
Revised Report
on the Algorithmic Language
Algol 68

Edited by

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck,
C. H. A. Koster, M. Sintzoff, C. H. Lindsey,
L. G. L T. Meertens and I I G. Fisker

Springer-Verlag
Berlin • Heidelberg • NewYork 1976

ISBN 3-540-07592-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-07592-5 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data. Main entry under ti tle: Revised
report on the algorithmic language ALGOL 68. Published in 1971 under title: Report
on the algorithmic language ALGOL 68. Bibliography: p. Includes index. 1. ALGOL
(Computer program language) I . Wijngaarden, Adriaan, van. OA76.73.A24R45 1975
001.6424 75-45007

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material i s concerned, specifically those of translation, reprinting, re-use of
Illustrations, broadcasting, reproduc tion b y photocopying machine o r s imi lar
means, and storage in data banks. Under § 54 of the German Copyright Law where
copies are made for other than private use, a fee is payable to the publisher, the
amount of the fee to be determined by agreement with the publisher.
© by Springer-Verlag Berl in Heidelberg 1976
Printed in Germany
Printing and bookbinding: Universitatsdruckerei H. Sturtz AG, WOrzburg

This Repor t has been accepted b y Work ing Group 2.1, rev iewed b y
Technical Commit tee 2 on Programming and approved f or publicat ion by
the General As s embly o f t he I nt ernat ional Federat ion f o r I nf ormat ion
Processing. Reproduct ion of the Report , f o r any purpose, but only of the
whole text, is explic it ly permit ted without formalit y .

CONTENTS

Acknowledgements 6
O. Introduct ion 8

0.1. Aims and principles of design 8
0.1.1. Completeness and c larit y of descript ion 9
0.1.2. Orthogonal design 9
0.1.3. Security 9
0.1.4. Effic iency 9

0.2. Comparison wit h ALGOL 60 1 0
0.3. Comparison with the language defined in 1968 1 3
0.4. Changes in the method of descript ion 1 5

PART I

Preliminary definit ions

1. Language and metalanguage 1 7
1.1. The method of descript ion 1 7

1.1.1. Int roduct ion 1 7
1.1.2. Pragmat ics 1 8
1.1.3. The syntax of the st ric t language 1 9

• 1.1.3.1. Protonot ions 1 9
1.1.3.2. Product ion rules and product ion trees 2 1
1.1.3.3. Metaproduct ion rules and s imple substitut ion 2 3
1.1.3.4. Hyper-rules and consistent substitut ion 2 5

1.1.4. The semantics 2 6
1.1.4.1. Hypernot ions, designat ion and envelopment 2 7

2 v a n Wijngaarden, et al.

1.1.4.2. Paranot ions 2 7
1.1.4.3. Undefined 3 0

1.1.5. Translat ions and variants 3 0
1.2. General metaproduct ion rules 3 1
1.3. General hyper-rules 3 3

2. The computer and the program 3 5
2.1. Terminology 3 6

2.1.1. Objects 3 6
2.1.1.1. Values, locales, environs and scenes 3 6
2.1.1.2. Modes 3 7
2.1.1.3. Scopes 3 8

2.1.2. Relat ionships 3 9
2.1.3. Values 3 9

2.1.3.1. Plain values 3 9
2.1.3.2. Names 4 1
2.1.3.3. Structured values 4 2
2.1.3.4. Mult iple values 4 2
2.1.3.5. Rout ines 4 5
2.1.3.6. Acceptability of values 4 5

2.1.4. Actions 4 6
2.1.4.1. Elaborat ion 4 6
2.1.4.2. Serial and collateral actions 4 7
2.1.4.3. Init iat ion, complet ion and terminat ion 4 8

2.1.5. Abbreviat ions 4 9
2.2. The program 5 1

PART I I

Fundamental constructions

3. Clauses 5 3
3.1. Closed clauses 5 3
3.2. Serial clauses 5 4
3.3. Collateral and parallel clauses 5 7
3.4. Choice clauses 5 9
3.5. Loop clauses 6 3

4. Declarat ions, declarers and indicators 6 6
4.1. Declarat ions 6 6
4.2. Mode declarat ions 6 7
4.3. Priorit y declarat ions 6 8
4.4. Ident ifier declarat ions 6 8
4.5. Operat ion declarat ions 7 0
4.6. Declarers 7 1
4.7. Relat ionships between modes 7 1
4.8. Indicators and field selectors 7 6

ALGOL 68 Revised Report 3

5. Units 7 7
5.1. Syntax 7 7
5.2. Units associated with names 7 8

5.2.1. Assignations 7 8
5.2.2. Ident ity relat ions 7 9
5.2.3. Generators 8 0
5.2.4. Nihils 8 2

5.3. Units associated with stowed values 8 2
5.3.1. Selections 8 2
5.3.2. Slices 8 3

5.4. Units associated with rout ines 8 6
5.4.1. Rout ine texts 8 6
5.4.2. Formulas 8 7
5.4.3. Calls 8 8
5.4.4. Jumps 8 9

5.5. Units associated with values of any mode 9 0
5.5.1. Casts 9 0
5.5.2. Skips 9 0

PART I I I

Context dependence

6. Coercion 9 1
6.1. Coercees 9 1
6.2. Dereferenc ing 9 3
6.3. Deproceduring 9 4
6.4. Unit ing 9 4
6.5. Widening 9 5
6.6. Rowing 9 6
6.7. Voiding 9 7

7. Modes and nests 9 8
7.1. Independence of propert ies 9 8
7.2. Ident ificat ion in nests 1 0 1
7.3. Equivalence of modes 1 0 3
7.4. Well-formedness 1 0 7

PART IV

Elaborat ion-independent constructions

8. Denotations 1 0 8
8.1. Plain denotations 1 0 8

8.1.1. Integral denotations 1 0 8

4 v a n Wijngaarden, et al.

8.1.2. Real denotations 1 0 9
8.1.3. Boolean denotations 1 1 0
8.1.4. Character denotations 1 1 0
8.1.5. Void denotat ion 1 1 1

8.2. Bits denotations 1 1 1
8.3. St ring denotations 1 1 2

9. Tokens and symbols 1 1 3
9.1. Tokens 1 1 3
9.2. Comments and pragmats 1 1 4
9.3. Representat ions 1 1 5
9.4. The reference language 1 1 6

9.4.1. Representations of symbols 1 1 8
9.4.2. Other TAX symbols 1 2 2

PART V

Env ironment and examples

10. Standard env ironment 1 2 4
10.1. Program texts 1 2 4

10.1.2. The env ironment condit ion 1 2 5
10.1.3. The method of descript ion of the standard env ironment 1 2 6

10.2. The standard prelude 1 2 8
10.2.1. Env ironment enquiries 1 2 8
10.2.2. Standard modes 1 2 9
10.2.3. Standard operators and functions 1 3 0

10.2.3.0. Standard priorit ies 1 3 0
10.2.3.1. Rows and associated operat ions 1 3 0
10.2.3.2. Operat ions on boolean operands 1 3 1
10.2.3.3. Operat ions on integral operands 1 3 1
10.2.3.4. Operat ions on real operands 1 3 2
10.2.3.5. Operations on arithmet ic operands 1 3 3
10.2.3.6. Operat ions on character operands 1 3 3
10.2.3.7. Operat ions on complex operands 1 3 3
10.2.3.8. Bits and associated operat ions 1 3 5
10.2.3.9. Bytes and associated operat ions 1 3 6
10.2.3.10. Strings and associated operations 1 3 7
10.2.3.11. Operat ions combined wit h assignations 1 3 7
10.2.3.12. Standard mathemat ical constants and functions 1 3 8

10.2.4. Synchronization operat ions 1 3 9
10.3. Transput declarat ions 1 4 0

10.3.1. Books, channels and files 1 4 0
10.3.1.1. Books and backfiles 1 4 0
10.3.1.2. Channels 1 4 1
10.3.1.3. Files 1 4 3

ALGOL 68 Revised Report 5

10.3.1.4. Opening and closing files 1 4 7
10.3.1.5. Posit ion enquiries 1 5 2
10.3.1.6. Layout rout ines 1 5 4

10.3.2. Transput values 1 5 8
10.3.2.1. Conversion rout ines 1 5 8
10.3.2.2. Transput modes 1 6 3
10.3.2.3. Straightening 1 6 3

10.3.3. Format less t ransput 1 6 4
10.3.4. Format texts 1 7 2
10.3.5. Format ted t ransput 1 9 1
10.3.6. Binary t ransput 2 0 5

10.4. The system prelude and task lis t 2 0 8
10.4.1. The system prelude 2 0 8
10.4.2. The system task lis t 2 0 8

10.5. The part icular preludes and postludes 2 0 8
10.5.1. The part icular preludes 2 0 8
10.5.2. The part icular postludes 2 0 9

Examples 2 0 9
11.1. Complex square root 2 0 9
11.2. Innerproduct 1 2 1 0
11.3. Innerproduct 2 2 1 0
11.4. Largest element 2 1 0
11.5. Euler summat ion 2 1 1
11.6. The norm of a vector 2 1 1
11.7. Determinant of a mat r ix 2 1 2
11.8. Greatest common div isor 2 1 2
11.9. Cont inued f ract ion 2 1 3
11.10. Formula manipulat ion 2 1 3
11.11. Informat ion ret rieval 2 1 4
11.12. Cooperat ing sequential processes 2 1 7
11.13. Towers of Hanoi 2 1 7

12. Glossaries 2 1 8
12.1. Technical terms 2 1 8
12.2. Paranot ions 2 2 4
12.3. Predicates 2 2 7
12.4. Index to the standard prelude 2 2 7
12.5. Alphabet ic lis t ing of metaproduct ion rules 2 3 1

6 v a n Wijngaarden, et al.

Acknowledgements

(Habent sua feta libelli.
De litteris, T e r e n t i a n u s Maurus.)

Work ing Group 2.1 o n A L G O L o f t he I nt ernat ional Federat ion f o r
Informat ion Processing has discussed the development of "ALGOL X . a
successor to ALGOL 60 [3] , since 1963. At its meet ing in Princeton in May
1965, WG 2.1 inv it ed wr i t t en descript ions o f t he language based o n t he
previous discussions. A t t he meet ing i n S t P i e r r e de Chart reuse near
Grenoble in October 1965, three reports describing more o r less complete
languages were amongst the contribut ions, by Nik laus Wirt h 181, Gerhard
Seegmueller [6] , a n d A a d v an Wi jngaarden 19] . I n [6] a n d 181, t h e
descript ional technique o f [3] wa s used, whereas [91 f eat ured a n e w
technique f o r l a n g u a g e d e s i g n a n d defi n i t i on . O t h e r s ign i fi c an t
contributions available were papers by Tony Hoare 12 I and Pet er Na u r
[4, 5].

At subsequent meet ings between Apr i l 1966 and Dec ember 1968, held in
Kootwijk near Amsterdam, Warsaw, Zandvoort near Ams terdam, Ti r renia
near Pisa and Nor t h Berwic k near Edinburgh, a number o f successive
approximat ions to a final report , commenc ing wit h 1101 and followed by a
series numbered MR 88, MR 92, M R 93, M R 95, M R 99 and MR 100, were
submitted by a t eam work ing in Ams t erdam, cons is t ing fi rs t o f A. v an
Wijngaarden and B a r r y Mai l loux , l a t e r reinf orc ed b y J ohn Pec k , a n d
finally by Kees Koster. Versions were used during courses on the language
held a t v arious cent res, a n d t he experience gained i n ex plain ing t he
language to sk illed audiences and the react ions of the students influenced
the succeeding versions. The fi nal vers ion, M R 101 111], was adopted by
the Wor k i ng G r o u p o n De c e mb e r 20 t h 1968 i n Mun i c h , a n d w a s
subsequently approved for publicat ion by the General Assembly of I .F. I .P.
Since t hat t ime, i t has been published i n Numeris c he Mat hemat ik 1121,
and translat ions have been made into Russian 113], into German [14] , into
French [15] , and into Bulgarian [16] . An "I nf ormal Int roduc t ion", f o r the
benefit of the uninit iated reader, was also prepared at the request of the
Work ing Group [18].

The o r ig ina l aut hors acknowledged w i t h pleas ure a n d t hank s t h e
wholehearted c ooperat ion, s uppor t , i n t e res t , c r i t i c i s m a n d v i o l e n t
objections f rom members of WG 2.1 and many other people interested in
ALGOL. At the risk of embarrass ing omissions, special ment ion should be
made of Jan Garwick , Jack Merner, Pet er I ngerman and Manf red Paul
for [1] , the Brussels group consist ing of M. Sintzoff, P. Branquart , J . Lewi
and P . Wodon f o r numerous brains torms , A. J . M. van Gils o f Apeldoorn,
G. Goos and his group at Munich, also f or [7] , G.S. Tseyt in of Leningrad,
and L.G.L.T. Meertens and J.W. de Bak k er of Ams terdam. A n occasional
choice o f a , n o t inherent ly meaningf ul, ident ifi er i n t h e s equel m a y
compensate for not ment ioning more names in this section.

ALGOL 68 Revised Repor t 7

Since the publicat ion of the Original Report , muc h discussion has taken
place i n t he Work ing Group concerning t he f ur t her development o f t he
language. This has been influenced by the experience of many people who
saw disadvantages i n t he or ig ina l proposals a n d suggested rev is ed o r
extended f eat ures . A mo n g s t t hes e m u s t b e men t i oned es pec ial ly :
I.R. Currie, Susan G. Bond, J .D. Morison and D. Jenkins of Malv ern (see
in [17]), i n whose dialec t o f ALGOL 68 many features o f t his Rev is ion
may a l ready b e f ound: P . Branquart , J . P . Cardinael a n d J . Lewi o f
Brussels, wh o exposed ma n y weaknesses (s ee i n [171): Ur s u l a Hi l l ,
H. Woessner and H. Scheidig of Munich, who discovered some unpleasant
consequences; t he contributors to the Rapport d'Evaluat ion 1191: and the
many people w h o s erv ed o n t h e Wor k i ng G r o u p subcommit t ees o n
Maintenance a n d I mprov ement s (c onv ened b y M . Sintzoff) a n d o n
Transput (convened b y C. H. Lindsey). Du r i n g t he l a t e r s tages o f t he
revision, mu c h he lp f u l adv ic e wa s g i v en b y H . Boom o f Edmont on,
W. Freeman o f Y o r k , W . J . Hansen o f Vanc ouv er , M a r y Zosel o f
Livermore, N. Yoneda o f Tokyo, M . Rain o f Trondheim, L . Ammeraal,
D. Grune, H. van Vliet and R. van Vliet of Ams terdam, G. van der Mey of
Delft, and A.A. Baehrs and A. F. Rar of Novosibirsk. The editors of this
revision als o wis h t o acknowledge t h a t t he wholeheart ed cooperat ion,
support, interes t , c r i t i c is m a n d v io lent objec t ions o n t h e p a r t o f t he
members of WG 2.1 have continued unabated during this t ime.

[1] J.V. Garwick , J .M. Merner, P.Z. I ngerman and M. Paul, Report of the
ALGOL-X - I -0 Subcommittee, WG 2.1 Work ing Paper, July 1966.
[2] C.A.R. Hoare, Record Handling, WG 2.1 Work ing Paper, October 1965:
also AB.21.3.6, November 1965.
[3] P. Naur (Ed i t o r) , Rev is ed Re p o r t o n t h e A lgo r i t hmic Language
ALGOL 60, Regnecentralen, Copenhagen, 1962, and elsewhere.
[41 P. Naur, Proposals for a new language, AB.18.3.9, October 1964.
[51 P. Naur, Proposals f or int roduct ion on aims , WG 2.1 Work ing Paper,
October 1965.
161 G. Seegmueller, A proposal f or a basis f or a Report on a Successor to
ALGOL 60, Bavarian Acad. Sci., Munich, October 1965.
[7] G. Goos, H . Scheidig, G . Seegmueller a n d H . Walther, A n o t h e r
proposal f or ALGOL 67, Bavarian Acad. Sci., Munich, May 1967.
[8] N. Wirth, A Proposal f o r a Repor t o n a Successor o f A L G O L 60,
Mathematisch Cent rum, Amsterdam, MR 75, October 1965.
[9] A. van Wijngaarden, Orthogonal Des ign and Descript ion o f a Fo r ma l
Language, Mathemat isch Centrum, Amsterdam, MR 76, October 1965.
[101 A. van Wijngaarden a n d B. J . Mailloux , A Dr a f t Propos al f o r t h e
Algorithmic Language ALGOL X, WG 2.1 Work ing Paper, October 1966.
1111 A. van Wijngaarden (E d i t o r) , B . J . Mailloux , J . E . L . Peck a n d
C.H.A. Koster, R e p o r t o n t h e A l g o r i t h mi c L a n g u a g e A L G O L 68,
Mathematisch Centrum, Amsterdam, MR 101, February 1969.
[121 idem, Numerische Mathemat ik , Vol. 14, pp. 79-218, 1969.

8 v a n Wijngaarden, et al.

1131 Soobshchenie ob algoritmicheskom yazyke ALGOL 68, translation into
Russian b y A.A. Baehrs, A.P. Ershov, L .L . Zmievskaya and A .F. Rar,
Kybernetica, Kiev, Part 6 of 1969 and Part 1 of 1970.
[141 Bericht ueber die Algorithmische Sprache ALGOL 68, translation into
German by I.O. Kerner, Akademie-Verlag, Berlin, 1972.
115] Definition d u Langage Algorithmique ALGOL 68, translation in to
French by J. Buffet, P. A ra ! , A. Quere (Eds.), Hermann, Paris, 1972.
116] Algoritmichniyat yezik ALGOL 68, translation in t o Bulgarian b y
D. Toshkov and St. Buchvarov, Nauka i Yzkustvo, Sofia, 1971.
1171 J.E.L. Peck (Ed .), ALGOL 68 Implementation (proceedings o f the
I.F.I.P. working conference he ld i n Munich i n 1970), No rth Holland
Publishing Company, 1971.
[18] C.H. Lindsey a n d S.G. van der Meulen, In fo rma l introduction t o
ALGOL 68, North Holland Publishing Company, 1971.
[19] J.C. Boussard and J.J. Duby (Eds.), Rapport d'Evaluation ALGOL 68,
Revue d'Informatique et de Recherche Operationelle, B2, Paris, 1970.

O. Introduction

0.1. Aims and principles of design

a) I n designing the Algorithmic Language ALGOL 68, Working Group
2.1 on ALGOL of the International Federation fo r Information Processing
expresses it s belief in the value o f a common programming language
serving many people in many countries.

b) A L G O L 68 is designed to communicate algorithms, to execute them
efficiently on a variety of different computers, and to aid in teaching them
to students.

c) T h i s present Revision of the language is made in response to the
directive of the parent committee, I.F.I.P. TC 2, to the Working Group to
"keep continually under review experience obtained as a consequence of
this (original) publication, so that i t may institute such corrections and
revisions to the Report as become desirable". In deciding to bring forward
this Revision at the present time, the Working Group has tried to keep in
balance the need to accumulate the maximum amount of experience of the
problems which arose in the language originally defined, as opposed to the
needs of the many teams at present engaged in implementation, for whom
an early and simple resolution of those problems is imperative.

d) A l t h o u g h the language as now revised differs in many ways f rom
that defined originally, no attempt has been made to introduce extensive
new features and, i t is believed, the revised language i s s t i l l clearly
recognizable as "ALGOL 68". The Working Group has decided that this
present revision should be "the final definition of the language ALGOL 68",
and the hope is expressed that i t will be possible fo r implementations at
present in preparation to be brought into line with this standard.

ALGOL 68 Revised Repor t 9

e) T h e Work ing Group may , f r om t ime t o t ime, define sublanguages
and extended capabilit ies, by means of Addenda t o this Report , but these
wil l always be bui l t on t he language here defined as a fi r m foundat ion.
Moreover, variants more in conformit y wi t h natural languages other than
English may be developed. To coordinate these act iv it ies, and to maint ain
contact wi t h implement ers and users , a Subc ommit t ee o n A L G O L 68
Support has been established by the Work ing Group.

f) T h e me mb e r s o f t h e Group, infl uenc ed b y s ev era l y e a r s o f
experience wi t h A L G O L 60 a n d o t he r p rog ramming languages , h a v e
always accepted the following as their aims:

0.1.1. Completeness and c larit y of descript ion

The Group wishes t o cont ribute t o t he solut ion o f t he problems o f
describing a language c learly and completely . The method adopted in this
Report is based upon a formalized two-level grammar, wi t h the semant ics
expressed i n nat ura l language, b u t mak ing use o f s ome c aref ul ly and
precisely defined t erms and concepts. I t is recognized, however, t hat this
method may be difficult f or the uninit iated reader.

0.1.2. Orthogonal design

The number of independent pr imi t iv e concepts has been minimiz ed in
order that the language be easy t o describe, t o learn, and t o implement .
On t he ot her hand, these concepts hav e been appl ied "ort hogonally " i n
order to max imiz e the expressive power of t he language whi le t ry ing t o
avoid deleterious superfluit ies.

0.1.3. Security

ALGOL 68 has been designed in such a way that mos t syntact ical and
many other errors can be detected eas ily before they lead t o calamitous
results. Furt hermore, the opportunit ies f or mak ing such errors are great ly
restricted.

0.1.4. Effic iency

ALGOL 68 allows the programmer to specify programs whic h c an be
run ef fi c ient ly o n pres ent -day c omput ers a n d y e t d o n o t r e q u i r e
sophisticated and t ime-consuming opt imizat ion features of a compiler: see,
e.g., 11.7.

0.1.4.1. Static mode checking

The syntax o f ALGOL 68 is such t hat no mode check ing dur ing r un
t ime i s necessary, ex c ept when t he p rog rammer dec lares a t ' WED-
variable and then, i n a conformity-c lause, explic it ly demands a check on
its mode.

10 v a n Wijngaarden, et al.

0.1.4.2. Mode-independent pars ing

The syntax of ALGOL 68 is such that the pars ing of a program can be
performed independent ly of the modes of its constituents. Moreover, i t can
be determined i n a fi nit e number o f steps whet her a n a rb i t ra ry giv en
sequence of symbols is a program.

0.1.4.3. Independent compilat ion

The syntax o f ALGOL 68 i s such t ha t t he main- l ine programs and
procedures can be compiled independent ly of one another wit hout loss of
object-program ef fi c ienc y p r o v i d e d t h a t , d u r i n g e a c h independent
compilat ion, spec ificat ion o f t h e mo d e o f a l l nonloc al quant i t ies i s
provided: see the remarks af ter 2.2.2.c.

0.1.4.4. Loop opt imizat ion

Iterat ive processes are f ormulat ed i n ALGOL 68 i n such a wa y t hat
s t raight forward applicat ion o f well-known opt imizat ion techniques y ields
large gains dur ing r u n t i me wit hout excessive inc rease o f c ompilat ion
t ime.

0.1.4.5. Representations

Representations of ALGOL 68 symbols have been chosen s o t hat t he
language may be implement ed on computers wi t h a mi n i ma l c harac t er
set. A t t he s ame t i me implement ers ma y t ak e advantage o f a l a r g e r
character set, i f it is available.

0.2. Comparison wit h ALGOL 60

a) A L G O L 68 is a language o f wi d e r applic abil i t y and power t han
ALGOL 60. Alt hough influenced b y t he lessons learned f r om ALGOL 60,
ALGOL 68 has not been designed as an expansion of ALGOL 60 but rat her
as a completely new language based on new ins ight int o t he essent ial.
fundamental concepts of comput ing and a new descript ion technique.

b) T h e result is that the successful features of ALGOL 60 reappear in
ALGOL 68 but as special cases of more general construct ions, along wi t h
completely new features. I t is , therefore, di f fi c ult t o isolate dif ferences
between the t wo languages: however, t he f ol lowing sections are intended
to give insight into some of the more s t rik ing differences.

0.2.1. Values in ALGOL 68

a) W h e r e a s A L G O L 60 has v alues o f t he t y pes integer, r ea l a n d
Boolean, ALGOL 68 features an infinit y of "modes", i.e., generalizat ions of
the concept "type".

ALGOL 68 Revised Report 1 1

b) E a c h p la in v alue is ei t her arit hmet ic , i. e. , o f ' int egral ' o r ' real*
mode a n d t hen i t i s o f one o f several s izes, o r i t i s o f 'boolvan• o r
'character o r 'void' mode. Machine words, considered as sequences of bits
or of bytes, may also be handled.

c) I n ALGOL 60, values c an b e composed in t o array s , whereas i n
ALGOL 68, in addit ion to such "mult ip le" values, also "s t ruc tured" values,
composed o f v a lues o f pos s ibly d i f f e rent modes , a r e defi ned a n d
manipulated. A n ex ample o f a mul t ip le v a lue i s t he c harac t er ar ray ,
which corresponds approx imately t o t he ALGOL 60 s t ring: ex amples o f
structured values are complex numbers and symbolic formulae.

d) I n ALGOL 68 t he concept of a "name" is int roduced, i.e. , a v alue
which i s s a id t o " r e f e r t o " ano t her v alue: s u c h a name-v alue p a i r
corresponds t o t he ALGOL 60 variable. However, a name ma y take t he
value posit ion in a name-value pair, and thus chains of indirec t addresses
can be built up.

e) T h e ALGOL 60 concept of procedure body is generalized in ALGOL
68 to the concept of "rout ine", whic h includes also the f ormal parameters ,
and whic h is it self a v alue and therefore c an be manipulat ed l i k e any
other value.

f) I n contrast wit h plain values, the s ignificance of a name or rout ine
is, in general, dependent upon the existence of the storage cells referred to
or accessed. Therefore, the use of names and rout ines is subjec t t o some
restrictions related to t heir "scope". However, t he syntax of ALGOL 68 is
such that in many cases the check on scope can be made at compile t ime,
including a l l cases where no use is made o f features whose express ive
power transcends that of ALGOL 60.

0.2.2. Declarat ions in ALGOL 68

a) W h e r e a s A L G O L 60 h a s t y pe dec larat ions , a r r a y dec larat ions ,
switch dec larat ions and procedure dec larat ions, A L G O L 68 features t he
ident ity-declarat ion whos e express ive power inc ludes a l l o f these, a n d
more. The ident ity-declarat ion, although theoret ically sufficient in itself , is
augmented by the variable-declarat ion f or the convenience of the user.

b) M o r e o v e r , i n A L G O L 6 8 , a mode-dec larat ion p e r mi t s t h e
construction of a new mode f rom already ex is t ing ones. I n part icular, the
modes of mult iple values and of s t ructured values may be defined in this
way; i n addit ion, a union of modes may be defined, a l lowing each value
referred to by a given name to be of any one of the unit ing modes.

c) F i n a l l y , i n A L G O L 68, a priorit y -dec larat ion a n d a n operat ion-
declarat ion permit the int roduct ion of new operators, the definit ion of t heir
operation and the extension of the class of operands of, and the rev is ion of
the meaning of, already established operators.

12 v a n Wijngaarden, et al.

0.2.3. Dy namic storage allocat ion in ALGOL 68

Whereas ALGOL 60 (apar t f r o m "o wn dy namic ar ray s ") imp l i es a
"stack"-oriented storage-allocat ion regime, suffic ient t o cope wi t h objects
having nested l i f et imes (an objec t c reated bef ore anot her objec t being
guaranteed not to become inaccessible before that second one), ALGOL 68
provides, i n addit ion, t he abi l i t y t o c reate and manipulat e objects whose
lifet imes are not so restricted. This abilit y implies the use of an addit ional
area of storage, t he "heap", i n whic h garbage-collect ion techniques mus t
be used.

0.2.4. Collateral elaborat ion in ALGOL 68

Whereas, i n ALGOL 60, s tatements a r e "executed consecut ively", i n
ALGOL 68, phrases are "elaborated serially " o r "collaterally ". This lat t er
facility i s conduc ive t o mo r e ef fi c ient ob jec t p rograms u n d e r ma n y
circumstances, s ince i t allows discret ion to the implement er t o choose, i n
many cases, t he order o f elaborat ion o f c ert ain const ructs o r even, i n
some cases, whet her they are to be elaborated at al l . Thus the user who
expects his "s ide effects" to take place in any wel l determined manner wi l l
receive no support f rom this Report . Fac il it ies f or paral lel programming,
though res t ric ted t o the essentials in v iew of the none-too-advanced state
of the art , have been introduced.

0.2.5. Standard declarat ions in ALGOL 68

The ALGOL 60 s tandard funct ions are al l inc luded in ALGOL 68 along
with many other s tandard declarat ions. Amongs t these a re "env ironment
enquiries", whic h mak e i t possible t o det ermine cert ain propert ies o f an
implementat ion, and "t ransput " dec larat ions, wh ic h mak e i t possible, a t
run t ime, to obtain data f rom and to deliver results to external media.

0.2.6. Some part icular constructions in ALGOL 68

a) T h e A L G O L 6 0 concepts o f b loc k , c ompound s t at ement a n d
parenthesized expression are unified in ALGOL 68 into the serial-clause. A
serial-clause ma y b e a n express ion a n d y ie ld a v alue. S imi la r ly , t h e
ALGOL 68 ass ignat ion, wh i c h i s a generaliz at ion o f t h e A L G O L 6 0
assignment s tatement, ma y be an expression and, as such, also y ield a
value.

b) T h e ALGOL 60 concept of subscript ing is generalized to „ i e ALGOL
68 concept of "index ing", whic h allows t he select ion not only o l s i n g l e
element of an array but also of subarrays wi t h t he same o r any s mal ler
dimensionality and wit h possibly altered bounds.

c) A L G O L 68 provides row-displays a nd structure-displays, whi ch
serve to compose the mult ip le and s t ruc tured values ment ioned in 0.2.1.c
f rom other, s impler, values.

ALGOL 68 Revised Report 1 3

d) T h e ALGOL 60 for statement is modified into a more concise and
efficient loop-clause.

e) T h e ALGOL 60 conditional expression and conditional statement,
unified int o a condit ional-clause, a re improv ed by requir ing t hem t o end
with a c losing symbol whereby the two alternat ive clauses admit the same
syntactic possibilities. Moreover, the conditional-clause is generalized into
a case-clause, whi ch al lows t he efficient selection f r om a n ar bi tr ar y
number of clauses depending on the value of an integral-expression, and a
conformity-clause, wh ic h al lows a selec t ion depending upon t he ac t ual
mode of a value.

f) S o m e less successful ALGOL 60 concepts, such as own quantities
and integer labels, have not been included i n ALG O L 68, a nd some
concepts, l ik e des ignat ional expressions and switches, d o not appear as
such in ALGOL 68 but t heir expressive power is inc luded in other, more
general, constructions.

0.3. Comparison with the language defined in 1968

The mo r e s ignificant changes t o t he language a re indic at ed i n t he
sections which follow. The revised language wi l l be described i n a new
edition of the "Informal Introduction to ALGOL 68" by C. H. Lindsey and
S.G. van der Meulen, which accompanied the original Report.

0.3.1. Casts and routine texts

Routines wi thout parameters used to be constructed out of a cast i n
which the cast-of-symbol (:) appeared. Thi s construct is now one of the
forms of the new routine-text, whic h provides f or procedures both wit h and
without parameters. A new f orm of the cast has been prov ided which may
be used in contexts previously not possible. Moreover, both void-casts and
procedure-PAR ANIETV-yielding-void-routine-texts m u s t n o w c on t a i n a n
explicit void-symbol.

0.3.2. Extended ranges

The new range which is established by the enquiry-clause of a choice-
clause (which encompasses the old conditional- and case-clauses) or of a
while-part now extends into the controlled serial-clause or do-part.

0.3.3. Conformity clauses

The conformity -relat ion and the case-conformity which was obtained by
extension from it are now replaced by a new conformity-clause, which is a
further example of the choice-clause ment ioned above.

14 v a n Wijngaarden, et al.

0.3.4. Modes of multiple values

A new class of modes is introduced, for multiple values whose elements
are themselves multiple values. Thus one may now write the declarer I I
string.

Moreover, multiple values no longer have "states" to distinguish their
flexibility. Instead, flexib ility is now a property o f those names which
refer t o multip le values whose size ma y change, such names having
dist inctive modes of the f orm 'reference to flex ible ROWS of MODE'.

0.3.5. Ident ificat ion of operators

Not only ma y t wo operators, relat ed t o each ot her by t he modes o f
their operands, not be declared in the same range, as before, but now, i f
two such operators b e dec lared i n di f f erent reaches , a n y a t t empt t o
identify from the inner reach the one in the outer reach wi l l fa il. Th is
gives some benefit to the implementer and removes a source of possible
confusion to the user.

0.3.6. Representations

The manner in whic h symbols f or newly defined mode-indicat ions and
operators are t o be represented is now more c losely defined. Thus i t is
clear that the implement er is to prov ide a special alphabet of bold-faced,
or "s t ropped", mark s f rom whic h symbols such as person ma y be made,
and it is also c lear that operators such as » are to be allowed.

0.3.7. Standard prelude

In order to ease the problems o f implementers who migh t wish to
provide variants of the language suitable fo r environments where English
is not spoken, there are no longer any field-selectors known to the user in
the standard-prelude, wi t h the except ion of re and im of the mode comp!.
The ident ifiers a n d o t her indic at ors dec lared i n t h e s tandard-prelude
could, of course, eas ily be defined again in some library -prelude, but this
would not have been possible in the case of field-selectors.

0.3.8. Line length in t ransput

The lines (and the pages also) o f the "book" used during transput may
now, a t the discretion o f the implementer, be o f varying lengths. Th is
models more closely the actual behaviour of most operating systems and
of devices such as teleprinters and paper-tape readers.

0.3.9. Internal transput

The transput routines, in addition to sending data to o r from external
media, may now be associated wit h row-of -character-variables dec lared by
the user.

0.3.10. Elaborat ion of formats

ALGOL 68 Revised Report 1 5

The dy namic replicators contained in format -tex ts are now elaborated
as and when they are encountered during the f ormat ted t ransput process.
This should giv e an ef fec t mo r e nat ura l t o t he user, a n d i s eas ier t o
implement .

0.3.11. Features removed

Certain features, such as proceduring, gommas and f o rma l bounds.
have not been inc luded in the revision.

0.4. Changes in the method of descript ion

In response to the direc t ive f rom the Work ing Group "t o make its study
easier f o r t he unini t iat ed reader", t h e Ed i t o rs o f t h i s rev is ion h a v e
rewrit ten t h e o r ig ina l Repo r t a lmos t ent i rely , us ing t h e s a me bas ic
descript ional technique, but apply ing i t in new ways. I t is t heir hope t hat
less "init iat ion" wi l l now be necessary.

The mo r e s ignifi c ant c hanges i n t h e des c ript ional t ec hnique a r e
indicated below.

0.4.1. Two-level g rammar

a) W h i l e the syntax is s t i l l described by a two-level g r a mma r of the
type now widely known by the name "Van Wijngaarden", new techniques
for us ing such g rammars hav e been applied. I n part ic ular, t he ent i re
ident ificat ion process is now described in the syntax us ing the metanot ion
"NEST", whose t erminal metaproduct ions are capable of describing, and of
passing o n t o t he descendent constructs, a l l t he dec lared in f ormat ion
which is available at any part icular node of the product ion tree.

b) I n addit ion, ex tens ive us e i s ma d e o f "predicates ". Thes e a r e
notions whic h a re deliberately made t o y ie ld b l ind alleys when c ert ain
conditions a r e n o t me t , a n d wh i c h y i e l d e mp t y t e rmina l produc t ions
otherwise. They have enabled the number of syntax rules to be reduced in
many cases, whi le at the same t ime mak ing the g rammar easier to f ollow
by reduc ing t he number of places where a cont inuat ion o f a giv en ru le
might be found.

c) I t has t hus been poss ible t o remov e a l l t he "c ont ex t condit ions"
contained in the original Report .

0.4.2. Modes

a) I n the original Report , modes were protonot ions of possibly infinite
length. I t was assumed t hat , k nowing h o w a n infi ni t e mo d e had been
obtained, i t was dec idable whether or not i t was the same as some other
infinite mode. However, counterexamples have c ome t o l ight where t his

16 v a n Wijngaarden, et al.

was not so. Therefore, it has been decided to remove all infinities from the
process of producing a finite program and, indeed, this can now be done in
a finite number of moves.

b) A mode, essentially, has to represent a potentially infinite tree. To
describe i t as a protonotion of finite length requires the use o f markers
(*M1,1 definition's) and pointers back to those markers ['MU application's)
within the protonotion. However, a given infinite tree can be "spelled" in
many ways by this method, and therefore a mode becomes an equivalence
class comprised o f a l l those equivalent spellings o f th a t tree . Th e
equivalence i s defined i n the syntax using the predicates mentioned
earlier.

0.4.3. Extensions

The need for many of the extensions given in the original Report had
been removed by language changes. Some o f the remainder had been a
considerable source o f confusion and surprises. Th e opportunity has
therefore been taken t o remove t h e extension a s a descriptional
mechanism, a ll the former extensions now being specified directly in the
syntax.

0.4.4. Semantics

a) I n o rder t o remove some ra ther repetitious phrases f ro m th e
semantics, ce rta in technical t e rms h a ve been revised a n d o thers
introduced. The grammar, instead o f producing a te rmina l production
directly, now does so b y way o f a production tree. The semantics i s
explained i n te rms o f production trees. Paranbtions, wh ich designate
constructs, may now contain metanotions and "hypernotions" have been
introduced in order to designate protonotions.

b) A model of the hypothetical computer much more closely related to
a real one has been introduced. The elaboration of each construct is now
presumed to take place in an "environ" and, when a new range is entered
(and, in particular, when a routine is called), a new "locale" is added to
the environ. The locale corresponds to the new range and, i f recursive
procedure calls arise, then there exist many locales corresponding to one
same routine. This supersedes the method o f "textual substitution" used
before, and one consequence of this is that the concept of "protection" is
no longer required.

c) T h e concept of an "instance" o f a value is no longer used. This
simplifies certain portions o f the semantics where, fo rmerly, a "new
instance" had to be taken, the effects of which were not always clear to
see.

0.4.5. Translat ions

ALGOL 68 Revised Report 1 7

The original Report has been t ranslated into various natural languages.
The t ranslators were not always able to adhere s t ric t ly to the descript ional
method, and so the opportunity has been taken to define more c learly and
more liberally certain descript ional features whic h caused difficult ies (see
1.1.5).

1. Language and metalanguage

1.1. The method of descript ion

1.1.1. Int roduct ion

(True wisdom knows it must comprise
some nonsense as a compromise,
lest fools should fail to find it wise.
G rooks , P i e t Hein.)

PART I

Prel iminary definit ions

a) A L G O L 68 is a language i n whic h algori t hms ma y be f ormulat ed
for computers, i.e., f or automata or for human beings. I t is defined by this
Report i n f o u r s tages , t h e "s y n t ax " (13), t h e "s emant ic s " (c) , t h e
"representat ions" (d) and the "s tandard env ironment " (e).

b) T h e s y nt ax i s a mec hanis m whereby a l l t he const ructs o f t he
language may be produced. This mechanism proceeds as follows:

(i) A set of "hyper-rules" and a set of "metaproduc t ion rules " a re given
(1.1.3.4, 1.1.3.3), f rom which "product ion rules" may be derived:

(ii) A "const ruc t in the s t ric t language" is a "produc t ion t ree" (1.1.3.2.f)
which ma y b e produc ed b y t h e appl ic at ion o f a s ubs et o f t hos e
production rules; t h is product ion t ree contains s tat ic inf ormat ion (i.e. ,
informat ion known at "c ompile t ime") concerning t hat construct: i t is
composed of a hierarchy of descendent product ion trees, t erminat ing at
the lowes t l ev e l i n t h e "s y mbols "; w i t h e a c h produc t ion t r e e i s
associated a "nest " of propert ies, dec lared in the levels above, whic h is
passed on to the nests of its descendents;

(iii) A "program in the s t ric t language" is a product ion t ree f or the not ion
'program (2.2.1.a). I t mus t als o sat is f y t he "env ironment condit ion"
(10.1.2).

18 v a n Wijngaarden, et al.

c) T h e semantics ascribes a "meaning" (2.1.4.1.a) to each construct
(i.e., to each production tree) by defining the effect (which may, however,
be "undefined") of its "elaboration" (2.1.4.1). This proceeds as follows:

(i) A dynamic (i.e., run-time) tree o f active "actions" is set up (2.1.4);
typically, an action is the elaboration of .some production tree T in an
"environ" consistent with the nest o f T, and i t may bring about the
elaboration of descendents o f T in suitable newly created descendent
environs;

(ii) The meaning of a program in the strict language is the effect of its
elaboration in the empty "primal environ".

d) A program in the st rict language must be represented in some
"representation language" (9.3.a) chosen b y the implementer. I n most
cases this will be the official "reference language".

(i) A program in a representation language is obtained by replacing the
symbols of a program in the strict language by certain typographical
marks (9.3).

(ii) Even the reference language allows considerable discretion to the
implementer (9.4.a,b,c). A restricted form of the reference language in
which such freedom has n o t been exercised ma y b e termed the
"canonical form" of the language, and it is expected that this form will
be used in algorithms intended for publication.

(iii) The meaning of a program in a representation language is the same
as that o f the program (in the st rict language) f ro m which i t was
obtained.

e) A n a lgorithm i s expressed b y means o f a particular-program,
which i s considered t o b e embedded, together w i t h t h e standard
environment, in a program-text (10.1.1.a). The meaning o f a particular-
program (in the strict or a representation language) is the meaning of the
program "akin" to that program-text (10.1.2.a).

1.1.2. Pragmatics

(Merely corroborative detail, intended t o
give art ist ic veris imilitude t o an otherwise
bald and unconvincing narrative.
Mikado, W . S . Gilbert.)

Scattered throughout th is Report a re "pragmatic" remarks included
between the braces "(" and ")". These are not part of the definition of the
language but serve to help the reader to understand the intentions and
implications of the definitions and to find corresponding sections or rules.

