stichting

mathematisch

centrum MC
AFDELING INFORMATICA IW 173/81 AUGUSTUS
(DEPARTMENT OF COMPUTER SCIENCE)
L.G.L.T. MEERTENS & J.C. VAN VLIET
AN OPERATOR-PRIORITY GRAMMAR FOR ALGOL 68+

kruislaan 413 1098 SJ amsterdam

inted at the Mathematical Centre, 413 Knuislaan, Amsterdam.

2 Mathematical Centre, founded the 11-th of Februarny 1946, is a non-
1§t Anstitution aiming at the promotion of pure mathematics and Lts
olications. 1t 48 sponsored by the Netherlands Govermment through the
therlands Onganization for the Advancement of Pure Research (Z.W.0.).

Mathematics subject classification: 68F05, 68F25, 68B20

omputing Reviews-category: 5.23, 4.22, 4.12

:rator-priority grammar for ALGOL 68+

,T. Meertens & J.C. van Vliet

ICT

f a grammar is of type LL(1), this easily leads to a parsing methc
lat grammar, implemented by a set of mutually recursive routines,
)r each non-terminal of the grammar. ALGOL 68+ is a superlanguage ¢
68 which is powerful enough to describe the standard-prelude. An
;or-precedence grammar for ALGOL 68+ can, through a simple right-
't transduction scheme, be made to be of type LL(1). If, in

.on, the grammar is an "operator-priority" grammar, an easy and
stent error-recovery mechanism can be applied. In this report, suct
irator-priority grammar for ALGOL 68+ is given. An account of the
‘ences between the language generated by that grammar, and ALGOL
.nsofar as these are due to the transition to an operator-priority
iry, is given as well. These differences somehow have to be catered
iring the parsing process.

)RDS & PHRASES: ALGOL 68+, operator-precedence grammar, top-down
parsing

'RODUCTION

f a grammar is of type LL(1), this easily leads to a parsing method
1at grammar, implemented by a set of mutually recursive routines,

)r each non-terminal of the grammar. Using such a parser, there is
:d to back up, since it is decidable which rule to apply (i.e.,
routine to call) by looking at most one symbol ahead. A more formal
ient of LL(1) grammars and parsers based on them can be found in

\LGOL 68+ is a superlanguage of ALGOL 68 [2] which is powerful

1 to describe the standard-prelude. Besides this, ALGOL 68+ also
>asses the official IFIP modules and separate-compilation facility
ren in [3]. The changes and additions to the language needed to be
.0 process a version of the standard-prelude are of a fairly simple
;3 they are described in [4].

| context-free grammar underlying the ALGOL 68+ syntax, such as the
.ven in [5], is not of type LL(1), but it seems possible to

‘uct an LL(1) grammar for "context-free ALGOL 68+". However, in
this, the original syntactic structure is lost.

\nother possibility is to apply beforehand a simple transduction
: [6], operating from right to left, which brings the source text in
t form. For example, the assignation

as:= b

: transformed into

now possible to decide on the first character that we are concerned
in assignation. In order to apply this method, the parenthesis

;on should be correct, for, if this transduction scheme is applied
.y to a source text with an incorrect parenthesis skeleton, the

. 1s in general unacceptable. To this end, one can either try to

* the parenthesis skeleton during lexical analysis if it turns out
incorrect (e.g., using the algorithm given in [7]), or decide to
the parsing process altogether.

"or an operator-precedence grammar, at most one of three

.onships (denoted by ¢, =, or) may hold between each pair of

1al symbols. These relationships are called the precedence

.ons. (For a formal treatment of operator-precedence grammars, see

» [1].) For an operator-precedence grammar, it is possible to

uct a transducer which brings the source texts in prefix form, only
1g the precedence relations between the symbols. (It is a

thtforward variant of the operator-precedence parsing algorithm

in [9], pp. 170-171.)

-n general, a number of entries in the table of precedence relations
ty, i.e., there is no precedence relation between certain pairs of
1al symbols. For correct input texts, this is no problem, since the
lucer will never need them. For incorrect input texts, however, the
lucer might well ask for them. In order to let the transducer work
.1 input texts, it is therefore necessary to define precedence

.ons for the empty spots as well. For an arbitrary operator-

lence grammar, it is not clear how to fill these empty spots in such
that a reasonably consistent treatment of incorrect input texts is
led. Therefore, some further restrictions on the grammar will be
luced, leading to the notion of an operator-priority grammar.

