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We are given a non-empty bag of (votes on) 'candidates', and are asked to determine
if some candidate has the majority.

Several derivations of linear-time algorithms have been given, all of which work in
two phases: first find a 'hopeful majority' candidate, and next check if it really has
the majority. A  'hopeful majority' candidate is any candidate c in the bag such that
if some candidate has the majority, it is c.

I consider here only the problem of finding some hopeful majority candidate. A l l
previous algorithms I have seen basically scan the bag. The purpose of this note is
to show that there is a divide-and-rule approach. I n  a previous note I have given a
derivation, mainly based on predicate calculus. Here only the solution is presented.

Let C stand for the type of the candidates, and N for the naturals. The operation
9: (C X N)X(CXN) C  X N is defined by:
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where a -<p>i) stands for if p then a else b fi. We also define f: C C  X N:
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Now a hopeful majority candidate is determined by 1r2 • h, where h is the bag
homomorphism defined by

h =  e l  • fs
However, something funny is going on here. Even under the hot indeterminate
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ing the different ways to compute h on a bag of three distinct candidates. According
to the current definitions this would mean that h is not a proper bag homomorphism.
Associativity is not required for consistency if we consider the bag splitting itself also
as indeterminate. This is already mentioned in the Algorithmics paper, but I had not
come across a clear (non-contrived) example before. The definition of the indeter-
minate bag reduce 9 /  is then that it is the 'thinnest' (most determinate) indeter-
minate function r satisfying
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