(Some o f the pragmatic remarks contain examples writ ten i n the
reference language. I n these examples, applied-indicators occur out o f
context f rom the ir defining-indicators. Unless otherwise specified, these
occurrences identify those in the standard- o r particular-preludes and the

part icular-post lude (10.2, 10.3, 10.5) (e.g. , see 10.2.3.12.a f or pi, 10.5.1•1) f or
random and 10.5.2.a for stop) , or those in:

int i, j, k, m, n; real a, b, x, y; boo! p, q, overflow; char c; format lc;
bytes r; string s; bits t; compl w, z; ref real xx, yy; union (int, real) uir;
proc void taskl, task2;

[1 : n] real xl, yl; flex [1 : n I real al; 11 : m, 1 : n I real x2;
[1 : n, 1 : n] real y2; [1 : n] int il; (I : m, 1 : n i Int i2;
[1 : n] compi z1;

proc x or y =- ref real : i f random < .5 then x else y fi;
proc ncos -= (int i) real : cos (2 x pi x I n);
proc nsin (In t i) real : sin (2 x pi x i I n);
proc finish ---- void : go to stop;
mode book = struct (string text, ref book next); book draft;
princeton: grenoble: st pierre de chartreuse: kootwijk: warsaw:

zand000rt: amsterdam: tirrenia: north berwick: munich:
finish.)

1.1.3. The syntax of the st ric t language
1.1.3.1. Protonotions

ALGOL 68 Revised Report 1 9

a) I n t he definit ion o f t he syntax o f t he s t r ic t language, a f o rma l
grammar is used in whic h certain syntact ic mark s appear. These may be
classified as follows:
(i) "s mal l syntactic marks", writ ten, in this Report , as

(ii) " large syntactic marks", writ ten, in this Report , as

(iii) "ot her syntactic marks", writ ten, in this Report , as
"." ("point "), "
9
" (" c o
m m a ") ,
" :
" (
" c o l
o n ")
,
"
;
"
(" s
e m i
c o l
o n "
) ,

("apostrophe"), "-" ("hyphen") and "*" ("as terisk ").

(Note that these mark s are in another type font than that of the mark s in
this sentence.)

b) A "protonot ion" i s a poss ibly empt y sequence o f s mal l syntac t ic
marks.

c) A "not ion" is a (nonempty) protonot ion f or which a produc t ion rule
can be derived (I.1.3•2.a, 1•1•3.4.d).

d) A "metanot ion" is a (nonempty) sequence of large syntact ic mark s
for which a metaproduct ion rule is given or created (1.1.3.3.a).

e) A "hy pernot ion" i s a pos s ibly e mp t y sequence eac h o f whos e
elements either is a small syntactic mark or is a metanot ion.

20 v a n Wijngaarden, et al.

(Thus the class o f protonotions (b) i s a subclass o f the class o f
hypernotions. Hypernotions are used in metaproduction rules (1.1.3.3), in
hyper-rules (1.1.3.4), as paranotions (1.1.4.2) and, in the ir own right, to
"designate" certain classes of protonotions (1.1.4.1)

(A "paranotion" is a hypernotion to which certain special conventions
and interpretations apply, as detailed in 1.1.4.2.)

f) A "symbol" is a protonotion ending with 'symbol*. (Note that the
paranotion symbol (9.1.I.h) designates a particular occurrence o f such a
protonotion.)

(Examples:
b) *variable point'
c) 'variable point numeral ' (8.1.2.I.b)
d) "INTREAL" (1.2.I.C)
e) 'reference to INTREAL'
f) 'letter a symbol'

Note that the protonotion •twas brillig and the slithy toves' is neither a
symbol n o r a notion, i n tha t i t does no t end wit h 'symbol' and n o
production rule can be derived for it. Likewise, "LEWIS" and "CARROLL"
are not metanotions in that no metaproduction rules are given for them.)

g) I n order to distinguish the various usages in the text of this Report
of the terms defined above, the following conventions are adopted:

(i) No distinguishing marks (quotes, apostrophes or hyphens) are used in
production rules, metaproduction rules or hyper-rules;

(ii) Metanotions, and hypernotions which stand for themselves (i.e., which
do not designate protonotions), are enclosed in quotes;

(iii) Paranotions a re not enclosed in anything (but, a s an a id to the
reader, are provided with hyphens where, otherwise, they would have
been provided with blanks);

(iv) A l l other hypernotions (including protonotions) not covered above are
enclosed in apostrophes (in order to indicate that they designate some
protonotion, as defined in 1.1.4.I.a):

(v) Typographical display features, such as blank space, hyphen, and
change to a new line or new page, are of no significance (but see also
9.4.d).

(Examples:
(i) LEAP :: local ; heap ; primal, is a metaproduction rule:

(ii) "INTREAL" is a metanotion and designates nothing but itself:
(iii) reference-to-INTREAL-identifier, which is not enclosed in apostrophes

but is provided with hyphens, is a paranotion designating a construct
(1.1.4.2.a);

(iv) 'var iable point' is both a hypernotion and a protonotion: regarded as
a hypernotion, i t designates itself regarded as a protonotion;

(v) 'reference to real ' means the same as •referencetorear.)

1.1.3.2. Product ion rules and product ion trees

ALGOL 68 Revised Report 2 1

a) T h e (derived) "produc t ion ru les " (b) o f t he language a r e t hos e
production rules whic h c an b e deriv ed f r o m t he "hy per-rules " (1.1.3.4),
together with those specified inf ormally in 8.1.4.1.d and 9.2.1.d.

b) A "product ion rule" consists of the following items, in order:
an opt ional asterisk
a nonempty protonot ion N
a colon
a nonempty sequence of "alternat ives" separated by semicolons
a point.

It is said to be a product ion rule "f or" (the not ion (1.1.3.1.c)) N.
(The opt ional asterisk, i f present, s ignifies that the not ion is not used in

other produc t ion rules , b u t i s prov ided t o f ac i l i t at e discuss ion i n t h e
semantics. I t a l s o s ignifi es t h a t t h a t no t ion m a y b e u s e d a s a n
"abstract ion" (1.1.4.2.b) of one of its alternat ives.)

e) A n "alternat ive" is a nonempty sequence o f "members " separated
by commas.

d) A "member" is either
(i) a not ion (and may then be said to be product ive, or nonterminal),

(ii) a symbol (which is terminal),
(iii) empty , or
(iv) s ome other protonot ion (for which no product ion rule can be derived),

which is then said to be a "bl ind alley".
(For example, t he member ' reference to rea l denotat ion' (der iv ed

f rom the hyper-rule 8.0.1.a) is a blind alley.)

(Examples:

b) exponent part : times ten to the power choice,
power of ten. (8.1.2.1.g) •

times ten to the power choice
times ten to the power symbol
letter e symbol, (8.1.2.1•h)

c) times ten to the power choice, power of ten •
times ten to the power symbol •
letter e symbol

d) t imes ten to the power choice •
power of ten •
times ten to the power symbol •
letter e symbol)

e) A "construct in the s t ric t language" is any "produc t ion t ree" (f) that
may be "produced" f rom a product ion rule of the language.

f) A "product ion t ree" T f or a not ion N, whic h is t ermed the "original"
of T, is "produced" as follows:

22 v a n Wijngaarden, et al.

• le t P be some (derived) production rule for N;
• a copy is taken of N;
• a sequence o f production trees, the "direct descendents" o f T, one
produced fo r each nonempty member of some alternative A o f P, is
attached to the copy; the order of the sequence is the order of those
members within A;
• the co p y o f t h e o rig ina l, together w i t h t h e attached d ire c t
descendents, comprise the production tree T.
A "production tree" for a symbol consists of a copy of that symbol (i.e.,

it consists of a symbol).

The " te rmina l production" o f a production t re e T i s a sequence
consisting of the terminal productions of the direct descendents of T, taken
in order.

The " terminal production" o f a production tree consisting only o f a
symbol is that symbol.

(Example:

'exponent part'I
l 1

'times ten to the ' p o w e r of ten'
power choice' I I I

•plusminus ' fi x e d p o i n t
option' n u m e r a l '

I I
eplusminus' ' d i g i t cypher

*letter e ' p l u s ' d i g i t zero
symbol' s y m b o l ' s y m b o l '

sequence'

'digit
cypher'

'digit
zero'

'digit cypher
sequence'

'digit
cypher'

'digit
two'

'digit two
symbol'

(The terminal production of this tree is the sequence of symbols at
the bottom of the tree. In the reference language, its representation would
be e+02.)

A "terminal production" o f a notion is the terminal production of some
production t ree f o r tha t notion (thus there a re ma n y other termina l
productions of 'exponent part' besides the one shown).

ALGOL 68 Revised Report 2 3

(The syntax of the strict language has been chosen in such a way that a
given sequence of symbols which is a terminal production of some notion
is so by virtue of a unique production tree, or by a set of production trees
which differ only in such a way that the result of their elaboration is the
same (e.g., production trees derived f ro m ru le s 3.2.1.e (balancing),
1.3.1.d,e (predicates) and 6.7.1.a,b (choice o f spelling o f the mode o f a
coercend to be voided): see also 2.2.2.a).

Therefore, i n practice, t e rmin a l productions (o r representations
thereof) a re used, in this Report and elsewhere, in place o f production
trees. Nevertheless, it is really the production trees in terms of which the
elaboration of programs is defined by the semantics of this Report, which
is concerned with explaining the meaning o f those constructs whose
originals are the notion 'program'.)

g) A production tree P is a "descendent" of a production tree 0 if it is
a direct descendent (f) either of Q o r of a descendent of Q. 0 is said to
"contain" its descendents and those descendents are said to be "smaller"
than Q. (For example, the production tree

'plusminus option'

'plusminus'

'plus symbol'

occurs as a descendent in (and is contained within and is smaller than)
the production tree for 'exponent part' given above.)

h) A "visible" (" invisib le") production t ree i s one whose te rmina l
production is not (is) empty.

i) A descendent (g) U of a production tree T is "before" ("after") a
descendent V of T if the terminal production (f) of U is before (after) that
of V i n the te rmina l production o f T. The (part ia l) ordering o f the
descendents o f T thus defined is termed the "textual order" . (I n the
example production tree for 'exponent part' (f), the production tree whose
original is 'plusminus' is before that whose original is 'digit two'.)

j) A descendent A of a production tree "follows" ("precedes") another
descendent B in some textual order if A is after (before) B in that textual
order, and there exists no visible (h) descendent C which comes between A
and B. (Thus "immediately" following (preceding) is implied.)

k) A production tree A is "akin" to a production tree B i f the terminal
production (f) of A is identical to the terminal production of B.

1.1.3.3. Metaproduction rules and simple substitution
(The metaproduction rules of the language fo rm a set o f context-free

grammars defining a "metalanguage".)

24 v a n Wijngaarden, et al.

a) T h e "metaproduc t ion rules " (b) o f the language are those given in
the sec t ions o f t h i s Re p o r t whos e h e a d i n g beg i ns w i t h "Sy nt ax ",
"Metasyntax" o r "Metaproduc t ion rules ", together wi t h those obtained as
follows:

• f o r each giv en metaproduc t ion ru le, whos e met anot ion i s M s ay ,
addit ional rules a re c reated each o f whic h consists o f a c opy o f M
followed by one of t he large syntact ic mark s "0", "1 " , "2 " , "3 " , "4 " ,
"5", "6", "7", "8" or "9", followed by two colons, another copy of that M
and a point.

(Thus, the metaproduct ion rule "MODE1 : : MODE." is to be added.)

b) A "metaproduct ion rule" consists of the following items, in order:
an opt ional asterisk
a nonempty sequence M of large syntactic marks
two colons
a nonempty sequence of hypernotions (1.1.3.1.0 separated by

semicolons
a point.

It is said to be a metaproduct ion rule "f or" (the metanot ion (1.1.3.1.d)) M.
(The asterisk, i f present, s ignifies t hat t he metanot ion is not used i n

other metaproduct ion rules or in hyper-rules, but is prov ided t o fac ilit ate
discussion in the semantics.)

(Examples:

INTREAL S 1 ZE TY integral ; S1ZETY real. (1.2.I.C) •
S1ZETY :: long LONGSETY ; short SHORTSETY ; EMPTY. (1.2.1.D)]

c) A "t erminal metaproduc t ion" of a metanot ion M is any protonot ion
which is a "s imple subst itute" (d) f or one of the hypernot ions (on the r ight
hand side) of the metaproduct ion rule for M.

d) A protonot ion P is a "s imple subst itute" f o r a hypernot ion H i f a
copy o f H c a n b e t rans f ormed i n t o a c opy o f P b y replac ing eac h
metanotion M in the copy by some t erminal metaproduct ion of M.

(Thus t wo poss ible t e rmina l metaproduc t ions (c) o f A N T H E M ; a r e
'integral' and 'long long real '. Thi s is because the hypernotions 'S1ZETY
integral' and 'S1ZETY real ' (t he hypernot ions o f t he metaproduc t ion ru le
for "1NTREAL") may , upon s imple subst itut ion (d) , giv e r is e t o ' int egral '
and *long long real' , which, in turn, is because " (t he empt y protonot ion)
and ' long long' are t erminal metaproduct ions of "SUETY".)

(The metanot ions used i n t h is Repor t hav e been s o chosen t ha t no
concatenation of one o r more of t hem gives t he s ame sequence o f large
syntactic ma r k s a s a n y o t her s uc h concatenat ion. Th u s a s ourc e o f
possible ambiguit y has been avoided.

Although t he recurs ive nat ure o f s ome o f t he metaproduc t ion ru les
makes it possible to produce t erminal metaproduct ions of arbit rary length,

ALGOL 68 Revised Repor t 2 5

the length o f t he t e rmina l metaproduc t ions necessarily inv olv ed i n t he
production of any given program is finite.)

Hyper-rules and consistent substitut ion

a) T h e hyper-rules (b) of the language are those given in t he sections
of this Report whose heading begins wit h "Syntax".

b) A "hyper-rule" consists of the following items, in order:
an opt ional asterisk
a nonempty hypernot ion H
a colon
a nonempty sequence of "hyperalternat ives" separated by

semicolons
a point.

It is said to be a hyper-rule "f or" (the hypernot ion (1.1.3.I.e)) H.

c) A "hy peralt ernat iv e" i s a nonempt y sequence o f hypernot ions
separated by commas.

(Examples:

b) NOTION sequence
NOTION ; NOTION, NOTION sequence. (I.3.3.b)

c) NOTION, NOTION sequence)

d) A product ion rule PR (1.1.3.2.b) is derived f rom a hyper-rule HR i f a
copy of HR can be t rans formed into a copy of PR by replac ing the set of
all the hypernot ions in t he copy by a "consis tent subst itute" (e) f o r t hat
set.

e) A set of (one o r more) protonot ions PP is a c ons is t ent subst itute"
for a corresponding s et o f hypernot ions H H i f a c opy o f HH c a n b e
transformed into a copy of PP by means of the following step:
Step: I f t he c opy contains one o r mo r e met anot ions t hen, f o r s ome

terminal metaproduct ion T of one such metanot ion M, each occurrence
of M in the copy is replaced by a copy of T and the Step is taken again.

(See 1.1.4.1.a for another applicat ion of consistent substitution.)

(Applying this derivat ion process to the hyper-rule given above (c) ma y
give rise to

digit cypher sequence
digit cypher ; digit cypher, digit cypher sequence.

which is therefore a product ion rule of the language. Note that
digit cypher sequence

digit cypher ; digit cypher, letter b sequence.
is not a produc t ion ru le o f t he language, s ince t he replacement o f t he
metanot ion "NOTI ON" b y one o f i t s t e rmina l metaproduc t ions mus t be
consistent throughout.)

26 v a n Wijngaarden, et at

(Since s o me met anot ions h a v e a n i n fi n i t e n u m b e r o f t e r mi n a l
metaproductions, the number of product ion rules whic h may be derived is
infinite. The language is, however, so designed that , f o r the product ion of
any program o f fi nit e length, on ly a fi ni t e numbe r o f those produc t ion
rules is needed.)

(f) T h e rules under Syntax are prov ided wi t h "cross-references" t o be
interpreted as follows.

Each hypernot ion H of a hyperalternat ive of a hyper-rule A is followed
by a reference to those hyper-rules B whose derived produc t ion rules are
for not ions wh i c h c o u l d b e s ubs t it ut ed f o r t h a t H . L ik ewis e , t h e
hypernotions of each hyper-rule B are followed by a reference back t o A.
Alternat ively, i f H is t o be replaced by a symbol, t hen i t is followed by a
reference to its representat ion in section 9.4.1. Moreover, in some cases, i t
is more convenient to give a cross-reference t o one metaproduc t ion ru le
rather t han t o many hyper-rules, and i n these cases t he mis s ing cross-
references wi l l be found in the metaproduct ion rule.

Such a reference is , i n princ iple, t he sect ion number f ollowed b y a
let ter indicat ing t he l ine where t he ru le o r representat ion appears , wi t h
the following conventions:

(i) t he references whose sect ion number is t hat of the sect ion in whic h
they appear are given fi rs t and t heir sect ion number is omit ted: e.g. ,
"8.2.1.a" appears as "a" in section "8.2.1";

(ii) a l l point s and a fi na l 1 a r e omit t ed, a n d 10 appears as A ; e. g. ,
"8.2.1.a" appears a s "82a" els ewhere a n d "10.3.4.1.1. i" appears a s
"A341i";

(iii) a sec t ion n u mb e r wh i c h i s t h e s a me a s t h a t o f t h e prec eding
reference is omit ted; e.g., "82a,82b,82c" appears as "82a,b,c";

(iv) t he presence o f a b l i n d a l l ey der iv ed f r o m t h a t hy pernot ion i s
indicated by "-"; e.g. , in 8.0.1.a af t er "MOW denotat ion", s ince "MOI D"
may be replaced by, for example, 'reference to real ', but 'reference to
real denotation' is not a notion.)

1.1.4. The semantics

The mean ing " of programs (2.2.1.a) in the s t ric t language is defined in
the semant ics b y means o f sentences (i n s omewhat f ormaliz ed nat ura l
language) wh i c h s pec if y t h e "ac t ions " t o b e c a r r i ed o u t d u r i n g t h e
"elaborat ion" (2.14.1) of those programs. The "meaning" of a program in a
representation language is the same as the meaning of the program in the
strict language which it represents (9.3).

(The semant ics makes extensive use of hypernot ions and paranot ions in
order to "des ignate", respect ively , protonot ions and constructs. The word
"designate" should be understood i n t he sense t hat t he wo rd "fl amingo"
may "designate" any animal of the family Phoenicopteridae.)

ALGOL 68 Revised Report 2 7

1.1.4.1. Hypernot ions, designat ion and envelopment

(Hypernotions, wh e n enc los ed be t ween apos t rophes , a r e u s e d t o
"designate" prot onot ions be long ing t o c e r t a i n c lasses : e . g . , ' L E A P '
designates any of the protonot ions ' local', ' pr imal ' and 'heap'.)

a) Hy p e r n o t i o n s s tanding i n t he t ex t o f this Report , except those i n
hyper-rules (1.1.3.4.b) o r metaproduc t ion rules (1.1.3.3.b), "des ignate" any
protonotions which may be consistently subst ituted (1.1.3.4.e) f or them, t he
consistent subst itut ion being applied over all the hypernot ions contained in
each complete sub-sect ion o f t he t ex t (a sub-sect ion be ing one o f t he
lettered sub-divisions, i f any, or else the whole, of a numbered section).

(Thus 'QUALI TY TAX' i s a hypernot ion des ignat ing protonot ions such
as ' integral let ter i' , ' real let ter x ', etc. I f , in some part icular discussion, i t
in fac t designates ' int egral let ter i' , then al l occurrences of "QUALI TY
- i nthat subsection must , over the span of that discussion, designate ' integral'
and a l l occurrences o f "TAX" mus t des ignate ' le t t er I t ma y t hen be
deduced f rom subsection 4.8.2.a that in order, f o r example, t o "asc ribe t o
an integral-defining-indicator-with-let ter-i", i t is ' int egral let ter i ' t hat mus t
be "made to access V inside the loc ale
. .
.) Occasionally, wh e r e t h e c ont ex t c l e a r l y s o demands , c ons is t ent
substitution may be applied over less than a section. (For example, in the
introduct ion t o sect ion 2.1.1.2, t here are several occurrences of " M O M
—
,
of which two are stated t o designate specific (and dif ferent) protonot ions
spelled out in full, and of which others occur in the plural f orm —
M O I D ' s " ,which is c learly intended t o designate a set of dif ferent members o f t he
class of t erminal metaproduct ions of "MOID".)

b) I f a protonot ion (a hypernot ion) P consists o f the concatenat ion of
the protonot ions (hypernot ions) A , B and C, where A and C are possibly
empty, then P "contains" B at the posit ion (in P) determined by the length
of A. (Thus, 'abcdelcdgh' contains 'cd' at its t hird and seventh positions.)

c) A prot onot ion P 1 "env elops " a prot onot ion P 2 a s s pec ifi c al ly
designated by a hypernot ion H2 i f P2, or some equivalent (2.1.1.2.a) of it , is
contained (b) a t some posit ion wi t h in P1 bu t not , a t t hat posit ion, wi t h in
any dif ferent (intermediate) protonot ion P3 also contained in P1 such t hat
H2 could also designate P3.

(Thus t he 'MODE' enveloped b y ' reference t o rea l c losed c lause' i s
'reference t o rea l ' r a t h e r t han ' rea l ' : moreov er , t h e mo d e (2.1.1.2.1))
specified by struct (real a, struct (boot b, char c) d) envelops 'FI ELD' just
twice.)

1.1.4.2. Paranot ions

(In o rder t o f ac il i t at e discussion, i n t h is Report , o f constructs wi t h
specified or iginals , t h e c onc ept o f a "paranot ion" i s int roduc ed. A
paranotion is a noun that designates constructs (1.1.3.2.e): i t s meaning is

28 v a n Wijngaarden, etal.

not necessarily that found in a dic t ionary but can be construed f rom the
rules which follow.)

a) A "paranot ion" P is a hypernot ion (not between apostrophes) whic h
is used, i n t he t ex t o f t his Report , t o "des ignate" any cons t ruc t whose
original 0 satisfies the following:

• P , regarded as a hypernot ion (i.e. , as i f i t had been enc losed i n
apostrophes), designates (1.1.4.1.a) an "abst rac t ion" (b) of O.

(For example, t he paranot ion "fixed-point -numeral" could designate the
construct represented by 02, s ince, had i t been i n apostrophes, i t would
have designated an abstract ion of the not ion 'fi xed point numeral ' , whic h
is the original of t hat construct. However, t hat same representat ion could
also be described as a digit-cypher-sequence, and as such i t would be a
direct descendent of that fixed-point-numeral.)

(As a n a i d t o t h e r e a d e r i n dis t inguis hing t h e m f r o m o t h e r
hypernotions, paranot ions are not enclosed between apostrophes and are
provided wi t h hyphens where, otherwise, t hey would have been prov ided
with blanks.)

The meaning of a paranot ion to which the s mall syntact ic mark "s " has
been appended is the same as i f the let t er "s " (which is in the same type
font as the mark s in this sentence) had been appended instead. (Thus the
fixed-point-numeral 02 ma y be s aid t o contain t wo digit -cyphers , ra t her
than t wo digit-cyphers.) Moreover, the "s " may be inserted elsewhere than
at the end i f no ambiguit y arises (e.g., "sources -for-IODINE" means t he
same as "source-for-MODINEs").

An init ial s mall syntact ic mark of a paranot ion is of ten replaced by the
corresponding large syntactic mark (in order to improv e readabilit y , as at
the s t art o f a sentence) wit hout change o f meaning (: e.g. , "I dent ifi er"
means the same as "ident ifier").

b) A protonot ion P2 is an "abst ract ion" of a protonot ion P1 i f
(i) P2 is an abstract ion of a not ion whose product ion rule begins wi t h an

asterisk and of which P1 is an alternat ive
(e.g., ' t r ims c r ip t (5.3.2.1.h) i s a n abs t rac t ion o f a n y o f t h e
notions des ignated b y ' NEST t r i mme r ' , ' NEST subsc ript ' a n d
'NEST revised lower bound option'), or

(ii) P
-
I
e n
v e
l o
p s
a
p
r
o
t
o
n
o
t
i
o
n
P
3
w
h
i
c
h
i
s
d
e
s
i
g
n
a
t
e
d
b
y
o
n
e
o
f
t
h
e

"elidible hypernot ions " l i s t ed i n s ec t ion c be low, a n d P 2 i s a n
abstraction of the protonot ion consis t ing of P1 wi t hout t hat enveloped
P3

(e.g., 'choice using boolean start' is an abstraction of the notions
'choice us ing boolean brief s tart ' and 'choice us ing boolean bold
start ' (by elis ion of a 'STYLE' f rom 9.1.1.a)), or

ALGOL 68 Revised Report 2 9

(iii) P2 is equivalent to (2.1.1.2.a) P1
(e.g., 'bol d begi n symbol ' i s a n abstraction o f 'bol d begi n
symbol').

(For an ex ample inv ok ing a l l t hree rules , i t ma y be observed t ha t
'union of real integral mode defining indicator' is an abstraction of some
'union o f integral r ea l mode NE S T defini ng i denti fier w i t h l etter a'
(4.8.1.a). Note, however, t hat 'choice us ing union o f int egral rea l mode
brief s t art ' i s not a n abs t rac t ion o f t he not ion 'c hoic e us ing union o f
integral r eal boolean mode br ief star t', because the •boolean' tha t has
apparent ly been elided is not an enveloped 'MOW* of that notion.)

cl T h e "el idible hypernot ions" ment ioned i n sect ion b above a re t he
following:

"STYLE" • "TALLY" • "LEAP" • "DEFIED" • "VICTAL" •
"SORT" • "MOID" • "NEST" • "RUTTY routine" • "label" •
"with TAX" • w i th DECSETV LABSETY" • "of DECSETY LABSETY" •
"defining LAYER".

(Which one of several possible not ions o r symbols is t he original of a
construct des ignated b y a g iv en paranot ion wi l l b e apparent f r o m t he
context in which that paranot ion appears. Fo r example, when speaking of
the formal-dec larer of an ident ity-declarat ion, i f the ident ity -dec larat ion is
one whose t erminal product ion (1.1.3.2.f) happens t o be ref real x = lac real,
then t he or ig inal o f t hat f ormal-dec larer i s s ome not ion des ignated b y
' formal reference to real NEST declarer'.)

(Since a paranot ion designates a construct , a l l technical t erms whic h
are defined for constructs can be used wit h paranot ions without formality .)

d) I f two paranot ions P and Q designate, respect ively, t wo constructs
S and T, and i f S is a descendent of T, then P is t ermed a "const ituent" of
Q unless there exists some (intermediate construct) U such that

(i) S is a descendent of U,
(ii) U is a descendent of T, and

(iii) ei t her P or Q could (equally well) designate U.

(Hence a (S i) i s a const ituent operand of the f ormula a x (b+2 I (i+j))
(T), but b (S2) is not, since i t is a descendent of an intermediate f ormula
b+2 1 (i+j) (U) , whic h is it self descended f rom T. Likewise, (b +2 I (i+j))
is a const ituent closed-clause of the f ormula T, but the closed-clause (i+ j)
is not , because i t i s descended f r o m a n in t ermediat e c losed-c lause.
However, (i + j) is a const ituent integral-c losed-clause o f T, because t he
intermediate closed-clause is, in fact, a real-closed-clause.

30 v a n Wijngaarden, et al.

formula
a x (1) + 2 I (i + j))

1
operand o p e r a n d

a (b + 2 I (i + j))

(real-) closed-clause
(b + 2 I (i + j))

formula
b + 2 1 (i + j)1

1
operand o p e r a n d

2 1 (i + j)

formula

operand o p e r a n d
2 +

(integral-) closed-clause
+

1.1.4.3. Undefined
a) I f something is left "undefined" o r is said to be "undefined", then

this means that i t is not defined by this Report alone and that, f o r its
definition, information f ro m outside th is Report has t o be taken in to
account.

(A distinction must be drawn between the yielding o f an undefined
value (whereupon elaboration continues w i t h possib ly unpredictable
results) and the complete undefinedness o f the further elaboration. The
action t o b e taken i n t h is la t te r case i s a t t h e discretion o f th e
implementer, and may be some form of continuation (but not necessarily
the same as any other implementer's continuation) , o r some fo rm o f
interruption (2.I.4.3.h) brought about by some run-time check.)
b) I f some condition i s "required" t o b e satisfied d u rin g some

elaboration then, i f i t i s no t so satisfied, t h e fu rthe r elaboration i s
undefined.
c) A "meaningful" program is a program (2.2.I.a) whose elaboration is

defined by this Report.
(Whether a l l programs, o n ly particular-programs, o n ly meaningful

programs, o r even only meaningful particular-programs are "ALGOL 68"
programs is a matter for individual taste.)

1.1.5. Translations and variants
a) T h e definitive version D o f th is Report is writ ten in English. A

translation T o f this Report into some other language is an acceptable
translation if:

ALGOL 68 Revised Repor t 3 1

• I defines the same set of product ion trees as D, except that
(i) t he originals contained in each product ion t ree of T may be dif ferent

protonotions obtained by some unif orm t rans lat ion of the corresponding
originals contained in the corresponding product ion t ree of D, and

(ii) descendents of those product ion t rees need not be the s ame i f t heir
originals are predicates (1.3.2);

• T defines the meaning (2.1.4.1.a) of each of its programs to be the same
as that of the corresponding program defined by D;
• T defines t he s ame reference language (9.4) a n d t he s ame s tandard
environment (10) as D:
• T preserves, under another mode o f expression, t he meaning o f each
section of D except that:

(i) dif f erent s y nt ac t ic m a r k s (1.1.3.1.a) m a y b e u s e d (w i t h a
correspondingly dif ferent metaproduct ion rule for " A L P H
A " (1 . 3 . 1 . B)) ;(ii) t he method o f derivat ion o f t he produc t ion rules (11.3.4) and t he i r
interpretat ion (1.1.3.2) may be changed t o suit t he peculiarit ies o f t he
part icular na t u ra l language (: e.g. , i n a h i g h l y infl ec t ed n a t u r a l
language, i t ma y be necessary t o int roduce s ome inflect ions int o t he
hypernotions, f o r wh i c h changes s uc h a s t h e f o l low ing m i g h t b e
required:

1) addit ional means f or the creat ion of ex t ra metaproduc t ion rules
(1.1.3.3.a);

2) a more elaborate definit ion of "consistent substitute" (1.1.3.4.e);
3) a m o r e e l a b o r a t e d e fi n i t i o n o f "equ iv a lenc e" b e t we e n

protonotions (2.1.1.2.a):
4) dif f erent inflections f or paranotions (1.1.4.2.a));

(iii) s ome pragmat ic remarks (1.1.2) may be changed.

b) A vers ion o f t his Report may , addit ionally , defi ne a "v ar ian t o f
ALGOL 68" by prov iding:

(i) addit ional o r alt ernat ive representat ions i n t he reference language
(9.4),

(ii) addit ional o r a l t ernat iv e r u l e s f o r t h e no t i on * c harac t er glyph'
(8.1.4.1.c) a n d f o r t h e met anot ions " A B C" (9.4.2.1.L) a n d "S TO P "
(10.1.1.B),

(iii) addit ional o r alt ernat ive dec larat ions i n t he s t andard env ironment
which must , however, have the same meaning as the ones prov ided in
D:

provided always that such addit ional or alternat ive items are delineated in
the text in such a way that the original language, as defined in D, is s t il l
defined therein.

1.2. General metaproduct ion rules
(The reader may fi nd i t helpful t o note t hat a metanot ion ending i n

"ETY" alway s has "EMPTY" as one of the hypernot ions on i t s right -hand
side.)

32 v a n Wijngaarden, et al.

1.2.1. Metaproduct ion rules of modes
A) M O D E :: PLAIN ; STOWED ; REF to MODE ; PROCEDURE

UNITED ; MU definition of MODE ; MU application.
B) P L A I N :: INTREAL bool ean ; character.
C) I N T R E A L S I Z E T Y integral ; S I M I * real.
D) S I Z E T V :: long LONGSETY ; short SHORTSET1 ; EMPTY.
E) L O N G S E T Y :: long LON(;SETY ; EMPTY.
F) S H O R T S E T Y :: short SHORTSETY EMPTY'.
G) E M P T Y :: .
H) S T O W E D :: structured with FIELDS mode

FLEXETY ROWS of MODE.
I) F I E L D S :: FIELD ; FIELDS FIELD.
J) F I E L D :: MODE field TAG(942A).
K) F L E X E T Y :: flexible ; EMPTY.
L) R O W S :: row ; ROWS row.
M) R E F :: reference ; transient reference.
N) P R O C E D U R E :: procedure PARAMETY yielding MOW.
0) P A R A M E T Y :: with PARAMETERS ; EMPTY.
P) P A R A M E T E R S :: PARAMETER ; PARAMETERS PARAMETER.
Q) P A R A M E T E R :: MODE parameter.
R) M O I D :: MODE ; void.
S) U N I T E D :: union of MOODS mode.
T) M O O D S :: MOOD ; MOODS MOOD.
U) M O O D

PLAIN ; STOWED ; reference to MODE ; PROCEDURE ; void.
V) M U :: muTALLY.
W) T A L L Y :: i ; TALLY

(The metaproduc t ion ru le f o r "TAG" i s giv en i n sect ion 9.4.2.1. I t
suffices f o r t he present t hat i t produces an arb i t rar i ly large number o f
terminal metaproduct ions.)

1.2.2. Metaproduct ion rules associated wit h phrases and coercion
A) E N C L O S E D

closed ; collateral ; parallel ; CHOICE(34A) ; loop.
B) S O M E :: SORT MOID NEST.
C) S O R T :: strong ; fir m ; meek ; weak ; soft.

1.2.3. Metaproduct ion rules associated wit h nests
A) N E S T :: LAYER ; NEST LAYER.
B) L A Y E R :: new DECSETY LABSETV.
C) D E C S E T V D E C S ; EMPTY.
D) D E C S :: DEC ; DECS DEC.
E) D E C :: MODE TAG(942A) ; priority PRIO TAD(942F)

MOID TALLY TAB(942D) ; DUO TAD(942F) ; MONO TAM(942K).
F) P R I O I ; ill i l l ill i
G) M O N O :: procedure with PARAMETER yielding MOID.

ALGOL 68 Revised Report 3 3

H) D U O : : procedure with PARAMETER1 PARAMETER2
yielding MOID.

I) L A B S E T Y : : LABS ; EMPTY.
J) L A B S : : L A B ; LABS LAB.
K) L A B : : label TAG(942A).

(The metaproduc t ion rules f or "TAB", "TAD" and "TAM" a re giv en in
section 9.4.2.1. I t suffices f o r the present t hat each o f t hem produces an
arbit rari ly large number of t erminal metaproduct ions, none of whic h is a
terminal metaproduct ion of "TAG".)

("Well, 's lithy ' means ' l i t he and s limy ' .
You see it 's like a portmanteau - there are
two meanings packed up into one word,"
Through the Looking-glass, L e w i s Carroll.)

1.3. General hyper-rules

(Predicates are used in the syntax to enforce certain restric t ions on the
production t rees , s uc h as t ha t each applied-indicator should ident i f y a
uniquely determined defining-indicator. A more modes t use is t o reduce
the n u mb e r o f hy per-rules b y g roup ing s ev e ra l s i m i l a r c as es a s
alternatives in one rule. I n these cases predicates are used t o test whic h
alternat ive applies.)

1.3.1. Syntax of general predicates

A) N O T I O N : : ALPHA ; NOTION ALPHA.
B) A L P I F I A : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 ; m ; n ; o ; p ;

q ; r ; s ; t ; u ; v ; w ; x ; y ; z .
C) N O T E T Y : : NOTION ; EMPTY.
Dy T H I N G : : NOTION ; (NOTETV1) NOTETY2

THING (NOTETVI) NOTETV2.
E) W H E T H E R : : where ; unless.

a) w h e r e t rue : EMPTY.
b) u n l e s s false : EMPTY.
c) w h e r e THING1 and THIN(;2 : where THI NG! , where THING2.
d) w h e r e THING I or THING2 : where THI NG! ; where THING2.
e) u n l e s s THI NG! and THING2 : unless THI NG! ; unless TH1NG2.
f) u n l e s s THI NG! or THING2 : unless THI NG! , unless THING.2.

g) W H E T H E R (NOTETY1) is (NOTETY2)
WHETHER (NOTETY1) begins wit h (NOTETY2)(h, i, j)

and (NOTETY2) begins wit h (NOTETYI)(h, i, j).
h) W H E T H E R (EMPTY) begins with (NOTION)(g, j)

WHETHER false(b,-).
i) W H E T H E R (NOTETY) begins with (EMPTY)(g, j)

WHETHER true(a,-).

34 v a n Wijngaarden, et al.

j) W H E T H E R (ALPHA! NOTETYI) begins with
(ALPHA2 NOTETY2)(g, j ,m) :

WHETHER (ALPHA!) coincides with (ALPHA2) in
(abcdefghijklmnopqrstuvwxyz)(k,1,-)

and (NOTETY I) begins with (NOTETY2)(h,i , j).
k) w h e r e (ALPHA) coincides with (ALPHA) in (NOTION)(j)

where true(a).
1) u n l e s s (ALPHA1) coincides with (ALPHA2) in (NoTi oN)w

where (NOTION) contains (ALPHA I NOTETY ALPHA2)(m)
or (NOTION) contains (ALPHA2 NOTETN ALPHAI)(m).

m) W H E T H E R (ALPHA NOTETY) contains (NOTION)(1,m)
WHETHER (ALPHA NOTETY) begins with (NOTION)(j)

or (NOTETY) contains (NOTION)(m,n).
n) W H E T H E R (EMPTY) contains (NOTION)(m) : WHETHER false(b,-).

(The small syntactic marks "(" and ")" are used to ensure, in a simple
way, the unambiguous application of these predicates.)

1.3.2. The holding of predicates

A "predicate" is a protonotion which begins with 'where' o r 'unless*
(unified in to 'WHETHER'). F o r a predicate P , e ith e r one o r mo re
production trees ma y b e produced (1.1.3.2.f) (a l l o f wh ich a re then
invisible), in which case P "holds", or no production tree may be produced
(since each attempt to produce one runs into blind alleys), and then P
"does not hold".

(For example, the predicate •where (ab) is (ab)' holds. I t s production
tree may be depicted thus:

'where (a r is (ab)'
'where (ab) begins with (ab) and (ab) begins with (ab)'

1
'where (ab) begins with (ab)' ' w h e r e (ab) begins with (ab)'

(same as left branch)

'where (a) coincides with (a) in (abc...z) and (b) begins with (b)'

'where (a) coincides with (a) in (abc...z)'

'where true' *where (b) begins with (b)'

'where (b) coincides with (b) in (abc...z)'

'where true' ' w h e r e 0 begins with ()'

'where true'

ALGOL 68 Revised Repor t 3 5

If a predicate holds, t hen i t s produc t ion t ree alway s t erminates v i a
'where t rue' or 'unless false'. I f it does not hold, then, in general, the blind
alleys are 'where false' and 'unless t rue' . Alt hough almos t a l l t he hyper-
rules concerned are f or hypernot ions beginning wi t h "WHETHER" and so
provide, each t ime, product ion rules f or pairs of predicates such as 'where
THI NG! ' and 'unless THI NG' ' , this does not mean t hat in each such case
one o f t he p a i r mus t hold. F o r example, ' where d ig i t f our counts i i i •
(4.3.I.c) does not hold, but no care has been taken t o mak e 'unless digi t
four counts l i r ho ld eit her, s ince t here is no applicat ion f o r i t i n t his
Report.

In the semantics, no meaning is ascribed to constructs whose originals
are predicates. They serve purely syntactical purposes.)

1.3.3. Syntax of general constructions

A) S T Y L E :: brief ; bold ; style TALLY. .

a) N O T I O N option : NOTION ; EMPTY.
b) N O T I O N sequencelb) : NOTION ; NOTION, NOTION sequenee(b).
c) N O T I O N list(c)

NOTION ; NOTION, and also(94f) token, NOTION list(c).
d) N O T E T Y STYLE pack

STYLE begin(94f ,
-
) t o k e n ,
N O T E T
I ,
S T
Y
L
E
e n d
(9 4 f
,
-
)
t o
k e
n ,

e) N O T I O N STYLE bracket
STYLE sub(941,-) token, NOTION, STY LE bus(94f,-) token.

f) T H I N G ! or alternatively THING2 : THI NG' THI NG. 2.

(It follows f rom this syntax that product ion rules such as
digit cypher sequence

digit cypher ; digit cypher, digit cypher sequence.
(which was used i n t he produc t ion o f t he ex ample i n 1.1.3.2.f, b u t f o r
which no more ex plic it hyper-rule i s given) a r e immediat ely available.
Thus t he number of hyper-rules ac tually wri t t en i n this Report has been
reduced and those t hat remain have, hopefully , been made more readable,
since these general construct ions are so worded as t o suggest what t heir
productions should be.

For t his reason, cross-references (I .1.3.4.f) t o these rules hav e been
replaced by more helpf ul references; e.g. , i n 8.1.1.1.b, ins t ead o f "d ig i t
cypher sequence(133b)", the mor e helpful "di gi t cypher(c) sequence" i s
given. Likewise, references wi t h in t he general const ruct ions themselves
have been restric ted to a bare minimum.)

2. The computer and the program

The meaning of a program in the s t ric t language is explained in t erms
of a hypothet ical computer which perf orms the set of act ions (2.1.4) whic h
constitute t he elaborat ion (2.I.4.1) o f t hat program. Th e c omput er deals
with a set of "objects" (2.1.1).

36 v a n Wijngaarden, et al.

2.1. Terminology

2.1.1. Objects

("When I use a word, " Humpty Dumpty said, in rather a
scornful tone, "i t means just what I choose it to mean -
neither more nor less."
Through the Looking-glass, L e w i s Carroll.)

An "objec t " i s a const ruc t (1.1.3.2.e), a "v a lue" (2.1.1.1.a), a "loc ale"
(2.1.1.1.b), an "env iron" (2.1.1.1.c) or a "scene" (2.1.1.1.d).

(Constructs m a y b e c las s ifi ed a s "ex t e rna l objec t s ", s i nc e t h e y
correspond t o t h e t e x t o f t h e p rogram, wh ic h , i n a m o r e real is t ic
computer, would be compiled int o some int ernal f o r m i n whic h i t could
operate upon t he "int ernal objects", namely t he values, t he locales, t he
environs and the scenes. However, the hypothet ical computer has no need
of a compilat ion phase, i t being presumed able t o ex amine t he program
and al l of its descendent constructs at the same t ime as i t is manipulat ing
the internal objects.)

2.1.1.1. Values, locales, environs and scenes

a) A "value" is a "p la in value" (2.1.3.1), a "name" (2.1.3.2), a "s towed
value" (i.e. , a "s t ruc tured value" (2.1.3.3) or a "mult ip le value" (2.1.3.4)) o r
a "rout ine" (2.1.3.5).