‘or terminal symbols a and b, we define a < b as: either a ¢ b or no
lence relation holds between a and b, and similarly for a = b and

. This relation can be extended to sets of terminal symbols. If A
are sets of terminal symbols, we define A < B as:

< B<K=> Vae A, be B: a < b.

and A > B are defined in a similar way.

'he first restriction that is impcsed can now be stated as follows:

le sets of terminal symbols can be partitioned into sets 0, M, C and
satisfying:

i) 0< 0, 0=M,0=2C, O0< P;
ii) M< 0, M =M, M=2C, M< P;
ii) C>M,C>C, C>P;
iv) P< 0O, P >M, P > C.

'hough this restriction looks rather complex, it is in fact quite

r satisfied. Suppose a production rule of the grammar contains

12l symbols a,; ... , an, in this order. For a production rule with
the one terminal symbol it contains will be called an "operator".

| the production rule

assignation: destination, becomes token, source.

rcomes-token (":=") is called an operator. For n > 2, a, will be

| an "opener", a., will be called a "middler" for 2 < i g n-1, and a
)e called a "cloSer". This terminology is not surprising, since suc
'tion rules in general describe parenthesized constructs, like

.o. end, or if ... then ... else ... fi.

.f the grammar is made such that the openers, middlers, closers and
.ors form mutually disjoint sets, then restriction 1 is

tically fulfilled if we define O, M, C and P to be those sets,
'tively. This can easily be verified from the definition of an
.or-precedence grammar.

The above observation allows us to partly fill in the empty entries
in the table in a consistent way. The remaining empty spots concern the
precedence relations between closers and openers, and mutually between
operators. However, even for arbitrary (incorrect) input texts, the
transducer need never ask for a relation between a closer and an opener
(see [10] for further details).

As for the operators, a further restriction is imposed:

(2) The set of operators can be partitioned into sets A1, esee 5 A
satisfying:
i) There exists a total linear order << between the sets satisfying,
for i # j:

A, <K A, => A <A, AA_>A..
i J i J J i
ii) For each of the sets Ay 11 <ms

A, <A, vVvA, >A..

i i i i
Intuitively, the total linear order << implies that if A, << A., then
elements from A always occur at a higher node in the pa%se tree than
those from A ., prov1ded no parenthesized constructs occur in between.
(The operatoﬂs with higher priorities tend to occur at lower nodes.)

Restriction 2ii) above implies that operators from one and the same
set are either all right-associative (<) or all left-associative (>)
operators. It should be noted that the partitioning of the set of
operators is not necessarily unique. If there is a proper subset of one
of the A such that no precedence relation holds between any pair of
operators from the subset, then the partitioning may be refined.
Arguments related to the error-recovery method envisaged (see [10]) may
then be applied in order to choose the more desirable partitioning.

A short survey of the partitioning we have decided on is given in
Appendix C.

If an operator-precedence grammar fulfills the requirements under
(1) and (2) above, it will be called an operator-priority grammar. Such
an operator-priority grammar for ALGOL 68+ is given in Appendix A. In
Appendix B, the corresponding table of precedence relations is given. The
terminal symbols have been listed and the sets A. have been delineated
such that the fulfillment of the operator-priority requirements can be
readily verified.

The test for the grammar being operator-precedence was performed
mechanically. Various initial clashes came to light hereby. The measures
taken to make the grammar operator precedence can be distinguished in
three categories:

ivial rearrangements of the syntax. This has mainly been done by
nsidering some notions as macros, to be replaced (conceptually) in

e productions in which they occur by their direct productions.
viously, this trick can only be used for nonrecursive notions. In

e grammar (see Appendix A), these notions are indicated by prefixing
2ir production rules with an asterisk.

stinguishing symbols represented by the same mark. For instance, it
3 necessary to distinguish between the up-to-/label-token, the
scification-token and the routine-token. For a complete list of this
tegory, see section 2 below.

rious symbols have been inserted between notions. For instance, a
sctag-insert" is placed between a declarer and the following TAG-
<en in an identifier-declaration. Again, section 2 contains a

nplete account of the modifications from this category.

function of the changes in categories a and ¢ is to separate any two
1s in a production rule by at least one symbol, whereas category b

3 to resolve clashes in the precedence relations.)

fhe check for the further restrictions on the grammar was performed
lLly, by inspecting the table of precedence relations. A few

ions were needed before the final grammar was obtained. This

ir and the table of precedence relations are given in Appendix A and
spectively. Appendix C gives a list of the priorities of the various
cors and their left or right associativity.

ihen actually parsing ALGOL 68+ texts, the same modifications must
>lied. The task of making the distinctions of category b above, and
icing the inserts of category c, can largely be delegated to the

11 pass. A precise description of how the input texts can be made to
'm to the operator-priority grammar is given in [11].:. In section 2

y only a short summary of these modifications is given.

