LOWPER2 bourd: strict LOWPERZ2 bound. - both are normal .

production rules, but '
actual LOWPER1 bound: strict LOWPER2 bound. - - 1is not & normal .

production rule of the strict languwage. In contrast with the set of
specific metaproduction rules, the set of normal production rules may
contain both)

NOTIONLO96 option: NOTIONLO96. and

NOTIONLOG6 option: EMPTY1. .
From 2 given normel production rule another one mey be obtained by
replacing one of the specific metenotions appearing in it by the direct .
production of that specific metanotion. If, in stage 1, we have generated
the specifis metaproduction rule .

LOWPER1: lower. ~, then we can obtain from the normal
production rule ’

actual LOWPER1 bound: strict LOJPER1 bound.
two new ones, viz. ' - S

actual lower bound: strict ILOWPER1T bowrd. - and

actual LOWPER1 bound: strict lower bound.
From each of these rules we may obtain yet another one:

" actwal lower bound: strict lower bound. :

For any program only & finite number of normal production rules has to
be generated. . .

1.3. Producing the program

Before each norme.l production rule obtained in stage 2, < is placed.
"Each colon is replaced by >:i= <, each comm by > < and each point by >.--
Next, one rule <empty>::i= is added, and all occurrences of <-> are
‘replaced by <empty>. We thereby have obtained & Backus Normal Form gremmar
trat produces, starting from the metalinguistic variable <program>, our
program (vhere every symbol is still a metalinguistic. variable, e.ge,
<begin symbol>). This syntax may, of course, be abbreviated by the .
convention of using | for alternative direct productions. ’

AB30 p 92

3

2. The context conditions

The generation of the program 1s only half the story; if the program
is to be a proper one it has to satisfy the context. conditions. The
formulation of these conditions as given in (1) is not without more
applicable to the treatment used here; the changes are, howvever, rather
obvious. Instead of comparing 'reference to structured with reference ...
(etc. 8d infinitum) mode identifier' with some other notion, ve my find
owrselves in the position where we wonder whether <MODE17 mode identifier>
nappens to be the "same" as <structured with reference to MIE17 field
TAGE3 mode identifier>. This can be declded upon on the basis. of the
specific metaproduction rules cbtained in stage 1, by means of an
algorithm as bas been given in (3), section 2.3.5, exercise 11.

3. Example

In the example given in the introduction, the crucial spot is the
mode—declaration. The most important specific metaproduction rules and
normal production rule (es modified in 1.3) directly related to that .
mode-declaration might be: v '

"¢ MODE1T: MOOD17.
MOOD17: STOWEDI1.
STOJED1: structured with FIEIDS1.
FIEIDS1: FIEIDI. :
FIEID1: MODE18 field TAG23.
MODE18: MOOD18.
MOOD18: TYPE1. ' .
TYPE1: reference to MODE17.

<mode declaration>::= <mode symbol> <MIDE17 mode indication>

<equwals symbol> e .

<actwal structwred with reference to MODE17T fleld-. - -

- ') TAG23 declarer>

In this example, 'MCDE1T7' and ‘structured with reference to MODE17 field
TAG23' stand for the same mode.

References: - oo ’ . .
(1) A.van Wijngarden (Editor), B.J.Mailloux, 'J.E.L.Peck-and C.H.A.Koster,
Final Draft Report on the Algorithmic Iangwmge AIGOL 68, -
Mathematisch Centrum, Amsterdam, MR- 100, December 1968. . .
. - f . .. - R
(2) G.S.Tseytin, - o B '
ILetter to P.Branguart, J.lewi, M.Sintzoff and P.Wodon,
November 1968. : '

(3) D.E.Knuth, o
The-Art of Computer Programing,
‘Voé-éT / Fundamental Algorithms,
1968.

7

Mathematical Centre,
Tweede Boerheavestraat 49,
Amsterdam 1005

The Netherlands