(For example, a real number is a plain value. A special font is used f or
values appearing in the text of this Report , thus: 3.14, t rue. This is not to
be confused wit h the it al ic and bold fonts used f o r constructs. This same
special f ont is also used f or let ters des ignat ing such things as constructs
and protonotions.)

b) A "loc ale" (i s a n in t e rna l ob jec t wh ic h) corresponds t o s o me
•DECSETY LABSETY (1.2.3.C,I). A "vacant locale" i s one f o r whic h t hat
'DECSETY LABSETY• is 'EMPTY'.

(Each ' Q UA L I TY T A X ' (4.8.1.F,G) env e loped b y t h a t 'DECSET1
LABSETY' corresponds t o a QUALITY-defining-indicator-with-TAX (i. e. , t o
an ident ifier, operator or mode-indicat ion) dec lared in the construct whose
elaborat ion caused that locale to be created. Such a 'Q(V1111 TAX ' may
be made to "access" a value or a scene "ins ide" that locale (2.1.2.c).

A locale may be thought of as a number of s torage cells , int o whic h
such accessed objects are placed.)

(The t erminal metaproduct ions of t he metanot ions "DEC", "LAB" and
"FIELD" (or of the more f requent ly used "PROP", whic h includes them all)
are a l l of t he f o rm *QUALITY TAX' . These "propert ies " a re used i n t he
syntax a n d semant ics concerned w i t h nes t s a n d loc ales i n o r d e r t o
associate, in a part icular situation, some quality wit h that "FAX*1

2.1.1.2. Modes

ALGOL 68 Revised Report 3 7

c) A n "env iron" is eit her empty , o r is composed of an env iron and a
locale.

(Hence, eac h env i ron i s der iv ed f r o m a s eries o f o t her env irons ,
s temming u l t imat e ly f r o m t h e emp t y " p r i ma l env i ron" i n wh i c h t h e
program is elaborated (2.2.2.a)

d) A "scene" S i s a n objec t wh ic h i s composed o f a cons t ruc t C
(1.1.3.2.e) and an env iron E. C i s s aid t o be t he construct , a n d E t he
environ, "of " S.

(Scenes ma y be accessed ins ide locales (2.1.2.c) b y o r 'DEC's
arising from label-identifiers or from mode-indications, and they may also
be values (2.1.3.5) .)

(Each v alue has an at t ribute, t ermed it s "mode", wh ic h defines h o w
that value relates to other values and which act ions may be applied to it .
This at t r ibut e i s described, o r "s pelled", b y means o f s ome ' Mo l l) *
(1.2.1.R) (t hus there is a mode spelled ' real' , and there is a mode spelled
'structured wi th r eal fiel d l etter r l etter e r ea l fie l d l e t ter i l etter m
mode'). Sinc e i t i s int ended t h a t t he modes spec ified b y t h e mode-
indications a and b in

mode a -= struct (ref a b)
0mode b = struct (ref struct (ref b b) b)

should in fact be the same mode, i t is necessary that both the *MOW'
'mui definition of structured with reference to mui application

field letter b mode'
and the 'MOM'

'mull definition of structured with reference to structured with
reference to mull application field letter b mode
field letter b mode'

(and indeed many others) s hould be alt ernat ive spellings o f t hat s ame
mode. Similar ly , the mode specified by the dec larer union (int , real) may
be spelled as either 'union of integral real mode' or 'union of real integral
mode'. Al l those 'MOID's which are spellings of one same mode are said to
be "equivalent to" one another (a).

Certain •MOID's, such as 'reference to muii i application', 'reference to
muiiii definition of reference to muiiii application', 'union of real reference
to real mode', and 'structured with integral field letter a real field letter a
mode', are i l l formed (7.4, 4.7.1.f, 4.8.1.c) and do not spell any mode.

Although f o r mos t prac t ic al purposes a "mode" c an be regarded as
s imply a 'MOI IE, it s rigorous definit ion therefore involves the whole class
of •MOHYs, equivalent to each other, any of which could describe it .)

a) ' M O 1 1) 1 ' (1.2.1.R) is "equivalent to" 'MOI D2' i f the predicate 'where
MOIDI equivalent MOID2' (7.3.1.a) holds (1.3.2).

(A well f ormed 'Mul l)* is always equivalent t o itself : ' union of integral
real mode' is equivalent to 'union of real integral mode'.)

38 v a n Wijngaarden, et al.

A protonot ion P is "equivalent t o" a protonot ion 0 i f i t is possible t o
t ransform a copy Pc of P into a copy Qc of Q in the following step:
Step: I f Pc is not ident ical t o Qc, then some *M0111) I' contained in Pc, but

not wit hin any (larger) *M011)2' contained i n Pc, i s replaced by some
equivalent 'MOW', and the Step is taken again.

(Thus 'union of integral real mode ident ifier' is equivalent to 'union of real
integral mode ident ifier'.)

b) A "mode" is a class C of 'MOID's such t hat each member of C is
equivalent (a) t o each other member of C and also t o it self (in order t o
ensure well formedness), but not to any 'MOID1' whic h is not a member' of
C.

(However, i t i s pos s ible (ex c ept wh e n equiv alenc e o f modes i s
specifically under discussion) t o discuss a mode as i f i t were s imply a
terminal metaproduc t ion o f "MOW", b y v ir t ue o f t he abbrev iat ion t o be
given in 2.1.5.1.)

c) E a c h value is of one specific mode.
(For example, the mode of the value 3.14 is ' real' . However, t here are

no values whose mode begins wi t h 'union o r , ' t rans ient reference to* o r
'flexible ROWS of (s ee 2.1.3.6).)

2.1.1.3. Scopes

(A value V ma y "re f er t o" (2.1.2.e), o r be composed f r o m (2.1.1 d)
another internal object 0 (e.g. , a name may ref er to a value; a rout ine
which is a scene, is composed, in part , f rom an env iron). Now the lif et ime
of the storage cells containing (2.1.3.2.a) o r impl ied by (2.1.1.1.b) 0 may
be limit ed (in order that they may be recovered af t er a certain t ime), and
therefore i t mus t not be possible t o preserve V beyond t hat l if et ime, f o r
otherwise an at t empt to reach some no-longer-existent s torage cell v ia V
might s t ill be made. This res t ric t ion is expressed by saying that, i f V is to
be "assigned" (5.2.1.2.b) t o some name W, then the "scope" of W mus t not
be "older" t han the scope of V. Thus, t he scope of V is a measure of the
age of those storage cells, and hence of their lifet ime.)

a) E a c h value has one specific "scope" (which depends upon it s mode
or upon the manner of its creat ion; t he scope of a value is defined t o be
the same as that of some environ).
b) E a c h env iron has one specific "scope". (The scope of each env iron

is "newer" (2.1.2.f) t han t hat o f t he env iron f r om whic h i t is composed
(2.1.1.1.c).]

(The scope of an env iron is not t o be confused wi t h t he scopes of the
values accessed ins ide its locale. Rather, t he scope of an env iron is used
when defining the scope of scenes f or which i t is necessary (7.2.2.c) o r of
the y ields of generators f or which i t is "loc al" (5.2.3.2.b). The scope of an
environ is defined relat ive (2.1.2.1) t o the scope o f some other environ, so
that hierarchies of scopes are created depending ult imately upon the scope
of the pr imal env iron (2.2.2.a).)

ALGOL 68 Revised Report 3 9

2.1.2. Relat ionships

a) Re l a t i o n s h i p s e i t he r a r e "permanent ", i . e . , independent o f t h e
program and of its elaborat ion, o r actions may cause them to "hold" o r to
cease to hold. Relat ionships may also be "t rans it ive": i. e. , i f "* " is such a
relat ionship and A*B and B*C hold, then A*C holds also.

b) " T o be t he y ie ld o f " i s a relat ionship between a v a lue and a n
action, v iz. , the elaborat ion of a scene. This relat ionship is made t o hold
upon the complet ion of that elaborat ion (2.1.4.1.b).

c) " T o access" i s a relat ionship between a 'PROP' (4.8.1.E) a n d a
value or a scene V which may hold "ins ide" some specified locale L (whose
•DECSETY LABSETY• envelops 'PROP'). This relat ionship is made t o hold
when 'PROP' is "made t o access" V ins ide L (3.5.2.Step 4, 4.8.2.a) and i t
then holds also between any ' PROM equiv alent to (2.1.1.2.a) 'PROP' and V
inside L.

d) T h e permanent relat ionships between values are: " t o b e o f t he
same mode as" (2.1.1.2.c), "t o be s mal ler than", t o be widenable to", " t o
be lengthenable to" (2.1.3.1.e) and "to be equivalent to" (2.1.3.1.g). I f one of
these relat ionships i s defined a t a l l f o r a giv en p a i r o f values, t hen i t
either holds o r does not ho ld permanent ly . Thes e relat ionships a r e a l l
transit ive.

e) " T o ref er to" is a relat ionship between a "name" (2.1.3.2.a) N and
some other value. This relat ionship is made t o hold when N is "made t o
refer to" t hat value and ceases t o hold when N is made t o ref er t o some
other value.

f) T h e r e a re t hree t rans it iv e relat ionships bet ween scopes, v iz . , a
scope A (2.1.1.3) may be eit her "newer than", o r "t he same as " o r "older
than" a scope B. I f A is newer than B, t hen B is older than A and v ice-
versa. I f A is the same as B, then A is neither newer nor older than B (but
the converse is not necessarily t rue, since the relat ionship is not defined at
all for some pairs of scopes).

g) " T o be a subname of " i s a relat ionship between a n a me and a
"stowed name" (2.1.3.2.b). Th i s relat ionship i s ma d e t o ho ld when t ha t
stowed name is "endowed wit h subnames" (2.1.3.3.e, 2.1.3.4.g) or when i t is
"generated" (2.1.3.4.,),1), and i t continues to hold unt i l t hat stowed name is
endowed with a dif ferent set of subnames.

2.1.3. Values

2.1.3.1. Plain values

a) A plain value is either an "arit hmet ic value", i.e., an "integer" o r a
"real number", or is a "t rut h value" (f), a "charac ter" (g) or a "void value"
(11).

40 v a n Wijngaarden, et al.

b) A n arit hmet ic value has a "s ize", i.e., an integer characteriz ing the
degree of discriminat ion wit h which it is kept in the computer.

c) T h e mo d e o f a n in t eger o r o f a r e a l n u mb e r o f s iz e n i s ,
respectively, s ome 'SI ZETY in t egra l ' o r 'SI ZETY r e a l ' where , i f n i s
positive (zero, negat ive), t hat 'SIZETY' is n t imes ' long' (is empty , is - n
t imes 'short ')

d) T h e number of integers or of real numbers of a given size that can
be dist inguished increases (decreases) wi t h that size unt i l a certain size is
reached, viz. , the "number of ex t ra lengths" (minus the "number of ex t ra
shorths") o f integers or of real numbers , respect ively, (10.2.1.a,b,d,e) af t er
which it is constant.

(Taking Three a s t h e subjec t t o reason
about-
A convenient number to state-

e) F o r the purpose of explaining the meaning of the widening coercion
and o f t he operators dec lared i n t h e s tandard-prelude, t h e f o l lowing
,properties of arithmet ic values are assumed:

• f o r each pa i r of integers o r of real numbers o f t he s ame size, t he
relat ionship "to be s maller than" is defined wi t h its usual mathemat ical
meaning (10.2.3.3.a, 10.2.3.4,a);
• f o r each pa i r o f integers o f t he s ame size, a t h i rd dis t inguishable
integer o f t hat s ize ma y ex is t , t h e fi rs t in t eger "minus " t h e o t her
(10.2.3.3.g);

(We add Seven, and Ten, and then mult iply
out
By One Thousand diminished by Eight.

• f o r each pair of real numbers of the same size, t hree dis t inguishable
real numbers o f t hat s ize ma y ex is t , t he fi rs t r e a l number "minus "
("t imes", "div ided by") the other one (10.2.3.41,1,m):
• i n the foregoing, t he t erms "minus ", "t imes " and "div ided by " have
their usual mat hemat ic al meaning but , i n t he case o f rea l numbers ,
their results are obtained " in the sense of numeric al analys is", i.e. , by
performing those operat ions on numbers whic h ma y dev iate s l ight ly
f rom the given ones (; t his deviat ion is lef t undefined in this Report):

(The result we proceed t o div ide, as y ou
see,
By Nine Hundred and Ninety and Two

• eac h integer of a given size is "widenable to" a real number close to
it and of that same size (6.5);
• eac h integer (real number) o f a given size can be "lengthened to" an
integer (r e a l number) c los e t o i t whos e s iz e i s g r e a t e r b y o n e
(10.2.3.34 10.2.3.4.n).

f) A "t ruth value" is either "t rue" or "false". I ts mode is •boolean'.

(Then subtract Seventeen, and t he answer
must be
Exactly and perfectly true.
The Hunting of the Snark, L e w i s Carroll.)

g) E a c h "charac ter" i s "equivalent " t o a nonnegat ive int eger of s ize
zero, its "integral equivalent" (10.2.I.n); t h is relat ionship is defined only to
the ex tent t hat dif f erent charac ters hav e dif f erent int egral equivalents ,
and that there exists a "larges t integral equivalent " (10.2.1.p). The mode of
a character is 'character' .

h) T h e only "void value" is "empty". I ts mode is 'void'.
(The elaborat ion of a construct y ields a void value when no more useful

result is needed. Since the syntax does not prov ide f or void-variables, void-
identity-declarat ions o r void-parameters , t he p r og r ammer cannot ma k e
use of void values, except those aris ing f rom unit ing (6.4)

i) T h e scope o f a p la in v alue i s t he scope o f t he p r i ma l env iron
(2.2.2.a).

2.1.3.2. Names

ALGOL 68 Revised Report 4 1

(What's i n a name? that whic h we call a
rose
By any other name would smell as sweet.
Romeo and Juliet, W i l l i a m Shakespeare.)

a) A "name" is a value whic h can be "made to ref er t o" (el, 5.2.3.2.a,
5.2.1.2.b) some other value, o r whic h can be "n i l " land t hen refers t o no
value); moreov er, f o r each mode beginning wi t h *reference to' , t here i s
exactly one nil name of that mode.

A name ma y be "newly c reated" (by t he elaborat ion o f a generat or
(5.2.3.2) o r a rowed-to-FORM (6.6.2), when a stowed name is endowed wit h
subnames (2.I.3.3.e, 2.I.3.4.g) and, possibly, when a name is "generated"
(2.I.3.4.j, l a The name so created is dif ferent f rom al l names already in
existence.

(A name may be thought of as the address of the storage cell o r cells,
in the computer, used to contain the value ref erred to. The c reat ion of a
name implies the reservat ion of storage space to hold that value.)

b) T h e mode of a name N is some 'reference to MODE' and any value
which is referred to by N mus t be "acceptable t o" (2.1.3.6.d) t hat 'MODE'.
If 'MODE' is some 'STOWED', then N is said to be a "s towed name".

c) T h e scope of a name is the scope of some specific env iron (usually
the "loc al env iron" (5.2.3.2.b) o f some generator). The scope o f a name
which is ni l is the scope of the pr imal env iron (2.2.2.a).

42 v a n Wijngaarden, et al.

d) I f N is a stowed name ref err ing to a s t ruc tured (mult iple) v alue V
(2.1.3.3, 2.1.3.4), and i f a subname (2.1.2.g) of N selected (2.1.3.3.e, 2.1.3.4.g)
by a 'TAG (a n index) I is made t o ref er to a (new) value X, t hen N is
made t o ref er t o a s t ruc tured (mult ip le) v a lue whic h is t he s ame as V
except f or its field (element) selected by I, which is (now made to be) X.

(For the mode of a subname, see 2.1.3.3.d and 2.1.3.41)

2.1.3.3. Structured values

a) A "s t ruc tured value" is composed of a sequence of other values, it s
"fields", each of which is "selected" (b) by a specific 'TAG' (9.4.2.1.A). (For
the selection of a field by a field-selector, see 2.1.5.g.)

(The order ing o f t he fi elds o f a s t ruc tured v alue i s ut i l iz ed i n t he
semantics of structure-displays (3.3.213) and format -tex ts (10.3.4), and i n
straightening (10.3.2.3.c).)

b) T h e mode of a s t ructured value V is some 's t ruc tured wi t h FIELDS
mode'. I f the n-th 'FIELD' enveloped by that 'FIELDS' is some 'MODE field
TAG', then the n-th field of V is "selected" by 'TAG' and is acceptable t o
(2.1.3.6.d) 'MODE'.

c) T h e scope of a s t ruc tured value is t he newest of the scopes of its
fields.

d) I f the mode of a name N (ref erring to a s t ruc tured value) is some
reference t o s t ruc tured wi t h FIELDS mode' , and i f t he predicate 'where

MODE field TAG resides in FIELDS' holds (7.2.1.b,c), t hen the mode of the
subname of N selected (e) by 'TAG' is 'reference to MODE'.

e) W h e n a name N whic h refers to a s t ruc tured value V is endowed
with subnames" (e, 2.I.3.4.g, 4.4.2.b, 5.2.3.2.a), then,
For each 'TAG' select ing a field F in V,

• a new subname M is created of the same scope as N:
• M is made to refer to F:
• M is said to be the name "selected" by 'TAG' in N:
• i f M i s a s towed name (2.1.3.2.b), t hen i t i s i t s el f endowed wi t h
subnames (e, 2.1.3.4.g).

2.1.3.4. Mult iple values

a) A "mult iple value" (of n dimensions) is composed of a "desc riptor"
and a sequence o f ot her values, i t s "elements ", eac h o f whic h ma y be
"selected" by a specific n-tuple of integers, its "index".

b) T h e "descriptor" is of the f orm
((I
v
u
1
) ,
(
1
2
,
u
2
)
,
,
(
I
n
,
u
n
)
)

where each 1 1 1
the i-th "lower bound" and u, is the i-th "upper bound".1

ALGOL 68 Revised Report 4 3

c) I f f or any i, I = 1, , n, u
i < I
i
, t h e n
t h e
d e s c r i p t o r
i s
s a i d
t o
b e

"flat" a n d t here i s one element , t e rmed a "ghos t element " (, a n d not
selected b y a n y index ; s e e a ls o 5.2.1.2.b): ot herwis e, t h e n u mb e r o f
elements is (u 1 - 1
1 + 1)
x
(u
2
1
2
+
1)
x
x
(u
n
-
I
n
+
1
)
a
n
d
e
a
c
h
i
s

selected by a specific index (r , , r
n
) w h e r e
u . ,
i
1 , , . . ,
n .

1 1 1

d) T h e mode of a mult ip le value V is some 'ROWS of MODE*, where
that 'ROWS' is composed of as many t imes ' row' as there are bound pairs
in t he desc riptor o f V and where eac h element o f V i s acceptable t o
(2.1.3.6.d) that 'MODE'.

(For example, given t j union (mnt, real) ru i r ---- (1, 2.0), t he mode of the
yield of ruir is ' row of union of integral real mode' , t he mode of its fi rs t
element is ' integral' and that of its second element is * rear.)

e) T h e scope o f a mul t ip le v alue is t he newest o f t he scopes o f i t s
elements, i f it s descriptor is not flat , and, otherwise, is t he scope o f t he
primal environ (2.2.2.a).

f) A mult iple value, o f mode *ROWS of MODE' , ma y be ref erred t o
either b y a "fl ex ib le" n a me o f mode ' ref erenc e to fl ex ib le RO W s o f
MODE1', o r by a "fi x ed" n a me o f mode ' reference to ROWS of MODEI '
where (in either case) 'MODE! ' "deflexes" (2.1.3.6.b) to 'MODE'.

(The dif ference implies a possible dif ference in the method whereby the
value is s tored in t he computer. The flex ible case mus t al low a mult ip le
value wi t h di f f erent bounds t o b e ass igned (5.2.1.2.b) t o t h a t name,
whereas the fixed case can rely on the fac t that those bounds wi l l remain
fixed dur ing t he l i f et ime o f t hat name, Not e t hat t he "fl ex ib i l i t y
- i s aproperty of the name: t he underly ing mult iple value is the same value in
both cases.)

If t he mode o f a name N (ref err ing t o a mu l t i p le v alue) i s s ome
'reference to FLEXETY ROWS of MODE', then the mode of each subname
of N is *reference to MODE'.

g) W h e n a name N whic h ref ers t o a mul t ip le v alue V is "endowed
with subnames" (g, 2.1.3.3.e, 4.4.2.b, 5.2.1.2.b, 5.2.3.2.a), then,
For each index selecting an element E of V,

• a new subname M is created of the same scope as N:
• M is made to refer to E:
• M is said to be the name "selected" by that index in N:
• i f M i s a s towed name (2.1.3.2.b), t hen i t i s i t s el f endowed wi t h
subnames (g, 2.1.3.3.e).

(In addit ion to the selection of an element (a) o r a name (g) by means
of an index, i t is also possible to select a value, o r to generate a new name
referring to such a value, by means of a t r im (h, i, j) o r a "FAG' (I d) . Both
indexes and t rims are used in the elaborat ion of slices (5.3.2.2).)

44 v a n Wi,ingaarden, et al.

h) A " t r im" is an n-tuple, each element of whic h is eit her an integer
(corresponding t o a subscript) o r a t r ip le t (I , u, d) (corresponding t o a
trimmer o r a revised-lower-bound-option), such that a t least one of those
elements is a t riplet (if all the elements are integers, then the n-tuple is an
index (a)) . Eac h element o f such a t r ip le t i s e i t her a n in t eger o r i s
"absent".

(A t r i m (o r a n index) i s y ielded b y t he elaborat ion o f a n index er
(5.3.2.2.b).)

i) T h e mult iple value W (of m dimensions) "selected" by a t r im T in a
mult iple value V (of n dimensions, 1 5_ M 1 n) is determined as follows:

i • Let T be composed of integers and triplets T., = 1, , n, o f whic h1
m are actually t riplets: le t the j-th t riplet be (I., u,, d.), j 1 , m :1 J 1
• W is composed of
(i) a desc riptor ((11 - d1' u 1 - d1)
' (1
2 d 2 '
u 2
-
d 2
)
' ,
(1
m
- d
m
,

u - d)) :m m
(ii) elements of V, where the element , i f any, selected in W by an index

(w
l
,
,
w
)
(
1
.
w
.
l
u
.
-
d
.
)
i
s
t
h
a
t
s
e
l
e
c
t
e
d
i
n
V
b
y
t
h
e
i
n
d
e
x

m J J I l l
(vv) determined as follows:1 " n

For = 1, , n,
Case A: T. is an integer:

• v . = T.:1 1
Case B: T. is the j-th t riplet (I., u., d.) of T:1

• v . = w. + d..1

j) T h e name M "generated" by a t rim T from a name N which refers
to a multiple value V is a (fixed) name, o f the same scope as N, (not
necessarily newly created) which refers to the multip le value W selected
(i) by T in V. Each subname of M, as selected by an index lw, is one of the
(already existing) subnames of N, as selected by an index Iv, where each lv
is determined from T and the corresponding lw using the method given in
the previous sub-section.

k) T h e multiple value W "selected" by a 'TAG' in a multiple value V
(each of whose elements is a structured value) is composed of

(i) the descriptor of V, and
(ii) the fields selected by 'TAG' in the elements of V, where the element,

if any, selected in W by an index I is the field selected by 'TAG' in the
element of V selected by

I) T h e name M "generated" by a *TAG f ro m a name N which refers
to a multiple value V (each of whose elements is a structured value) is a
(fixed) name, o f the same scope as N, (not necessarily newly created)

ALGOL 68 Revised Report 4 5

which refers to the mult ip le value selected (k) b y 'TAG' i n V. Each
subname o f M selected b y an index I i s the (already existing) name
selected (2.1.3.3.e) by 'TAG' in the subname of N selected (g) by

2.1.3.5. Routines
a) A "routine" i s a scene (2.1.1.1.d) composed o f a routine-text

(5.4.1.1.a,b) together with an environ (2.1.1.1.c).
(A routine may be "called" (5.4.3.2.b), whereupon the unit of its routine-

text is elaborated.)
b) T h e mode of a routine composed o f a PROCEDURE-routine-text is

' PRO(EDt

c) T h e scope of a routine is the scope of its environ.

2.1.3.6. Acceptability of values
a) (T h e r e are no values whose mode begins with 'union of '. There

exist names whose modes begin with 'reference to union of', e.g., u in
union (int, real) u; He re , however, u, whose mode is 'reference to union of
integral real mode', refers either to a value whose mode is 'integral' o r to
a value whose mode is * re a r I t is possible to discover which o f these
situations obtains, a t a given moment, by means o f a conformity-clause
(3.4.1.q).)

The mode 'MOID' is "united from" the mode 'MOOD i f 'MOID' is some
'union of MOODSETYI MOOD MOODSET12 mode'.

b) (T h e r e are no values whose mode begins with 'flexible'. There exist
flexible names whose modes begin with 'reference to flexible*, e.g., a l in
flex [1: n.) real a l; He re a l, whose mode is *reference to flexible row of
real', refers to a multiple value whose mode is ' row o f real* (see also
2.1.3.4.f). In general, there exist values only for those modes obtainable by
"deflexing".)

The mode 'MOID1' "deflexes" t o the mode 'MOID2' i f the predicate
'where MOID1 deflexes to MOID2' holds (4.7.1.a,b,c).

(The deflexing process obtains 'MOID2' b y removing a l l 'flexible•s
contained at positions in 'MOIDI' where they are not also contained in any
'REF to MOID3'. Thus

'structured with flexible row of character field letter a mode',
which is not the mode of any value, deflexes to

'structured with row of character field letter a mode'
which is therefore the mode of a value referable to by a flexible name of
mode

'reference to structured with flexible row of character
field letter a mode'.

This mode is already the mode o f a name and therefore i t cannot be
deflexed any further.)

46 v a n Wijngaarden, et al.

c) (T h e r e a r e n o n a me s wh o s e m o d e b e g i n s w i t h * t rans ient
reference to'.

The y ield of a transient-reference-to-MODE-FORM is a "t rans ient name"
of mode 'reference to MODE' , but , t here being no t ransient-reference-to-
MODE-declarators i n t h e language (4.6.1), t h e s y n t ax ens ures t h a t
transient names can never be assigned, ascribed or y ielded by the calling
of a rout ine.

E.g., xx := a l [i] is not an assignation because xx is not a reference-to-
transient-reference-to-real-ident ifier. Trans ient names or iginat e f r o m t he
slicing, mult iple selection or rowing of a flex ible name.)

d) A value of mode M
-
1 i s
" a c c e p t a b l
e
t o "
a
m o d
e
M 2
i f

(i) M l is the same as M2, or
(ii) M2 is united (a) f rom Mi (thus the mode specified by union (real, Int)

accepts values whose mode is that specified by either real or inn, or
(iii) M2 deflexes (b) to M1 (thus the mode *flexible row of real' (a mode of

which t here a re no values) accepts values such as t he y ie ld o f t he
actual-declarer flex [1 : n] real which is a value of mode ' row of real'),
or

(iv) M
-
1
i s
s
o
m
e
' r
e
f
e
r
e
n
c
e
t
o
M
O
D
E
'
a
n
d
M
2
i
s
'
t
r
a
n
s
i
e
n
t
r
e
f
e
r
e
n
c
e
t
o

MODE' (thus the mode 'transient reference t o r eal ' accepts values
(such as the y ield of al [i]) whose mode is 'reference to rear).

(See 2.1.4.1.b for the acceptability of the y ield of a scene.)

2.1.4. Actions

2.1.4.1. Elaborat ion

(Suit the action to the word, the word to
the action.
Hamlet, W i l l i a m Shakespeare.)

a) T h e "elaboration" o f certain scenes (those whose constructs a re
designated b y certain paranotions) i s specified i n the sections o f th is
Report headed "Semantics", wh ich describe the sequence o f "actions"
which are to be carried out during the elaboration of each such scene.

(Examples of actions which may be specified are:
• the causing to hold of relationships,
• the creation of new names, and
• the elaboration of other scenes.)

The "meaning" of a scene is the effect of the actions carried out during
its elaboration. Any of these actions or any combination thereof may be,
replaced by any action or combination which causes the same effect.
b) T h e elaboration of a scene S may "yield" a value. I f the construct

of S is a MOID-NOTION, then that value is, unless otherwise specified, (of
such a mode that it is) acceptable to (2.1.3.6.d) 'MOID'.

(This rule makes it possible, in the semantics, to discuss yields without
explicitly prescribing their modes.)

c) I f the elaboration o f some construct A in some environ E is not
otherwise specified in the semantics of this Report, and i f B is the only
direct descendent o f A which needs elaboration (see below), then the
elaboration of A in E consists of the elaboration of B in E and the yield, i f
any, of A is the yield, i f any, of B (; th is automatic elaboration is termed
the "pre-elaboration" of A in E).

A construct needs no elaboration i f it is invisible (1.1.3.2.h), i f i t is a
symbol (9.1.1.h), o r i f its elaboration is not otherwise specified in the
semantics o f th is Report and none o f i t s d ire ct descendents needs
elaboration.

(Thus the elaboration o f the reference-to-real-closed-clause (3.1.1.a)
(x := 3.14) i s (a n d yie lds th e same value as) the elaboration o f its
constituent reference-to-real-serial-clause (3.2.1.a) x 3 . 1 4 .)

2.1.4.2. Serial and collateral actions

ALGOL 68 Revised Report. 4 7

a) A n action may be "inseparable", "serial" o r "collateral". A serial or
collateral action consists of one or more other actions, termed its "direct
actions". An inseparable action does not consist o f other actions (; wha t
actions are inseparable is left undefined by this Report).

b) A "descendent action" of another action B is a direct action either
of B, or of a descendent action of B.
c) A n action A is the "direct parent" o f an action B i f B is a direct

action (a) of A.
d) T h e direct actions o f a seria l action S take place one after the

other; i.e., the completion (2.1.4.3.c,d) of a direct action of S is followed by
the initiation (2.1.4.3.b,c) o f the next d irect action, i f any, o f S. (The
elaboration o f a scene, being in general composed o f a sequence o f
actions, is a serial action.)

e) T h e direct actions of a collateral action are merged in time; i.e .,
one o f i t s descendent inseparable actions which, a t tha t moment, i s
"active" (2.1.4.3.a) is chosen and carried out, upon the completion (2.1.4.3.c)
of which another such action is chosen, and so on (until all are completed).

If two actions (collateral wit h each other) have been sa id t o b e
"incompatible with" (10.2.4) each other, then (they shall not be merged;
i.e.,) no descendent inseparable action of the one shall (then the one (if it
is already inseparable) shall not) be chosen if, a t that moment, the other
is active and one o r more, bu t not a ll, o f i t s descendent inseparable
actions have already been completed; otherwise, the method of choice is
left undefined in this Report.

f) I f one or more scenes are to be "elaborated collaterally", then this
elaboration is the collateral action consisting o f the (merged) elaboration
of those scenes.

48 v a n Wijngaarden, et al.

2.1.4.3. Init iat ion, complet ion and terminat ion

a) A n act ion is eit her "act ive" or "inact ive".
An act ion becomes ac t ive when i t is "init iat ed" (b,c) o r "res umed" (g)

and i t becomes inac t ive when i t is "completed" (c ,d), "t erminat ed" t el ,
"halted" (f) or "interrupted" (h).

b) W h e n a s er ia l ac t ion i s "ini t iat ed", t hen t he fi rs t o f i t s d i rec t
actions is init iated. When a collateral ac t ion is "init iat ed", t hen a l l o f it s
direct actions are init iated.

c) W h e n an inseparable ac t ion is "init iat ed", i t ma y then be c arr ied
out (see 2.1.4.2.e), whereupon it is "completed".

d) A serial act ion is c omplet ed" when it s las t direc t ac t ion has been
completed. A collateral act ion is "completed" when al l of its direc t act ions
have been completed.

e) W h e n an ac t ion A (whet her s erial o r collateral) i s "t erminat ed'
then a l l of its direc t act ions (and hence a l l o f it s descendent act ions) are
terminated (whereupon anot her ac t ion m a y b e in i t ia t ed i n i t s place).
(Terminat ion of an ac t ion is brought about by the elaborat ion of a j u mp
(5.4.4.2) .)

f) W h e n an act ion is "halted", then al l of its act ive direc t actions (and
hence al l of it s ac t ive descendent actions) are halted. (An ac t ion may be
halted dur ing a "c a l l ing" o f t he rout ine y ielded b y t he operat or dow
(10.2.4.d), whereupon i t may subsequently be resumed during a call ing of
the rout ine y ielded by the operator up (10.2.4.01

If, at any t ime, some act ion is halted and i t is not descended f rom a
"process" o f a "paral le l ac t ion" (10.2.4) o f whose ot her process(es) t here
st ill ex i s t descendent a c t i v e ins eparable ac t ions , t h e n t h e f u r t h e r
elaborat ion is undefined. (Thus i t is not defined t hat the elaborat ion of the
collateral-clause in

begin soma sergei l evel 0;
(par begin (down sergei; print (pokrousky)), skip end,

(read (pokrovsky); up sergei))
end

wil l ever be completed.)

g) W h e n a n ac t ion A is "res umed", t hen those o f i t s di rec t ac t ions
which had been halted, consequent upon the halt ing of A are resumed.

h) A n ac t ion may be "int errupted" by an event (e.g., "ov erfl ow) not
specified by the semantics of this Report but caused by the computer j i l t s

ALGOL 68 Revised Report 4 9

limitat ions (2.2.2,b) do not permit sat isfactory elaborat ion. When an act ion
is interrupted, then al l of its direc t actions, and possibly it s direc t parent
also, a r e int errupted. (Whet her, a f t e r a n int errupt ion, t h a t ac t ion i s
resumed, some other act ion is init iated or the elaborat ion of the program
ends, is lef t undefined by this Report .)

(The effect of the definit ions given above is as follows:
During t he elaborat ion o f a p rogram (2.2.2.a) t h e elaborat ion o f i t s

closed-clause in the empty pr imal env iron is act ive. At any given moment .
the elaborat ion of one scene may have called f or the elaborat ion of some
other scene o r o f several o t her scenes c ollat eral ly . I f a n d wh e n t h e
elaborat ion of t hat ot her scene o r scenes has been completed, t he nex t
step of the elaborat ion of the original scene is taken, and so on unt i l it , in
turn, is completed.

It wi l l be seen that al l this is analogous to the calling of one subrout ine
by another: upon the complet ion of the execut ion of the called subrout ine.
the execut ion o f t he c al l ing subrout ine is cont inued: t h e semant ic rules
given i n t h i s Repo r t f o r t h e elaborat ion o f t h e v ar ious paranot ions
correspond to the texts of the subrout ines: t he semant ic rules may even.
in s uit able c ircumstances, inv ok e themselves rec urs iv ely (b u t wi t h a
dif ferent construct or in a dif ferent env iron on each occasion).

Thus there exists, at each moment , a t ree of ac t ive act ions descended
(2.1.4.2.b) f rom the elaborat ion of the program.)

2.1.5. Abbreviat ions

(In order to avoid some long and t urgid phrases whic h would otherwise
have been necessary i n t he Semant ics . c er t a in abbrev iat ions a r e us ed
freely throughout the text of this Report .)

a) T h e phrase "the A of B", where A and B are paranot ions, stands f or
"the A which is a direc t descendent (1.1.3.2.1) of B".

(This permit s the abbrev iat ion of "direc t descendent of " t o "of " o r "its ".
e.g., in the assignation (5.2.1.1.a) i : = / , i is "i t s " dest inat ion (o r i is the.
or a, dest inat ion "of " the assignation i /) , whereas i is not a dest inat ion
of the serial-clause i i ; j : = 2 (although i t is a const ituent dest inat ion
(1.1.4.2.d) of it).)

b) T h e phrase "C in E", where C is a construct and E is an env iron,
stands f o r "t he scene composed (2.1.1.1.d) o f C and E". I t i s somet imes
even further shortened to jus t "C" when it is c lear which ellVirOn is meant.

(Since t he process o f elaborat ion (2.1.4.1.a) m a y b e appl ied only I ()
scenes, this abbrev iat ion appears most f requent ly in forms such as .*:\ loop-
clause C, in an env iron El, is elaborated " (3.5.2) and A n assignat ion A
is elaborated " (5.2.1.2.a, wh e r e i t i s t h e elaborat ion o f A i n a n y
appropriate environ that is being discussed).)

50 v a n Wijngaarden, et al.

c) T h e phrase "t he y ield of S", where S is a scene whose elaborat ion
is not explic it ly prescribed, stands f or t h e y ield obtained by init iat ing the
elaborat ion of S and await ing its complet ion".

(Thus the sentence (3.2.2.c):
"W is the y ield of that unit : "

(which also makes use of t he abbrev iat ion defined i n b above) i s t o be
interpreted as meaning:

"W i s t he y ie ld obtained upon t he c omplet ion o f t he elaborat ion,
hereby init iated, o f t he scene composed o f t hat un i t and t he
environ under discussion:" .1

d) T h e phrase "the y ields of S
i
, S
n
" , w h e r e
5 1
. S
n
a r e
s c e n
e s

whose elaborat ion i s n o t ex pl ic i t ly presc ribed, s t ands f o r " t h e y ie lds
obtained by init iat ing the collateral elaborat ion (2.I.4.2.f) of S
i
, S
n a n d

await ing its complet ion (which implies the complet ion of the elaborat ion of
them all)".

If some or al l of S1' ' S a r e described as being, i n some env iron. n
certain const ituents o f s ome cons t ruc t , t h e n t h e i r y ie lds a r e t o b e
considered a s b e i n g t ak en i n t h e t ex t ua l o r d e r (1.1.3.2. i) o f t hos e
constituents wit hin that construct.

(Thus the sentence (3.3.2.b):
"letV V b e the (collateral) y ields of the const ituent units of1 " m

C; "
is to be interpreted as meaning:

"letV V b e t h e res pec t iv e y ie lds obt a ined u p o n t h e1 " m
complet ion of the collateral elaborat ion, hereby init iated, o f the
scenes composed of the constituent units of C, considered in t heir
textual order, t ogether wi t h t he env iron i n whic h C was being
elaborated:" .)

e) T h e phrase " i f A is B", where A and B are hypernot ions, stands f or
"if A is equivalent (2.1.1.2.a) to B".

(Thus, in "Case C: *CHOICE* is some *choice us ing UNI TE D
— (3 . 4 . 2 . b) ,it mat ters not whether 'CHOICE' happens to begin wit h 'choice using union

o f or with some 'choice using MU definit ion of union of '.)

f) T h e phrase "t he mode is A", where A is a hypernot ion, stands f or
"the mode (is a class of •MOID's which) includes A".

(This permit s such shortened f orms as "t he mode is some 's t ruc tured
with FIELDS mo d e
—
, " t h e
m o d e
b e g i n
s
w i t
h
' u n
i o n
o f
" ,
a
n
d
"
t
h
e
m
o
d
e

envelops a 'FI ELD": i n general, a mode may be specified by quot ing jus t
one of the 'MOID's included in it .)

g) T h e phrase "t he value selected (generated) b y the field-selector F"
stands for "i f F is a field-selec tor-with-TM; (4.8.1.f), then the value selected
(2.1.3.3.a,e, 2.I.3.4.k) (generated (2.1.3.4.1)) by that ' TAG".

2.2. The program

ALGOL 68 Revised Repor t 5 1

2.2.1. Syntax

a) p r o g r a m : s t rong void new closed clause(31a).
(See also 10.1.)
2.2.2. Semantics

("I can explain all t he poems that ever were invented -
and a good many that haven't been invented just yet."
Through the Looking-glass, L e w i s Carroll.)

a) T h e elaborat ion of a program is t he elaborat ion of its s t rong-void-
new-closed-clause i n a n e mp t y env i ron (2.1.1.1.c) t e r me d t h e " p r i ma l
environ".

(Although t he purpose o f t his Report i s t o define t he meaning o f a
part icular-program 110.1.1.g), t ha t meaning i s es tablished on ly b y fi rs t
defining t he meaning o f a program i n whic h t hat part ic ular-program is
embedded (10.I.2).)

(In t h is Report , t h e s y nt ax s ay s wh i c h sequences o f s y mbols a r e
terminal product ions of 'program* , and t he semant ics whic h act ions a re
performed by the computer when elaborat ing a program. Both syntax and
semantics are recurs ive. Though c ert ain sequences o f symbols ma y be
terminal produc t ions o f ' p rog ram i n mo r e t h a n o n e w a y (s ee a ls o
I.1.3.2.f), this syntactic ambiguit y does not lead to a semant ic ambiguity .)

b) I n ALGOL 68, a spec ific syntax f o r constructs is prov ided which,
together wit h its recurs ive definit ion, mak es i t possible to describe and to
distinguish bet ween a rb i t r a r i l y l a r g e produc t ion t rees , t o dis t inguis h
between arbi t rar i ly many dif ferent values of a given mode (except certain
modes like 'boolean' and 'vo id ') and to distinguish between arb it ra rily
many modes, whic h al lows arb i t rar i ly many objec ts t o ex is t wi t h in t he
computer and whic h al lows t he elaborat ion o f a p rogram t o involve an
arbit rari ly large, no t necessarily finit e, n u mb e r o f act ions. Th i s i s no t
meant to imp ly t hat t he notat ion o f t he objects i n t he c omput er is t hat
used in this Report nor that i t has the same possibilit ies. I t is not assumed
that t hes e t wo notat ions a r e t h e s a me n o r ev en t h a t a one-to-one
correspondence exists between them; i n fact, the set of dif ferent notat ions
of objects of a given category may be finite. I t is not assumed t hat t he
computer can handle arbit rary amounts of presented informat ion. I t is not
assumed t hat the speed of the computer is suffic ient t o elaborate a given
program wit hin a prescribed lapse of t ime, nor that the number of objects
and relat ionships that can be established is sufficient to elaborate it at all.

c) A model of the hypothet ical computer, us ing a physical machine, is
said to be an "implementat ion" of ALGOL 68 if i t does not res t ric t the use
of t h e l anguage i n o t h e r res pec t s t h a n t h o s e men t ioned abov e .
Furthermore, i f a language A is defined whos e part ic ular-programs are

52 v a n wijngaarden, et al.

also part icular-programs o f a language B, and i f each such part ic ular-
program f o r whic h a meaning i s defi ned i n A has t he s ame defi ned
meaning i n B, t hen A i s s a id t o b e a "sublanguage" o f B , a n d B a
"superlanguage" of A.