‘he further differences between ALGOL 68+ and the language described
} operator-priority grammar are given in section 3. Some of the

s underlying these differences have been made to resolve clashes in
‘ecedence relations, or to get a proper ordering between the

;ors. Others are the result of combining rules whose productions

r overlap, such as those for calls and slices. For instance, there
way to decide whether "a(1)" is a slice or a call without knowing
yde of the identifier "a". In such cases, the syntax has been

:d by combining the production rules, so as to make possible the

wn parsing method based on an LL(1) grammar. It is mainly the task
! syntax- and semantic-analysis phases of the compiler to take these
‘ences into account. (The differences caused by the transition to a
‘t-free grammar, as given in [5], must be added to the 1list.)

‘n fact, the right-to-left transduction results in a linearized
tree. Obviously, the same parse tree would have resulted from the
ird operator-precedence parsing algorithm. This algorithm, however,
¢ rather poor possibilities to handle incorrect input texts. Care

sen taken to ensure that, when the right-to-left transduction is
:d to the grammar, the resulting grammar is of type LL(1). This
s for a unique assignment of semantics to the nodes of the parse
luring the subsequent mode-independent analysis. This top-down
1g method is further discussed in [10].

JUSTMENTS TO BE MADE DURING LEXICAL ANALYSIS

[t is one of the duties of the lexical phase of the parser to cope
-he differences listed in this section.

he lowest level, a distinction is made between

as open-mark and as choice-start;

as choice-in and choice-outj

as close-mark and as choice-finish;j

as is-defined-as-token, egg-defined-as-token (i.e., the is-defined-
as-token from the stuffing-definition) and operator;

as colon-mark, specification-token and routine-tokenj;

as skip-token and as operator.

he lowest level, a distinction is also made between defining
irrences of operators (in priority- and operation-declarations) and
lied occurrences (in formulas and ldec-sources).

tdes the and-also-token, which separates the individual elements of
ist, there is a variant, the separate-and-also-token, which
irates lists.

grammar contains inserts:

1e loop-insert marks the beginning of a loop;

1€ ssecca-insert marks the end of the revelation of an access-
Llause;

1e dectag-insert is placed between a declarer and the following
\G-token in an identifier-declaration;

1e opdec-insert is placed between the operation-heading and the
>llowing operator in an operation-declaration;

1e cast-insert is placed between the declarer and the ENCLOSED-
lause of a cast;

1e clice-insert is placed between the primary and the actual-
irameters-pack or indexer-bracket of a call or slice;

1€ row-insert is placed between the ROWS-rower-bracket and the
>llowing declarer of a ROWS-of-MODE-declarer;

1e formals-insert is placed between a PARAMETERS-joined-declarer-
~ief-pack or declarative-brief-pack and the following declarer of a
~ocedure-plan or routine-text;

1e invoke-insert is placed between the revelation and the following
{CLOSED-clause in an access-clause.

{THER DIFFERENCES

sed-clauses and collateral-clauses are treated alike. This means
> the following texts will also be accepted:

par ()
par (1

par (1; 2).

oo

3 can easily be dealt with during syntax analysis.

'r exit, no label-definition is required. Obviously, the mode-
'pendent pass can easily catch this case.

.dentifier-declarations and -definitions, identity and variable have

| collapsed. As a consequence, the following texts are also
:pted:

loc int a = 0;

1. 1nt as= (1, 2);

[1:2] . int a = (1, 2);

int a = 1, b:= 2.

mode-independent pass can use a variable "idvar", with possible

es "identity", "variable" and "unknown". The starting value is
rmined by the leapety-declarer: when a leap-token or apparent

al declarer is encountered, its value is variable, when an apparent
al declarer is encountered, its value is identity, and otherwise it

nknown. For each separate identifier-definition, its actual idvar
be determined.

the same reason,

bool b:= ‘code "GENERATE"

lso accepted. Here also, the mode-independent pass can easily check
s using the above-mentioned variable "idvar".