(Thus a sublanguage of ALGOL 68 might be defined by omit t ing some
part of the syntax, by omit t ing some part of the standard-prelude, and/ or
by leav ing undefined something whic h is defined i n this Report , so as t o
enable more effic ient solut ions to certain classes o f problem o r to permi t
implementat ion on smaller machines.

Likewise, a superlanguage of ALGOL 68 might be defined by addit ions
to the syntax, semant ics or standard-prelude, so as t o improv e effic iency
(by allowing the user to prov ide addit ional inf ormat ion) o r t o permi t the
solution of problems not readily amenable to ALGOL 68.)

A model is said to be an implementat ion of a sublanguage i f it does not
restrict the use of the sublanguage in other respects than those ment ioned
above.

(See 9.3.c for the t erm "implementat ion of the reference language'.)
(A sequence of symbols which is not a particular-program but can be

turned into one by delet ing or insert ing a certain number of symbols and
not a smaller number could be regarded as a part icular-program wit h that
number of syntactical errors . Any part icular-program that can be obtained
by delet ing o r ins ert ing t ha t n u mb e r o f s y mbols m a y b e t e r me d a
"possibly intended" particular-program. Whether a particular-program or
one of the possibly intended part icular-programs has the ef fect it s author
in fact intended it to have is a mat t er which falls outside this Report .)

(In an implementat ion, the part icular-program may be "compiled", i.e. ,
translated into an "objec t program" i n t he code of the phys ical machine.
Under certain circumstances, i t may be advantageous to compile parts of
the particular-program independently, e.g. , par ts which ar e common t o
several part icular-programs . I f such a p a r t contains applied-indicators
which iden t i f y defining-indicators n o t c ont ained i n t h a t p a r t , t h e n
compilat ion into an effic ient object program may be assured by preceding
the pa r t b y a sequence o f declarations contai ni ng those defini ng-
indicators.)

(The definit ion o f specific sublanguages and also t he spec ificat ion o f
actions not definable by any program (e.g., compilat ion or init iat ion of the
elaborat ion) i s n o t g i v en i n t h i s Report . See, howev er, 9 . 2 f o r t h e
suggested use of pragmats to control such actions.)

PART I I

Fundamental Constructions

(This part presents the essential s t ructure of programs:
• t he general rules for construct ing them:

• t he ways of defining indicators and t heir propert ies , a t each new level
of construction:
• t he constructs available for programming primit iv e actions.)

3. Clauses

(Clauses prov ide
• a hierarchical s t ructure for programs,
• t he int roduct ion of new ranges of definit ions,
• s er ia l or collateral composit ion, parallelism, choices and loops.)

3.0.1. Syntax

a) * p h r a s e : SOME unit(32d) ; NEST declarat ion of DECS(41a).
b) * S O R T MODE expression : SORT MODE NEST UNIT(5A).
c) * s t a t e m e n t : s t rong void NEST UNIT(5A).
d) * M O D constant : MO W NEST DEFIED identifier with 1'AG(48a,b)

MOID NEST denoter(80a).
e) * M O D E variable

reference to MODE NEST DEFIED identifier with TAG(48a,b).
f) * N E S T range : SOID NEST serial clause defining LAYER(32a)

SOID NEST chooser CHOICE STYLE clause(34b)
SOID NEST case part of choice using UNITED(34i)
NEST STYLE repeating part with DEC(35e)
NEST STYLE while do part(350
PROCEDURE NEST routine text(541a,b).

(NEST-ranges arise in the definit ion of "ident ificat ion" (7.2.2.1)).)

3.0.2. Semantics

ALGOL 68 Revised Report 5 3

A "nest" is a *NEST'. The nest "of " a construct is the 'NEST' enveloped
by t h e or ig ina l o f t ha t cons t ruc t , b u t n o t b y a n y ' defi ning L A Y E R'
contained in that original.

(The nest of a construct carries a record of all the declarat ions f orming
the env ironment in which that construct is to be interpreted.

Those constructs whic h a re contained i n a range R, bu t not i n any
smaller range contained wit hin R, may be said to comprise a "reach". A l l
constructs i n a giv en reac h hav e t he s ame nest , wh i c h i s t ha t o f t he
immediately surrounding reach wi t h t he addit ion o f one ex t ra 'LAYER' .
The syntax ensures (3.2.1.b, 3 . 5 . 1 . e , 5.4.1.1.b) t ha t each 'PROP'
(4.8.1.E) o r "propert y " i n t he ex t ra ' LAYER' i s mat c hed b y a defining-
indicator (4.8.1.a) contained in a definit ion in that reach.)

3.1. Closed clauses
(Closed-clauses are usually used t o construct unit s f r om serial-c lauses

as, e.g.,
(real x; read (x); x) in
(real x; read (x); x) + 3.14.)

54 v a n Wijngaarden, et at

3.1.1. Syntax

A) S O I D : : SORT MOW.
B) P A C K : : STYLE pack.

a) S O I D NEST closed clause(22a,5D,551a,A341h,A349a)
SOID NEST serial clause defining LAI ER(32a) PACK.

(LAYER : : new DECSETY LABSETY.)

(Example:

a) begin x:=1; 3/:-=2 end)

(The y ield of a closed-clause is t hat of it s const ituent serial-clause, by
way of pre-elaborat ion (2.1.4.1.c).)

3.2. Serial clauses

(The purposes of serial-clauses are
• t he construction of new ranges of definit ions, and
• t he serial composit ion of actions.

A serial-c lause consists o f a poss ibly empt y sequence o f unlabelled
phrases, the last of which, i f any, is a declarat ion, followed by a sequence
of possibly labelled units. The phrases and the units are separated by go-
on-tokens, viz., semicolons. Some of the units may instead be separated by
completers, viz., exits; af t er a completer, the next unit mus t be labelled so
that i t can be reached. The value of the fi nal unit , o r of a unit preceding
an exit, determines the value of the serial-clause.

For example, t he f ollowing serial-c lause y ields t rue i f and only i f t he
vector a contains the integer 8:

int n; read (n);
[1: n] int a; read (a);
for i to n do if a [i] 8 then goto success II od;
false exit
success: true .)

3.2.1. Syntax

a) S O I D NEST serial clause defining new PROPSETY(31a,34f,1,35h)
SOID NEST new PROPSETY series with PROPSETY(b).

(Here PROPSETY DE CS E TY LABSETY.)
b) S O I D NEST series with PROPSETY(a,b,34c)

strong void NEST unit(d), go on(94f) token,
SOID NEST series wit h PROPSETY(b)

where (PROPSETY) is (DECS DECSETY LABSETY),
NEST declarat ion of DECS(41a), go on(94f) token,
SOID NEST series wit h DECSETY LABSETY(b)

where (PROPSETY) is (LAB LABSETY),
NEST label definit ion of LAB(c),
SOID NEST series with LABSETY(b)

ALGOL 68 Revised Repor t 5 5

where (PROPSETY) is (LAB LABSETY)
and SOW balances SOID1 and SOID2(e), SOID1 NEST unit(d),

completion(94f) token, NEST label definit ion of LAB(c),
SOID2 NEST series wit h LABSETY(b)

where (PROPSETY) is (EMPTY),
SOLD NEST unit(d).

c) N E S T label definit ion of label TAG(bl
label NEST defining ident ifier wit h TAG(48a), label(94f) token.

d) S O M E u n i t (b , 3 3 b , g , 3 4 i , 3 5 d , 4 6 m
9
n
9
5 2 1 c , 5 3 2 e , 5 4 1 a , b , 5 4 3 c ,

A34Ab,c,d) : SOME UNIT(5A,-).

e) W H E T H E R SORT MOW balances
SORT! MOI DI and SORT2 MOID2(b,33b,34d,h)

WHETHER SORT balances SORT! and SORT2(f)
and MOLD balances MOI DI and MOID2(g).

f) W H E T H E R SORT balances SORT! and SORT2(e,522a)
where (SORT!) is (strong), WHETHER (SORT2) is (SORT)
where (SORT2) is (strong), WHETHER (SORT!) is (SORT).

g) W H E T H E R MOID balances MOID1 and MOID2(e)
where (MOID1) is (MOID2), WHETHER (MOID) is (MOI DI)
where (MOID1) is (t ransient MOID2),

WHETHER (MOW) is (MOI DI)
where (MOID2) is (t ransient MOID1),

WHETHER (MOID) is (MOID2).

h) * S O L D unitary clause : SOID NEST unit(d).
i) * e s t a b l i s h i n g clause

SOID NEST serial clause defining LAYER(32a)
MODE NEST enquiry clause defining LAYER(34c).

(Examples:

b) r e a d (x1); real s 0 ;
sum: for i to n do (xl [i] > 0 s +:= xl n o n p o s) od exit
nonpos: print (s) •

real s 0 ;
sum: tor i to n do (xl [i] > 01 s x l [i l l nonpos) od exit
nonpos: print (s) •

sum: for i to n do (xl [i] 0 1 s x l [i] I nonpos)oci exit
nonpos: print (s) •

for i to n do (xl [i] s x l [i] nonpos) od exit
nonpos: print (s) •

print (s)
c) sum: d) pr int (s))

(Often, a series mus t be "balanced" (3.2.1.e). Fo r remark s concerning
balancing, see 3.4.1.)

56 v a n Wijngaarden, et al.

3.2.2. Semantics

a) T h e yield of a serial-clause, in an environ E, is the yie ld o f the
elaboration of its series, or of any series elaborated " in its place" (5.4.4.2),
in the environ "established" (b) around E according to that serial-clause; i t
is required that the yield be not newer in scope than E.
b) T h e environ E "established"

• upon an environ E l, possibly not specified, (which determines it s
scope,)
• around an environ E2 (which determines its composition),
• according to a NOTION-defining-new-PROPSETV C
9 p o s s i b l y a b s e n t ,(which prescribes its locale,)
• with values V1 " 'V p o ss ib ly absent, (which are possibly to ben
ascribed,)

is determined as follows:
• i f El is not specified, then let El be E2;
• E is newer in scope than E l and is composed o f E2 and a new locale
corresponding to 'PROPSETV, if C is present, and to 'EMPTY otherwise;
Case A: C is an establishing-clause:

For each constituent mode-definition M, i f any, of C,
• the scene composed of
(i) the actual-declarer of M, and
(ii) the environ necessary for (7.2.2.c) that actual-declarer in E,
is ascribed in E to the mode-indication of M:

For each constituent label-definition L, if any, of C,
• the scene composed of
(i) the series of which L is a direct descendent, and
(ii) the environ E,
is ascribed in E to the label-identifier of L;

If each 'PROP' enveloped by 'PROPSETY' is some 'DYADIC TAD' o r
'label TAG',

then E is said to be "nonlocal" (see 5.2.3.2.13);
Case B: C is a declarative, a for-part or a specification:

For i 1 , , n, where n i s th e number o f *DEC's enveloped b y
•PROPSETV,
• V. i s ascribed (4.8.2.a) i n E t o the i-t h constituent defining-
identifier, i f any, of C and, otherwise (in the case of an invisible for-
part), to an integral-defining-indicator-with-letter-aleph;

If C is a for-part or a specification,
then E is nonlocal.

(Other cases, i.e., when C is absent:
• E is local (see 5.2.3.2.13), but not further defined.)

c) T h e yield W of a series C is determined as follows:
If C contains a direct descendent unit which is not followed by a go-on-

token,

ALGOL 68 Revised Repor t 5 7

then
• W is the y ield of that unit :

otherwise,
• t he declarat ion or the unit , i f any, of C is elaborated;
• W is the y ield of the series of C.

(See also 5.4.4.2.Case A.)

3.3. Collateral and parallel clauses
(Collateral-clauses a l low an arb i t ra ry merg ing o f s t reams o f act ions.

Parallel-clauses p rov ide , moreov e r , l e v e l s o f c oord inat ion f o r t h e
synchronization (10.2.4) of that merging.

A collateral- or parallel-c lause consists of a sequence of units separated
by and-also-symbols (v iz . , ", ") , and is enclosed b y parentheses o r by a
begin-end pair: a parallel-c lause begins moreover wit h par.

Collateral-clauses, b u t not parallel-c lauses, m a y y ie ld s towed v alues
composed f rom the yields of the constituent units.
Examples of collateral-clauses y ielding stowed values:

[I int q = (1, 4, 9, 16, 25);
struct (int price, string category) bike := (150, "sport").

Example of a parallel-c lause which synchronizes eat ing and speaking:
proc void eat, speak; sema mouth= level 1;
par begin

do
down mouth;
eat;
up mouth

od,
do

down mouth;
speak;
up mouth

od
end .)

3.3.1. Syntax
a) s t r o n g void NEST collateral clause(5D,551a)

strong void NEST joined port rait (b) PACK.
b) S O I D NEST joined portrait(a,b,c,d,34g)

where SOID balances SOW! and SOID2(32e),
SOW! NEST unit(32d), and also(94f) token,
SOID2 NEST unit(32d)

or alternat ively SOID2 NEST joined port rait (b).
c) s t r o n g void NEST parallel clause(5D,551a)

paralle1(94f) token, strong void NEST joined port rait (b) PACK.
d) s t r o n g ROWS of MODE NEST collateral clauset5D,551a)

where (ROWS) is (row),
strong MODE NEST joined port rait (b) PACK ;

58 v a n Wijngaarden, ea t

e)

f)

g)

h)

i)

k)

where (ROWS) is (row ROWS!),
strong ROWS! of MODE NEST joined portrait(b) PACK

EMPTY PACK.
strong structured with

FIELDS FIELD mode NEST collateral clause(5D,551a)
NEST FIELDS FIELD portrait(f) PACK.

NEST FIELDS FIELD portrait(e,f)
NEST FIELDS portralt(f,g), and also(941) token,

NEST FIELD portralt(g).
(FIELD :: MODE field TAG.)
NEST MODE field TAG portrait(f) : strong MODE NEST unit(32d).

*structure display : strong structured with
FIELDS FIELD mode NEST collateral clausetel.

*row display : strong ROWS of MODE NEST collateral clause(d).
*display : strong STOWED NEST collateral clause(d,e).
*vacuum : EMPTY PACK.

(Examples:
a) (x . /
5 y
2)
b
)
o
c
:
-
=
1
,
y
:
=
2

c) par (taskl,task2) d) (1,2)(i n [] real (1,2))
e) (1,2) (in comp! (1,2)) f) 1 , 2
g) 1)

(Structure-displays m us t contai n a t l east t w o FIELD-portrai ts, for ,
otherwise, in the reach of

mode m = afflict (ref m m); m nobuo, yoneda;,
the assignation nobuo (y o n e d a) would be syntactically ambiguous and
could produce different effects; however, m o f nobuo y o n e d a i s
unambiguous.

Row-displays contain zero, two o r more constituent units. I t is also
possible to present a single value as a multiple value, e.g., : i n t v :=
123, but this uses a coercion known as rowing (6.6) .1

3.3.2. Semantics

a) T h e elaboration of a void-collateral-clause or void-parallel-clause
consists o f the collateral elaboration o f its constituent units and yields
empty.
b) T h e yie ld W o f a STOWED-collateral-clause C is determined as

follows:
If the direct descendent of C is a vacuum,
then (*STOWED'

descriptor of
irrelevant);

otherwise,
• le t V 1

'
'

is some *ROWS of MODE* and) each bound pa ir in the
W is (1, 0) (and it has one ghost element whose value is

Vm be the (collateral) yields of the constituent units of C;

ALGOL 68 Revised Report 5 9

Case A: *STOWED* is some 's t ructured wit h FIELDS mode':

• t he fields of W, taken in order, are V
i
, , V
m
:

Case B: 'STOWED' is some *row of MODEr:
• W is composed of
(i) a descriptor ((1,m)),

(ii) V
i
,
,
V
m
:

For i 1 , , m,
• t he element selected by the index (I) i n W is V.;1

Case C: 'STOWED' is some ' row ROWS of MODE2':

• i t is required that the descriptors of , m be ident ical:

• l e t the descriptor of (say) V
i b e ((1
1
, ,
(I
n
, u
n
)) ;

• W is composed of

(i) a descriptor ((1, m), (1
1
, , (I
n
, u
n
)) ;

(ii) t he elements of V
i
, V

, m
;For i --,- 1, , m,

• t he element selected by an index (i, ' " ' i) i n W is that1 n

selected by (i
v , i
n
)
i n
V
i
.

(Note that in [I char block ••= ("abc", "del"), the descriptor of the three-
dimensional y ield W wi l l be ((1, 2), (1, 1), (1, 3)), s ince t he unit s "abc "
and "del" are fi rs t rowed (6.6), so that V
i a n d V
2 h a v e
d e s c r i p t o r s
((1 ,
1) ,

(1, 3)).)

3.4. Choice clauses
(Choice-clauses enable a dy namic choice t o be made among dif f erent

paths in a computat ion. The choice among the alternat ives (the in-CHOICE-
and the out-CHOICE-clause) i s determined by the success o r f a i lure of a
test on a t ruth value, on an integer or on a mode. The value under test is
computed by an enquiry-clause before the choice is made.

A choice-using-boolean-clause (or condit ional-clause) is of the f orm
(x >0 1 x 1 0) i n the "brief " style, or
If x 0 then x else 0 fl in the "bold" style;

> 0 is the enquiry-clause, then x is the in-CHOICE-clause and else 0 is the
out-CHOICE-clause; a l l t h ree ma y hav e t he syntac t ical s t ruc t ure o f a
series, because al l choice-clauses are wel l closed. A choice-using-hoolean-
clause may also be reduced to

(x < ° I x : . --x) or
If x < 0 then x - x fl;

the omit ted out-CHOICE-clause is then understood to be an else skip. On the
other hand, the choice can be reiterated by writ ing

(x >01 /
If x 0 then x ellt x < 0 then _1 - x else 1 II,

60 v a n Wijngaarden, et al.

and so on; t his is to be understood as
(x >0 1 / - 1 - x l (x <0 1 / - x l /)) .

CASE-clauses, whic h define choices depending on a n int eger o r on a
mode, are dif ferent in t hat the in-CASE-clause is f urt her decomposed into
units. The general pat tern is

I - - - - - -) or
case - - - in , , - - - out e s a c .

The choice may also be reiterated by use of Ouse.

In a choice-using-integral-clause (o r case-clause), t he parts are s imply
units and there must be at least t wo of them; t he choice among the units
follows their textual ordering.
Example:

proc void work, relax, enjoy;
case int day; read (day); day
In work, work, work, work, work, relax, enjoy
out print ((day, "is not in the week"))
esac.

In a choice-using-UNITED-clause (o r conformity -c lause), wh i c h tes ts
modes, each case-part-of-CHOICE is of the f o rm (declarer ident ifier): u n i t
or (declarer) : uni t . The mode specified by the dec larer is compared wi t h
the mode of t he v alue under test; t he ident ifier, i f present, i s available
inside the unit t o access t hat value, wi t h t he f u l l securit y o f syntact ical
mode checking. The 'UNITED mode provides the required f reedom f or the
mode of the value under test; moreover, t hat 'UNITED' mode mus t contain
the mode of each specificat ion for, otherwise, t he corresponding case-part-
of-CHOICE could never be chosen.
Example:

mode boy =- struct (int age, real weight),
, mode girl str uct ant age, real beauty);
proc union (boy, girl) newborn;
case newborn in

(boy john): print (weight of john),
(girl mary): print (beauty of mary)

esac.)

(The flowers that bloom in the spring,
Tra la,
Have nothing to do with the case.
Mikado, W . S . Gilbert.)

(The hierarchy of ranges in condit ional-clauses is illus t rated by

i f
then e l s e

fi

ALGOL 68 Revised Repor t 6 1

and s imilar ly f or the other k inds of choice. Thus the nest and the env iron
of the enquiry-clause remain v alid over the in-CHOICE-clause and the out-
CHOICE-clause. However, no t rans fer back f r o m t he in - o r out-CHOICE-
clause into the enquiry-c lause is possible, s ince t he lat t er can contain no
label-definit ions (except wit hin a closed-clause contained wit hin it) .)

3.4.1. Syntax
A) C H O I C E : : choice using boolean ; CASE.
B) C A S E : : choice using integral ; choice using UNITED.

a) S O I D NEST1 CHOICE clause(5D,551a,A34.1h,A349a)
CHOICE STYLE start(91a,-),

SOID NEST! chooser CHOICE STYLE clause(b),
CHOICE STYLE finish(91e,-).

b) S O I D NEST! chooser choice using MODE STYLE clause(a,l)
MODE NEST! enquiry clause defining LAYER2(c,-),

SOID NEST! LAYER2 alternate choice using MODE
STYLE clause(d).

c) M O D E NEST1 enquiry clause defining new DECSETY2(b,35g)
meek MODE NEST! new DECSETY2 series wit h DECSETY2(32b).

d) S O I D NEST2 alternate CHOICE STYLE clause(b)
SOID NEST2 in CHOICE STYLE clause(e)
where SOID balances SOID1 and SOID2(32e),

SOID1 NEST2 in CHOICE STYLE clause(e),
S0I92 NEST2 out CHOICE STYLE clause(1).

e) S O I D NEST2 in CHOICE STYLE clause(d)
CHOICE STYLE in(91b,-), SOLD NEST2 in part of CHOICE(f,g,h).

f) S O I D NEST2 in part of choice using boolean(e)
SOID NEST2 serial clause defining LAYER3(32a).

g) S O I D NEST2 in part of choice using integral(e)
SOID NEST2 joined portrait(33b).

h) S O I D NEST2 in part of choice using UNITED(e,h)
SOID NEST2 case part of choice using UNITED(i)
where SOID balances SOID1 and SOID2(32e),

SOID I NEST2 case part of choice using UNITED(i),
and also(941) token,
S0ID2 NEST2 in part of choice using UNITED(h).

i) S O I D NEST2 case part of choice using UNITED(h)
MOID NEST2 LAYER3 specificat ion defining LAYER3(j,k,-),

where MOID unites to UNITED(64b),
SOID NEST2 LAYER3 unit(32d).

(Here LAYER3 : : new MODE TAG ; new EMPTY.)
j) M O D E NEST3 specification defining new MODE TAG3(i)

NEST3 dec larat ive defining new MODE TAG3(541e) brief pack,
colon(94f) token.

k) M O I D NEST3 specificat ion defining new EMPTY(i)
formal MOID NEST3 declarer(46b) brief pack, colon(94f) token.

62 v a n Wijngaarden, et al.

I) S O W NEST2 out CHOICE STYLE clause(d)
CHOICE STYLE out(91d,-),

SOID NEST2 serial clause defining LAYER3(32a)
CHOICE STYLE again(91c,-),

SOW NEST2 chooser CHOICE2 STYLE clause(b),
where CHOICE2 may follow CHOICE(m).

m) W H E T H E R choice using MODE2 may follow
choice using MODEI(1)

where (MODE!) is (MOOD), WHETHER (MODE2) is (MODE!)
where (MODE!) begins with (union of),

WHETHER (MODE2) begins with (union of).

n) * S O M E choice clause : SOME CHOICE clause(a).
o) * S O M E conditional clause : SOME choice using boolean clause(a).
p) * S O M E case clause : SOME choice using integral clause(a).
q) * S O M E conformity clause : SOME choice using UNITED clauseta).

(Examples:

a) (x >01x 1 0) •
case i in princeton, grenoble out finish esac •
case uir In ant i): print (i), (real): print ("no") esac

b) x>01x10 c) > 0 • i • ui r
d) l oc• I x10
e) I x •

in princeton, grenoble •
In ant i): print (i), (real): print ("no")

f) x g) princeton, grenoble
h) (int i): print (i), (real): print ("no")
i) (Int i): print (i) j) ant i):
k) (real):
1) out finish • I: x < 0 I 0)

(I would t o God they would either conform, or be more
wise, and not be catched!
Diary, 7 Aug. 1664, S a m u e l Pepys.)

(Rule d il lus t rates wh y ' SORT MOI D' s s hould b e "balanc ed". I f a n
alternate-CHOICE-clause is , say, fi rm, t hen a t leas t i t s in-CHOICE-clause
or its out-CHOICE-clause must be fi rm, whi le the other may be strong. Fo r
example, in (p I x 1 skirl) + I ski i
, I Y) , t h e
c o n d i t i o n a l -
c l a u s e
(p
I
x
s k i p
)

is balanced by mak ing I x fi rm and I sk ip s t rong whereas (p I sk ip I y) is
balanced b y mak ing I s k ip s t rong a n d I y fi r m. T h e counterexample
(P I skip I skip) + y illust rates that not both may be strong, f or otherwise the
operator + could not be ident ified.)

3.4.2. Semantics

a) T h e y ield W of a chooser-CHOICE-clause C, i n a n env iron E l , i s
determined as follows:

• l e t E2 be t he env iron established (3.2.2.b) around E l ac c ording t o t he
enquiry-clause of C;
• l e t V be the yield, in E2, of that enquiry-clause;
• W is the y ield of the scene "chosen" (b) by V f rom C in E2; i t is required
that W be not newer in scope than El.

b) T h e scene S "chosen" by a value V f rom a MOID-chooser-CHOICE-
clause C, in an environ E2, is determined as follows:
Case A: 'CHOICE i s 'choice using boolean• and V is true:

• S is the constituent in-CHOICE-clause of C, in E2;
Case B: 'CHOI CE' is 'choice us ing integral* and 1 V n , where n is t he

number of constituent units of the constituent in-part-of-CHOICE of C:
• S is the V-th such unit , in E2;

Case C: 'CHOI CE' is some 'choice us ing UNI TED' and V is acceptable t o
(2.1.3.6.d) t he 'MOI D2' o f some const ituent MOID2-specificat ion D of C
(; i f there exists more than one such const ituent specificat ion, i t is not
defined which one is chosen as D):
• S is the unit f ol lowing that D, i n an env iron established (nonlocally
(3.2.2.b)) around E2, according to D, wi t h V;

Other Cases (when the enquiry-clause has been unsuccessful):
If C contains a constituent out-CHOICE-clause 0,
then S is 0 in E2;
otherwise, S is a MOID-skip in E2.

3.5. Loop clauses

ALGOL 68 Revised Report 6 3

(Loop-clauses are used for repeat ing dynamically one same sequence of
instructions. The number of repet it ions is cont rolled by a fi nit e sequence
of equidistant integers, by a condit ion to be tested each t ime, or by both.
Example 1:

Int fac 1 ;
for i from n by -1 to 1
do facx:= iod.

Example 2:
into, b; read ((a, b)) or assert a A 11> 0 pr;
into:=0, r :r .a;
whtl er bor asser ta=bxg+r AO:s_r or
do (q 1 , r b) o d
pr a s s e r t a . bx g- i - r AO r nr <bpr

(see 9.2 for an explanat ion of the pragmats) •

The cont rolled ident ifier, e. g. , i i n Ex ample 1, i s defi ned o v e r t he
repeating-part . Definit ions int roduced in the while-part are also valid over
the do-part.

If the controlled ident ifier is not applied in the repeat ing-part , then the
for-part may be omit ted. A f rom-part f rom 1 ma y be omit ted; s imi lar ly ,
by 1 may be omit ted. The to-part may be omit t ed i f no test on the fi nal

64 v a n Wijngaarden, et al.

value of the cont rol-integer is required. A while-part whi le t rue ma y be
omitted. For example,

for i from 1 by 1 to n while true do print ("a") od
may be writ t en

to n do print ("a") od.
The hierarchy of ranges is illus t rated by:

3.5.1. Syntax

forJ I from b y
2 w h i l e

od_ i

A) F R O R Y T : : f rom ; by ; to.

a) s t r o n g void NEST! loop clause(5D,551a)
NEST! STYLE for part defining new integral TAG2(b),

NEST! STYLE intervals(c),
NEST! STYLE repeat ing part wit h integral TAG2(e).

b) N E S T ! STYLE for part defining new integral TAG2(a)
STYLE for(94g,-) token,

integral NEST! new integral TAG2 defining ident ifier
with TAG2(48a)

where (TAG2) is (let ter aleph), EMPTY.
c) N E S T ! STYLE intervals(a) : NEST! STYLE f rom part (d) option,

NEST! STYLE by part(d) option,
NEST! STYLE to part(d) option.

d) N E S T ! STYLE FROBYT part(c)
STYLE FROBYT(94g,-) token, meek integral NEST! unit(32d).

e) N E S T ! STYLE repeat ing part with DEC2(a)
NESTI new DEC2 STYLE while do part(1)
NEST! new DEC2 STYLE do part fhl.

f) N E S T 2 STYLE while do pan(e)
NEST2 STYLE while part defining LAYER3(g),

NEST2 LAYER3 STYLE do part(h).
g) N E S T 2 STYLE while part defining LAYER3(f)

STYLE whilet94g,-) token,
boolean NEST2 enquiry clause defining LAYER3(34c,-).

h) N E S T 3 STYLE do part le, f)
STYLE do(94g,-) token,

strong void NEST3 serial clause defining LAYER4(32a),
STYLE od(94g,-) token.

(Examples:

a) for i while i < n do taski od • to n do taskt; task2 od
b) for 1 c) from -5 to +5

ALGOL 68 Revised Report 6 5

d) f rom -
5e) while i < n do taski od • do taskl; task2 od
f) while i < n do taskl; task2 od
g) while i < n h) do taskl; task2 od)

3.5.2. Semantics

A loop-clause C, in an environ El, is elaborated in the following Steps:
Step 1: A l l t he const ituent FROBYT-parts , i f any , o f C a r e elaborated

collaterally in El;
• l e t f be the y ield of the const ituent f rom-part , i f any, of C, and be I
otherwise;
• l e t b be the y ield of the const ituent by-part , i f any, o f C, and be I
otherwise;
• l e t t be t he y ie ld o f t he const ituent to-part , i f any , o f C, and be
absent otherwise;
• l e t E2 be t he env iron established (nonlocally (3.2.2.b)) around E l ,
according to the for-part -defining-new-integral-TAG2 of C, and wi t h the
integer f;

Step 2: Le t I be the integer accessed (2.1.2.c) by ' int egral TAG2 ins ide the
locale of E2;

I f t is not absent,
then

If b a n d i t or if b < 0 and i < t ,
then C in El (is completed and) y ields empty;

(otherwise, Step 3 is taken;)
Step 3: Le t an environ E3 and a t ruth value w be determined as follows:

Case A: C does not contain a constituent while-part :
• E 3 is E2;
• w is true;

Case B: C contains a constituent while-part P:
• E3 i s es tablished (perhaps nonloc al ly (3.2.2.13)) a round E 2
according to the enquiry-clause of P;
• w is the y ield in E3 of that enquiry-clause;

Step 4: I f w is true,
then

• t he constituent do-part of C is elaborated in E3;
• ' in t egral TAG2* is made to access I + b inside the locale of E2;
• St ep 2 is taken again;

otherwise,
• C in El (is completed and) y ields empty.

(The loop-clause
for i from ul by u2 to u3 while condition do action ad

is thus equivalent to the following void-closed-clause:

66 v a n W1ingaarden, etal.

begin int f u l , int b •=u2, u 3 ;
step2:

i f (b>0 A f__t)v (b< 0 A f?...t)v
then int i f ;

if condit ion
then action; f b ; go to step2
fi

end.

4.1.1. Syntax

This equivalence might not hold, of course, i f the loop-clause contains local-
generators, o r i f some of the operators above do not ident if y those in t he
standard env ironment (10).)

4. Declarat ions, declarers and indicators

(Declarations serve
• t o announce new indicators, e.g., ident ifiers,
• t o define their modes or priorit ies, and
• t o ascribe values to those indicators and to init ialize variables.)

4.1. Declarat ions

A) C O M M O N : : mode ; priori t y ; MOD1NE ident ity
reference to MOD1NE variable ; MOD1NE operat ion
PARAMETER ; MODE FIELDS.

(MOD1NE :: MODE ; rout ine.)

a) N E S T declarat ion of DECS(a,32b)
NEST COMMON declarat ion of DECS(42a,43a,44a,e,45a,-)
where (DECS) is (DECS1 DECS2),

NEST COMMON declarat ion of DECS1(42a,43a,44a,e,45a,-),
and also(94f) token, NEST declarat ion of DECS2(a).

b) N E S T COMMON joined definit ion of PROPS PROP
(13,42a,43a,44a,e,45a,46e,541e)

NEST COMMON joined definit ion of PROPS(b,c),
and also(94f) token,
NEST COMMON joined definit ion of PROP(c).

c) N E S T COMMON joined definit ion of PROP
(b,42a,43a,44a,e,45a,46e,541e)

NEST COMMON definit ion of PROP(42b,43b,44c,f,45c,46f,541f,-).

d) * d e fi n i t i o n of PROP : NEST COMMON definit ion of PROP
(4213,431D,44c,f,45c,46f,541f)

NEST label definit ion of PROP(32c).

(Examples:
a) mode r r e t real, s =char •prio v =2, A = 3 (Dint m = 4096 •

real .r, y •
op v = (boot a, b) boo!: ' m e i b)

b) r = ref real, s = char •v 2 , A = 3 •m =4096 ex, y •
v = (boot a, b) boo!: (al true' to)

c) r = ret real *v . 2 •m=4096 ex •
v (boot a, b) boo!: (a I true b))

4.1.2. Semantics

The e labora t ion o f a dec larat ion c ons is t s o f t h e c o l l a t e ra l
elaborat ion o f i t s COMMON-dec larat ion a n d o f i t s dec larat ion, i f any .
(Thus, a l l t h e COMMON-dec larat ions separated b y and-also-tokens a r e
elaborated collaterally .)

4.2. Mode declarat ions

(Mode-declarations prov ide the defining-mode-indicat ions, whic h ac t as
abbreviat ions f or dec larers constructed f rom the more pr imi t iv e ones, o r
f rom other declarers, or even f rom themselves.

For example,
mode array = [m, n] real, and
mode book = struct (string text, ret book next)
In t he lat t er example, t he applied-mode-indicat ion book is not only a

convenient abbreviat ion, but is essential to the declarat ion.)

4.2.1. Syntax

a) N E S T mode declarat ion of DECS(41a)
mode(94d) token, NEST mode joined definit ion of DECS(41b,c).

b) N E S T mode definit ion of MOID TALLY TAB(41c)
where (TAB) is (bold TAG) or (NEST) is (new LAYER),

MOW TALLY NEST defining mode indicat ion wit h TAB(48a),
is defined as(94d) token,
actual MOID TALLY NEST dec larert a

c) a c t u a l MOID TALLY! NEST declarer(b)
where (TALLY') is (i)
9 actual MOID NEST declarator(46c,d,g,h,o,s,-)
where (TALLY!) is (TALLY2

MOID TALLY2 NEST applied mode indicat ion wit h TAB2
(48b).

(Examples:

a) mode r = ref real, s = char
b) r = ret real

ALGOL 68 Revised Repor t 6 7

c) ref real c h a r)

(The use of *TALLY ex c ludes c irc ular chains of mode-definit ions such
as mode a = b, b = a.

68 v a n Wijngaarden, et at

Defining-mode-indicat ions-with-SIZETY-STANDARD m a y b e dec la red
only in the standard-prelude, where the nest is of the f o rm ' new LAYER'
(10.1.1.b).)

4.2.2. Semantics

The elaborat ion o f a mode-dec larat ion (involves no ac t ion, y ields no
value and) is completed.

4.3. Priorit y declarat ions

(Priority-declarat ions a r e us ed t o spec if y t h e p r i o r i t y o f operators .
Priorit ies f rom 1 to 9 are available.

Since monadic-operators have ef fect ively only one priorit y -level, whic h
is h igher t han t ha t o f a l l dyadic-operators , monadic -operators d o n o t
require priority-declarat ions.)

4.3.1. Syntax

a) N E S T priorit y declarat ion of DECS(41a)
priority(94d) token, NEST priorit y joined definit ion of DECS(41b,c).

b) N E S T priorit y definit ion of priorit y PRIO TAD(41c)
priorit y PRIO NEST defining operator with TAD(48a),

is defined as(94d) token, DIGIT(94b) token,
where DIGIT counts PRIO(c,d).

(DIGIT : : digit zero ; digit one ; digit two ; digit three ; digit four
digit five ; digit six ; digit seven ; digit eight ; digit nine.)

c) W H E T H E R DIGIT! counts PRIO i(b,c)
WHETHER DIGIT2 counts PRIO(c,d),

where (digit one digit two digit three digit four
digit five digit six digit seven digit eight digit nine)

-contains (DIGIT2 DIGIT!).
d) W H E T H E R digit one counts 0 , 0 : WHETHER true.

(Examples:
=a) p i le v . 2, A=3 b) v 2)

4.3.2. Semantics

The elaboration of a priority-declaration (involves no action, yields no
value and) is completed.

4.4. Identifier declarations

(Ident ifier-declarat ions prov ide MODE-defining-ident ifiers , b y means o f
either ident ity-definit ions or variable-definit ions.
Examples:

real pi = 3.1416 •
real scan := 0.05.

ALGOL 68 Revised Report 6 9

The lat t er example, which is a variable-dec larat ion, may be considered as
an equivalent f orm of the ident ity-declarat ion

ref real scan = loc real := 0.05.
The elaborat ion of ident ifier-dec larat ions causes values t o be ascribed

to t heir ident ifiers; i n the examples given above, 3.1416 is ascribed t o p i
and a new local name which refers to 0.05 is ascribed to scan.)

4.4.1. Syntax

A) M O D I N E : : MODE ; rout ine.
B) L E A P :: local ; heap ; pr imal.

a) N E S T MODINE ident ity declarat ion of DECSRIal
formal MODINE NEST declarerlb,46131,

NEST MODINE ident ity joined definit ion of DECS(41b,c).
b) V I C T A L rout ine NEST declarer(a,523b) : procedure(94d) token.
c) N E S T MODINE ident ity definit ion of MODE TAGI41c)

MODE NEST defining ident ifier wit h TAG(48a),
is defined as(94d) token, MODE NEST source for MODINE(d).

d) M O D E NEST source for MODINE(c,f,45c)
where (MODINE) is (MODE), MODE NEST source(521c)
where (MODINE) is (rout ine), MODE NEST rout ine text(541a,b,-).

e) N E S T reference to MODINE variable dec larat ion of DECStzlial
reference to MODINE NEST LEAP sample generator(523b),

NEST reference to MODINE variable joined
definit ion of DECS(41b,c).

f) N E S T reference to MODINE variable definit ion
of reference to MODE TAG(41c)

reference to MODE NEST defining ident ifier wit h TAG(48a),
becomes(94c1 token, MODE NEST source for MODINE(d)

where (MODINE) is (MODE),
reference to MODE NEST defining ident ifier wit h TAG(48a).

g) * ident ifier dec larat ion
NEST MODINE ident ity declarat ion of DECS(a)
NEST reference to MODINE variable dec larat ion of DECS(e).

(Examples:

a) int m=-4096 • proc r10 r eal : random x 10
b) proc c) m = 4096
d) 4096 • real : random x 10
e) real x, y • proc pp := real : random x 10
f) pp := real : random x 10 • x)

4,4.2. Semantics

a) A n ident ity-declarat ion D is elaborated as follows:
• t he constituent sources-for-MODINE of D are elaborated collaterally ;

70 v a n Wijngaarden, et al.

For each constituent ident ity-definit ion Di of D,
• t he y ield V of the source-for-MODINE of Di is ascribed (4.8.2.a) to the
defining-identifier of Dl .

b) A variable-declarat ion D is elaborated as follows:
• t he sample-generator (5.2.3.1.b) G of D and a l l t he sources-for-MODINE,
if a n y , o f t h e c ons t it uent variable-definit ions o f D a r e e laborat ed
collaterally;
For each const ituent variable-definit ion-of -reference-to-MODE-TAG D i o f

D,
• l e t W1 be a v ar iant " (c), f or 'MODE', of the value referred to by the
yield N of G;
• l e t Ni be a newly created name equal in scope to N and ref erring to
Wl;
• i f Ni is a stowed name (2.1.3.2.b), then Ni is endowed wit h subnames
(2.1.3.3.e, 2.1.3.4.g);
• N i is ascribed (4.8.2.a) to the defining-ident ifier of Dl ;
• t h e y i e l d o f t h e source-for-MODINE, i f any , o f D1 i s ass igned
(5.2.1.2.b) to Ni .

(An ac tual-dec larer wh i c h i s c o mmo n t o a n u mb e r o f v ar iab le-
definit ions is elaborated only once. For example, the elaborat ion of

int m 1 0 ; [1 : m+: . 1] int p, ci; print (n)
causes 11 t o be print ed, a n d no t 12; moreov er , t wo n e w loc al names
referring t o mu l t ip le v alues wi t h des c ript or ((1 , 11)) , a n d undefi ned
elements, are ascribed to p and to q.)

c) A "variant " of a value V, f or a mode M, is a value W acceptable to
(2.1.3.6.d) M, and determined as follows:
Case A: M is some 'structured with FIELDS mode':

For each •MODE field TAG' enveloped by 'FIELDS',
• t h e field selected by 'TAG' i n W is a variant , f o r 'MODE', o f the
field selected by 'TAG i n V;

Case B: M is some 'FLEXETY ROWS of MO DE r
• t he descriptor of W is that of V:
• eac h element of W is a variant , f or 'MODE! ' , of some element of V;

Other Cases:
• W is any value acceptable to M.

d) T h e y ield of an actual-rout ine-declarer is some rout ine (whose mode
is of no relevance).

4.5. Operat ion declarat ions

(Operation-declarations prov ide defining-operators.
Example:

op 'pc (rea l a, b) real : (3 x a < bl al 6).
Unlike t h e c as e wi t h , e. g. , ident ifier-dec larat ions , m o r e t h a n o n e

operat ion-declarat ion inv olv ing t he s ame TAO-token ma y oc c ur i n t h e

same reach; e.g. , t he prev ious ex ample ma y v ery we l l be i n t he s ame
reach as

op mc (comp! earthy, john) compi (random < .
5
1 e a r t h y I
l o h n) :

the operator mc is then said to be "ov er loaded
. .
.)4.5.1. Syntax
A) P R A M : : DUO ; MONO.
B) T A () : : TAD ; TAM.

a) N E S T MODINE operat ion declarat ion of DECSVIlal
operator(94d) token, f ormal MODINE NEST plan(b,46p,-),

NEST MODINE operat ion joined definit ion of DECS(41b,c).
b) f o r m a l rout ine NEST plan(a) : EMPTY.
c) N E S T MODINE operat ion definit ion of PRAM TA0(41c)

PRAM NEST defining operator with TA0(48a),
is defined as(94d) token, PRAM NEST source for MODINE(444

(Examples:
a) op v = (boot a, b) boot (t t tr ue' b)
e) v (boot a, b) boot (ct true b))

4.5.2. Semantics

a) T h e e laborat ion o f a n operat ion-dec larat ion c ons is t s o f t h e
collateral elaborat ion of its constituent operat ion-definit ions.

b) A n operat ion-definit ion i s elaborat ed b y as c r ib ing (4.8.2.a) t h e
routine yielded by its source-for-MODINE to its defining-operator.