S, nihils and jumps are treated as primary, to improve error
very. Because of this, the following is also accepted:

: skips;
nil;

goto 1.

Lo T 1]

a
b
1

+|o .

can easily be encompassed in the mode-independent pass by treating
as an erroneous alternative at their present occurrence in the
mar, and by incorporating them as proper occurrence at the original
e - where, in recognizing a unit or tertiary, the respective
rnatives tertiary and secondary should appear last (note that this

mar is not of type LL(1) any more):

unit

AN

skip goto 1 tertiary
_—
ok

o e nil secondary

. primary

skip nilxo 1

—
ko

case of a wrongly placed goto-less jump, as in 1 + 1, cannot be
scted in the mode-independent pass. All those cases will however pop
vhen doing the coercions: the forbidden jumps never occur in a

mg position. Exception: a :=: 1 or 1 :/=: a. This case can be

ited separately in the mode-dependent pass. (Note that a :=: (1) is
"ect!)

simplicity’s sake the nine priority levels for dyadic operators are
1ced to one in the operator-priority grammar.

tes and calls have been collapsed. So a construction like sin[1:2]
11so accepted. This kind of error can only be detected during mode-
:ndent analysis.

iNCES

\HO, A.V. & J.D. ULLMAN, The Theory of Parsing, Translation and
Compiling, Vol I: Parsing, Prentice-Hall, 1972.

AN WIJNGAARDEN, A. et al, Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica 5 (1975), pp 1-236.

.INDSEY, C.H. & H.J. BOOM, A modules and separate compilation
facility for ALGOL 68, ALGOL Bulletin 43 (1978), pp 19-53.

{fEERTENS, L.G.L.T. & J.C. VAN VLIET, ALGOL 68+, a superlanguage of
ALGOL 68 for processing the standard-prelude, Report IW 168/81,
Mathematical Centre, Amsterdam, 1981.

MEERTENS, L.G.L.T. & J.C. VAN VLIET, An underlying context-free
grammar of ALGOL 68+, Report IW 171/81, Mathematical Centre,
Amsterdam, 1981.

-EWIS II, P.M. & R.E. STEARNS, Syntax-directed transduction, JACM
15, 3 (1968), pp 465-488.

{EERTENS, L.G.L.T. & J.C. VAN VLIET, Repairing the parenthesis
skeleton of ALGOL 68 programs: proof of correctness, in G.E.
Hedrick (Ed.), Proceedings of the 1975 International Conference
on ALGOL 68, Oklahoma State University, Stillwater, June 10-12,
1975 (also registered as Mathematical Centre Report IW 52/75).

*LOYD, R.W., Syntactic analysis and operator precedence, JACM 10, 3
(1963), pp 316-334.

\HO, A.V. & J.D. ULLMAN, Principles of compiler design, Addison-
Wesley, 1977.

{EERTENS, L.G.L.T. & J.C. VAN VLIET, On top-down parsing of ALGOL
68+, Mathematical Centre, Amsterdam, to appear.

/AN VLIET, J.C., Making ALGOL-68+-texts conform to an operator-
priority grammar, Mathematical Centre, Amsterdam, to appear.

)IX A -- OPERATOR-PRIORITY GRAMMAR OF ALGOL 68+

-n the grammar given below, comments are placed between style-ii-
1t-symbols ("#"). The grammar starts with a list of the terminal
.8, separated by semicolons and terminated by a period. Production
consist of a left-hand-side and a colon followed by one or more
1atives, separated by semicolons. The last alternative is followed
)eriod. An alternative consists of one or more members, separated by
i A member is either a notion, or a list of notions separated by

3 and enclosed between the syntactic marks "("™ and ")". In the

* case, the direct productions of that member are: empty, and the
sed 1list of notions. Obviously, this mechanism does not enlarge the
.ptive power, but is merely an expedient way to shorten the syntax.

‘n the comments in the grammar below, the numbers refer to the
sponding section numbers in [2], as possibly modified by [3]. The
sentations of the various bold symbols are given in the point-
)ying regime. Newly added symbols have a representation which con-
the escape-character ("’"). Symbols may have more than one
sentation; in that case, these are separated by spaces, and three
.ndicate that only examples are given.