4.6. Dec larers

ALGOL 68 Revised Repor t 7 1

(Declarers spec if y modes . A dec larer i s e i t her a dec larat or, wh i c h
explic it ly constructs a mode, o r an applied-mode-indicat ion, whic h stands
for some dec larator by way of a mode-dec larat ion. Dec larators are bui l t
f rom void, int , real, boot and c har (10.2.2), wi t h t he assistance o f ot her
symbols s u c h a s re f , s t ruc t , [p r o c , a n d un ion . F o r ex ample,
proc (real) boot specifies the mode 'procedure wi t h real paramet er y ielding
boolean'.

Actual-declarers, used t ypically in generators, require t he presence o f
bounds. Formal-dec larers , used t ypically in f ormal-parameters and casts,
are without bounds. The dec larer following a ref is always 'v irt ual' : i t may
then specify a 'flex ible ROWS of MODE', because flex ibil it y i s a propert y
of names . Sinc e ac tual-dec larers f o l l ow a n i mp l i c i t ' ref erenc e t o ' i n
generators, they may also specify 'flex ible ROWS of MODE'.)

4.6.1. Syntax
A) V I E T A L N ' I RA E T ; f ormal.
B) V I R A C T : : v irt ual ; actual.
C) M O I D S M O I D ; MOIDS MOM.

72 v a n Wijngaarden, et al.

a) V I R A C T MOID NEST declarer(c,e,g,h,523a,b)
VIRACT MOID NEST declarator(c,d,g,h,o,s,-I
MOID TALLY NEST applied mode indicat ion wit h TAB(48b,-).

b) f o r m a l MOID NEST declarer{e,h,p,r,u,34k,44a,541a,b,e,551a}
where MOW deflexes to MOID(47a,b,c,-),

f ormal MOLD NEST declarator(c,d,h,o,s,-)
MOIDI TALLY NEST applied mode indicat ion wit h TABI48b,-1,

where MOIDI deflexes to MOID147a,b,c,-).

c) V I C T A L reference to MODE NEST declarator(a,b,420
reference to(94d) token, v irt ual MODE NEST declarerta).

d) V I C T A L structured wit h FIELDS mode NEST declaratorfa,b,420
structure(94d) token,

'OCTAL FIELDS NEST port rayer of FIELDS(e) brief pack.
e) V I C T A L FIELDS NEST port rayer of FIELDS! (d,e)

VICTAL MODE NEST declarer(a.b),
NEST MODE FIELDS joined definit ion of FIELDSI(41b,c)

where (FIELDS!) is (FIELDS2 FIELDS3),
VICTAL MODE NEST declarer(a,b),
NEST MODE FIELDS joined definit ion of FIELDS2(41b,c),
and also(94f) token,
VICTAL FIELDS NEST port rayer of FIELDS3(e).

f) N E S T MODE FIELDS definit ion of MODE field TAG(41c)
MODE field FIELDS defining field selector with TAG(48c).

g) V I R A C T flexible ROWS of MODE NEST declarator(a,42c)
flexible194d) token, VIRACT ROWS of MODE NEST declarer(a).

h) V I C T A L ROWS of MODE NEST declaratorfa,b,420
VICTAL ROWS NEST rower(i, j,k,1) STYLE bracket,

VICTAL MODE NEST declareda,b).
i) V I C T A L row ROWS NEST rowerth,11

VICTAL row NEST rower(j,k,11, and also(94f) token,
VICTAL ROWS NEST rower(1,j,k,1).

j) a c t u a l row NEST rower(h, i) : NEST lower bound(m), up to(940 token,
NEST upper bound(n) ; NEST upper bound(n).

k) v i r t u a l row NEST rower(h, i) : up to(940 token option.
1) f o r m a l row NEST rower(h, i) : up to(94f) token option.

m) N E S T lower bound(j,532f,g) : meek integral NEST unit132d).
n) N E S T upper boundtj,53211 : meek integral NEST unit1324

o) V I C T A L PROCEDURE NEST declarator(a,b,42c)
procedure194d1 token, f ormal PROCEDURE NEST plan(p).

p) f o r m a l procedure PARAMETY y ielding MO M NEST plan(o,45a)
where (PARAMETY) is (EMPTY), f ormal MOID NEST declarer(b)
where (PARAMETY) is (with PARAMETERS),

PARAMETERS NEST joined dec larerN, r) brief pack,
formal MOLD NEST declarer(b).

ALGOL 68 Revised Report 7 3

(4) P A R A M E T E R S PARAMETER NEST joined declarer(p,q)
PARAMETERS NEST joined declarer(g,r), and also(94f) token,

PARAMETER NEST joined declarer(r).
r) M O D E parameter NEST joined declarer(p,q)

formal MODE NEST deciarer(b).

s) V I C T A I , union of MOODS! MOODI mode
NEST declarator(a,b,42c)

unless EMPTY wit h MOODS! MOOD' incestuous(47f),
union of(94d) token,
MOIDS NEST joined declarer(t ,u) brief pack,
where MOIDS ravels to MOODS2(47g)
and safe MOODS! MOOD1 subset of safe MOODS2(731)
and safe M000S2 subset of safe MOODSI MOODI(731,m).

t) M O I D S MOID NEST joined declarer(s,t)
MOMS NEST joined declarer(t ,u), and also(94f) token,

MOID NEST joined declarer(u).
u) M O I D NEST joined declarer(s,t) : f ormal MOID NEST declarer(b).

(Examples:

a) [/ : r] real • person b) [j real • string
c) ref real
d) struct (int age, ref person father, son)
e) ref person father, son • int age, ref person father, son
f) age g) flex [1 : n] real
h) : m, / : n real i) 1 : m, 1 : n
j) / : n
1) :
n) n
p) (boo!, bool) boo!
r) bool
t) int, char

(For ac tual-MOW-TALLY-dec larers , s e e 4.2. I . c : f o r ac t ual-rout ine-
declarers, see 4.4.1.b.

There a re no dec larers spec ify ing modes such as ' union o f int egral
union o f int egral r ea l mode mode ' o r ' un ion o f in t egral r e a l in t egral
mode'. The declarers union (int, union (int, real)) and union (int, real, int)
may indeed be writ ten, but in both cases the mode specified is 'union of
integral real mode' (whic h can as wel l be spelled •union of real int egral
mode').)

4.6.2. Semantics

k)
m) /
o) proc (boo!, boo!) boot
q) boo!, bool
s) union (i t, char)
u) int]

a) T h e y ie ld W o f an ac tual-MODE-dec larer D, i n a n env iron E, i s
determined as follows:

74 v a n W i jngaarden, et al.

If 'MODE' is some 'STOWED',
then

• l e t a l in El be "developed" (c) f rom D in E;
• W i s t he y ie ld o f (t he dec larator) D I i n a n env i ron es tablished
(locally, see 3.2.2.b) upon E and around El:

otherwise,
• W is any value (acceptable to 'MODE').

b) T h e y ield W o f an ac tual-STOWED-dec larator D is determined as
follows:
Case A: 'STOWED* is some 's t ructured wit h FIELDS mode':

• t he constituent declarers of D are elaborated collaterally ;
• eac h field of W is a variant (4.4.2.c)
(i) of t he y ield o f t he las t const ituent MODE-dec larer o f D oc c urring
before t he const ituent defining-field-selector o f D select ing (2.1.5.g) that
field,
(ii) f o r that 'MODE':

Case B: 'STOWED' is some 'ROWS of MODE*:
• a l l t he const ituent lower-bounds a n d upper-bounds o f D a n d t h e
declarer DI of D are elaborated collaterally :
For i •=s I , , n, where n is the number of ' row's contained in 'ROWS',

• l e t I. be the y ield of the lower-bound, i f any, of the i-th constituent1
row-rower of D, and be I otherwise;
• l e t u. be the y ield of the upper-bound of that row-rower;1

• W is composed of
(i) a descriptor ((I
v u
l
) , ,
(I
n
, u
n
)) ,

(ii) variant s of the y ield of D1, f or 'MODE':
Case C: 'STOWED' is some 'flex ible ROWS of MODE':

• W is the y ield of the dec larer of D.

c) T h e scene S "developed f rom" an actual-STOWED-dec larer D in an
environ E is determined as follows:
If the v is ible direc t descendent Di of D is a mode-indicat ion,
then

• S is the scene developed f rom that y ielded by DI in E;
otherwise (D1 is a declarator),

• S is composed of Di and E.

d) A given MOID-dec larer "specifies" the mode 'MOW' .

4.7. Relat ionships between modes

(Some modes mus t be deflexed because the mode of a value may not
be flex ible (2.1.3.6.b). Incestuous unions mus t be prevented i n order t o
avoid ambiguit ies . A set of I I NI TED's and 'MOODS's may be ravelled by
replacing all those 'UNITED's by their component 'MOODS's.)

4.7.1. Syntax

ALGOL 68 Revised Report 7 5

A) N O N S T O W E D :: PLAIN ; REF to MODE; PROCEDURE; UNITED
void.

B) M O O D S E T Y :: MOODS ; EMPTY.
C) M O I D S E T Y M O W S ; EMPTY.

a) W H E T H E R NONSTOWED deflexes to NONSTOWED
(b,e,4613,521c,62a,7In1 : WHETHER true.

b) W H E T H E R FLEXETY ROWS of MODEI deftexes to
ROWS of MODE2(b,e,46b,521c,62a,71n)

WHETHER MODEI dellexes to MO DE 2 i a . b
9
c , - i .

c) W H E T H E R structured with FIELDSI mode deflexes to
structured with FIELDS2 mode(b,e,46b,521c,62a,71n)

WHETHER FIELDS! deflexes to FIELDS2(d,e,-).
d) W H E T H E R FIELDS! FI ELD! dellexes to FIELDS2 FIELD2(c,d)

WHETHER FIELDS! deflexes to FIELDS2(d,e,-)
and FIELD! dellexes to FIELD2(e,-).

e) W H E T H E R MODE! field TAG dellexes to MODE2 field TAG(c,d)
WHETHER MODEI dellexes to MODE2(a,b,c,-).

f) W H E T H E R MOODSETYI with MOODSETY2 incestuous(f,46s)
where (MOODSETY2) is (MOOD MOODSETY3),

WHETHER MOODSETY1 MOOD with M000SETY3 incestuous(f)
or MOOD is firm union of MOODSETY I M000SETY3 mode

(71m)
where (MOODSETY2) is (EMPTY), WHETHER false.

g
)

WHETHER MOIDS ravels to MOODS(g,46s)
where (MOIDS) is (MOODS), WHETHER true
where (MOIDS) is

(MOODSETY union of MOODS! mode MOIDSETY),
WHETHER MOODSETY MOODS! MOIDSETV ravels to MOODS(g).

(A component mode of a union may not be fi rmly coerced to one of the
other component modes o r t o t he un ion o f t hose ot hers (r u l e f) f o r ,
otherwise, ambiguit ies could arise. For example,

union (ref int, int) (b0C int),
is ambiguous i n t ha t dereferenc ing ma y o r ma y no t oc c ur before t he
unit ing. Similarly ,

mode szp = union (szeredi, peter);
union (ref szp, szp) (loc szp)

is ambiguous. Note that, because of ravell ing (ru le g), t he mode specified
by the dec larer of t he cast is more c losely suggested by union (ref szp,
szeredi, peter).)

76 v a n Wijngaarden, et al.

4.8. Indicators and field selectors

4.8.1. Syntax

A) I N D I C A T O R :: identifier ; mode indication ; operator.
B) D E F I E D :: defining ; applied.
C) P R O P S E T Y :: PROPS ; EMPTY.
D) P R O P S :: PROP ; PROPS PROP.
E) P R O P :: DEC ; LAB ; FIELD.
F) Q U A L I T Y

MODE ; MOID TALLY ; DYADIC ; label ; MODE field.
G) T A X :: TAG ; TAB ; TAD ; TAM.

a) Q U A L I T Y NEST new PROPSETY1 QUALITY TAX PROPSETY2
defining INDICATOR with TAX(32c,35b,42b,43b,44c,f,45c, 5410

where QUALITY TAX independent PROPSETY I PROPSETY2
(71a,b,c), TAX(942A,D,F,K) token.

b) Q U A L I T Y NEST applied INDICATOR with TAX
(42c,46a,b,5D,542a,b,544a1

where QUALITY TAX identified in NEST(72a),
TAX(942A,D,F,K) token.

c) M O D E field PROPSETY1 MODE field TAG PROPSETY2 defining
field selector with TAG(460

where MODE field TAG independent PROPSETY1 PROPSETY2
(71a,b,c), TAG (942A) token.

d) M O D E field FIELDS applied field selector with TAG(531a)
where MODE field TAG resides in FIELDS(72b,c,-),

TAG(942A) token.

e) * Q U A L I T Y NEST DEFIED indicator with TAX
QUALITY NEST DEFIED INDICATOR with TAX(a,b).

f) * M O D E DEFIED field selector with TAG
MODE field FIELDS DEFIED field selector with TAGtc,d).

(Examples:

a) x (in real x, y) b) x (in x + y)
c) nex t (see 1.1.2) d) nex t (in next of draft))

4.8.2. Semantics

a) W h e n a value or a scene V is "ascribed" to a QUALITY-defining-
indicator-with-TAX, i n a n envi ron E, then 'QUALI TY TAX ' i s made t o
access V inside the locale of E (2.1.2.c).

b) T h e yield W of a QUALITY-applied-indicator-with-TAX I i n a n
environ E composed of an env iron E l a n d a loc ale L i s det ermined as
follows:

ALGOL 68 Revised Repor t 7 7

If L corresponds t o a •DECSETY LABSETY' whic h envelops (1.1.4.1.c) t hat
'QUALITY TAX',

then W is the value or scene, i f any, accessed ins ide L by 'QUALI TY TAX'
and, otherwise, is undefined;

otherwise, W is the y ield of I in El.

(Consider the following closed-clause, which contains another one:
begin co range 1 co

int i = 421, int a 5 , proc p = void p r i n t (a);
begin co range 2 co

real a; a := i; p
end

end.
By t he t ime a : = i is encountered dur ing t he elaborat ion, t wo n e w

environs have been created, one f or each range. The defining-ident ifier i is
first sought in t he newer one, E2, is not found there, and then is sought
and found in the older one, E l . The locale of E l corresponds t o ' int egral
let ter i reference to integral let ter a procedure y ielding void let t er p'. The
yield of the applied-ident ifier i is therefore the value 421 wh ic h has been
ascribed (a) t o ' integral let ter i ' ins ide the locale of El. The y ield of a, i n
a := i, however, is found f rom the locale of E2.

When p i s c al led (5.4.3.2.b), i t s un i t i s elaborated i n an env iron E3
established around E l bu t upon E2 (3.2.2.b). Th is means that , f o r scope
purposes, E3 is newer t han E2, bu t t he component env iron o f E3 is E l .
When a comes to be printed, i t is the y ield 5 of the reference-to-integral.
ident ifier a declared in the outer range that is obtained.

Thus, t he meaning o f an indic at or appl ied bu t not defined wi t h i n a
routine is determined by t he context i n whic h t he rout ine was created,
rather than that in which it is called.)

5. Units

(Units a re used t o program the more pr imi t iv e act ions o r t o put int o
one single piece the larger constructs of Chapter 3.

NOTION-coercees are the results of coercion (Chapt er 6), but hips are
not; i n t h e c as e o f ENCLOSED-clauses, a n y c oerc ions needed a r e
performed inside them.

The syntax below implies , f or example, t hat tex t of draft + "the,_end" is
parsed as (tex t of draft) + " t h e z n d " s ince a select ion i s a 'SECONDARY'
whereas a f ormula is a 'TERTIARY'.)

5.1. Syntax

A) U N I T (3 2 d) as s ignat ion(521a) coercee
ident ity relation(522a) coercee ; rout ine tex t , (541a
9
h) c o e r c e e
jump(544a) sk ip(552a) TERTIARY113).

B) TERTI ARY(A, 521b, 522a) A D I C formula(542a,b) coercee
nihil(524a) SECONDARY(C).

78 v a n W1ingaarden, et al.

C) SECONDARY(B,531a,542c) : : LEAP generator(523a) coercee
selection(531a) coercee PRI MARY(D) .

D) PRI MARY(C, 532a, 543a) s l ic e(532a) coercee c al l(543a) coercee
cast(551a) coercee denoter(80a) coercee
format text(A341a) coercee
applied ident ifier wit h TAG(48b) coercee
ENCLOSED clauset31a,33a,c,d,e,34a,35a).

(The hyper-rules f or 'SORT MO W FORM coerce& are given in 6.1.1.a,
b, c , d and e, t he ent ry rules of the coerc ion syntax. When the coerc ion
syntax is invoked for some 'SORT MOLD FORM coercee', i t wi l l eventually
return t o a ru le i n t his c hapt er f o r s ome 'MO1D1 FO RM (b l i n d alleys
apart). I t i s t h e c ross-reference t o t h a t r u l e t h a t i s g i v e n i n t h e
metaproduct ion r u l e s abov e. N o o t h e r v is ib le descendent h a s b e e n
produced in the meant ime; t he coercion syntax merely t rans forms ' MOW'
into •
M O I
D I r
f o
r
s e
m a
n t
i c
a l
p
u
r
p
o
s
e
s
.
)

a) * S O M E hip
SOME jump(544a) ; SOME skip(552a) ; SOME nihil(524a).

(The mode of a hip is always that required, a posteriori, by its context,
and i t s y ie ld is acceptable t o t hat mode. Since any mode i s s o eas ily
accommodated, no coercion is permit ted.)

5.2. Units associated with names

(Names may be assigned to (5.2.1), compared wi t h other names (5.2.2)
and created (5.2.3) .)

5.2.1. Assignations

(In assignations, a value is "assigned" t o a name. E.g. , in x := 3.14, the
real number y ielded by the source 3.14 is assigned to the name y ielded by
the destination x.)

5.2.1.1. Syntax

a) R E F to MODE NEST assignation(5A)
REF to MODE NEST destination(b), becomes(94c) token,

MODE NEST sourcefc).
b) R E F to MODE NEST destination(a)

soft REF to MODE NEST TERTIARY(5B).
c) M O D E 1 NEST source(a,44d) : s t rong MODE2 NEST unit(32d),

where MODE! deflexes to MODE2(47a,b,c,-).

(Examples:

a) x := 3.14
c) 3.14 1

b) x

5.2.1.2. Semantics

ALGOL 68 Revised Report 7 9

a) A n assignation A is elaborated as follows:
• le t N and W be the (collateral) yields (a name and another value) of the
destination and source of A;
• W is assigned to (b) N;
• the yield of A is N.
b) A value W is "assigned to" a name N, whose mode is some 'REF to

MODE', as follows:
It is required that

• N be not nil, and that
• W be not newer in scope than N;

Case A: 'MODE' is some 'structured with FIELDS mode':
For each *TAG selecting a field in W,

• tha t field is assigned to the subname selected by *TAG* in N;
Case B: *MODE' is some 'ROWS of MODE!:

• le t V be the (old) value referred to by N;
• i t is required that the descriptors of W and V be identical;
For each index I selecting an element in W,

• tha t element is assigned to the subname selected by I in N;
Case C: *MODE' is some 'flexible ROWS of MODE!':

• le t V be the (old) value referred to by N;
• N is made to refer to a multiple value composed of
(i) the descriptor of W,
(ii) variants (4.4.2.c) of some element (possibly a ghost element) of V;
• N is endowed with subnames (2.1.3.4.g):
For each index I selecting an element in W,

• tha t element is assigned to the subname selected by I in N;
Other Cases (e.g., where 'MODE' is some 'PLAIN' or some IlINITEDTh

• N is made to refer (2.1.3.2.a) to W.
(Observe how, given

flex [1: 0] [1: 3] int flexfix,
the presence of the ghost element (2.1.3.4.c) ensures that the meaning of
flexfix := lac [1: 1] [1 : 3] int is well defined, but that of flexlix := loc [1:
1] [1 : 4] in t is not, since the bound pairs o f the second dimension are
different.)

5.2.2. Identity relations
(Identity-relations may. be used to ask whether two names of the same

mode are the same.
E.g., after the assignation draft := ("Om", nil), the identity-relation next

of draft :-,-: re f book (nil) yields true. However, next of draft :=: n i l yields
false because it is equivalent to next of draft :=: re f ref book (nil): the yield
of next of draft, without any coercion, is the name referring to the second
field of the structured value referred to by the value of draft and, hence,
is not nil.)

80 v a n wijngaarden, et al.

5.2.2.1. Syntax

a) b o o l e a n NEST identity relation{5A} z
where soft balances SORT! and SORT2(32f),

SORT1 reference to MODE NEST TERTIARY 1(5B),
identity relator(b),
SORT2 reference to MODE NEST TERTIARY2(5B).

b) i d e n t i t y relator(a) : is(94f) token ; is not(94f) token.

(Examples:

a) next of draft : r e f book (nil)
b) :=: • :)

(Observe t hat a l [i] a l [i]
comparison, by an identity-relation,
prevented.)

5.2.2.2. Semantics

is not produced b y t his syntax. Th e
of t rans ient names (2.1.3.6.c) i s thus

The y ield W of an ident ity-relat ion I is determined as follows:
• l e t Ni and N2 be the (collateral) y ields of the TERTIARYs of I;
Case A: The token of the ident ity -relator of I is an is-token:

• W is true if (the name) Ni is the same as N2, and is false otherwise;
Case B: The token of the identity-relator of I is an is-not-token:

• W is true if Ni is not the same as N2, and is false, otherwise.

5.2.3. Generators

(And as imaginat ion bodies forth
The forms o f things unknown, t he poet 's
pen
Turns t hem t o shapes, and gives t o airy
nothing
A local habitation and a name.
A Midsummer-night 's Dream,

William Shakespeare.)

(The elaborat ion of a generator, e.g., loc real in x x l o c real 3 . 1 4 ,
or of a sample-generator, e.g., 1 : n) char in [i : r d c har u, v; , involves
the creat ion of a name, i.e., the reservat ion of storage.

The use of a local-generator implies (wi t h mos t implementat ions) t he
reservation of storage on a run-t ime stack, whereas heap-generators imply
the reservat ion of storage in another region, t ermed the "heap", i n whic h
garbage-collect ion techniques may be used f or storage ret rieval. Since this
is less efficient, local-generators are preferable; t h is is why only toc may
be omit ted f rom sample-generators of variable-declarat ions.)

ALGOL 68 Revised Repor t 8 1

5.2.3.1. Syntax

(LEAP :: local ; heap ; primal.)

a) r e f e r e n c e to MODE NEST LEAP generator(5C) : LEAP(94d,-) token,
actual MODE NEST declarer(46a).

b) r e f e r e n c e to MODINE NEST LEAP sample generator(44e)
LEAP(94d,-) taken, actual MODINE NEST declarer(4413,46a)
where (LEAP) is (local), actual MODINE NEST declarer(4413,46a).

(Examples:

a) lac real b) lac real • real)

(There is no representat ion for the primal-symbol (see 9.4.a).)

5.2.3.2. Semantics

a) T h e y ield W of a LEAP-generator o r LEAP-sample-generator G, i n
an environ E, is determined as follows:
• W is a newly created name which is made to refer (2.1.3.2.a) to the y ield
in E of the actual-declarer (4.4.2.d, 4.6.2.a) of G:
• W is equal in scope to the environ El determined as follows:

Case A: 'LEAP' is ' local':
• E l is the "local env iron" (b) accessible f rom E;

Case B: •LEAP • is 'heap':
• E l i s (t he fi rs t env i ron c reated du r ing t he elaborat ion o f t he
part icular-program, which is) such that
(i) t he p r ima l env iron (2.2.2.a) is t he env iron of the env iron of t he
environ of El (sic), and
(ii) E l is, or is older than, E;

Case C: *LEAP' is 'primal' :
• E l is the pr imal environ;

• i f W is a s towed name (2.1.3.2.13), t hen W is endowed wi t h subnames
(2.I.3.3.e, 2.I.3.4.g).

(The only examples o f primal-generators oc c ur i n t he s tandard- and
system-preludes (10.3.1.1.h, 10.3.I.4.b,n,o, 10.4.1.a),

When G is a reference-to-rout ine-sample-generator, the mode of W is of
no relevance.)

b) T h e "local env iron" accessible f rom an env iron E is an env iron E l
determined as follows:

If E is "nonlocal" (3.2.213),
then El is the local env iron accessible f rom the env iron of E:
otherwise, El is E.

(An env iron is nonlocal i f i t has been established according to a serial-
clause o r enquiry-c lause whic h contains no const ituent mode-, ident ifier-,
or operat ion-dec larat ion, o r ac c ording t o a f o r - p a r t (3.5.113) o r a
specification (3.4.1.j,k).)

82 v a n W i
s
i n g a a r d e n , e t a l .5.2.4. Nihils

5.2.4.1. Syntax

a) s t r o n g reference to MODE NEST nihil(5B) : ni1(94f) token.

(Example:

a) ni l)

5.2.4.2. Semantics

The y ield of a nihil is a nil name.

5.3. Units associated wit h stowed values

(In Flanders fields the poppies blow
Between the crosses, row on row,
In Flanders Fields, J o h n MoCrae.)

(The fields o f s t ructured values may be obtained by select ions (5.3.1)
and t he elements o f mult ip le values by s lices (5.3.2): t h e corresponding
effects on stowed names are defined also.)

5.3.1. Selections

(A select ion selects a fi e ld f r o m a s t ruc t ured v a lue o r (i f i t i s a
"mult iple select ion") i t selects a mul t ip le v alue f r o m a mul t ip le v alue
whose elements are s t ruc tured values. Fo r example, re o f z selects t he
first real field (usually termed the real part) o f the y ield of z. I f z y ields a
name, then re of z also y ields a name, but i f g y ields a complex value,
then re of g yields a real value, not a name referring to one.)

5.3.1.1. Syntax

A) R E F E T Y : : REF to ; EMPTY.
B) R E F L E X E T Y : : REF to ; REF to flex ible ; EMPTY.

(REF :: reference ; transient reference.)

a) R E F E T Y MODE! NEST selection(5C)
MODE! field FIELDS applied field selector with TAG(48d),

of (94f) token, weak REFETY structured wit h FIELDS mode
NEST SECONDARY(5C)

where (MODE!) is (ROWS of MODE2),
MODE2 field FIELDS applied field selector with TAG(48d),
of(94) token, weak REFLEXETY ROWS of structured with
FIELDS mode NEST SECONDARY(5C),

where (REFETY) is derived f rom (REFLEXETY)(b,c,-).
b) W H E T H E R (transient reference to) is derived from

(REF to flexible)(a,532a,66a) : WHETHER true.
c) W H E T H E R (REFETY) is derived from (REFETY)(a,532a,66a)

WHETHER true.

(Examples:

a) re of z • re of zi)

(The mode of re of z begins wit h *reference to* because that of z does.
Example:

int age := 7; struct (booi sex, int age) jil l;
age of j i l l := age;

Note t hat the dest inat ion age of fi l l y ields a name because fi l l y ields one.
Af ter the ident ity-declarat ion

struct (boo! sex, int age) jack .= (true, 9),
age of jack cannot be assigned to since jack is not a variable.)

5.3.1.2. Semantics

ALGOL 68 Revised Repor t 8 3

The y ield W of a selection S is determined as follows:
• l e t V be the y ield of the SECONDARY of S;
• i t is required that V (if it is a name) be not nil;
• W is the value selected in (2.1.3.3.a,e, 2.1.3.4.k) o r the name generated
f rom (2.1.3.4.1) V by the field-selector of S.

(A selection in a name referring to a s t ructured value y ields an exist ing
subname (2.1.3.3.e) o f t ha t name. Th e n a me generat ed f r o m a n a me
referring to a mult iple value, by way of a selection wit h a ROWS-of-MODE-
SECONDARY (as in re of z.1), is a name which may or may not be newly
created for the purpose.)

5.3.2. Slices

(Slices a re obtained b y subscript ing, e
x l [2 : n] o r b y bot h, e. g. , x 2 [i : n , j]
t r imming may be done only t o PRIMARYs,
reot z l. The value of a s lice may be eit her
PRIMARY or a subset of the elements; e.g.
the row of real numbers x l , x 2 [i,] is t he
x2 [, k] is its k-th column.)

.g., . x / [f t b y t r imming , e.g. ,
or x 2 [, k]. Subs c ript ing a n d
e.g., .x./ o r (p l x l I y l) but not

one element of the y ield of its
, x i [i] is a real number f rom
i-th r o w of the mat r ix x 2 and

5.3.2.1. Syntax

A) R O W S E T Y : : ROWS ; EMPTY.

a) R E F E T Y MODE! NEST slice(5D)
weak REFLEXETY ROWS! of MODE! NEST PRIMARY(5D),

ROWS! leav ing EMPTY NEST indexer(b,c,-) STYLE bracket,
where (REFETY) is derived f rom (REFLEXETY)(531b,c,-)

where (MODE!) is (ROWS2 of MODE2),
weak REFLEXETY ROWS! of MODE2 NEST PRIMARY(5D),
ROWS! leav ing ROWS2 NEST indexer(b,d,-) STYLE bracket,
where (REFETY) is derived f rom (REFLEXETY)(531b,c,-).

(ROWS : : row ; ROWS row.)

84 v a n Wijngaarden, et al.

b) r o w ROWS leaving ROWSETY ROWSETY2 NEST indexer(a,b)
row leaving ROWSETY 1 NEST indexer(c,d,-), and also(94f) token,

ROWS leaving ROWSETY2 NEST indexer(b,c,d,-).
c) r o w leaving EMPTY NEST indexer(a,b) : NEST subscript(e).
d) r o w leaving row NEST indexer(a,b) : NEST trimmer(f)

NEST revised lower bound(g) option.
e) N E S T subscript(c) : meek integral NEST unit(32d).
0 N E S T trimmer(d) : NEST lower bound(46m) option, up to(94f) token,

NEST upper bound(46n) option,
NEST revised lower bound(g) option.

g) N E S T revised lower bound(d,f)
at(94f) token, NEST lower bound(46m).

h) * t r i m s c r i pt : NEST subscript(e) ; NEST trimmer(f)
NEST revised lower bound(g) option.

i) * i n d e x e r : ROWS leaving ROWSETY NEST indexer(b,c,d).
j) * bounds c r i pt : NEST subscript(e) ; NEST lower bound(46m)

NEST upper bound(46n) ; NEST revised lower bound(g).

(Examples:
a) x 2 [0] • x2 [, j j
b) / : 2, j (in x2 [1 : 2, j]) • i, j (in x2 [i, j])
c) j (in x2 [1 : 2, f]) d) / : 2 • @6
1 (i n x / [@ 0])e) f) / : 2 @0
g) @0)

(A subscript decreases th e number o f dimensions b y one, b u t a
trimmer leaves i t unchanged. In rule a, 'ROWS! reflects the number of
trimsripts in the slice, and '110WS2' the number o f these which a re
trimmers or revised-lower-bound-options.

If the value to be sliced is a name, then the yield of the slice is also a
name. Moreover, i f the mode of the former name is 'reference to flexible
ROWS! of MODE', then that yield is a transient name (see 2.1.3.6.c) .)

5.3.2.2. Semantics

a) T h e yield W of a slice S is determined as follows:
• le t V and (1
1 , ,
I
n
)
b e
t h
e
(c o l
l a t e
r a l)
y i
e l
d s
o
f
t
h
e
P
R
I
M
A
R
Y
o
f
S

and of the indexer (b) of S;
• i t is required that V (if it is a name) be not nil:
• le t ((r1' s1 " ') (r s)) be the descriptor of V or of the value referredn n
to by V;
For =- 1, , n,

Case A: I . is an integer:
1

• i t is required that r
i s i :

ALGOL 68 Revised Report 8 5

Case 13: I . is some t riplet (1, u, 1'):1
• l e t L be r., i f 1 is absent, and be 1 otherwise;1
• l e t U be s., i f u is absent, and be u otherwise:1

• i t is required that r
i L a n d
U s
i
;

• l e t D be 0 if 1 i s absent, and be L - 1' otherwise; (D is the amount
to be subtracted f rom L in order to get the revised lower bound:)
• I . is replaced by (L, U, D);1

• W is t he v alue selected i n (2.1.3.4.a,g,i) o r t he name generated f r om
(2.1.3.4.j) V by (1
1
, , I
n) .
b) T h e y ield of an indexer I o f a s lice S is a t r i m (2.1.3.4.h) o r an

index (2.1.3.4.a) (1 • , I
n
)
d e t e r m i n e d
a s
f o l l o w
s :

• t he constituent boundscripts of S are elaborated collaterally ;
For I =- 1, , n, where n is the number of constituent t rimscripts of S,

Case A: t he 1-th t rimsc ript is a subscript:
• l
i
i s
(
t
h
e
i
n
t
e
g
e
r
w
h
i
c
h
i
s
)
t
h
e
y
i
e
l
d
o
f
t
h
a
t
s
u
b
s
c
r
i
p
t
;

Case B: t he i-th t rimsc ript is a t r immer T:
• I . is the t riplet (1, u, I '), where

• 1 i s t he y ie ld o f t he const ituent lower-bound, i f any , o f T,
and is absent, otherwise,
• u is the y ield of the const ituent upper-bound, i f any, of T, and
is absent, otherwise,
• 1' is the y ield of the const ituent revised-lower-bound, i f any, of
T, and is 1, otherwise;

Case C: t he 1-th t rimsc ript is a revised-lower-bound-opt ion N:
• I . is the t riplet (absent, absent, I '), where1

• I ' is the y ield of the revised-lower-bound, i f any, o f N, and is
absent otherwise.

(Observe that , i f (I , . . . , I
n
) c o n t a i n s
n o
t r i p l e t s ,
i t
i s
a n
i n d e
x ,
a n
d

selects one element ; otherwise, i t is a t r im, and selects a subset of t he
elements.)

(A slice f rom a name ref erring to a mult iple value y ields an ex is t ing
subname (2.I.3.4. j) o f that name i f a l l t he const ituent t rimsc ript s of that
slice are subscripts. Otherwise, i t y ields a generated name whic h may o r
may not be newly created f or the purpose. Hence, t he y ield of x i [/ : 2]

x l [1 : 2] is not defined, although x i [i] [i] mus t always y ield
true.)

(The various possible bounds in the y ield of a s lice are il lus t rated by
the f ol lowing examples , f o r each o f wh ic h t he desc ript or o f t he v alue

86 v a n Wijngaarden, et al.

referred to by the y ield is shown:
[0 : 9, 2: M i n t i3
i3 [1, 3: 10 @31 ((3 , 10)) C;
i3 [1, 3: 10] 0 ((l, 8))C;
i3 [1, 3: 0 ((1, 9))C;
i3 [1, : 1 1 0)) C ;
i3 [1,1 C ((2, 11))C;
i3 [, 2] ((0 , 9)) C.)

5.4. Units associated with rout ines

(Routines are created f rom rout ine-texts (5.4.1) o r f rom jumps (5.4.4),
and t hey m a y b e "c a l led" b y c a l l s (5.4.3), f o rmu las (5.4.2) o r b y
deproceduring (6.3) .)

5.4.1. Rout ine texts

(A rout ine-tex t always has a formal-dec larer, spec if y ing t he mode o f
the result , and a rout ine-token, v iz . , a colon. To t he r i gh t o f t his colon
stands a unit , whic h prescribes t he computat ions t o be perf ormed when
the rout ine is called. I f there are parameters, then to the lef t of the f ormal-
declarer stands a declarative containing the var ious formal-parameters
required.
Examples:

void : p r in t (x);
(ref real a, real b) boo!: (a < b I a :---: b; true false).)

5.4.1.1. Syntax

a) p r o c e d u r e yielding MOID NEST I routine text(44d,5A)
formal MOID NESTI declarer(46b), routine(94) token,

strong MOID NESTI unit(32d).
b) p r oc e dur e with PARAMETERS yielding

MOID NESTI rout ine text(44d,5A)
NEST' new DECS2 dec larat ive defining

new DECS2(e) brief pack,
where DECS2 like PARAMETERS(c,d,-),
formal MO W NEST I declarer(46b), routine(941) token,
strong MOID NEST! new DECS2 unit(32d).

c) W H E T H E R DECS DEC like PARAMETERS PARAMETER(b,c)
WHETHER DECS like PARAMETERS(c,d,-)

and DEC like PARAMETERtd,-).
(PARAMETER :: MODE parameter.)

d) W H E T H E R MODE TAG like MODE parameter(b,c)
WHETHER true.

e) N E S T 2 declarative defining new DECS2(b,e,34j)
formal MODE NEST2 declarer(46b),

NEST2 MODE parameter joined definition of DECS2(41b,c)

where (DEC82) is (DECS3 DECS4),
formal MODE NEST2 declarer(46b),
NEST2 MODE parameter joined definition of DECS3(41b,c),
and also(940 token, NEST2 declarative defining new DECS4(e).

0 N E S T 2 MODE parameter definition of MODE TAG2(41c)
MODE NEST2 defining identifier with TAG2(48a).

g) * f o r m a l MODE parameter
NEST MODE parameter definition of MODE TAG(f).

(Examples:

a) real : random x 10
e) bool a, b • bool a, boo! b

5.4.1.2. Semantics

of
(i) T, and

(ii) t he environ necessary for f7.2.2.c) T in E.

5.4.2. Formulas

ALGOL 68 Revised Report 8 7

b) (bool a, b) boo! I b I false)
f) a)

The yield of a routine-text T, i n an environ E, is the routine composed

(Formulas are either dyadic or monadic: e.g. , x + i or abs x. The order
of elaboration of a formula is determined by the priority of its operators;
monadic formulas are elaborated fi rs t and then the dyadic ones f rom the
highest to the lowest priority .)

5.4.2.1. Syntax

A) D Y A D I C :: priority FRIO.
B) M O N A D I C :: priority Hi
C) A D I C :: DYADIC ; MONADIC.
D) T A L L E T Y :: TALLY ; EMPTY.

a) M O L D NEST DYADIC formulatc,5B)
MODE! NEST DYADIC TALLETY operand(c,-),

procedure with MODE]. parameter MODE2 parameter
yielding MOLD NEST applied operator with TAD(48b),

where DYADIC TAD identified in NEST(72a),
MODE2 NEST DYADIC TALLY operand(c,-).

b) M O I D NEST MONADIC formula(c,5B)
procedure with MODE parameter yielding MOLD

NEST applied operator with TAM (48b),
MODE NEST MONADIC operand(c).

c) M O D E NEST ADIC operand(a,b)
firm MODE NEST ADIC formula(a,b) eoercee(61b)
where (ADIC) is (MONADIC), firm MODE NEST SECONDARY(5C).

88 v a n Wijngaarden, et al.

d) * M O L D formula : MOLD NEST ADIC formula(a,b).
e) * D U O dyadic operator with TAD

DUO NEST DEFIED operator with TAD(48a,b).
f) * M O N O monadic operator with TAM

MONO NEST DEFIED operator with TAM(48a,b).
g) * M O D E operand : MODE NEST ADIC operand(c).

(Examples:

a) - x + /
c) - x • 1)

5.4.2.2. Semantics

b) - x

The y ield W of a f ormula F, in an env iron E, is determined as follows:
• l e t R be the rout ine y ielded in E by the operator of F:
• l e t V1
" V
(n
i s
1
o
r
2
)
b
e
t
h
e
(c
o l
l a
t e
r a
l)
y
i
e
l
d
s
o
f
t
h
e
o
p
e
r
a
n
d
s
o
f
F
,

 n
in an environ El established (locally, see 3.2.2.b) around E;
• W is the y ield of the calling (5.4.3.2.b) of A in El, wi t h V
1 ' , n
;
• i t is required that W be not newer in scope than E.

(Observe t ha t a 1 b i s no t prec isely t he s ame a s a
b i n t h e u s u a lnotation; indeed, the value of (- / I 2 +4 . 5) and t hat of (4 - / 2 = - 3) both

are true, s ince the fi rs t minus-symbol is a monadic-operator, whereas the
second is a dyadic-operator.)

5.4.3. Calls

(Calls are used t o c ommand t he elaborat ion o f rout ines paramet rized
with actual-parameters.
Examples:

sin (x) • (p I s in c os) W.)

5.4.3.1. Syntax

a) M O L D NEST call(5D) : meek procedure wit h PARAMETERS y ielding
MOID NEST PRIMARY(5D),

actual NEST PARAMETERS(b,c) brief pack.
b) a c t u a l NEST PARAMETERS PARAMETER(a,b) :

actual NEST PARAMETERS(b,c), and also(94f) token,
actual NEST PARAMETER(c).

cl a c t u a l NEST MODE parameter(a,b) : s t rong MODE NEST unit(32d).

(Examples:

a) put (stand out, x) (see 10.3.3.1a)
b) s tand out, x c))

5.4.3.2. Semantics

ALGOL 68 Revised Report 8 9

a) T h e y ield W of a call C, in an environ E, is determined as follows:
• l e t A (a rout ine) a n d V
i
, ,
V n
b e
t h e
(c o l l a t e
r a l)
y i e l
d s
o
f
t h
e

PRIMARY of C, in E, and of the const ituent ac tual-parameters of C, in an
environ El established (locally, see 3.2.21)) around E;
• W is the y ield of the calling (b) of R in El wi t h V
i
, , n
;

• i t is required that W be not newer in scope than E.

b) T h e y ie ld W o f t he "c al l ing" o f a rout ine A i n a n env iron E l ,
possibly wit h (parameter) values V
i
, , V
n
, i s
d e t e r m i n e d
a s
f o l l o w s
:

• l e t E2 be the env iron established (3.2.2.13) upon El , around the env iron of
R, according to the declarative of the declarative-pack, i f any, of the
routine-text of R, wit h the values V1 " 'V i f any;n
• W is the yield in E2 of the unit of the routine-text of R.

(Consider the following serial-clause:
proc samelson (i nt n, proc (Int) real f) real :

begin long real s := long 0;
for i to n do s l e n g f (i) I 2 od;
shorten long sort (s)

end;
samelson (m, ant j) real : xl [j]).

In that context, the last call has the same effect as the following cast:
real (

int n m , proc (int) real f = ant j) real : xl [I];
begin long real s : = long 0;

for i to n do s +:= leng f (i) 1 2 oct
shorten long sort (s)

end).
The t rans mis s ion o f ac t ual-paramet ers i s t h u s s i m i l a r t o t h e

elaborat ion o f ident it y -dec larat ions (4.4.2.a); s e e a l s o es t abl is hment
(3.2.2.13) and ascript ion (4.8.2.a).1

5.4.4. Jumps

(A j ump ma y t erminat e t he elaborat ion o f a series and cause s ome
other labelled series to be elaborated in its place.
Examples:

y ;= if x 0 then sort (x) else goto princeton fi
gob o st pierre de chartreuse.

Alternat ively, i f t he contex t expec ts t h e mo d e 'proc edure y ie ld ing
MOM' , then a rout ine whose uni t is t hat j u mp is y ielded instead, as i n
proc void m : = goto north berwick.)

90 v a n Wijngaarden, et al.

5.4.4.1. Syntax
a) s t r o n g MOID NEST jumpl5Al : go to(l)) option,

label NEST applied identifier with TAG(48b).
b) g o to(a) : STYLE go to(94f,-) token

STYLE go(94f,-) token, STYLE to symbol(94g,-).

(Examples:

a) goto kootwijk • go to warsaw • zandvoort
b) goto • go to)

5.4.4.2. Semantics

A M O I D
-
N E S T
-
j u m p
J ,
i
n
a
n
e n
v i
r o
n
E
,
i
s
e l
a b
o r
a t
e d
a
s
f
o
l
l
o
w
s
:

• l e t the scene y ielded in E by the l a b e l
-
i d e n t i fi e r o f J
b e
c o m p o s e d
o f
a

series S2 and an environ El;
Case A: 'MO M' is not any 'procedure yielding MOIDI ':

• l e t Si be the series of the smalles t (1.1.3.2.g) s e r i a l
-
c l a u s e c o n t a i n i n g
S2;
• t he elaborat ion of S1 i n El , o r of any series i n E l elaborated in it s
place, is terminated (2.1.4.3.e);
• S 2 in El is elaborated "in place of" S i in El:

Case B: ' MOI D i s some 'procedure y ielding MOIDI ' :
• J in E (is completed and) yields the rout ine composed of
(i) a new MOW-NEST-rout ine-text whose unit is ak in (1.1.3.2.k) to J,
(ii) E l .

5.5. Units associated wit h values of any mode

5.5.1. Casts

(Casts may be used to prov ide a s t rong posit ion. Fo r example, ref real
(xx) in ref real (xx) 1 , ref book (nil) in next of draft :=: r ef book (nil) and
string (p c r) in s +:= string (1,1 c r) .)
5.5.1.1. Syntax

a) M O I D NEST cast,(5D) : f ormal MOID NEST declarer(46b),
strong MOID NEST ENCLOSED clause(31a,33a,c,d,e,34a,35a,-).

(Example:

a) ref book (nii))

(The y ield of a cast is that of its ENCLOSED-clause, by way of pre-
elaborat ion (2.1.4.1.c) .)

5.5.2. Skips

5.5.2.1. Syntax

a) s t r o n g MOID NEST skip(5A) s k ip(940 token.

5.5.2.2. Semantics

ALGOL 68 Revised Repor t 9 1

The yield o f a skip is some (undefined) value equal in scope to the
primal environ.

(The mode of the yield of a MOID-skip is 'MOM'. A void-skip serves as
a dummy statement and may be used, fo r example, a fter a label which
marks the end of a serial-clause.)

6. Coercion

6.1. Coercees

PART HI

Context Dependence

(This Part deals with those rules which do not a lter the underlying
syntactical structure:
• the transformations o f modes imp licit ly defined b y the context, with
their accompanying actions;
• the syntax needed f o r the equivalence o f modes and f o r the safe
application of the properties kept in the nests.)

(The coercions produce a coercend from a coercee according to three
criteria: the a prio ri mode of the coercend before the application of any
coercion, the a posteriori mode o f the coercee required a f te r those
coercions, and the syntactic position o r "sort" o f the coercee. Coercions
may be cascaded.

There a r e s i x possib le coercions, t e rme d "deproceduring",
"dereferencing", "uniting", "widening", " rowing" a n d "voiding". E a ch
coercion, except "uniting", prescribes a corresponding dynamic effect on
the associated values. Hence, a number o f p rimit ive actions can be
programmed implicit ly by coercions.)

(A coercee is a construct whose production tree may begin a sequence
of coercions ending in a coercend. The order o f (completion o f) t h e
elaboration of the coercions is therefore from the coercend to the coercee
(hence the choice o f these paranotions). Fo r example, i in real (i) is a
coercee whose production tree involves 'widened to' and 'dereferenced to',
in that order, in passing from the coercee to the coercend. Note that the
dereferencing must be completed before the widening takes place.

92 v a n Wijngaarden, et al.

The relev ant produc t ion t ree (wi t h el is ion o f 'NEST' , ' appl ied ' a n d
'with TAG', and with inv is ible subtrees omit ted) is :

'strong real ident ifier coercee'
I
6
.
1
.
I
.
a

* w i d e n e d t o r e a l ident ifi er '
widening coercion I 6.5.1.a

• d e r e f e r e n c e d t o in t egra l ident ifi er '
dereferencing coercion 6 . 2 . I . a

t - ' u n c h a n g e d f rom reference to integral ident ifier'
6.1.1.f

'reference to integral ident ifier' (coercend)
I 4.8.1.b, 9. I .k

' let ter i symbol' •)

6.1.1. Syntax

A) STRONG(a , 66a) F I R M (B) ; widened to(65a,b,c,d) ; rowed to(66a)
voided to(67a,b).

B) F I R M I A , b) ME E K (C) ; united to(64a).
C) MEEK(B,c,d,62a,63a,64a,65a,b,c ,d) : : unchanged f rom(f)

dereferenced to(62a) deproc edured to(63a).
D) S O FT(e , 6 3 b) : : unchanged f rom(f) ; soft ly deprocedured to(63b).
E) F O R M : : MORF ; COMORE
F) M O W ' : : NEST selection ; NEST slice ; NEST rout ine text

NEST ADIC formula ; NEST call
NEST applied ident ifier wit h TAG.

G) C O M O R F :: NEST assignation ; NEST ident ity relat ion
NEST LEAP generator ; NEST cast ; NEST denoter
NEST format text,

a) s t r o n g MOID FORM coerceet5A,B,C,D,A341i1
where (FORM) is (MORO, STRONG(A) MOID MORF
where (FORM) is ((OMORF), STRONG(A) MOID COMORF,

unless (STRONG MOID) is (deprocedured to void),
b) fi r m MO DE FORM coercee(5A,B,C,D,542c) : FIRM(B) MODE FORM.
c) m e e k MOID FORM coercee(5A,B,C,D) : MEEK(C) MOID FORM.
d) w e a k RUTTY STOWED FORM coercee(5A,B,C,D)

MEEK(C) REFETY STOWED FORM,
unless (MEEK) is (dereferenced to)
and (REFETY) is (EMPTY).

e) s o f t MODE FORM coerceet5A,B,C,D) : SOFT(D) MODE FORM.
0 u n c h a n g e d f rom MOID FORM(C,D,67a,b) : MOI D FORM.

g) * S O R T MOID coercee : SORT MOID FORM coercee(a,b,c,d,e).
h) * M O I D coercend : MOI D FORM.

ALGOL 68 Revised Repor t 9 3

(Examples:

a) 3.14 (in x :=• 3.14)
b) 3.14 (in x + 3.14)
c) s in (in s in (x))
d) x / (in x l [2] : - . 3.14)
e) x (in x := 3.14)

(For ' M O M FO RM ° (r u l e f) , s ee t h e cross-references ins er t ed i n
sections 5.1.A,B,C,D before "coercee". Note, however, t hat a 'MOI D FORM
.may be a blind alley. Blind alleys wit hin this chapter are not indicated.)

(There are five sorts of syntactic posit ion. They are:
• "s t rong" posit ions, i.e., ac tual-parameters , e.g., x in s in (x), sources,
e.g., x i n y := x, t h e ENCLOSED-c lause o f a c as t , e . g . , (n i l) i n
ref book (nii), and statements, e.g., y := x in (3
, : = x ; x : =
0) ;
• "fir m" positions, i.e., operands, e.g., x in x + y;
• "meek" positions, i . e. , enquiry-clauses, e. g. , x > 0 i n (x 0 1 x 1 0) ,
boundscripts, e.g., i in x / M. and the PRIMARY of a call, e.g., sin in
sin (x):
• "weak " pos it ions , i . e. , t h e SECONDARY o f a selec t ion a n d t h e
PRIMARY of a slice, e.g., x / in x / [i] ;
• "soft" positions, i .e. , destinations, e.g. , x i n x := y and one of the
TERTIARYs of an identity-relation, e.g., x in xx :=: x.

Strong positions also arise in balanc ing (3.2.1.e).

In s t rong posit ions, a l l s ix coerc ions ma y occur; i n fi r m pos it ions ,
rowing, widening and voiding are forbidden; i n meek and weak posit ions,
unit ing i s f orbidden also, a n d i n s of t pos it ions on l y deproceduring i s
allowed. However, a dereferenced-to-STOWED-FORM ma y not be direc t ly
descended f r om a weak-STOWED-FORM-coercee (ru le d) f o r , otherwise,
x := x/ [i l wou ld be syntact ically ambiguous (although, i n t his case, no t
semant ically). Also, a deprocedured-to-void-COMORF may not be direc t ly
descended f rom a strong-void-COMORF-coercee (rule a) f or, otherwise,

(proc void engelfriet; proc void rijpens s k ip; engelfriet : = rijpens; skip)
would be ambiguous.)

6.2. Dereferenc ing

(Dereferencing serves to obtain the value referred to by a name, as in
x := y, where y y ields a name ref err ing t o a rea l number and i t is t his
number which is assigned to the name y ielded by x. The a pr ior i mode of
y, regarded as a coercend, is 'reference to real' and its a posteriori mode,
when y is regarded as a coercee, is ' real' .)

6.2.1. Syntax

a) de r e f e r e nc e d to(61C) MODE! FORM
MEEK(61C) REF to MODE2 FORM,

where MODE2 deflexes to MODE1(47a,b,c,-).

94 v a n Wijngaarden, et al.

(Example:

a) x (in real (x)))

6.2.2. Semantics

The y i e l d W o f a dereferenced-to-MODE-FORM F i s det ermined a s
follows:
• l e t (the name) N be the y ield of the MEEK-FORM of F:
• i t is required that N be not nil;
• W is the value referred to by N.

6.3. Deproceduring

(Deproceduring is used when a rout ine wi t hout paramet ers i s t o b e
called. E.g. , in x r a n d o m , t he rout ine y ielded by random is called and
the real number y ielded is assigned: t he a pos teriori mode of random is
*real'. Syntact ically , an ini t ial 'procedure y ielding' is removed f rom the a
priori mode.)

6.3.1. Syntax

a) d e p r o c e d u r e d to(61C,67a) MOLD FORM
MEEK(61C) procedure y ielding MOID FORM.

b) s o f t l y deprocedured to(61D) MODE FORM
SOFT(61D) procedure y ielding MODE FORM.

(Examples:

a) random (in real (random))
b) x or y (in x or y 3 . 1 4 , see 1.1.2))

6.3.2. Semantics

The y ield W of a deprocedured-to-MOID-FORM or soft ly-deprocedured-to-
MOID-FORM F, in an environ E, is determined as follows:
• l e t (the rout ine) R be the y ield in E of the direct descendent of F;
• W is the y ield of the calling (5.4.3.2.b) of R in E;
• i t is required that W be not newer in scope than E.

6.4. Unit ing

(Unit ing does not change the mode of the run-t ime value y ielded by a
construct, b u t s imp ly giv es mo r e f reedom t o i t . Th a t v a lue mus t b e
acceptable to not just that one mode, but rather to the whole of a given set
of modes. However, af ter unit ing, that value may be subject to a pr imit iv e
action only af ter being dynamically tested in a conformity-c lause (3.4.1.q);
indeed, n o pr imi t iv e ac t ion c an be programmed wi t h a cons t ruc t o f a
'UNITED mode (except to assign it to a UNITED-variable, of course).

Example:
union (boo!, char) t, v;
t := "a"; t := true; v := t.)

ALGOL 68 Revised Repor t 9 5

6.4.1. Syntax

a) u n i t e d to(61B) UNITED FORM : MEEK(61C) MOID FORM,
where MOID unites to UNITED(b).

b) W H E T H E R MOI DI unites to MOID21a,34i,71m)
where MOID1 equivalent MOID2(73a), WHETHER false
unless MOIDI equivalent MOID2(73a),

WHETHER safe MOODS! subset of safe MOODS2(731, m
9
n),
where (MOODS!) is (MOID1)
or (union of MOODS! mode) is (MOIDI),

where (MOODS2) is (MOID2)
or (union of MOODS2 mode) is (MOID2).

(Examples:

a) x (in uir x) •
u (in union (char, int, void) (u), in a reach containing
union (int, void) u := empty))

6.5. Widening

(Widening t rans f orms int egers t o r e a l numbers , r e a l numbers t o
complex numbers (i n both cases, wi t h t he s ame s ize), a v alue of mode
'BITS
.
t o
a
n
u
n
p
a
c
k
e
d
v
e
c
t
o
r
o
f
t
r
u
t
h
v
a
l
u
e
s
,
o
r
a
v
a
l
u
e
o
f
m
o
d
e
'
B
Y
T
E
S
.

to an unpacked vector of characters.
For example, in z / , the y ield of / is widened to the real number 1.0

and t hen t o t he c omplex number (1.0, 0.0); syntac t ically , t he a p r i o r i
mode specified by int is changed to that specified by real and then to that
specified by comp! .1

6.5.1. Syntax

A) B I T S : : s t ructured wit h
row of boolean field SITHETY let ter aleph mode.

B) B Y T E S : : s t ructured with
row of charac ter field SITHETY let ter aleph mode.

C) S 1 T H E T Y : : LENGTH LENGTHETY S H O R T H SHORTHIETY
EMPTY.

D) L E N G T H : : let ter I let ter o let ter n let ter g.
E) S H O R T H : : let ter s let ter h let ter o let ter r let ter t.
F) L E N G T H E T Y : : LENGTH LENGTHETY ; EMPTY.
G) S H O R T H E T Y S H O R T H SHORTHETY ; EMPTY.

a) w i d e n e d to(b,6IA) SIZETY real FORM
MEEK(6IC) SIZETY integral FORM.

(SUETY : : long LONGSETY ; short SHORTSETY ; EMPTY.)

96 v a n Wijngaarden, et al.

b) w i d e n e d to(61A) structured with SIZETY real field letter r letter e
SIZETY real field letter i letter m mode FORM

MEEK(61C) SIZETY real FORM;
widened to(a) SIZETY real FORM.

c) w i d e n e d to(61A) row of boolean FORM : MEEK(61C) BITS FORM.
d) w i d e n e d to(6IA) row of character FORM : MEEK(61C) BYTES FORM.

(Examples:

a) / (in x := /)
b) 1.0 (in z / . 0) • / (in z /)
c) 2r101 (in [j boo! (2r10.1))
d) r (in [] char (r), see 1.1.2))

6.5.2. Semantics

The y ield W of a widened-to-MODE-FORM F is determined as follows:
• l e t V be the y ield of the direc t descendent of F;
Case A: ' MODE i s some 'SIZETY real' :

• W is the real number widenable f rom (2.1.3.1.e) V;
Case B: 'MODE' i s some 'structured wi th SIZETY r eal letter r letter e

SIZETY real letter i letter m mode':
• W is (the complex number which is) a s t ruc tured value whose fields
are respect ively V and the real number 0 of the same size (2.1.3.1.13) as
V;

Case C: * MODE is 'row of boolean' or 'row of character':
• W is the (only) field of V.

6.6. Rowing

(Rowing permits the building of a mult iple value f rom a s ingle element.
If t he lat t er is a name then t he result o f rowing ma y als o be a name
referring to that mult iple value.
Example:

[/ : 1] real bl 4 . 1 3)

6.6.1. Syntax

a) r o w e d to(61A) REFETY ROWS! of MODE FORM:
where (ROWS!) is (row),

STRONG(6IA) REFLEXETY MODE FORM,
where (RUTTY) is derived from (REFLEX ETY)(531b,c,-)

where (ROWS].) is (row ROWS2),
STRONG(61A) REFLEXETY ROWS2 of MODE FORM,
where (REFETY) is derived from (REFLEXETY)(531b,c,-).

(Examples:

a) 4.13 (in [1: 1] real bl 4 . 1 3) •
x l (in [1: 1,1: r] real b2 := x1))

6.6.2. Semantics

(1' " i I) in W.1 n

6.7. Voiding

ALGOL 68 Revised Report 9 7

a) T h e y ie ld W o f a rowed-to-REFETY-ROWS1-of -MODE-FORM F i s
determined as follows:
• l e t V be the y ield of the STRONG-FORM of F;
Case A: •REFETY' is 'EMPTY':

• W is the mult iple value "built " (b) f rom V for 'ROWSI*:
Case B: ' RUTTY ' is 'REF to':

If V is nil,
then W is a nil name:
otherwise, W is the name "built " (c) f rom V f or *ROWS

b) T h e mult iple value W "bui l t " f rom a value V, f o r some 'ROWS1'; is
determined as follows:
Case A: ' ROWS! ' is *row':

• W is composed of
(i) a descriptor ((1, 1)),
(ii) (one element) V;

Case B: ' ROWS! ' is some ' row ROWS2':

• l e t the descriptor of V be ((I , u1'), '(I u)) ;1 n n
• W is composed of

(i) a descriptor ((1, 1), (I
v u
l
) , , (I
n
, u
n
)) ,

(ii) t he elements of V;
• t he element selected by an index (i1
") i n V
i s t h a t
s e l e c t e d
b y

 n

c) T h e n a me N i "b u i l t " f r o m a n a me N, f o r s ome ' ROWSI ' , i s
determined as follows:
• N i is a name (not necessarily newly created), equal in scope t o N and
referring t o t he mul t ip le v alue bu i l t (b), f o r ' ROWS! ' , f r o m t he v alue
referred to by N;
Case A: 'ROWS! : is ' row' :

• t he (only) subname of Ni is N:
Case B: 'ROWS] : is some ' row ROWS2':

• t he subname of Ni selected by (1, I) i s t he subname o f N

selected by (i
1
, , i
n
) .(Voiding i s used t o dis c ard t he y ie ld o f s ome u n i t whos e p r i ma r y

purpose is t o cause it s side-effects: t he a pos teriori mode is then s imply
'void'. Fo r example, in x i ; y:r--./;, the assignat ion y := / i s voided, and
in proc t i n t : entier (random x 100); t;, the applied-identifier t is voided
after a deproceduring, which prescribes the calling of a rout ine.

98 v a n WUngaarden, etal .

Assignations and other COMORFs are voided without any deproceduring
so that, in proc void p fi n i s h , t h e assignation p fi n i s h does not
prescribe an unexpected calling of the routine finish.)
6.7.1. Syntax
A) N O N P R O C :: PLAIN ; STOWED ; REF to NONPROC ;

procedure with PARAMETERS yielding MOID ; UNITED.

a) v o i d e d to(61A) void MOM' : deprocedured to(63a) NONPROC MOM
- unchanged from(61f) NONPROC MORK
b) v o i d e d to(61A} void COMORE'

unchanged from(611) MODE COMORE

(Examples:
a) random (in skip; random;) •

next random (last random)
(in skip; next random (last random);)

b) proc void (pp) (in proc proc void pp =- proc void : (pr int (1);
void : print (2)); proc void (pp);))

6.7.2. Semantics

7. Modes and nests

The elaboration of a voided-to-void-FORM consists o f that of its direct
descendent, and yields empty.

(The identification of a property in a nest is the static counterpart o f
the dynamic determination (4.8.2.b) o f a value in an environ: the search is
conducted from the newest (youngest) level towards the previous (older)
ones.

Modes are composed from the primitive modes, such as 'boolean', with
the aid of 'HEAD•s, such as 'structured with', and they may be recursive.
Recursive modes spelled i n d if fe ren t wa y s m a y nevertheless b e
equivalent. The syntax tests the equivalence o f such modes by proving
that i t is impossible to find any discrepancy between the ir respective
structures or component modes.

A number of unsafe uses of properties are prevented. An identifier o r
mode-indication is not declared more than once in each reach. The modes
of the operands of a formula do not determine more than one operation.
Recursions in modes do not cause the creation o f dynamic objects o f
unlimited size and do not allow ambiguous coercions.)

7.1. Independence of properties

(The following syntax determines whether two properties (i.e ., two
•
P
R
O
P
•
s
)
,
s
u
c
h
a
s
t
h
o
s
e
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
r
e
a
l
x
a
n
d
i
n
t
x
,
m
a
y
o
r
m
a
y
n
o
t

be enveloped by the same 'LAYER.)

7.1.1. Syntax

ALGOL 68 Revised Repor t 9 9

A) P R E F :: procedure y ielding ; REF to.
B) N O N P R E F :: PLAIN ; STOWED

procedure wit h PARAMETERS y ielding MOID ; UNITED ; void.
C) * P R E F S E T Y : : PREF PREFSETY ; EMPTY.

(PROP: : DEC; LAB ; FIELD.
QUALITY : : MODE ; MOID TALLY ; DYADIC ; label ; MODE field.
TAX : : TAG ; TAB ; TAD ; TAM.
TAO : : TAD ; TAM.)

a) W H E T H E R PROP! independent PROPS2 PROP2(a,48a,c,72a)
WHETHER PROP! independent PROPS2(a,c)

and PROP! independent PROP2(c).
b) W H E T H E R PROP independent E MP TY (4 8 a
9
c , 7 2 a) : W H E T H E R
t r u e .

c) W H E T H E R QUALITY! TAXI
independent QUALITY2 TAX2(a,48a,c,72a)

unless (TAXI) is (TAX2), WHETHER t rue
where (TAXI) is (TAX2) and (TAXI) is (TAO),

WHETHER QUALI TY! independent QUALITY2(d).
d) W H E T H E R QUALI TY! independent QUALITY2(c)

where QUALI TY! related QUALITY2(e,f ,g,h, i, j, -),
WHETHER false

unless QUALI TY! related QUALITY2(e,f ,g,h, i, j, -),
WHETHER true.

e) W H E T H E R MONO related DUO(d) : WHETHER false.
f) W H E T H E R DUO related MONO(d) : WHETHER false.
g) W H E T H E R PRAM related DYADIC(d) : WHETHER false.
h) W H E T H E R DYADIC related PRAM(d) : WHETHER false.
i) W H E T H E R procedure with MODE! paramet er MODE2 parameter

y ielding MOIDI related
procedure wit h MODE3 parameter MODE4 parameter
y ielding MOID2(d)

WHETHER MODEI fi rmly related MODE3(k)
and MODE2 fi rmly related MODEzt(k).

j) W H E T H E R procedure wit h MODEI paramet er y ielding MOI DI
related procedure wit h MODE2 parameter y ielding
MOID2(d) : WHETHER MODEI fi rmly related MODE2(k).

k) W H E T H E R MOI DI fi rmly related MOID2(i, j)
WHETHER MOODSI is fi rm MOID2(1,m)

or MOODS2 is fi rm MOIDI (I ,m),
where (MOODS!) is (MOI DI)
or (union of MOODS! mode) is (MOIDI),

where (MOODS2) is (MOID2)
or (union of MOODS2 mode) is (MOID2).

100 v a n W i jngaarden, et al.

I) W H E T H E R MOODS MOOD is firm MOID(k,l) :
WHETHER MOODS is firm MOID(I ,m)

or MOOD is firm MOID(m).
m) W H E T H E R MOI DI is firm MOID2(k,1,n,47f)

WHETHER MOI DI equivalent MOID2(73al
or MOIDI unites to MOID2(6413)
or MOIDI deprefs to firm MOID2(n).

n) W H E T H E R MOI DI deprefs to firm MOID2(m)
where (MOI DI) is (PREF MOID3),

WHETHER MOID5 is firm MOID2(m),
where MOID3 deflexes to MOID5(47a,b,c)

where (MOI DI) is (NONPREF), WHETHER false.
(To prevent the ambiguous application of indicators, as in real x, in t x;

x := 0, certain restrictions are imposed on defining-indicators contained in
a given reach. These are enforced by the syntactic test for "independence"
of properties enveloped by a given 'LAYER' (ru les a, b, c). A sufficient
condition, not satisfied in the example above, fo r the independence of a
pair o f properties, each being some 'QUALITY TAX', is that the •TAX's
differ (rule c). For •TAX's which are not some 'TAO', this condition is also
necessary, so that even real x, int x; skip is not a serial-clause.

For two properties 'QUALITY! TAO' and 'QUALITY2 TAO' the test for
independence is more complicated, as is exemplified by the serial-clause

op + = (int i) boo/ : true, op + = (int i, j) int : 1, op + = (int i, boo! j) int : 2,
prio + =6;
0 ++0 0 . 2 0

Ambiguities would be present in
prio + =6, +.--• 7; 1 + 2 x 3 0 7 or 9? 0 ,

in
op z = (int i) int : 1, mode z i nt ;

z i 0 formula or declarat ion? 0 ; skip
and in

op ? = (union (ref real, char) a) int : 1, op ? (r eal a) int : 2;
? loc real t• 1 or 2? 0

In such cases a test is made that the two •QUALITY's are independent
(rules c, d). A •MOID TALLY' is never independent o f any 'QUALITY'
(rule d). A 'MONO' is always independent of a 'DUO' (ru les d, e, f) and
both are independent of a *DYADIC' (i.e., of a 'priority PRI0') (ru les d, g,
h). In the case of two •PRAM's which are both ' MO W' o r both 'DUO',
ambiguities could a rise i f the corresponding parameter modes we re
"firmly related", i.e., i f some (pa ir of) operand mode (s) could be firmly
coerced to the (pa ir of) parameter mode (s) o f either 'PRAM' (ru les i, j).
In the example with the two definitions o f ?, the two 'PRAM's are related
since the modes specified by union (ref real, char) and by real are firmly
related, the mode specified by ref real being firmly coercible to either one.

It may be shown that two modes are firmly related i f one of them, o r
some component 'MOOD' o f one o f them, may be firmly coerced to the

ALGOL 68 Revised Repor t 1 0 1

other (ru les k , 1), wh i c h requires a sequence o f z ero o r mo r e meek
coercions f ol lowed b y a t mos t one uni t ing (6.4. I .a). Th e poss ibil it y o r
otherwise o f s uc h a sequence o f coerc ions be t ween t w o modes i s
determined by the predicate ' is fi rm (ru les m, n).

A 'PROP! ' also renders inaccessible a 'PROP2' in an outer 'LAYER' i f
that 'PROP2' is not independent of 'PROP! ' ; e.g.,

begin int x;
begin real x; 0 here the 'PROP! ' is 'reference to real let ter x ' C

skip
end

end
and likewise

begin op ? (i nt i) int : 1, int k :,- 2;
begin op ? (r e f int i) int • 3;

? k delivers 3, but ? 4 could not occur here because its
operator is inaccessible 0

end
end

7.2. I dent i fi c at i on i n nes ts

(This s ec t ion ens ures t h a t f o r eac h appl ied-indic at or t h e r e i s a
corresponding property in some suitable 'LAYER* of the nest.)

7.2.1. Syntax

(PROPSETY : : PROPS ; EMPTY.
PROPS : : PROP; PROPS PROP.
PROP: : DEC ; LAB ; FIELD.
QUALITY : : MODE ; MOID TALLY ; DYADIC ; label ; MODE field.
TAX ; : TAG ; TAB ; TAD ; TAM.)

a) W H E T H E R PROP ident ified in NEST new PROPSETY(a,48b,542a)
where PROP resides in PROPSETY(b,c,-), WHETHER t rue
where PROP independent PROPSETY(71a,b,c),

WHETHER PROP ident ified in NEST(a,-).

b) W H E T H E R PROP! resides in PROPS2 PROP2(a,b,48d)
WHETHER PROP! resides in PROP2(c,-)

or PROP! resides in PROPS2(13,c,-).
c) W H E T H E R QUALI TY! TAX resides in QUALITY2 TAX(a,b,48d)

where (QUALITY I) is (label) o r (QUALI TY!) is (DYADIC)
or (QUALI TY!) is (MODE field),

WHETHER (QUALI TY!) is (QUALITY2)
where (QUALI TY!) is (MOLD! TALLETY)

and (QUALITY2) is (MOID2 TALLETY),
WHETHER MOID1 equivalent MOID2(73a).

102 v a n Wijngaarden, et al.

(A nest, except t he p r ima l one (whic h is jus t ' new') , i s s ome 'NEST
LAYER* (i. e. , s ome 'NEST new PROPSETY*). A *PROP' i s ident ified b y
first look ing f or i t in that 'LAYER' (ru le a). l i t h e 'PROP* is some ' label
TAX' or 'DYADIC TAX' , then a s imple match of the ' PROrs is a sufficient
test (rule c). l i t h e *PROP' is some 'MOID TALLETY TAX' , t hen the mode
equivalencing mechanism mus t be invoked (ru le c). I f i t is not f ound in
the 'LAYER' , t hen t he search cont inues wi t h t he ' NEST (wi t h o u t t ha t
'LAYER'), prov ided that i t is independent of al l 'PROP's in t hat 'LAYER':
otherwise the search is abandoned (ru le a). Not e t hat rules b and c do
double duty in that they are also used to check the validit y of applied-field-
selectors (4.8.1.d) .1

7.2.2. Semantics
a) I f s ome NEST-range R (3.0.1.f) c ont ains a n applied-indic at or I

(4.8.1.b) o f whic h t here i s a descendent where-PROP-ident ified-in-NEST-
LAYER, but no descendent where-PROP-ident ified-in-NEST, t hen R i s t he
"defining range" of that I . (Note t hat 'NEST' i s alway s t he nes t i n f orce
just outside the range.)
b) A QUALITY-applied-indicator-with-TAX I wh o s e defi n ing NE S T-

range (a) i s R "ident ifi es " t h e QUALITY-NEST-LAYER-defining-indicator-
with-TAX contained in R.

(For example, in
(010 real I = 2.0; WC int I = 1; (030 real x; print (i) 030) 020) 010

there are three ranges. The applied-ident ifier I in pr int (i) is forced, by the
syntax, t o b e a n integral-NEST-new-real-let ter-i-new-integral-let ter-i-new-
reference-to-real-let ter-x-applied-ident ifier-with-let ter-i (4 . 8. 1. b) . I t s
defining r a n g e i s t h e NEST-new-real-let ter-i-serial-c lause-defining-new-
integral-let ter-i (3.2.I.a) numbered 020, i t ident ifies the defining-ident ifier i
contained in int I (not the one in real I), and its mode is ' integral' .)

(By a s imi lar mechanism, a DYADIC-formula (5.4.2.1.a) ma y be said to
"ident ify" t ha t DYADIC-defining-operator (4.8.1.a) wh i c h det ermines i t s
priority .)

c) T h e env iron E "necessary f or" a const ruct C i n an env iron E l i s
determined as follows:
I f El is the pr imal env iron (2.2.2.a),
then E is El;
otherwise, let t ing E l b e composed o f a locale L corresponding t o s ome

'PROPSETY' and another environ E2,
If C contains any QUALITY-applied-indicator-with-TAX

• wh ic h does not ident ify (b) a defining-indicator contained in C,
• wh ic h is not a mode-indicat ion direc t ly descended f rom a f ormal.
or v irtual-dec larer, and
• wh ic h is such that the predicate 'where QUALI TY TAX resides in
PROPSETY' (7.2.1.b) holds,

then E is El;

otherwise, (I_ is not necessary f or C and) E is the env iron necessary f or
C in E2.

(The env iron necessary f o r a cons t ruc t i s used i n t he semant ics o f
routine-texts (5.4.1.2) and in "establishing" (3.2.2.13). Fo r example, in

C2(t proc void pp; int n; (11•10 proc p v o i d : pr int (n); pp : . p)
if El and E2 are the environs established by the elaborat ion of the serial-
clauses mark ed b y t he c omment s ,
V / C a n d 0 2 C ,
t h e n
E 2
i s
t h e
e n v i r o
n

necessary i n E l f o r t he rout ine-tex t v oid : p r i n t (n), and s o t he rout ine
yielded by p i n E l i s composed of that routine-text together wi th E2
(5.4.1.2). Therefore, t he scope of that rout ine is the scope of E2 (2.I.3.5.c)
and hence the assignment (5.2.1.2.b) invoked by pp := p is well defined"

7.3. Equivalence of modes

(The equivalence o r nonequivalence o f 'MOI D's i s det ermined i n t his
section. For a discussion of equivalent 'MOID's see 2.1.1.2.)

(One way of v iewing recurs ive modes is t o cons ider t hem as infi nit e
trees. Such a "mode t ree" is obtained by repeatedly subst itut ing in some
spelling, f or each ' MU applicat ion', t he 'MODE' o f the corresponding ' MU
definit ion of MODE'. Thus , t he spelling ' mu i definit ion o f s t ruc tured wi t h
integral fiel d l etter i reference to mui appl ication fiel d l etter n mode'
would give rise to the following mode tree:

'structured with'

'i ntegr al "fiel d"l etter i•

'structured with'

'integral' 'field' e t t e r i•

ALGOL 68 Revised Repor t 1 0 3

'reference to'

'reference to'

'field' 'letter n•

1
'field' 'letter n'

(et cetera).

1
'mode'

1
*mode'

Two spellings are equivalent i f and only i f they give rise to identical mode
trees. The equivalence syntax tests the equivalence of two spellings by, as
it were, s imultaneously developing the two trees unt i l a dif ference is found
(result ing in a blind alley) o r unt il i t becomes apparent t hat no dif ference
can be found. Th e growing produc t ion t ree reflec ts t o s ome ex tent t he
structure of the mode trees.)

7.3.1. Syntax

A) S A F E :: safe ; MU has MODE SAFE ; yin SAFE ; yang SAFE
remember MO W' MOID2 SAFE.

104 v a n WUngaarden, et al.

B) H E A D : : PLAIN ; PREF(7IA) ; s t ructured wit h
FLEXETY ROWS of ; procedure wit h ; union of ; void.

C) T A I L E T Y M O I D FI E L DS mode ; PARAMETERS y ielding MOID
MOODS mode ; EMPTY.

D) P A R T S : : PART ; PARTS PART.
E) P A R T : : FI ELD; PARAMETER.
a) W H E T H E R MOIDI equivalent M0I 112(64b, 71m
9
72c)

WHETHER safe MOIDI equivalent safe MOID2(13).
b) W H E T H E R SAFE! MOI DI equivalent SAFE2 M011)2 (a , b , e
t
i , j , n)

where (SAFE!) contains (remember MOIDI MOID2)
or (SAFE2) contains (remember MOID2 MOIDI),

WHETHER t rue
unless (SAK I) contains (remember MOW! MOID2)

or (SAFE2) contains (remember MOID2 MOW!),
WHETHER (HEAD3) is (HEAD4)
and remember MOIDI MOID2 SAFE3 TAILETY3
equivalent SAFE4 TAILETY4tb,d,e,k,q,-1,

where SAFE3 HEAD3 TAILETY3 develops f rom
SAFEI MOIDI (c)
and SAFE4 HEAD4 TAILETY4 develops f rom
SAFE2 MOID2(c).

c) W H E T H E R SAFE2 HEAD TAILETY develops f rom
SAFE! MOIDtb,c)

where (MOID) is (HEAD TAILETY),
WHETHER (HEAD) shields SAFE! to SAFE2(74a,b,c,d,-)

where (MOID) is (MU definit ion of MODE),
unless (SAFE!) contains (MU has),
WHETHER SAFE2 HEAD TAILETY develops f rom
MU has MODE SAFE' MODEtc l

where (MOID) is (MU applicat ion)
and (SAFE!) is (NOTION MU has MODE SAFE3)
and (NOTION) contains (y in) and (NOTION) contains (yang),

WHETHER SAFE2 HEAD TAILETY develops f rom
SAFE! MODE(c).

d) W H E T H E R SAFE! FIELDS! mode
equivalent SAFE2 FIELDS2 mode(b)

WHETHER SAFE! FIELDS! equivalent SAFE2 FIELDS2(f,g,h,iI.
e) W H E T H E R SAFE! PARAMETERS! y ielding MOIDI

equivalent SAFE2 PARAMETERS2 y ielding MOID2lb)
WHETHER SAFE! PARAMETERSI

equivalent SAFE2 PARAMETERS2(f,g,h, j)
and SAFE! MOI DI equivalent SAFE2 MOID2(b).

f) W H E T H E R SAFEI PARTS! PARTI
equivalent SAFE2 PARTS2 PART2td,e,0

WHETHER SAFE! PARTS! equivalent SAFE2 PARTS2(f , g , h
7
i , j)

and SAFEI PARTI equivalent SAFE2 PAR1'2(i„i).

ALGOL 68 Revised Repor t 1 0 5

g) W H E T H E R SAFE! PARTS! PART! equivalent
SAFE2 PART2(d,e,f) : WHETHER false.

h) W H E T H E R SAFE! PART! equivalent
SAFE2 PARTS2 PART2(d,e,f) : WHETHER false.

i) W H E T H E R SAFE! MODE! field TAG!
equivalent SAFE2 MODE2 field TAG2td,f)

WHETHER (TAG!) is (TAG2)
and SAFEI MODEI equivalent SAFE2 MODE2(b).

j) W H E T H E R SAFE! MODEI parameter
equivalent SAFE2 MODE2 parameter(e,f)

WHETHER SAFE! MODE! equivalent SAFE2 MODE2(b).

k) W H E T H E R SAFEI MOODS! mode equivalent
SAFE2 MOODS2 mode(b)

WHETHER SAFEI MOODS! subset of SAFE2 MOODS2(1,m,n)
and SAFE2 MOODS2 subset of SAFE! MOODSI(I ,m,n)
and MOODS! number equals MOODS2 number(o,p).

I) W H E T H E R SAFE! MOODS' MOODI
subset of SAFE2 MOODS2(k,1,46s,64b)

WHETHER SAFE! MOODS I subset of SAFE2 MOODS2(1,m,n)
and SAFE! MOODI subset of SAFE2 MOODS2(m,n).

m) W H E T H E R SAFEI MOODI
subset of SAFE2 MOODS2 MOOD2(k,l,m,46s,6413)

WHETHER SAFE! MOODI subset of SAFE2 MOODS2(m,n)
or SAFE! MOODI subset of SAFE2 MOOD2(n).

n) W H E T H E R SAFE! MOODI subset of SAFE2 MOOD2(k,1,m,64131
WHETHER SAFE! MOOD! equivalent SAFE2 MOOD2(b).

o) W H E T H E R MOODS! MOOD! number equals
MOODS2 MOOD2 number(k,o)

WHETHER MOODSI number equals MOODS2 number(o,p,-).
p) W H E T H E R MOODI number equals MOOD2 number(k,o)

WHETHER true.

WHETHER SAFE! EMPTY equivalent SAFE2 EMPTY(b)
WHETHER true.

(Rule a introduces the 'SAFE's which are used as associative memories
during the determination of equivalence. Ther e a r e two of them, one
belonging t o each mode. Rul e b draws a n immediate conclusion i f the
'MOID's under consideration ar e al ready remembered (see below) i n an
appropriate 'SAFE i n the form 'remember MOI DI MOI D2'. I f this is not
the case, then the two •MOID's are first remembered in a 'SAFE' (the one
on the lef t) and then each 'MOI D' is developed (ru le c) and split into it s
'HEAD' and its •TAILETIC, e.g., 'reference to real ' i s split into reference
to and 'real'.

If the 'HEAD's differ, then the matter is settled (rule b): otherwise the
'TAILETY's are analyzed according to t heir s t ruc ture (whic h mus t be the
same i f the 'HEAD's a r e identical). I n each case, except wher e t he

41)

106 v a n Wijngaarden, et al.

'HEAD's were 'union of ' , the equivalence is determined by ex amining the
corresponding components, according to the following scheme:

rule ' T A I L E T Y ' c o m p o n e n t s

'FIELDS mode' ' F I E L D S '
'PARAMETERS y ielding MO I D"P A R AM r l ' E l0
,
* a n d ' M O W '
'FIELDS FIELD' ' F I E L D S ' and 'FIELD'
'PARAMETERS P A RA ME TE R"P A R AMFMERS' and 'PARAMETER'
'MODE field TAG* ' M O D E and 'TAG'
'MODE parameter* ' M O D E '

In the case of unions, the 'TAILETY's are of the f orm 'MOODS I mode' and
'MOODS2 mode' . Since 'MOOD's wi t h in equivalent unions may commute,
as i n t he modes spec ified b y union (real, int) and union (i t , real), t he
equivalence i s det ermined b y check ing t ha t •MOODS1' i s a subset o f
•MOODS2' and that 'MOODS2' is a subset of *MOODS l', where the subset
test, of course, invokes the equivalence test recurs ively (rules k, l,m,n,o,p).

A ' MO M' i s developed (r u l e c) i n t o t he f o r m ' HEAD TAI LET1 ' b y
determining that
(i) i t is already of t hat f orm: i n whic h case mark ers (' y in ' and 'yang')
may be placed in its 'SAFE' f or the later determinat ion of well-formedness
(see 7.4);
(ii) i t is some 'MU definit ion of MODE': i n whic h case ' MU has MODE' is
stored i n i t s 'SAFE' (prov ided t h a t t h is par t i c u la r ' MU' i s n o t t here
already) and the 'MODE' is developed;
(iii) i t is some ' MU applicat ion' : i n whic h case t here mus t be some *MU
has MODE' i n it s 'SAFE' already . That *MODE' is then developed af t er a
well-formedness check (see 7.4) cons is t ing of the determinat ion that there
is at least one ' y in' and at least one 'yang' i n t he 'SAFE' whic h is more
recent than the 'MU has MODE'.)

(Before a p a i r o f ' TAI LETY' s i s t es t ed f o r equiv alenc e, i t i s
remembered in the 'SAFE' that the original pair of 'MOID's is being tested.
This is used t o f orc e a short cut t o ' WHETHER t rue* i f these 'MOI D's
should ev er be tes ted again f o r equivalence l ower down t he produc t ion
tree. Since the number of pairs of component 'MOID's that can be derived
f rom any t wo given 'MOID's is finite, i t f ollows t hat t he tes t ing process
terminates.