.-n an operator-precedence grammar, one in general uses special mark-
y indicate the start and end of the input text. These markers are
1sed to properly initialize and terminate the parsing process. In
‘ammar these are termed "begin of input token" and "end of input

's respectively, and a production rule

iput text:
begin of input token, compilation input, end of input token.

ren added.

ninal symbols #

ners #

pen mark; ‘ (#

51ld begin token; .begin #
2gin of input token; ‘begin #
n10oice start; .if .case (
rief sub token; [#

>op insert; “loop #

of tokenj; .def #
2cess token; .access #
llers #

10ice inj .then .in |
10ice againg .elif .ouse
10ice out; .else .out |
>r token; .for #

~om token; .from #

y token; by #

> token; .to #

1ile token; .while #

> token; .do #

sers #

lose mark;) #

>1d end token; .end #

1d of input token; “end #
10ice finish; f1 .esac #
~ief bus token; 1 #

1 token; »od #

3d token; fed #
secca insert; "ssecca
»er operators, in ascending orc priority #

)rity a tokens #
1g token; egg #

)rity b tokens #
1g defined as token; ‘edat #

)ity ¢ tokens #
)stlude token; »postlude #
ympletion token; exit #

)rity d tokens #
) on token; #

Jrity e tokens #
sparate and also token;

>rity £ tokens #
iblic token;

>rity g tokens #
~iority token;
>de token;

lec token;

>dule token;

>rity h tokens #
sctag insert;
>dec insert;

»rity i tokens #
1d also token;

rity j tokens #
3 defined as token;
> token;

rity k tokens #
>lon mark;
>ecification token;

rity 1 tokens #
:comes token;
lentity relator;
>utine token;
»de token;

)rity m tokens #
radic operator;

)rity n tokens #
>nadic operator;

)ity o tokens #
* token;

ity p tokens #
1st insert;
.ice insert;

‘sep #

.pub #

.prio #
.mode #
. "ldec #
.module #

‘dectag #
“opdec #

‘idat #
3 .at #

D #
‘spec i

=

(e} ;; "

.is 3#: isnt #
out #
» code #

v

F= .OVer .Xj #

F .not .xyz .

,of #

‘cast #
‘clice #

12

priority q tokens
reference to token;
leap token;
structure token;
flexible token;
procedure token;
union of token;
operator token;
go to token;
row insert;
formals insert;
invoke insert;
formal nest token;
language indication;

operands
digit token;
tag token;
format text;
string denoter;
other denoter;
parallel token;
choice token;
defining operator;
mode indication;
module indication;
skip token;
nil token.

#9.4.1. representations

¥ brief begin token:
open mark.

¥ brief end token:
close mark.

style i sub token:
open mark.

® style i bus token:
close mark.

label token:
colon mark.

up to token:
colon mark.

hole indication:
string denoter.

ref #

.1loc .heap #
struct #
flex #

.proc #

.union #

.op #

.goto .go.to #
‘row #
‘formals #
‘invoke #
nest #
fortran ... #

23456789 #
R

33zd$... #

'string" ... #

}o14 .true .empty ... #

par #

“choice #

3= LOVEr XYZ ... #

int ... #

matrix ... #

skip ~ #

nil © #

1. compilation inputs#

text:

:igin of input token, compilation input, end of input token.
.ation input:

:nclosed clause;

*elude packet;

;2uffing or definition module packet.

ysed clause:
tbel definition, lenclosed clause; enclosed clause.

le packet:
ydule declaration.

.ng or definition module packet:

t1g token, stuffing definition.

.ng definition:

)le indication, egg defined as token,
actual hole or module declaration.

. hole or module declaration:

:tual hole;

ydule declaration.

.auses.#

sed clause:
.osed or collateral clause; parallel clause; choice clause;
)op clause; access clause.

closed clauses.#

| or collateral clause:

:gin, inner clause, end.

.n:

)1d begin token; brief begin token.

)ld end token; brief end token.
clause:

:)rial clause;

joined portrait).

.el clause:
irallel token, closed or collateral clause.

serial clauses.#

. clause:
iries.
i

‘ain, (completion token, series).

iclun, go on token, train; lunit.
Ls

iclaration; lunit.

lbel definition, lunit; unit.
11 definition:
lentifier, label token.

collateral clauses; see also 3.1.#

| portrait:

11t or joined portrait, and also token, unit.
r joined portrait:

1it; Jjoined portrait.

choice clauses.#

: clause:
ioice start, chooser choice clause, choice finish.