It remains t o b e s hown t ha t t he process i s c orrec t . Cons ider t he
unrestricted (poss ibly infinite) produc t ion t ree t hat would be obtained i f
there were no shortcut i n t he syntax (b y omi t t ing t he fi rs t al t ernat iv e
together wit h the fi rs t member of the other alternat ive of rule b). I f t wo
'MOID's a r e no t equivalent , t hen t here ex is t s i n t h e i r mo d e t rees a
shortest pat h f r o m t he t op node t o s ome node ex hibi t ing a dif ference.
Obviously, t h e refl ec t ion o f t h i s s hort es t p a t h i n t h e unres t r ic t ed
production t ree cannot contain a repeated test f or t he equivalence of any
pair of 'MOID's, and therefore none of the shortcuts to 'WHETHER t rue' in

ALGOL 68 Revised Report 1 0 7

the res t r ic t ed produc t ion t r e e c a n o c c u r o n t h i s s hor t es t p a t h .
Consequently, t he pat h t o t he dif f erence mus t b e present a ls o i n t he
(restricted) produc t ion t ree produced by the syntax. I f the test ing process
does not exhibit a dif ference in the rest ric ted t ree, then no dif ference can
be found in any number of steps: i.e. , the 'MOID's are equivalent.)

7.4. Well-formedness
(A mode is well formed if

(i) t he elaborat ion of an actual-dec larer specify ing that mode is a finit e
action (i.e. , any value of that mode can be stored in a finite memory)
and

(ii) i t i s no t s t rongly coerc ible f r o m i t s el f (s inc e t h is wou ld lead t o
ambiguit ies in coercion).)

7.4.1. Syntax
a) W H E T H E R (NOTION) shields SAFE to SAFE(73c)

where (NOTION) is (PLAIN)
or (NOTION) is (FLEXETY ROWS of)
or (NOTION) is (union of) or (NOTION) is (void),

WHETHER true.
b) W H E T H E R (PREF) shields SAFE to yin SAFE(73c) : WHETHER true.
c) W H E T H E R (structured with) shields SAFE to yang SAFE(73c)

WHETHER true.
d) W H E T H E R (procedure with) shields SAFE to yin yang SAFE(73c)

WHETHER true.
(As a by -produc t o f mode equivalenc ing, modes a re tes ted f or. well-

formedness (7 . 3 1 c) . A l l nonrec urs iv e modes a r e w e l l f o rmed . F o r
recursive modes, i t is necessary t hat each cyc le in each spelling of t hat
mode (from 'MU definition of MODE' to 'MU application') passes through
at least one 'HEAD' whic h is y in, ensuring condit ion (i) and one (poss ibly
the same) *HEAD wh ic h is yang, ensuring condit ion (i i) . Y in 'HEAD's are
'PREF' a nd 'procedure wi th'. Y a ng 'HEAILEs a r e 'structured wi th' a nd
'procedure wit h' . The other 'HEAD's , inc luding 'FLEXETY ROWS of ' and
'union of ', are neither y in nor yang. This means that the modes specified
by a, b and c in

mode a = struct (int n, ref a next), b = struct (proc b next), c = proc (c)c
are all well formed. However, mode d = [1 : 101 d, e = union (int, e) is not
a mode-declaration.) (T a o produced the one.

The one produced the two.
The two produced the three.
And t he three produced t he ten thousand
things.
The ten thousand things carry the y in and
embrace t h e y a n g , a n d t h r o u g h t h e
blending of the material force they achieve
harmony.
Tao-te Ching, 42, L a o Tzu.)

108 v a n Wijngaarden,

PART I V

Elaborat ion-independent constructions

8. Denotations
(Denotations, e. g. , 3. 14 o r "abc ", a r e cons t ruc ts whos e y ie lds a r e

independent of any action. I n other languages, they are somet imes t ermed
"literals" or "constants".)

8.0.1. Syntax
a) M O I D NEST denoter(5D,A341i) : pragment(92a) sequence option,

MOW denotation(810a,811a,812a,813a,814a,815a,82a,b,c,83a,-).

(The meaning of a denotat ion is independent of any nest.) (94d)

8.1. Plain denotations

(Plain-denotations a r e t hos e o f a r i t hme t i c v a lues , t r u t h v a lues ,
characters and the void value, e.g., 1, 3.14, true, "a " and empty.)

8.1.0.1. Syntax
A) S I Z E : : long ; short.
B) * N U M E R A L : : fixed point numeral ; variable point numeral

float ing point numeral.

a) S I Z E INTREAL denotation(a,80a)
SIZE symbol(94d), INTREAL denotation(a,811a,812a).

b) * p l a i n denotat ion : PLAIN denotation(a,811a,812a,813a,814a)
void denotation(815a).

(Example:
a) tong)

8.1.0.2. Semantics

The y ield W of an INTREAL-denotat ion is t he "int r ins ic value" (8.1.1.2,
8.1.2.2.a,b) of its constituent NUMERAL:
• i t is required t hat W be not great er t han t he larges t v alue o f mode
INTREAL• that can be dist inguished (2.1.3.1.d).

(An INTREAL-denotat ion y ie lds a n ar i t hmet ic v a l u e (2.1.3.1.a), b u t
arithmet ic v a lues y ie lded b y d i f f e rent INTREAL-denotat ions a r e n o t
necessarily dif ferent (e.g., 123.4 and 1 . 2 3 4
1 0
+ 2) .)8.1.1. Integral denotations

8.1.1.1. Syntax

a) i n t e g r a l denotation(80a,810a) : fixed point numeral(b).
b) fi x e d point numeral(a,812c,d,f,i,A341h) : digit cypher(c) sequence.
c) d i g i t cypher(b) : DIGIT symbol(94b).

(Examples:

a) 4096
c) 4)

8.1.1.2. Semantics

(Examples:

a) 0.00123 • 1.23e-3
c) 0
e) 1.23e-3
g) e-3
i) - 3

8.1.2.2. Semantics

ALGOL 68 Revised Repor t 1 0 9

b) 4096

The int rins ic value of a fixed-point -numeral N is t he int eger of whic h
the reference-language f orm of N (9.3.b) is a dec imal representat ion.

8.1.2. Real denotations

8.1.2.1. Syntax

a) r e a l denotation(80a,810a)
variable point numeral(b) ; float ing point numeral(e).

b) v a r i a b l e point numeral(a,f)
integral part(c) option, fractional part(d).

c) i n t e g r a l part(b) : fixed point numeral(811b).
d) f r a c t i ona l part(b) : point symbol(94b), fixed point numeral(81113).
e) fl o a t i n g point numeral(a) : s tagnant part(f), exponent part(g).
f) s t a g n a n t part(e)

fixed point numeral(811b) ; variable point numeralibl.
g) e x p o n e n t part(e) : times ten to the power choice(h), power of ten(i).
h) t i m e s ten to the power choice(g)

times ten to the power symbol(94b) ; letter e symbol(94a).
i) p o w e r of ten(g) : plusminus(j) option, fixed point numeral(811b).
j) pl us m i nus (i) : plus symbol(94c) ; minus symbol(94c).

b) 0.00123
d) .00123
f) 123 • 1.23
h) 10 • e

+ • - i

a) T h e int rins ic value V of a variable-point -numeral N is det ermined
as follows:
• l e t I be the int rins ic v alue o f the fixed-point -numeral o f it s const ituent
integral-part , i f any, and be 0 otherwise:
• l e t F be the int rins ic value of the fixed-point -numeral of ' it s f rac t ional-
part P div ided by 10 as many t imes as there are digit -cyphers contained in
P:
• V is the sum in the sense of numerical analysis of I and F.

b) T h e int rins ic value V of a float ing-point -numeral N is determined as
follows:

110 v a n Wijngaarden, et al.

• l et S be the intrinsic value of the NUMERAL of its stagnant-part:
• l e t E be the int rins ic value of the const ituent fixed-point -numeral o f it s
exponent-part:
Case A: The constituent plusminus-option of N contains a minus-symbol:

• V is t he produc t i n t he sense o f numeric al analys is o f S and 1/10
raised to the power E;

Case B: The direct descendent of that plusminus-option contains a plus-
symbol or is empty:
• V i s the product i n the sense of numerical analysis of S and 10
raised to the power E.

8.1.3. Boolean denotations

8.1.3.1. Syntax
a) b o o l e a n denotation(80a) : true194b) symbol ; false(94b) symbol.

(Examples:
a) true • false)

8.1.3.2. Semantics

The y ield of a boolean-denotat ion is t rue (false) i f its direc t descendent
is a true-symbol (false-symbol).

8.1.4. Character denotations

(Character-denotations consist o f a str ing-i tem between t w o quote-
symbols, e.g., "a". To indicate a quote, a quote-image-symbol (represented
by ") i s used, e.g., " . Since the syntax nowhere allows charac ter- o r
string-denotations to follow one another, this causes no ambiguity .)

8.1.4.1. Syntax
a) c h a r a c t e r denotation{80a)

quote(94b) symbol, string item(b), quote symbol(94b).
b) s t r i n g item(a,83b) : character glyph(c) ; quote image symbol(94b)

other string item(d).
c) c h a r a c t e r glyphtb,92c) : LETTER symbol(94a)

DIGIT symbol(94b) ; point symbol(94b) ; open symbol(94f)
close symbol(94f) ; comma symbol(94b) ; space symbol(94b)
plus symbol(94c) ; minus symbol(94c).

d) A product ion rule may be added f or the not ion 'ot her s t ring i t em
(b, f or which no liyper-rule is given in this Report) each of whose
alternatives i s a symbol (1.1.3.11) whi ch i s di fferent fr om any
t erminal produc t ion o f ' c harac t er g ly ph' (c) a n d wh ic h i s no t
'quote symbol'.

(Examples:

a) "a" b) a • " • ?
c) a • I • • (•) • , • • + • -)

ALGOL 68 Revised Report 1 1 1

8.1.4.2. Semantics

a) T h e y ie ld o f a character-denotat ion i s t he int r ins ic v alue o f t he
symbol descended f rom its s t ring-item.

b) T h e int rins ic value of each dis t inct symbol descended f rom a s t ring-
item is a unique character. (Characters have no inherent meaning, except
insofar as some of them are interpreted in part ic ular ways by the t ransput
declarations (10.3). The character-glyphs, whic h inc lude al l the characters
needed f o r t ransput , f o r m a mi n i mu m s et wh i c h a l l implement at ions
(2.2.2.c) are expected to prov ide.)

8.1.5. Void denotat ion

(A void-denotat ion ma y be used t o ass ign a v oid v alue t o a UNI TED-
variable, e.g., union ([v o i d) u e m pt y .)

8.1.5.1. Syntax
a) v o i d denotation(80a) : empty(94b) symbol.

(Example:
a) empty)

8.1.5.2. Semantics

The y ield of a void-denotat ion is empty.

8.2. Bits denotations

8.2.1. Syntax

A) R A D I X : : radix two ; radix four ; radix eight ; radix sixteen.

a) s t r u c t u r e d with row of boolean field
LENGTH LENGTHETY let ter aleph mode denotation(a,80a)

long(94d) symbol, structured wit h row of boolean field
LEN(;THETY let ter aleph mode denotat ion (ac).

b) s t r u c t u r e d wit h row of boolean field
SHORTH SHORTHETY let ter aleph mode denotation(13,80a)
short(94d) symbol, s t ructured wit h row of boolean field
SHORTI HAI let t er aleph mode denotation(b,c).

cl s t r u c t u r e d wit h row of boolean field
let ter aleph mode denotation(a,b,80a)

RADIX(d,e,f,g), let ter r symbol(94a), RA DI ʻ digit (h, i, j,k) sequence.
d) r a d i x two(c,A347b) : digit two(9413) symbol.
e) r a d i x four(c,A34713) : d igi t four(94b) symbol.
0 r a d i x eight(c,A347b) : digit eight(94131 symbol.

g) r a d i x sixteen(c,A347b) : digit one symbol(9413), digit six symbol(94b).
h) r a d i x two digit (e, i) : digit zero symbol(94b) ; digit one symbol(9413).
i) r a d i x four digit (c, j) : radix two digit (h) ; digit two symbol(94b)

digit three symbol(9413).

112 v a n Wi.Ingaarden, et al.

j) r a d i x eight digit(c,k) : radix four digit (i) ; digit four symbol(9413)
digit five symbol(94b) ; digit six symbol(94b)
digit seven symbol(94b).

k) r a d i x sixteen digit (c) : radix eight digit (j) ; digit eight symbol(94b)
digit nine symbol(94b) ; let ter a symbol(94a)
let ter b symbol(94a) ; let ter c symbol(94a) ; let ter d symbol(94a)
letter e symbol(94a) ; let t er f symbol(94a).

1) * b i t s denotation : BITS denotationta,b,c).
(BITS : : s t ructured wit h

row of boolean field SITHET1 let t er aleph mode.)
m) * r a d i x digit : RADI X digit (h, i„j,k).

(Examples:
a) long 2r101 b) short 16rfi lf
c) 8r231)

8.2.2. Semantics

a) T h e y ield V of a bits-denotat ion D is determined as follows:
• l e t W be the int rins ic boolean value (b) o f it s const ituent RADIX-digit -
sequence:
• l e t m be the length of W:
• l e t n be the value of L bits widt h (10.2.1.j), where L stands f or as many
t imes long (short) as there are long-symbols (short -symbols) contained in
D:
• i t is required that m be not greater than n:
• V is a s t ructured value (whose mode is some 'BITS') whose only field is
a mult iple value hav ing
(i) a descriptor ((1, n)) and
(ii) n elements, t hat selected by (i) being false i f 1 i n - m, and being
the (I + m - n)-th t ruth value of (the sequence) W otherwise.

b) T h e int r ins ic boolean v a lue o f a R ADIX-digit-sequence S i s t he
shortest sequence o f t rut h values whic h, regarded as a b inary number
(true corresponding t o 1 a n d false t o 0) , i s t he s ame as t he int r ins ic
integral value (c) of S.

c) T h e i n t r i n s i c i n t e g r a l v a l u e o f a r a d i x - t wo - (rad ix - f our - .
radix-eight-, radix-s ix teen-) -digit -sequence S is t he int eger o f whic h t he
reference-language f o r m o f S (9.3.b) i s a b inary , (quat ernary , oc t al ,
hexadecimal) representat ion, where the representat ions a, b, e, d. e and f ,
considered as digits, have values 10, 11, 12, 13, 14 and 15 respectively.

8.3. St ring denotations

(String-denotations a re a convenient wa y o f spec ify ing "s t rings ", i.e. ,
mult iple values of mode ' row of character'.
Example:

string message := "a l l is wel l ")

9.1. Tokens

8.3.1. Syntax

a) r o w of charac ter denotation(80a)
quote(9413) symbol, string(b) option, quote symbol(94b).

b) s t r i n g (a) : s t ring item(81413), s t ring item(814b) sequence.

c) * s t r i n g denotation : row of character denotation(a).

(Examples:

a) "a bc" b) abc)

8.3.2. Semantics

9. Tokens and symbols

ALGOL 68 Revised Report 1 1 3

The y ield of a string-denotat ion D is a mult iple value V determined as
follows:
• l e t n be the number of s t ring-items contained in D:
• t he descriptor of V is ((1 , n));
• f o r i 1 , , n, t he element of V wi t h index (I) i s t he int rins ic value
(8.1.4.2.13) of the 1-th constituent symbol of the s t ring of D.

("a" is a character-denotat ion, not a st ring-denotat ion. However, i n a l l
strong posit ions, e.g., s t ring s " a " , i t can be rowed t o a mult ip le value
(6.6). Elsewhere, where a mul t ip le v alue i s required, a c as t (5.5.1.1.a)
may be used, e.g., union (char, string) cs := string ("a").)

(Tokens (9.11. f) a re symbols (9.1.1.h) poss ibly preceded by pragments
(9.2.1.a). Therefore, pragment s ma y appear between s y mbols wherev er
the syntax produces a succession of tokens. However, in a f ew places, t he
syntax spec ifically produces symbols ra t her t han tokens, not ably wi t h in
denotations (8) , f o rmat - t ex t s (10.3.4.1.1.a) a n d , o f c ours e , w i t h i n
pragments. Therefore, pragments may not occur in these places.)

9.1.1. Syntax

a) C H O I C E STYLE start(34a)
where (CHOICE) is (choice using boolean),

STYLE if(94f,-) token
where (CHOICE) is (CASE), STYLE case(94f,-) token.

b) C H O I C E STYLE in(34e)
where (CHOICE) is (choice using boolean),

STYLE then(94,-) token
where (CHOICE) is (CASE), STYLE in(94f,-) token.

c) C H O I C E STYLE again(341)
where (CHOICE) is (choice using boolean),

STYLE else if (94,-) token
where (CHOICE) is (CASE), STYLE ouse(94f,-) token.

114 v a n Wijngaarden, et at.

d) C H O I C E STYLE out(341)
where (CHOICE) is (choice using boolean),

STYLE else(94f,-) token
where (CHOICE) is (CASE), STYLE out(94f,-) token.

e) C H O I C E STYLE finish(34al
where (CHOICE) is (choice using boolean),

STYLE fi(94f,-) token
where (CHOICE) is (CASE), STYLE esae(94f,-) token.

f) N O T I O N token : pragment(92a) sequence option,
NOTION symbol(94a,b,c,d,e,f,g,111.

g) * t o k e n : NOTION token(f).
h) * s y m b o l : NOTION symbol(94a,b,c,d,e,f,g,h).

9.2. Comments and pragmats

IA source of innocent merriment.
Mikado, W . S . G i l b e r t .)

(A pragment is a comment or a pragmat. No semantics of pragments
is giv en and therefore t he meaning (2.1.4.1.a) o f any p rogram is qui t e
unaffected b y t he i r presence. I t i s indeed t he int ent ion t ha t c omment s
should be ent irely ignored by the implementat ion, t heir sole purpose being
the enlightenment of the human interpreter of the program.

Pragmats may , on the other hand, convey to the implementat ion some
piece of informat ion af fect ing some aspect of the meaning of the program
which is not defined by this Report , f or example:

• t he ac t ion t o be taken upon ov erfl ow (2.1.4.3.h) o r i f t he scope
rule i s v io lat ed (a s i n 5.2.1.2.b), e. g. , p r overflow c hec k o n Pr,
pr overflow check off pr. pr scope check on pr or pr scope check off pr:
• t he ac t ion t o b e t ak en u p o n c omplet ion o f t h e c ompi lat ion
process, e.g., pr compile only pr, pr dump pr or pr run pr;
• t ha t t he language t o be implement ed i s s ome sublanguage o r
superlanguage o f ALGOL 68, e.g. , p r nonrec pr (f o r a rout ine-tex t
which may be presumed to be non-recursive):
• t ha t the compilat ion may check f or the t ruth, o r at tempt to prove
the correctness, of some assertion, e.g.:
int a, b; read((a, b)) pr assert a 0 A b > 0 pr;
int : = 0, r := a;
wh ile rb p ra sse rta =b xg -FrAOirp r
do (q 1 , r --:= Nod
p r a s s e r t a = b x g + r
. AOirAr< b p r

They may also be used t o convey t o t he implement at ion t hat t he source
text is to be augmented wi t h some other text, o r edited in some way , f o r
example:

(pr algol 68 pr
begin
proc pr nonrec pr pr = void: pr;
pr

end
pr run pr pr ? pr
Revised Report on the Algorithmic

Language ALGOL 68.1

ALGOL 68 Revised Report 1 1 5

• s ome prev ious ly compiled port ion of the part icular-program is t o
be invoked, e.g., pr with segment f rom album pr:
• t he source text is cont inued on some other document, e.g., p r read
from another fi le pr;
• t he end of the source text has been reached, e.g., p r
. finish p r .The interpretat ion of pragmats is not defined in this Report , but is lef t to

the discret ion o f t he implement er, who ought , a t least , t o prov ide some
means whereby all f urther pragmats may be ignored, f or example:

pr pragmats off pr.)

9.2.1. Syntax

A) P R A G M E N T p r a g m a t ; comment .

a) pragment(80a,91f,A341b,h,A348a,b,c,A349a,A34Ab) : PRAGMENT(b).
b) P RAG ME NT(a) : STYLE PRAGMENT symbol(9411,-),

STYLE PRAGMENT item(c) sequence option,
STYLE PRAGMENT symbol(9411,-).

(STYLE :: brief ; bold ; style TALLY.)
c) S T Y L E PRAGMENT item(b) : character glyph(814c)

STYLE other PRAGMENT item(d).

d) A produc t ion ru le ma y be added f o r eac h not ion des ignated b y
'STYLE other PRAGMENT i tem' (c, for which no h y p e r
-
r u l e i s
given i n t his Report) eac h o f whose alt ernat ives i s a s y mbol
(1.1.3.1.f). dif ferent f r o m any t e rmina l produc t ion o f ' c harac t er
glyph' (8.1.4.1.c), and such t hat no t e rmina l produc t ion o f any
'STYLE other PRAGMENT i tem i s t he corresponding 'STYLE
PRAGMENT symbol '. (Thus comment (I ' comment mi ght be a
comment, but 0 0 c o u l d not.)

(Examples:

a) p r list pr • 0 source program to be listed 0
c) I • ?)

9.3. Representations

a) A const ruc t i n t he s t r ic t language mus t be represented i n s ome
"representat ion language" such as the "reference language", whic h is used
in t h is Report . Ot her representat ion languages s pec ial ly s uit ed t o t he

116 v a n Wijngaarden, et al.

supposed preference o f s ome human o r mec hanic al int erpret er) f t he
language ma y be t e rmed "public at ion" o r "hardware" languages . (The
reference language i s int ended t o b e us ed f o r t h e representat ion o f
part icular-programs and of t heir descendents. I t is, however, also used in
Chapter 10 for the definit ion of the s tandard environment .)

b) A "cons t ruc t i n a representat ion language" i s obtained f r o m t he
terminal product ion T (1.1.3.21) of the corresponding construct in the s t ric t
language (1.1.3.2.e) by replac ing the symbols in T by t heir representat ions,
as specified in 9.4 below in the case of the reference language.

(Thus, t h e s t r ic t - language pa r t i c u la r -p rog ram w h o s e t e r m i n a l
production is

'bold begin symbol' 'sk ip symbol' 'bold end symbol'
gives rise to the reference language part icular-program

begin skip end .)

c) A n imp lemen t a t i on (2.2.2. c) o f A L G O L 6 8 w h i c h u s e s
representations wh ic h a r e suffic ient ly c los e t o t hos e o f t he reference
language to be recognized without f urt her elucidat ion, and whic h does not
augment o r res t ric t the available representat ions ot her t han as prov ided
for below (9.4.a,b,c), is an "implementat ion of the reference language".

(E.g., beg in , beg in , B E G I N 'b e g in a n d 'beg in ' co u ld a l l b e
representations o f t he bold-begin-symbol i n a n implement at ion o f t h e
reference language; s ome combinat ion of holes in a punched c ard might
be a representat ion of it in some hardware language.)

9.4. The reference language

a) T h e ref erenc e language prov ides repres ent at ions f o r v a r ious
symbols, inc luding an arb i t rar i ly la rge number o f TAX-symbols (where
TAX : : TAG ; TAB ; TA D ; TAM.). The representat ions o f some o f t hem
are s pec ifi ed b e l o w (9.4.1), a n d t o t hes e m a y b e a d d e d s u i t ab le
representations f o r s ty le-TALLY-let ter-ABC-symbols a n d s t y le-TALLY-
monad-symbols and any t erminal product ions of 'STYLE other PRAGMENT
item' (9.2.1.d) and of 'other s t ring i t em' (8.1.4.1.d). Representat ions are not
provided f or any of these (but they enable indiv idual implementat ions t o
make available t heir f ul l charac ter sets f or use as characters, t o prov ide
addit ional o r extended alphabets f o r t he const ruct ion o f TAG- and TAB-
symbols, and to prov ide addit ional symbols f or use as operators). There is
not, however, (and t here mus t not be,) except i n representat ions o f t he
standard-, a n d other, preludes (10.1.3.Step 6), a n y representat ion o f t he
let ter-aleph-symbol o r t h e pr imal-s y mbol . (F o r t h e r e ma i n i n g T A X -
symbols, see 9.4.2. There are, however, s ome symbols produced b y t he
syntax, e.g. , t he brief -pragmat -symbol, f o r wh ic h n o representat ion i s
provided at all. This does not prec lude the representat ion of such symbols
in other representat ion languages.)

ALGOL 68 Revised Repor t 1 1 7

b) W h e r e more than one representation of a symbol is given, any of
them may be chosen. Moreover, i t is sufficient for an implementation of
the reference language to provide only one. Also, i t is not necessary to
provide a representation of any particular MONAD-symbol or NOMAD-
symbol so long as those that are provided are sufficient to represent a t
least one version (10.1.3.Step 3) of each operator declared in the standard-
prelude.

(For cer tai n di ffer ent symbols, o n e s a m e o r near l y t h e s a m e
representation is given; e.g., the representation ": " is given for the routine-
symbol, the colon-symbol a nd the up-to-symbol a nd ":" f or the label -
symbol. I t follows uniquely from the syntax which of these four symbols is
represented by an occurrence, outside comments, pragmats and str ing-
denotations, of any mar k similar to either of those representations. I t is
also the case that ".." could be used, without ambiguity, for any of them,
and such mi ght indeed be necessary i n implementations wi th l imi ted
character sets. I t m a y be noted that , f or such implementations, n o
ambiguity woul d b e introduced w e r e "(I " a n d " I) " t o b e used a s
representations o f t he style-i i-sub-symbol a n d t he style-ii-bus-symbol,
respectively.

Also, some o f t h e gi ven representations a ppe a r to be composite:
e.g., the representation ":=" of the becomes-symbol appears to consist of

the representation o f t h e routine-symbol , e t c . , a n d "=" , t h e
representation of the equals-symbol and of the is-defined-as-symbol. I t
follows from the syntax that ":=" can occur, outside comments, pragmats
and string-denotations, as a representation of the becomes-symbol onl y
(since "=" c annot oc c ur as t he representat ion o f a monadic -operator).
Similarly , t h e o t h e r g i v e n c ompos i t e representat ions d o n o t c aus e
ambiguity.)

c) T h e fact that the representations of the letter-ABC-symbols given
(9.4.1.a) are usually spoken of as s mall let ters is not meant t o imp ly t hat
the corresponding c apit al let t ers c ould not s erv e equal ly wel l . (On t he
other hand, i f bot h a s ma l l let t er and t he corresponding c apit al le t t er
occur, t hen one of t hem is presumably t he representat ion o f some s ty le-
TALLY-letter-ABC-symbol or of a bold-letter-ABC-symbol. See also 1.1.5.13
for the possibility of additional •ABC's in a variant of the language.)

d) A "typographical display feature" is a blank , o r a change to a new
line or a new page. Such features, when they appear between the symbols
of a construct in the reference language, are of no s ignificance and do not
affect the meaning of that construct. However, a blank contained wit hin a
string- or character-denotat ion is one of the representat ions of the space-
symbol (9.4.1.b) r ather than a typographical display feature. Wher e the
representation of a symbol i n the reference l anguage i s composed of
several marks (e.g., to, :=), those marks form one (indivisible) symbol and.
unless the contrary is explicitly stated (9.4.2.2.a,c), typographical display
features may not separate them.

118 v a n W i jngaarden, et al.

9.4.1. Representat ions of symbols

a) L e t t e r symbols

symbol

let ter a symbol(814c,82k,942B,A34613) a
letter b symbol(814c,82k,94213.A344b)
letter e symbol(814c,82k,94213.A348a)
letter d symbol(814e,82k,942B,A34211
letter e symbol(812h,814e,82k,942B,A343e)
let ter f symbol(814c,82k,942B,A349a)
letter g symbol(814e,942B,A43Aa)
letter h symbol(814c,94213) / 1
let ter i symbol(814c,942B,A345b)
letter j symbol(814c,942B)
letter k symbol(814c,942B,A341f)
let ter I symbol(814e,942B,A341f)
let ter m symbol(814c,942B)
let ter n symbol(814e,942B,A341h)
letter o symbol(814c,942B) a
letter p symbol(814e,942B,A341f)
let ter q symbol(814c,942B,A34111
letter r symbol(814c,82c,942B,A347c)
letter s symbol(814e,942B,A3411)
letter t symbol(814e,942B)
letter u symbol(814c,942B)
letter v symbol(814c,942B)
letter w symbol(814e,942B)
letter x symbol(814c,942B,A341f1
letter y symbol(814e,942B,A3411)
letter z symbol(814c,942B,A342d1

b) D e n o t a t i o n symbols

symbol

digit zero symbol(811e,814e,82h,942C) 0
digit one symbol(43b,811e,814e,82g,h,942C) I
digit two symbol(43b9811e,814e,82d,i,942C) 9
digit three symbol(43b,811c,814c,82i,942C) 3
digit four symbol(43b,811c,814c,82e,j,942C) 4
digit five symbol(43b,811c,814c,82j,942C) 5
digit six symbol(43b,811e,814e,82g,j.942C) 6
digit seven symbol(43b,811c,814c,82j,942C) 7
digit eight symbol(43b,811e,814c,82Lk,942C) 8
digit nine symbol(43b,811c,814c,82k.942C) 9
point symbo11812d,814c,A343d)
t imes ten to the power symbol(812h)

representa I ion

r epr esentat i on

true symbol(813a) t r u e
false symbol(813a) f a l s e
quote symbol(814a,83a)
quote image symbol(814b)
space symbol(814c)
comma symbol(814c)
empty symbol(815a) e m p t y

c) O p e r a t o r symbols
symbol

f t ,

or symbol(942H)
and symbol(942H) A
ampersand symbol(942H) &
differs f rom symbol(942H)
is less than symbol(942I)
is at most symbol(942H)
is at least symbol(942H)
is greater than symbol(942I)
divided by symbol(942I)
over symbol(942H)
percent symbol(942H)
window symbol(942H)
floor symbol(942H)
ceiling symbol(942H)
plus i t imes symbol(942H)
not symbol(942H)
tilde symbol(942H)
down symbol(942H) 1
up symbol(942H)
plus symbol(812j,814c,942H,A342e)
minus symbol(814,814c,942H,A342e) -
equals symbol(942I)
t imes symbol(942I)
asterisk symbol(942I)
assigns to symbol(942J)
becomes symbol(44f,521a,942J)

ALGOL 68 Revised Report 1 1 9

represent it ion

d) D e c l a r a t i o n symbols

symbol r e p r e s e n t a t i o n

is defined as symbol(42b,43b,44c,45c)
long symbol(810a,82a) l o n g
short symbol(810a,82b) s h o r t
reference to symbol(46c) r e f
local symbol(523a,b) i o c
heap symbol(523a,b) h e a p

120 v a n Wijngaarden, et al.

structure symbol(46d) s t r u c t
flexible symbol(46g) fl e x
procedure symbol(4413,46o) p r o c
union of symbol(46s) u n i o n
operator symbol(45a) o p
priority symbol(43a) p r i o
mode symbol(42a) m o d e

e) M o d e standards

symbol r e p r e s e n t a t i o n

integral symbol(942E) i n t
real symbol(942E) r e a l
boolean symbol(942E) b o o !
character symbol(942E) c h a r
format symbol(942E) f o r m a t
void symbol(942E) v o i d
complex symbol(942E) c o m p i
bits symbol(942E) b i t s
bytes symbol(942E) b y t e s
string symbol(942E) s t r i n g
sema symbol(942E) s e m a
file symbol(942E) fi l e
channel symbol(942E) c h a n n e l

f) S y n t a c t i c symbols

symbol r e p r e s e n t a t i o n

bold begin symbol(133d) b e g i n
bold end symbol(133d) e n d
brief begin symbol(133d,A348b,A34Ab)
brief end symbol(133d,A348b,A34Ab)
and also symbol(133c,33b,f,3411,41a,b,46e,i,

ci,t,532b,541e,543b,A348b,A34Ac,d)
go on symbol(32b)
completion symbol(32b) e x i t
label symbol(32c)
parallel symbol(33c) p a r
open symbol(814c)
close symbol(814c)
bold if symbol(91a) i f
bold then symbol(91b) t h e n
bold else if symbol(91c) e l i f
bold else symbol(91d) e l s e
bold fi symbol(91e) fi
bold case symbol(91a) c a s e
bold in symbol(91b) i n

ALGOL 68 Revised Repor t 1 2 1

bold ouse symbol(91c) M a e
bold out symbol(91d) o u t
bold esac symbol(91e) e s a c
brief if symbol(91a)
brief then symbol(91131
brief else if symbol(91c)
brief else symbol(91d)
brief fi symbol(91e)
brief case symbol(91a)
brief in symbol(91b)
brief ouse symbol(91c)
brief out symbol(91d) 1
brief esac symbol(91e)
colon symbol(34j,k) •
brief sub symbol(133e)
brief bus symbol(133e)
style i sub symbol(133e)
style i bus symbo11133e)
up to symbol(46j,k,I,532f)
at symbol(532g) C c I) a t
is symbolt522b) i s
is not symbol(522b) : : /=: i s n t
nil symbol(524a) 0 n i l
of symbol(531a) o f
routine symbol(541a,b)
bold go to symbol(54413) g o t o
bold go symbol(544b) g o
skip symbol(552a) s k i p
formatter symbol(A341a)

g) L o o p symbols

symbol

bold for symbol(35b) f o r
bold from symbol(35d) f r o m
bold by symbol(35d) b y
bold to symbol(35d,544b) t o
bold while symbol(35g) w h i l e
bold do symbol(35h) d o
bold od symbol(35h) o d

h) F r a g m e n t symbols

symbol

representat ion

representat ion

brief comment symbol(92b)
bold comment symbolt92b) c o m m e n t
style i comment symbol(92b) c o

122 v a n Wijngaarden, et al.

style i i comment symbol(92b)
bold pragmat symbol(92b) p r a g m a t
style i pragmat symbol(92b) P r

9.4.2. Other TAX symbols

9.4.2.1. Metasyntax

A) TAG(D, F, K, 48a, b, c , d)
LETTER(B) ; TAG LETTER(B) ; TAG DIGIT(C).

B) L E T T E R (A)
let ter ABC(94a) ; let t er aleph(-) ; s ty le 'FAUN let t er ARCH.

C) M E M) : : digit zero(94b) ; digit one(94b) ; digit two(94b)
digit three(94b) ; digit four(94b) ; digit five(94b) ; digit six(94b)
digit seven(94b) ; digit eight(94b) ; digit nine(9413).

D) TA B (4 8 a , b) : : bold TAG(A,
-
) S I Z E T Y
S T A N D A R D
(E) .

E) S T A N D A R D (D) in t egra l (94e) real(94e) boolean(94e)
character(94e) f ormat (94e) v oid(94e) c omplex (94e) bit s (94e)
bytes(94e) s t ring(94e) s ema(94e) fi le(94e) channel(94e).

F) TA D(4 8 a , b) : : bold TAG(A,-) DY A D(G) BECOMESETYM
DYAD(G) cum NOMAD(I) BECOMESETY(J).

G) D Y A D (F) M O N A D (H) NOMAD(I) .
H) M O N A D (G , K) o r (9 4 c) and(94c) ampers and(94c)

dif fers from(94c) ; is at most(94c) ; is at least(94c) ov ert 94c)
percent(94c) window(94c) fl oor(94c) c ei l ing(94c)
plus i times(94c) not (94e) t i lde(94c) down(94c) up(94c)
plus(94c) minus (94c) ; sty le TALLY monad(-).

1) NO MA D(F , G , K) : : is less than(94c) ; is greater than(94c)
divided by(94c) equals (94c) t imes (94c) as terisk (94c).

J) B E CO ME S E TY (F, K) : : c um becomes(94c) ; c um assigns to194c)
EMPTY.

K) TA M(4 8 a , b) : : bold TAG(A,-) MO NA D(H) BECOMESETYP)
MONAD(H) cum(9422e) NOMAD(I) BECOMESETY(J).

L) A B C (B) : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 ; m ; n ; o ; p ;
q ; r ; s ; t ; u ; v ; w ; x ; y ; z .

M) * D O P D Y A D (G) DY A D(G) cum NOMAD(I).

(The met anot ion "ABC" i s prov ided, i n addi t ion t o t h e met anot ion
"ALPHA", i n order t o f ac il it ate t he definit ion o f variant s o f ALGOL 68
(1.1.5.b)

9.4.2.2. Representat ion

a) T h e representat ion o f each TAG-symbol not giv en above (9.4.1) i s
composed of mark s corresponding, in order, t o the 'LETTEB's or 'DIGIT's
contained in that 'TAG'. These mark s may be separated by typographical

ALGOL 68 Revised Report 1 2 3

display f eat ures (9.4.d). T h e m a r k c orres ponding t o e a c h ' L E TTE R'
(DI GI T) i s t he representat ion o f t hat LETTER-s y mbol (DIGIT-symbol).
(For example, the representat ion of a let ter-x-digit -one-symbol is x i , which
may b e wr i t t en x l . TAG-symbols a r e us ed f o r ident ifi ers a n d fi e ld -
selectors.)

b) T h e representat ion, i f any, of each bold-TAG-symbol is composed of
marks corresponding, in order, t o the 'LETTER's o r •DIGIT's contained in
that *TAG' [but wi t h no t ypographical display features i n between). Th e
mark corresponding t o each ' LETTER (' DI G I T') i s s imi la r t o t he ma r k
representing the corresponding LETTER-symbol (DIGIT-symbol), being, i n
this Report , the corresponding bold faced let t er (digit). (Other methods of
indicat ing t h e s i mi l a r i t y w h i c h a r e rec ogniz able w i t h o u t f u r t h e r
elucidation are also acceptable, e.g., person, person, PERSON, 'person and
'person' c ould a l l b e representat ions o f t he bold-let ter-p-let ter-e-let ter-r-
letter-s-letter-o-letter-n-symbol.)

However, t he representat ion o f a bold-TAG-symbol ma y no t b e t he
same as any representat ion of any other symbol (; t hus there may be a
finite number o f bold-TAG-symbols wh ic h hav e n o representat ion; e. g. ,
there i s n o representat ion f o r t h e bold-let ter-r-let ter-e-let ter-a-let ter-I -
symbol because real is a representat ion of the real-symbol; not e t hat the
number o f bold-TAG-symbols av a i lab le i s s t i l l a r b i t r a r i l y large) . I f ,
according t o t he convent ion used, a giv en sequence o f mark s c ould be
either the representat ion of one bold-TAG-symbol o r the concatenat ion o f
the representat ions of two or more other symbols, t hen i t is always to be
construed as that one symbol (; t he inc lus ion of a blank can always force
the other interpretat ion; e.g. , ret real is one symbol, whereas ref real mus t
always be two). (Bold-TAG-symbols are used f or mode-indicat ions and f or
operators.)

c) T h e repres ent at ion o f e a c h SIZE-SIZETI -STANDARD-symbol i s
composed of the representat ion of the corresponding SIZE-symbol, possibly
followed by typographical display features, followed by the represention of
the c orres ponding SI ZETV-STANDARD-s y mbol. (F o r e x a mp l e , t h e
representation o f a long-real-symbol i s long real, o r perhaps ' I ong"reat '
(but not, according to section b above, longreal o r 'Iongreal', f o r those
would be representat ions of the bold-let ter-l-let ter-o-let ter-n-let ter-g-let ter-r-
let ter-e-let ter-a-let ter-l-symbol). SIZETY-STANDARD-symbols a re used f o r
mode-indications.)

d) T h e representat ion o f each DOP-cum-becomes-symbol (DOP-c um-
assigns-to-symbol) i s composed o f t he ma r k o r mark s represent ing t he
corresponding DOP-symbol followed (without intervening typographical
display features) b y t he mark s represent ing t h e becomes-symbol (t h e
assigns-to-symbol). (Fo r example, t h e representation o f a plus-cum-
becomes-symbol i s D O P - c u m - b e c o m e s - s y m b o l s a r e u s e d f o r
operators.)

124 v a n Wi.ingaarden, et al.

e) T h e representat ion of each DYAD-cum-NOMAD-symbol is composed
of t h e m a r k repres ent ing t h e c orres ponding D I AD-symbol f o l lowed
(without in t e rv en ing t y pographic al d i s p l a y f eat ures) b y t h e m a r k
representing t h e c orres ponding NOMAD-s y mbol. (F o r ex amp le , t h e
representation o f a n over-cum-t imes-symbol i s +x . I n AD-cum-NOMAD-
symbols a re used f o r operators , b u t not e t ha t NOMAD1-cum-NOMAD2-
symbols may be only dyadic-operators.)

10. Standard environment

PART V

Env ironment and Examples

(The "s tandard env ironment " encompasses t he const ituent EXTERNAL-
preludes, system-tasks and particular-postludes of a program-text)

10.1. Program texts

(The p r o g r a mme r i s concerned wi t h part ic ular-programs (10.1.1.g).
These are always inc luded in a program-tex t (10.1.1.a) whic h also contains
the s t andard-prelude, a l ibrary -pre lude, w h i c h depends u p o n t h e
implementat ion, a system-prelude and system-tasks, wh ic h correspond t o
the operat ing env ironment , poss ibly some ot her part icular-programs , one
or more part icular-preludes (one f or each part icular-program) and one or
more particular-postludes.)

10.1.1. Syntax

A) E X T E R N A L :: standard ; l ibrary ; system ; particular.
B) S T O P :: label letter s letter t letter o letter p.

a) p r o g r a m text : STYLE begin(941
.
) t o k e n , n e w
L A Y E R
I
p r e l u d e s
(b) .

paralle1(941) token, new LAYER I tasks(d) PACK,
STYLE end(941) token.

b) N E S T ! preludes(a) : NESTI standard prelude with DECSI(c),
NEST1 l ibrary prelude with DECSETY2(c),
NESTI system prelude with DECSET1 3(c), where (NEST!) is
(new EMPTY new DECSI DECSETY2 DECSFFY3).

c) N E S T ! EXTERNAL prelude with DECSETY I (b,f)
strong void NEST! series with DECSE1'Y1(32b), go on(941) token
where (DECSETYI) is (EMPTY), EMPTY.

d) N E S T ! tasks(a) : NEST! system task(e) list , and also(94f) token,
NESTI user task(1) PACK list.

e) N E S T I system task(d) : strong void NEST! unit(32d).