)ser choice clause:

iquiry clause, alternate choice clause.
'y clause:

ries.

rnate choice clause:
| choice clause, (out choice clause).

hoice clause:
oice in, in part of choice.
art of choice:
rial clause; case part list proper; united case part.
art list proper:
se part list, and also token, case part.
art list:
:ase part list, and also token), case part.
art:
it; united case part.
case part:
ecification, unit.
ification:
ngle declaration brief pack, specification token.

e declaration brief pack:

rief begin token, single declaration
e declaration:

eclarer, (dectag insert, identifier)

choice clause:
hoice out, serial clause;
hoice again, chooser choice clause.

loop clauses.#

clause:

oop insert,

or part, (from part), (by part), (to
part:

for token, identifier).

m part:

rom token, unit.

part:

y token, unit.

part:

o token, unit.

eating part:

while part), do part.

le part:

hile token, enquiry clause.

part:

o token, serial clause, od token.

access clauses.#

5 clause:

svelation, invoke insert, enclosed c:
ation:

ccess token, joined module call, sse
i module call:

odule call, (separate and also token
2 call:s

public token), invocation.

ation:

ddule indication.

token.

ating part.

ale call).

eclarations.#

ration:
lblety ldecety declaration,
(separate and also token, declaration).
ty ldecety declaration:
public token), ldecety declaration.
ty declaration:
ldec token), common declaration.
n declaration:
>de declaration; priority declaration;
dentifier declaration; operation declaration;
bdule declaration.

mode declarations.#

jeclaration:

>de token, mode joined definition.

joined definition:

node joined definition, and also token), mode definition.
lefinition:

sfined mode indication, is defined as token, declarer or cod:
2d mode indication:

>de indication.

"er or code:

sclarer;

xde.

priority declarations.#

Lty declaration:

"iority token, priority joined definition.

ity joined definition:

riority joined definition, and also token), priority definit
ity definition:

>erator, is defined as token, priority unit.

Lty unit:

lgit token.

identifier declarations.#

ifier declaration:

eapety declarer, dectag insert, identifier

ty declarer: '

leap token), modine declarer.

e declarer:

onproc declarer; modine procedure declarat

e procedure declarator:

rocedure token, (formal procedure plan).

ifier joined definition:

identifier joined definition, and also tok
identifier definition.

ifier definition:

dentity definition; variable definition.

ity definition:

dentifier, is defined as token, ldecety so

ty source:

1it or code;

nroice token, ldec source choice list brief

or code:
1it; code.

>de token, code string.
string:
iring denoter.

source choice list brief pack:

~ief begin token, ldec source choice list,
brief end token.

source choice list:

ldec source choice list, and also token),
ldec source choice.

source choice:

10ice, up to token, unit or code.

radic operator, length denoter.

1 denoter:

inus token option, integral denoter.

1s token option:

1onadic operator).

*al denoter:

:her denoter.

)le definition:
lentifier, (becomes token, unit).

d defi

operation declarations.#

ion declaration:

>eration heading, opdec insert,
operation joined definition.

ion heading:

>erator token, (formal procedure plan).

ion joined definition:

>peration joined definition, and also token),
operation definition.

ion definition:

>erator displayety, is defined as token, ldecety

.or displayety:

erator; operator display.

:or display:

10ice token, operator list brief pack.

;or list brief pack:

*ief begin token, operator list, brief end token.

or list:

)perator list, and also token), operator.

.ors

:fining operator.

module declarations.#

: declaration:

ydule token, module joined definition.

¢ joined definition:

lodule joined definition, and also token),
module definition.

} definition:

:fining indication, is defined as token, module t

.ng indication:

ydule indication.

y text:

‘evelation), module series pack.

! series pack:

if token, module series, fed token.

! series:

ydule prelude, (module postlude).

: prelude:

icl or unit, (go on token, module prelude).
r unit:

iclarations

1it.

1le postlude:

>stlude token, postlude series.

1de series:

1it, (go on token, postlude series).

declarers.#

er:
mproc declarer; procedure declarator.

>c declarer:

:ference to declarator; structured with declarator;
lexible rows of declarator; rows of declarator;
1ion of declarator; mode indication.

:nce to declarator:
:ference to token, declarer.

:ured with declarator:

-:ructure token, portrayer pack.

iyer packs:

~ief begin token, portrayer, brief end token.

iyer:

)mmon portrayer, (separate and also token, portrayer).

1 portrayer:

:clarer, dectag insert, joined definition of fields.

1 definition of fields:

joined definition of fields, and also token), field selector.

>le rows of declarator:
.exible token, declarer.

»f declarator:

wer bracket , row insert, declarer.
bracket:

‘ief sub token, rower, brief bus token;
:yle i sub token, rower, style i bus token.

‘ower, and also token), row rower.
wers

.ower part), (unit).

ir part:

init), up to token.

lure declarator:

~ocedure token, formal procedure plan.

L procedure plan:

joined declarer pack, formals insert), declarer.

1 declarer pack:)

~ief begin token, joined declarer, brief end token.

1 declarer:

joined declarer, and also token), declarer.

of declarator:
1ion of token, joined declarer

pack.

indicators and field selectors.#

.fier:

1g token.
selector:
1g token.

1its.#

ssignation; identity relation;
wrtiary.

irys

yrmula; secondary.

lary:

routine text; formal hol

:ap generator; selection; primary.

ny:

‘imary one; other denoter; format text; skip token; nil

'y one:

.ice call; cast; string denoter
iIclosed clause.

. assignations.#

lation:
rtiary, becomes token, unit.

'. identity relations.#

ty relation:

3 ldentifier; #go to# ju

rtiary, identity relator, tertiary.

.« generators.#

enerator:
ap token, declarer.

1. selections.#

tion:
ield selector, of token, secondary.

2. slices.#

call:
rimary one, clice insert, indexer bracket.
er bracket:
rief sub token, indexer, brief bus token;
tyle i sub token, indexer, style i bus token.
er:
indexer, and also token), trimscript.
cript:
nit;
bound pair), (revised lower bound).

pair:
unit), up to token, (unit).
ised lower bound:
t token, unit.

1. routine texts.#

ne text:

outine heading, routine token, unit.

ne heading:

declarative pack, formals insert), declarer.

rative pack:

rief begin token, declarative, brief end token.

rative:

ommon declarative, (separate and also token, dec: ve).
n declarative:

eclarer, dectag insert, parameter joined definit:

eter joined definition:

parameter joined definition, and also token), id: er.

2. formulas.#

laz

yadic formula; monadic formula.

2 formula:

perand, dyadic operator, monadic operand.
ic formula:

onadic operator, monadic operand.

ads

>rmula; secondary.

ic operand:

>nadic formula; secondary.

3. calls.# isee 5.3.2.#

1. jumps.#

(#go to token#)#, identifier.

1. casts.#

sclarer, cast insert, enclosed clause
holes.#

. hole:

rmal nest token, nest tail.

. hole:

1closed clause.

.ail:

.anguage indication), hole indicatior

— TABLE OF PRECEDENCE RELATIONS
1111111111222222222233333333334 444444 44455555555556666666666T7TTTTTTT
12345678901234567/890123456789012345678901234567890123456789012345678901234567
<< KK {LLLLLLLLLL €L <L KKK KK K K
n token << KK CLLLLLLLLLLE € KK KKK ke <« K
token << < < (¢ = < < < < < <
art << KKK = = <LK < KL CLKLLLLLLLLKKKKKK KKK K K
token << KK = < <€ €L <LLLLLKKKLL KKK KKK < KK
rt z==z=z=g
<< KKK (< = < LLLLKKKLKK << CLCLKLLLLLKKLKKKKE KKK K K
ken E << <
<< KK == = CLLLLLLKLLL KLKE CCCKKLKKKE e <k
ain <K KKK = = <LK < €KL <LK KKK <« KL
t <K KK = <LK < €L LKL KKK K K
z===3 <
n << KKK <L CLKLLLLLKKL KKK K < KK
<< KKK <L <LLLLLLLKKL KKK KKK K K
<< KKK €L CLLLLLLLKLL CKKKKE KKK < KK
en << KKK <LK MR C R C S L L LE S C R S CCC TR G < 4
<< KX = <LLLLLKLKKLKL < <KL KLLLLLKLLLLLLLLKLLL KKK K KK
k D25 OOOMOO5555> >>>> DEXIOIOD> > > >>
token D>> DOOOOO5555> >35> > 5> 0> > >
oken
nish >>> OOO55555) >>>> > 5> 5> > >
token D3> OO> S>> >>>> > 5> 5> > > >
>>> OOO55555> >5>> >5> 5> > >
> > > > >
sert >
> <
ed as token << < < (> < < <
token << KKK > <L CLLLLLLLKLK KKK e < K
n token << KL D> >> > > <<LLLKLKKL < <KL CLLLLLKLLKKLKKKKLE KKk K KK
en << KLL <P >> > 5> >) <LK < KL CLLLLLKLLKLLKKKKKE KKK K KK
and also token < < > > > DKKLLLLKLK <LK < <KL
ken < < > > K<L <KL K <K
token > > > <L <
n > > > <« <
n < < > > > KK KK <LK < <
ken > > > > << <
sert > > > > < < <
ert > > > < <<
token << KL > D35> > > > {LLLLL LKL KKK <K
i as token << <LKKKLK > > > > {{{LLLLLLLLLLLL KKK KKK« KK
<< KKK K > > <L CLLLLLCLLKL KKK KKK < K
K << KLL P> D>>>>> >> > MK KLLLLLLLLLLLLKLL KKK KKK K KK
tion token << KK >> > > KL CLLLLLLLKLL KKK KK <« KL
oken << KL ADO> 0 OO0 OO >O>> > D> KKK IKKLLLLLKKLL KKK KK € K
relator << KL ADO> 0 OO0 > 255> > > K<LLLLLKLLL KK < KKK < K
oken << KL AD>> 0 D550 > >>>> > OO KKK [KLLLLLLLLKL KKK KKK K KL
n > > > > > <
erator <L KL B> OOOD> OO >35> > >> > <LK KK K KKK < KK
perator K KL P> D505 > >>>> > 5> > K<LLLLLKK KK < KKK < KK
KL KL BX> 0 D505 55> >>>> > 5> 5> > <LK KK K KKK < K
rt < << APO> 0 OOOD> > >35> > 5> 5> > < <
ert < < D> OO0 OO >O>> > 2> 5> >
to token < < D> OO OO >>>> D> 5> 55> > > <KL K <
n < < D22 OO0 25> >O>> > 5> 5 > [SSCIRY <
token < D3> OO O35> >5>> D> 5> 55> > >
token < < D> OOO5D> OO >35> D3> 5> 55> > > <KL L <
token < < D>> OOO5D> OO >55> D> 0> 55> > > KK K <
token < D>> OO0 OO >35> O3> 5> 55> > >
token < < > <KL K <
en D3> O350 555> >35> > 2> 5> > <
t < < D3> OO0 S>> >5>> D> 5> 5> > > K KKK (K <
nsert < < D> OO 555> >35> D> 5> 5> > > KL K <
sert K < <P OEOIDOO555> >35> > 5> 5> > < <
st token D>> OO0 OO >>5> > > <
indication D3> OO OO 555> > > <
en > > > >
D3> OOO55D0 555> >35> D3> 5> > > >
Xt D> OO OO >>>> >0 5> >
noter D>> OOOOD> 5555 | 555> > 5> 5> > >
oter 2> OO 555> >>>> > 2> 5> >
token <L D> OOO5DOO55>> >O>> > 5> 5> > >
ken < > > > >>
operator > >>
cation D> OO0 > | >>>> OO0 > > >
dication > > >
n DO> OOOOD> X5 >>>> > 2> 5> >
5> 055505 555> >5>> > 5> 5> >

23

DIX C

Below, a short survey of the various sets of operators ven, i
nding order of priority. The set of operators with the st

ity, also termed "operands", is not included in the 1li ow. Fo
set of operators, it is indicated whether they are lef ciativ

or right-associative ("R").

reference to token; leap token; structure token; flexi’ ken;

drocedure token; union of token; operator token; go to H
row insert; formals insert; invoke insert; formal nest

language indication.

cast insert; clice insert.

>f token.

nonadic operator.

lyadic operator.

>ecomes token; identity relator;
*olon marks; specification token.
is defined as token; at token.
ind also token.

lectag insert; opdec insert.
riority token; mode token; ldec
ublic token.

separate and also token.

10 on token.

)ostlude token; completion token.
:gg is defined as token.

:gg token.

routine token; code

token; module token.

“we »

t¢

| | | | | N | ‘ N | |