ALGOL 68 Revised Report 1 2 5

f) N E S T I user task(d) : NEST2 part icular prelude wit h DECS(c),
NEST2 part icular program(g) PACK, go on(94f) token,
NEST2 part ic ular postlude(i),
where (NEST2) is (NESTI new DECS STOP).

g) N E S T 2 part icular program(f)
NEST2 new LABSETY3 joined label definit ion of LABSETY3(h),

strong void NEST2 new LABSET13
ENCLOSED clause(31a,33a,c,34a,35a).

h) N E S T joined label definit ion of LABSET'I(g,h)
where (LABSETY) is (EMPTY), EMPTY
where (LABSETY) is (LAB! LABSET1 I),

NEST label definit ion of LAIII(32c),
NEST joined label definit ion of LABSET1 1(h).

i) N E S T 2 part icular postlude(f)
strong void NEST2 series wit h STOP(32b).

(Examples:

a) (c standard-prelude c; C library-prelude c; c system-prelude c;
par begin c system-task-1 c, c system-task-2 c ,

particular-prelude c;
(start: commence: begin skip end);
c particular-postlude) ,

c another user-task c)
end)

b) c standard-prelude (10.2, 10.3) c; c library-prelude a;
c system-prelude (10.4.1) c;

d) c system-task-1 (10.4.2.a) c, c system-task-2 c ,
particular-prelude c;
(start: commence: begin skip end);
c particular-postlude) ,

c another user-task c)
f) c particular-prelude (10.5.1) c;

(start: commence: begin skip end);
c particular-postlude (10.5.2) c

g) start : commence: begin skip end
h) start: commence:
i) stop: lock (stand in); lock (stand out); lock (stand back))

10.1.2. The env ironment condit ion

a) A program in t he s t ric t language mus t be ak in (1.1.3.2.k) t o some
program-text wh o s e c ons t i t uent EXTERNAL-preludes a n d p a r t i c u l a r -
postludes are as specified in the remainder of this section.

(It is convenient to speak of the s tandard-prelude, t he library -prelude,
the part icular-programs, etc. of a program when discussing those parts of
that program which correspond to the const ituent standard-prelude, etc. of
the corresponding program-text .)

126 v a n Wijngaarden, et al.

b) T h e cons t it uent standard-prelude o f a l l program-t ex t s i s t h a t
standard-prelude whose representat ion is obtained (10.1.3) f rom the f orms
given in sections 10.2 and 10.3.

cl T h e constituent library -prelude of a program-tex t is not specified in
this Report (but mus t be specified f or each implementat ion: t he syntax of
*program tex t ' ensures t hat a dec larat ion contained i n a l ibrary -prelude
may not contradict any declarat ion contained in the standard-prelude).

d) T h e const ituent system-prelude (system-task-lis t) o f a l l p rogram-
texts i s t ha t sys tem-prelude (system-task-lis t) whos e representat ion i s
obtained f rom the forms given in section 10.4, wi t h the possible addit ion of
other f orms not specified i n t his Report (but t o be spec ified t o s uit t he
operat ing env ironment of each implementat ion).

e) E a c h cons t it uent part ic ular-prelude (part icular-pos t lude) o f a l l
program-texts i s t h a t part ic ular-prelude (part ic ular-pos t lude) wh o s e
representation is obtained f rom the f orms given in sect ion 10.5, wi t h t he
possible addit ion o f other f orms not spec ified i n t his Repor t (but t o be
specified for each implementat ion).

10.1.3. The method of descript ion of the standard env ironment

A representat ion o f an EXTERNAL-prelude, system-task o r part icular-
postlude is obtained by alt ering each f orm in the relevant sections of this
chapter in the following steps:

Step 1: I f a given f orm F begins wit h op (the operator-symbol) followed by
one of the marks P, Q, R or E, then F is replaced by a number of new
forms each of which is a copy of F in whic h t hat ma rk (following the
op) is (a l l other occurrences in F of t hat ma rk are) replaced, i n each
respective new form, by:

Case A: The mark is P:
• - , +, 4E x,*1• or /
(--, +, x or I);

Case B: The mark is Q:
• .tminusab, , plusab, +:=i• , •ttimesab,x:=,*:=t or
<divab, / :=t
(-:=, +:=, x: . or

Case C: The mark is R:
• 3 < , I tt, < = , let, e c i f , / = , nef, g e + or
t>, gt +
(<, o r >):

Case D: The mark is E:
• o r •f / . , n e +

or i) :

Step 2: I f , i n some f orm, as poss ibly made i n t he s tep above, ?, occurs
followed by an INDICATOR (a field-selector) I , then that occurrence of

ALGOL 68 Revised Repor t 1 2 7

9 is deleted and eac h I NDI CATOR (field-selector) ak in (1.I.3•2.k) t o I
contained in any f orm is replaced by a copy of one s ame INDICATOR
(field-selector) wh i c h does not oc c ur elsewhere i n t he p rogram and
Step 2 is taken again;

Step 3: I f a given f orm F, as possibly modified or made in the steps above,
begins wi t h o p (t he operator-symbol) f o l lowed b y a c ha in o f TAO-
symbols separated b y and-also-symbols , t h e c h a i n be i ng enc losed
between •t a n d t , t hen F i s replac ed b y a n u mb e r o f d i f f erent
"versions" o f t hat f o rm each o f whic h is a c opy o f F i n wh ic h t hat
chain, together with its enclosing •t and , has been replaced by one of
those TAO-symbols (; howev er, a n implement at ion i s no t obl iged t o
provide more than one such version (9.4.13)}:

Step 4: I f , i n a given f o rm, as poss ibly modifi ed o r made i n t he steps
above, there occurs a sequence S of symbols enclosed between a n d
and if, in that S, L int L real, L comp!. L bits or L bytes occurs, then S
is replaced by a chain of a sufficient number of sequences separated by
and-also-symbols, the n-th of which is a copy of S i n whic h copy each
occurrence of L (L, K, S) is replaced by (n - 1) t imes long (long, leng,
shorten), f o l lowed b y a n and-also-symbol a n d a f u r t her c hain o f a
sufficient number of sequences separated by and-also-symbols, the m-th
of which is a copy of S in whic h copy each occurrence of L (L , K , S)
has been replaced by m t imes short (short shorten, leng): t he 1: and f
enclosing that S are then deleted:

Step 5: I f , i n a given f o rm F, as possibly modifi ed o r made in t he steps
above, L int (L real, L compl, L bits, L bytes) occur s, t he n F i s
replaced by a sequence of a sufficient number of new forms, the n-th of
which is a copy of F in whic h copy each occurrence of L (L , K , S) i s
replaced b y (n - 1) t i me s l o n g (l ong , Mn g , s hort en), a n d e a c h
occurrence of long L (long L) b y n t imes long (long), f ol lowed b y a
further sequence o f a suffic ient number o f new f orms , t he m-t h o f
which is a copy of F in whic h copy each occurrence of L (L , K . S) i s
replaced by m t imes short (short , shorten, leng), and each occurrence
of long L (long L) by (m - 1) t imes short (short)
-

Step 6: Eac h occurrence of F (PRI M) i n any f orm, as possibly modifi ed
or made in the steps above, is replaced by a representat ion of a let ter-
aleph-symbol (primal-symbol) (9.4.a):

Step 7: I f a sequence of representat ions beginning wi t h and ending wit h c
occurs in any f orm, as possibly modifi ed o r made in t he steps above,
then this sequence, whic h is t ermed a "pseudo-comment", i s replaced
by a representat ion o f a dec larer o r closed-clause suggested b y t he
sequence;

128 v a n Wijngaarden, et al.

Step 8: I f , in any form, as possibly modified or made in the steps above, a
routine-text occurs whos e c al l ing involves t he manipulat ion o f r e a l
numbers, then this rout ine-text may be replaced by any other rout ine-
text whose calling has approx imately the same ef fect (; t he degree of
approx imat ion is lef t undefined in this Report (see also 2.1.3.1.e));

Step 9: I n the case of an EXTERNAL-prelude, a f o rm consist ing of a sk ip-
symbol followed by a go-on-symbol (skip;) is added at the end.

(The t erm "suffic ient number", as used in Steps 4 and 5 above, implies
that no intended part ic ular-program should have a dif f erent meaning o r
fail to be produced by the syntax solely on account of an insuffic iency of
that number.)

Wherever t in t he t rans put dec larat ions) t he representat ion 10 (\, 1)
occurs wi t h i n a charac ter-denotat ion o r s t ring-denotat ion, i t i s t o b e
interpreted as t he representat ion o f t he s t r ing- i t em (8•1.4.1.b) us ed t o
indicate "t imes ten to the power" (an alternat ive f orm (, i f any,) of "t imes
ten t o t he power", "p lus i t imes ") o n ex t ernal media. (Clearly , t hes e
representations have been chosen because o f t hei r s imi lar i t y t o those of
the t imes-ten-to-the-power-symbol (9.4.1.b) a n d t h e plus -i-t imes-symbol
(9.4.1.c), but, on media on which these characters are not available, other
string-items mus t b e chosen (a n d t he let ter-e-symbol a n d t he let t er-i-
symbol are obvious candidates) .)

(The dec larat ions in this chapter are intended t o describe t he i r ef fect
clearly. The effect may very well be obtained by a more effic ient method.)

10.2. The standard prelude

(The dec larat ions o f t h e s t andard-prelude c ompr i s e "env i ronment
enquiries", which supply informat ion concerning a specific propert y of the
implementat ion (2.2.2.c), "s t andard modes ", "s t andard operat ors a n d
functions", "s y nc hroniz at ion operat ions " a n d " t r a n s p u t dec larat ions "
(which are given in section 10.3)

10.2.1. Env ironment enquiries

a) i n t int lengths= c 1 plus the number of extra lengths of integers
(2.1.3.1.d)c ;

b) I n t int shorths= c 1 plus the number of extra shorths of integers
(2.1.3.1.d)

c) L int L max int= c the largest L integral value (2.2.2.b) c ;

(1) i n t real lengths= c 1 plus the number of extra lengths of real
numbers (2.1.3.1.d) c

e) i n t real shorths c 1 plus the number of extra shorths of real
numbers (2.1.3.1.d) c;

ALGOL 68 Revised Report 1 2 9

f) L real L max real= c the largest L real value (2.2.2.b)c;
g) L real L small real= c the smallest L real value such that both L 1 +

L small real > L
i a n d
L i
-
L
s m a
l l
r e
a l
<
L
1
(2 . 2
.
2 . 1
3 0)
c ;

h) I n t bits lengths = c 1 plus the number of extra widths (j) of bits c
i) i n t bits shorths= c 1 plus the number of extra shorths (j) of bits c
j) i n t L bits width= c the number of elements in L bits; see L bits

(10.2.2.g); this number increases (decreases) with the "size", i.e.,
the number of 'Iong's (minus the number of 'short's) of which 'L'
is composed, until a certain size is reached, viz., "the number of
extra widths" (minus "the number of extra shorths") of bits, after
which it is constant c ;

k) i n t bytes lengths= c 1 plus the number of extra widths (m) of bytes c
I) i n t bytes shorths c 1 plus the number of extra shorths (m) of

bytes c
m) i n t L bytes width= c the number of elements in L bytes; see L bytes

110.2.2.h); this number increases (decreases) with the "size", i.e.,
the number of 'Iong's (minus the number of 'short's) of which 'L'
is composed, until a certain size is reached, viz., "the number of
extra widths" (minus "the number of extra shorths") of bytes, after
which it is constant c

n) o p abs = (char a) int : c the integral equivalent (2.1.3.1.g) of the
character 'a' c

o) o p repr= (int a) char : c that character 'x', i f it exists, for which abs
x = a c

p) i n t max abs char= c the largest integral equivalent (2•1.3.1.g) of a
character c

ci) c h a r mill character = c some character c ;
r) c h a r flip= c the character used to represent 'true' during transput

(10.3.3.1.a, 10.3.3.2.8)c;

s) c h a r flop = c the character used to represent 'false' during transput
t) c h a r errorchar= c the character used to represent unconvertible

arithmetic values (10.3.2.1.b,c,d,e,f) during transput c ;
u) c h a r blank = "."

10.2.2. Standard modes

a) m o d e void = c an actual-declarer specifying the mode 'void' c
b) m o d e boo!. c an actual-declarer specifying the mode 1
b o o l e a n 'c) m o d e L int = c an actual-declarer specifying the mode in t e g ra l ' c

130 v a n Wijngaarden, et al.

d) m o d e L real = c an actual-declarer specifying the mode 'L real' c ;

e) m o d e char= c an actual-declarer specifying the mode 'character' c

f) m o d e L compl= struct (L real re, im);

g) m o d e L bits= struct ([1 : L bits width] boo! L F); (See 10.2.1j)
(The field-selector is hidden f rom t he us er i n order t hat he may not
break open the structure: i n part icular, he may not subscript the field.)

h) m o d e L bytes= struct ([1 : L bytes width] char L 1
,
') ; (S e e 1 0 . 2 . 1 . m)i) m o d e string = flex [1 : 0] char;

10.2.3. Standard operators and functions

10.2.3.0. Standard priorit ies

a) p r i o minusab = 1, plusab =1, timesab = 1, divab = 1, overab = 1,
modab = 1, plusto = 1,
- :==1, +:==1, x:==1, * :==1, / :==1, ÷ :==1, %:==1, +x:==1,
+4
,
:=
=
1
,
%
)
<
:
=
=
1
,
%
*
:
=
=
1
,
+
=
:
=
1
,

v =2, or=2,

A=3, 8, =3, and=3,

eq=4, l = = 4 , ne=4,

< =5, I t=5, < = = 5 , 1 4 3 = 5 , > = = 5 , g e = 5 , > =5, gt=5,

-=6, +=6,

x =7, * =7, / =7, = 7 , % =- 7, over= 7,
÷x = 7, 4-*= 7, %x = 7, %*= 7, mod = 7,
E)--- 7, &ern =7,

=8, * *=8, 1 =8, up =8, down =8, shl =8, shr= 8,
iwb=8, upb=8, L =8, r =8,

1•=9, + * . - 9 , 1=9 ;

10.2.3.1. Rows and associated operat ions

a) m o d e ?' rows = c an actual-declarer specifying a mode united from
(2.I.3.6.a) a sufficient set of modes each of which begins with
'row' c

b) o p ilwb, L = (int n, rows a) int : c the lower bound in the n-th bound
pair of the descriptor of the value of 'a', i f that bound pair
exists c

ALGOL 68 Revised Repor t 1 3 1

c) o p upb, r = ant n, rows a) int : c the upper bound in the n-th
bound pair of the descriptor of the value of 'a', i f that bound pair
exists c

d) o p +Nib, L = (rows a) int : I La;

e) o p + upb, r = (rows a) int : 1 r a;

(The t erm "suffic ient set", as used in a above and also in 10.3.2.2.b and
d, implies that no intended part icular-program should f a i l t o be produced
(nor any unintended part icular-program be produced) by the syntax solely
on account of an insufficiency of modes in that set.)

10.2.3.2. Operat ions on boolean operands
a) o p + v , or t = (bool a, b) bool : (al truel b);

b) o p + A , 8t, and = (boo! a, b) bool : (al bl false) ;

c) o p n o t = (bool a) boo!: (al false l true) ;

d) o p e q = (bool a, b) booi : (a A b) v (- a A ' b)

e) o p / = , net = (boot a, b) boot : - (a = b)

f) o p abs (boot a) int : (al I 0) ;

10.2.3.3. Operat ions on integral operands
a) o p + < , it t = (L int a, b) boot : c true if the value of 'a' is smaller than

(2.1.3.1.e) that of 'b' and false otherwise c
b) o p +.+, <=, l et = (L int a, b) 130(0 : - (b < a);

c) o p +=, ecit (L int a,b) boo! : a A b a ;

d) o p / = , ne = (L int a, b) bool : (a = b)

e) o p + > = , get = (L int a, b) boot : b ;

f) o p i t, gtt = (L int a, b) boo!: b < a;

g) o p - = (L int a,b) L int : c the value of 'a' minus (2.1.3.1.0 that of
'bt c ;

h) o p - = (L int a) L int : L 0 a ;
i) o p + = (L int a, b) L int : a - -b
j) o p + (L int a) L int : a;

k) o p abs = (L int a) L int : (a < L 0 -
a I a) ;1) o p fx, (L int a, b) L int :

begin L int s := L 0, i : = abs b;
while i L I
d o s : = s + a ; i : = i -L lod ;
(b < L 0 - si s)

end ;

132 v a n Wijngaarden, et al.

m) o p t ÷, %, overt = (L int a, b) L int :
i fb i L 0
then L int : = L 0, r := abs a;

while(r:=r-absb)zi, 0 doq:=q+L lod;
(a < L 0 A b z L 0 v a L 0 A b < L 0 1 - g l q)

;
n) o p t +x, % x , %*, mod t = (L int a, b) L int :

(intr=a-a+bxb; r<01r+absbir);
o) o p / = (L Int a, b) L real : L real (a) / L real (b)
p) o p , * * , up f (L int a, int b) L int :

(1 0 1 L intp:=L 1; tobdom=pxaod; p);
op leng = (L int a) long L int : c the long L integral value lengthened

from (2.1.3.1.e) the value of 'a'
r) o p shorten = (long L int a) L int : c the L integral value, i f it exists,

which can be lengthened to (2.1.3.1.e) the value of 'a'
s) o p odd = (L int a) boo!: abs a ÷x L 2= L 1 ;
t) o p sign = (L int a) Int :

(a > L 0 1 1 1 : a < L 0 1
-
1 1 0) ;

u) o p t I, +x, +*, 1 = (L int a, L camp!: (a, b)

q
)

10.2.3.4. Operat ions on real operands

a) o p t < , itt = (L real a, b) boo!: c true if the value of 'a' is smaller
than (2.1.3.1.e) that of 'b' and false otherwise c

b) o p t < = , let = (L real a, b) boo!: - (b < a) ;
c) o p t =, egt = (L real a, b) bool : a b A b
d) o p t / = , ne = (L real a, b) boot : (a = b)
e) o p g e f = (L real a, b) bool : b a ;
f) o p t >, gtt = (L real a, b) boo! : b < a ;
g) o p - = (L real a, b)L real : c the value of 'a' minus (2.1.3.1.e) that of

1
b
'
c
;

h) o p - = (L real a) L real : L 0 - a;
i) o p + = (L real a, b) L real : a - - b
j) o p + = (L real a) L real : a;
k) o p abs = (L real a) L real : (a < L 0 1
-
a l a) ;
I) o p t x, *t = (L real a, b)L real : c the value of 'a' times (2.1.3.1.e) that

of 1b'

ALGOL 68 Revised Report 1 3 3

m) o p / = (L real a, b) L real : c the value of 'a' divided by (2.1.3.1.0 that
of 'b'

n) o p leng = (L real a) long L real : c the long L real value lengthened
from (2.1.3.1.e) the value of 'a' c ;

o) o p shorten = (long L real a) L real : c if abs a t a n g L max real, then
a L real value io' such that, for any L real value 'w',
abs (leng v - a) a b s (leng w - a)c

p) o p round = (L real a) L Int: c a L integral value, i f one exists, which
is widenable to (2.1.3.1.e) a L real value differing by not more
than one-half from the value of 'a' c

q) o p sign = (L real a) Int (a>L01 .11 :a<L01 -110);
r) o p fentier, L f =(L real a) L int:

begin L int j := L 0;
while j < a doj := j+ L 1 od;
whi l e j >adoI :=, j -L l od;

end ;

s) o p I , +x, i t = (L real a, b) L comp!: (a, b)

10.2.3.5. Operat ions on arithmet ic operands

a) o p P=(L real a, L int b)L real : a P L real (b);

b) o p P = (L int a, L real b)L real : L real (a)P b

c) o p R=(L real a, L int b) boat : a R L real (b);

d) o p R = (L Int a, L real b) boo! : L real (a) R b ;

e) o p 1 , +x, +*, l = (L real a, L int b) L comp!: (a, b)

f) o p Si, +x, I f =(L Int a, L real b) L camp!: (a, b)

g) o p I , **, up f (L real a, int b) L real :
(L r eal p:=L 1; toabsb dop: =px a od; (bk . 0 I pI L l i p)) ;

10.2.3.6. Operat ions on character operands

a) o p R = (char a, b) boo! : abs a R abs b (10 .2.1.nl

b) o p + = (char a, b) string : (a, b)

10.2.3.7. Operat ions on complex operands

a) o p re = (L comp! a) L real : re of a;

b) o p im = (L compl a) L real : im of a ;

134 v a n W i jngaarden, et al.

c) o p abs = (L comp, a) L real : L sqrt (re a I 2 + im a I 2) ;

d) o p arg = (L comp! a) L real :
if L real re. re a, im= im a;

re i L 0 v imi L 0
then if abs re > abs im

then L arctan (im re) + L pi L 2 x
(im < L 01 sign re 111 - sign re)

else -L arctan (re I im)+ L pi L 2 x sign im
II

fi ,

e) o p conj = (L comp! a) L comp! : re a I -im a;

f) o p =, (L compl a, b) boo!: re a = re b A im a = Im b ;

g) o p n e 1
, (L
c o m p l
a ,
b)
b o o
l
:
(
a
-
=
b
)

h) o p - = (L comp! a, b) L comp!: (re a - re b) I OM a - im b)

i) o p -= (L compl a) L comp!: - r e a
l - i m a ;j) o p + = (L compl a, b) L compi : (re a + re b) I OM a + im

k) o p + = (L comp! a) L compl : a ;

1) o p x , * f (L compl a, b) L comp! :
(re cix re b - im ax im b) I (re aximb+iMax re b) ;

m) o p / = (L comp' a, b) L compl :
(L real d =- re (b x conj b); L compi n = a x conj b;
(re n I d) n I
d)) ;n) o p leng = (L compl a) long L compl : leng re a I leng im a;

o) o p shorten = (long L comp! a) L comp!:
shorten re a I shorten im a;

p) o p P = (L comp! a, L int b) L compl : a P L compl (b)

q) o p P = (L comp! a, L real b)L compl : a P L comp! (b);

r) o p P = (L int a, L compl b) L comp': L compl (a) P b

s) o p P = (L real a, L comp' b) L comp!: L comp! (a) P b

t) o p I ,**, up f (L compl a, int b)L comp! :
(L compl p := L I ; to abs b do p := p x a od; (b ?_ 01 p 1 L 1 / p))

u) o p E = (L compl a, L int b) boot : a E L compl (b)

v) o p E = (L comp! a, L real b) boo!: a E L comp! (b)

w) o p E (L int a, L compl b) bool : b E a;

x) o p E (L real a, L compl b) boo!: b E a;

10.2.3.8. Bits and associated operat ions

a) o p = , ect = (L bits a, b)bool :
begin bool c;

for i to L bits width
while c := (L F of a) [i] = (L F of b)l i I
do skip od;

end ;

b) o p Si, n e f = (L bits a, b)bool : - (a b) ;

c) o p v , or f (L bits a, b) L bits :
begin L bits c;

for i to L bits width
do (L o f c)[ii := (L F of a) [i v o f bl I i 1 od;

end;

d) o p S , 8,, and (L bits a, b) L bits :
begin L bits c;

for i to L bits width
do (L F of c) [i : = (L F of a) [i] A ad F of b) Ii I od;

end ;

e) o p < = , le f (L bits a, b) boot : (a v b) = b

f) o p > = , get = (L bits a, b) boo!: b a ;

ALGOL 68 Revised Report 1 3 5

g) o p S 1, up, shi t (L bits a, int b) L bits :
if abs b L bits width
then L bits c := a;

to abs b
do if b 0 then

for i f rom 2 to L bits width
do (L P' of c) [i - I : = (L F ot c)[i] od;
(L I
,
'
o
f
c
)
[
L
b
i
t
s
w
i
d
t
h
]
:
=
f
a
l
s
e

else
for i from L bits width by -1 to 2
do (L F of c)[il := (L o f - I 1 od;
(L o f cl [1 1 := false

fi od;

fi ;

h) o p S I , down, shrf = (L bits x, int n) L bits I - n

136 v a n Wijngaarden, et al.

i) o p abs =(L bits a) L int :
begin L int c := L 0;

for i to L bits width
doc : =L 2 x c +Ka bs (L Fota) [i]od;

end ;
j) o p bin =(L int a) L bits :

ila?._L 0
then L int b := a; L bits c;

for i from L bits width by - 1 to 1
do (L o f c) [i] := odd b; b := b L 2 od;

fi

fi

k) o p •telem,4 • .•••• ant a, b i t s b) boo!: (L F of b) [a] ;
1) p r o c L bits pack = ([] boo! a) L bits :

it int n = r a [@ 11;
n L bits width

then L bits c;
for i to L bits width
do (L F of c) [i] :=

(i L bits width - ni false a I.@ i j [i - L bits width + ni)
od;

fi

m) o p , -, not = (L bits a) L bits :
begin L bits c;

for i to L bits width do (L F of c) [i I := - (L P' of a) I ij od;

end ;
n) o p leng =(L bits a) long L bits : l ong L bits pack (a) ;
o) o p shorten = (long L bits a) L bits : L bits pack ([] boo! (a)

[long L bits width L bits width + 1 : 1) ;

10.2.3.9. Bytes and associated operat ions

a) o p R = (L bytes a, b) boo! : string (a) R string (b);
b) o p lelem, 0 f (i nt a, L bytes b) char : (L F of b) [a] ;
c) p r o c L bytes pack. (string a) L bytes :

if intn= r a [@ /];
n .5_L bytes width

then L bytes c;
for i to L bytes width
do (L o f c) [i] : = (i s.n a [@ 1] [i] I null character) od;

ALGOL 68 Revised Report 1 3 7

d) o p leng = (L bytes a) long L bytes : long L bytes pack (a) ;

e) o p shorten = (long L bytes a) L bytes :
L bytes pack (string (a) [L bytes width]) ;

10.2.3.10. Strings and associated operat ions

a) o p <<, it* = (string a, b) boot :
begin int m = r a [@ 11, n = r b [@ 1]; int c := 0;

fori to (m<n lmln)
while (c := abs a [@ - abs b [@ 1] [i])=0
do skip od;
(c=01m< nA n>01c< 0)

end;

b) o p < < = , le* = (string a, b) boo! : - (b < a);

c) o p <=, eq* = (string a,b) boot : a5..1, A b a ;
d) o p < / = , ne * = (string a, b) bool : (a = b);

e) o p f > = , get = (string a, b) boo! : b ;
f) o p g t * = (string a, b) boot : b < a;
g) o p R = (string a, char b) bool : a R string (b);
h) o p R (char a, string b) boo!: string (a) R b
i) o p + = (string a, b) string :

(intm= (int la= r a [@ 1]; la< 01011a),
n = (int lb = r b [@ 1]; lb < 0101 lb);

[1: m+n] char c;
c [1 : m] : =a [@1] ; c [m+1 : m+n] :=b [@1] ; c);

j) o p + = (string a, char b) string : a + string (b)
k) o p + = (char a, string b) string : string (a) + b
1) o p Ix, ** = (string a, int b) string : (string c; to b do c := c + a od; c);

m) o p <x, ** = (int a, string b) string : b x a ;
n) o p f x, = (char a, int b) string : string (a) x b
o) o p <x, ** = (int a, char b) string : b x a ;

(The operations defined in a, g and h imply that if abs "a"< abs "b",
then ""< "a" " a " < "b" " a a " < "ab" " a a " < "ba" " a b " < "b" and
"ab" < "ba"

10.2.3.11, Operat ions combined wit h assignations

a) o p <minusab, - :=* = (ref L int a, L int b) ref L int : a := a b

b) o p < minusab, = = (ref L real a, L real b) ref L real : a := a b
c) o p <minusab, = (ref L compl a, L compl b) ref L comp!:

a := a b

138 v a n Wijngaarnen, et al.

d) o p t plusab, +:=1. = (ref L int a, L int b) ref L int : a := a + b

e) o p plusab, +:=t = (ref L real a, L real b) ref L real : a := a + b

f) o p plusab, +:=4' = (ref L compl a, L compl b) ref L compi : a := a + b

g) o p itimesab, x:=, c = f = (ref L int a, L int b) ref L int a : = a x b ;

h) o p •timesab, x:=, c= = (ref L real a, L real b) ref L real : a : = a x b;

i) o p f timesab, x:=, * :=t = (ref L comp! a, L comp! b) ref L compl :
a : =ax b ;

j) o p foverab, ÷:=, %:= f (r e f L int a, L int b) ref L int : a := a b ;

k) o p •1 modab,÷x:=, i•*:=,%x:=,%*:=1• =
(ref L int a, L int b) ref L int : a := a +x b ;

1) o p tdivab, /:=1. = (ref L real a, L real b) ref L real : a : =a l b;

m) o p divab, / := = (ref L compi a, L compl b) ref L compl : a : = a l b ;
n) o p Q = (ref L real a, L int b) ref L real a Q L real (b);

0) o p Q = (ref L comp! a, L int b) ref L compl : a Q L compl (b);

p) o p Q (r e f L comp! a, L real b) ref L compl : a Q L compl (b);

GI) o p •plusab, +:= = (ref string a, string b) ref string : a := a + b

r) o p .1/Mist°, +=: = (string a, ref string b) ref string : b a + b

s) o p plusab, +:=I• = (ref string a, char b) ref string : a +:= string (b),

t) o p 3plusto, = (char a, ref string b) ref string : string (a)+=: b

u) o p .ttimesab, x:=, * :=1 = (ref string a, int b) ref string : a : = a x b;

10.2.3.12. Standard mathematical constants and functions

a) L real L pi = Ca L real value close t on; see Math. of Comp. v. 16,
1962, pp. 80-99 c ;

b) p r o c L sqrt= (L real x) L real : c i f
x L 0 , a
L r e a l
v a l u e
c l o s e
t o

the square root of 'x'
c) p r o c L exp = (L real x) L real : c a L real value, i f one exists, close to

the exponent ial funct ion of 'x'
d) p r o c l n = (L real x)L real : Ca L real value, i f one exists, close to

the natural logarithm of 'x'

e) p r o c I, cos (L real x) L real : c a L real value close to the cosine of
'x'

f) p r o c L arccos= (L real x) L real : c if abs X 5_ L 1, a L real value close
to the inverse cosine of 'x', L 0 a r c c o s (x) p i c

proc 1, s in = (L real x) L real : c a L real value close to the sine of
'x'

g
)

ALGOL 68 Revised Report 1 3 9

h) p r o c L arcsin= (L real x) L real : c if abs 1 , a L real value close
to the inverse sine of ' x
1
, a b s L
a r c s i n
(x)
L
p i
I
L
2
c
;

i) p r o c L tan = (L real x) L real : c a L real value, i f one exists, close to
the tangent of tx'

i) p r o c L aretan = (L real L real : c a L real value close to the
inverse tangent of 'x', absL a rcta n (x)L pi / L 2 c

k) p r o c L next random = (ref L int a) L real :
(a := c the next pseudo-random L integral value after 'a ' from a

uniformly d istribu ted sequence o n t h e in t e rva l
[L 0, L max int] c

c the real value corresponding to 'a ' according to some mapping
of integral values [L 0, L max int] in to real values [L 0, L 1)
(i.e., such that 0 x < 1) such that the sequence of real values
so produced preserves the properties o f pseudo-randomness
and uniform distribution of the sequence of integral values c);

10.2.4. Synchronizat ion operations

The elaborat ion of a parallel-c lause P (3.3.1.c) in an env iron E is t ermed
a "paral le l ac t ion". Th e elaborat ion o f a const ituent un i t o f P i n E i s
termed a "process" of that parallel action.

Any elaborat ion A (in some environ) of either of the ENCLOSED-clauses
delineated by t he pragmat s (9.2.1.b) p r start o f incompat ible pa r t pr and
pr finish o f incompat ible p a r t pr i n t h e f o r ms 10.2.4.d a n d 10.2.4.e i s
incompat ible w i t h (2.1.4.2.e) a n y e laborat ion B o f e i t h e r o f t hos e
ENCLOSED-clauses i f A and B are descendent actions (2.I.4.2.b) of dif ferent
processes of some same parallel action.
a) m o d e sema = struct (ref int F)
b) o p level = (int a) sema : (sema s; Fofs := heap int := a; s)
c) o p level = (sema a) int : o f a ;
d) o p down = (sema edsger) void :

begin ref int diflestra F of edsger;
while

pr start of incompatible part pr
If dijkstra 1 then dijkstra -:= 1; false
else

c let P be the process such that the elaboration o f
this pseudo-comment (10.I.3.Step 7) is a descendent
action o f P, but not o f any other process descended
from 1
3
;
t h e
p r
o c
e s
s
P
i
s
h
a
l
t
e
d
(
2
.
1
.
4
.
3
.
f
)
c
;

true
fi

pr finish of incompatible part pr
do skip od

end;

140 v a n Wijngaarden, et al.

e) o p up. (sema edsger) void :
pr start of incompatible part pr

If ref int dijkstra F of edsger; (dijkstra 1) 1
then

c all processes a re resumed (2.1•4.3.g) wh ich a re halted
because the integer referred to b y the name yielded b y
'dijkstra' was smaller than one c

II
pr finish of incompatible part pr

(For the use of down and up, see E.W. Dijks t ra, Cooperat ing Sequent ial
Processes, c ont ained i n P r o g r a mmi n g Languages , Genuy s , F . (e d .) ,
London etc., Academic Press, 1968: see also 11.12.)

10.3. Transput declarat ions

("So it does!" said Pooh. "I t goes in! "
"So it does!" said Piglet. "And it comes out!"
"Doesn't i t ?" s aid Eeyore. " I t goes i n a n d o u t l ik e
anything."
Winnie-the-Pooh, A . A . Milne.)

(Three way s o f "t ransput " (i . e. , input and output) a r e prov ided b y t he
standard-prelude, v iz . , f ormat les s t rans put (10.3.3), f o rmat t ed t rans put
(10.3.5) and binary t ransput (10.3.6)1

10.3.1. Books, channels and files

("Books", "channels " a n d "fi les " mo d e l t he t rans put dev ices o f t he
physical machine used in the implementat ion.)

10.3.1.1. Books and backfiles

taal A l l inf ormat ion wi t h in the system is t o be found in a number of
"books". A book (a) is a s t ructured value inc luding a field tex t of the mode
specified b y flextex t (b) wh i c h ref ers t o in f ormat ion i n t h e f o r m o f
characters. The text has a variable number of pages, each of whic h may
have a v ariable number o f lines , eac h o f wh ic h ma y hav e a v ar iable
number of characters. Posit ions wi t h in t he tex t are indicated by a page
number, a line number and a charac ter number. The book includes a field
lpos which indicates the "logical end" of the book, i.e. , t he pos it ion up t o
which i t has been fi lled wi t h informat ion, a s t ring idf , whic h ident ifies the
book and whic h may possibly inc lude ot her informat ion, e.g. , ownership,
and fi e lds pu t t i ng a n d us ers wh i c h p e r mi t t h e b o o k t o b e opened
(10.3.1.4.d) o n more t han one fi le s imultaneous ly only i f put t ing i s no t
possible on any of them.

ALGOL 68 Revised Report 1 4 1

bb) Th e books in the system are accessed via a chain o f backfiles.
The chain o f books available fo r opening (10.3.1.4.dd) i s referenced b y
chainbfile. A given book may be referenced by more than one backfile on
this chain, thus allowing simultaneous access to a single book b y more
than one process (10.2.4). However such access can only be for reading a
book, since only one process may access a book such that i t ma y be
written to (aa). The chain of books which have been locked (10.3.1.4.0) is
referenced by locked bfile.

cc) Simultaneous access by more than one process to the chain o f
backfiles is prevented by use of the semaphore bfileprotect, which provides
mutual exclusion between such processes.

dd) Books may be created (e.g., by input) o r destroyed (e.g., a f te r
output) b y tasks (e.g., the operating system) i n the system-task-list
(10.4.2), such books being then added to o r removed f rom the chain o f
backfiles.)
a) m o d e ?
,
b o o k
=

struct (flextext text,
pos lpos C logical end of book 0,
string idf 0 identification 0,
boot putting 0 true if the book may be written to 0,
int users 0 the number of times the book is opened 0) ;

b) m o d e l l text = ref [I [I [char ,
mode ?' flextext = ref flex [] flex [] flex [I char;

c) m o d e ?. pos = struct (int p, 1, c)

d) p r i o ?, beyond = 5,
op beyond = (pos a, b) boo!:

p of < p of b then false
elif p of a > p of b then true
elif 1 of a < / ot b then false
e ! l f
l o f
a
>
l o f
b
t
h
e
n
t
r
u
e

else cola> cot b
fi ;

e) m o d e ? bffie = struct (ref book book, ref bffie next) ;

f) r e f bffie chainb file := nil;
g) r e f blue locked bfile := nil;
h) s e m a bfileprotect = (sema s; F of s := PRIM int := 1; s)

10.3.1.2. Channels

(aa) A "channel" corresponds to one or more physical devices (e.g., a
card reader, a card punch or a line printer, or even to a set up in nuclear

142 v a n Wijngaarden, et al.

physics the results o f which a re collected b y the computer), o r to a
filestore maintained by the operating system. A channel is a structured
value whose fields are routines returning truth values which determine the
available methods of access to a book linked via that channel. Since the
methods of access to a book may well depend on the book as well as on
the channel (e.g., a certain book may have been trapped so that it may be
read, but not written to), most o f these properties depend on both the
channel and the book. These properties may be examined by use o f the
environment enquiries provided f o r files (10.3.1.31f). Two environment
enquiries are provided for channels. These are:

• estab possible, which returns true if another file may be "established"
(10.3.I.4.cc) on the channel;
• standcono, which may be used to obtain the default "conversion key"
(bb) for the channel.

bb) A "conversion key" is a value of the mode specified by cony which
is used t o convert characters t o and f ro m the values a s stored i n
"internal" f o rm and as stored in "external" f o rm in a book. I t i s a
structured value comprising a row of structures, each of which contains a
value i n in terna l f o rm a n d i t s corresponding externa l va lue. Th e
implementation ma y provide additional conversion keys in i t s lib ra ry-
prelude.

cc) Th re e standard channels are provided, with properties as defined
below (e,f,g). The implementation may provide additional channels in its
library-prelude. Th e channel number fie ld i s provided i n o rde r tha t
different channels w i t h o therwise iden t ica l possib ilit ies m a y b e
distinguished.)

a) m o d e channel =
struct (proc (ref book) boo! ?, reset, 9' set, g e t , ?' put, ?• bin,

compress, ?' reidf,
proc bool estab, proc pos ?' max pos,
proc (ref book) cony ?' standconv, int ?, channel number) ;

b) m o d e ?' cony = struct ([1 : int (skip)] struct (char internal, external) F)

c) p r o c estab possible = (channel chan) bool : estab of chan ;

d) p r o c standconv = (channel chan) proc (ref book) cony :
standcono of chan

e) c h a n n e l stand in channel= c a channel value whose field selected by
'get' is a routine which always returns true, and whose other
fields are some suitable values c

f) c h a n n e l stand out channel= c a channel value whose field selected by
'put' is a routine which always returns true, and whose other
fields are some suitable values c

g)

10.3.1.3. Files

ALGOL 68 Revised Report 1 4 3

channel stand back channel. c a channel value whose fields selected
by 'set', 'reset', 'get', 'put' and 'bin' are routines which always
return true, and whose other fields are some suitable values c

faa) A "file" i s the means o f communication between a particular-
program and a book which has been opened on that file via some channel.
It is a structured value which includes a reference to the book to which it
has been linked (10.3.1.4.bb) and a separate reference to the text o f the
book. The fi le a lso contains information necessary f o r th e transput
routines to work with the book, including its current position cpos in the
text, its current "state" (bb), its current "format" (10.3.4) and the channel
on which it has been opened.

bb) Th e "state" of a file is determined by five fields:
• read mood, which is true if the file is being used for input;
• write mood, which is true if the file is being used for output;
• char mood, which is true i f the fi le i s being used f o r characte r
transput;
• b in mood, which i s t ru e i f the fi le i s be ing used f o r b inary
transput:
• opened, which is true if the file has been linked to a book.
cc) A file includes some "event routines", wh ich a re called when

certain conditions arise during transput. After opening a file , the event
routines provided by default return false when called, but the programmer
may provide other event routines. Since the fields of a file are not directly
accessible to the user, the event routines may be changed by use of the
"on routines" (1,m,n,o,p,q,r). The event routines a re a lways g iven a
reference to the file as a parameter. I f the elaboration of an event routine
is terminated, then the transput routine which called it can take no further
action; otherwise, i f it returns true, then i t is assumed that the condition
has been mended in some way, and, i f possible, transput continues, but if
it returns false, then the system continues with its default action. The on
routines are:

• on logical file end. The corresponding event routine is called when,
during input from a book or as a result of calling set, the logical end of
the book is reached (see 10.3.1.6.dd).
Example:

The programmer wishes to count the number o f integers on h is
input tape. The file intape was opened in a surrounding range. I f he
writes:

begin int n 0 ; on logical file end (intape, (ref file file) boot: gob ° f);
do get (intape, too it); n 1 ad;
f: print (n)

end,

144 y e n Wijngaarden, et al.

then the assignment t o the fie ld o f intape violates th e scope
restriction, since the scope of the routine (ref file file) boo! : gob o f is
smaller than the scope of intape, so he has to write:

begin int n := 0; file auxin := intape;
on logical file end (auxin, (ref file file) boo!: goto f);
do get (auxin, loc i t); n o d ;
f: print (n)

end

• on physical file end. The corresponding event routine is called when
the current page number of the file exceeds the number of pages in the
book and further transput is attempted (see 10.3.1.6.dd).

• o n page end. Th e corresponding even t rou t ine i s ca lle d wh e n
the current line number exceeds the number of lines in the current page
and further transput is attempted (see 10.3.I.6.dd).

• o n line end. T h e corresponding e ven t rou t ine i s ca lle d wh e n
the current character number o f the fi le exceeds th e number o f
characters in the current line and further transput is attempted (see
10.3.I.6.dd).
Example:

The programmer wishes automatically to give a heading at the start
of each page on his file f:

on page end (f, proc (ref file file) boo!:
(put (file, (newpage, "page number ", whole (i +:= 1, 0),

newline)); true)
C it is assumed that i has been declared elsewhere C)

• o n char error. The corresponding event routine i s called when a
character conversion wa s unsuccessful o r when, d u rin g input, a
character is read which was not "expected" (10.3.4.1.11). The event
routine is called with a reference t o a character suggested as a
replacement. The event routine provided b y the programmer ma y
assign some character other than the suggested one. I f the event
routine returns true, then that suggested character as possibly modified
is used.
Example:

The programmer wishes t o read sums o f money punched a s
"$123.45", " ,$23.4,5" " „$3.45" , etc.:

on char error (stand in, (ref file f, ref char sugg) boo!:
• i f sugg " 0 "

then char c; backspace (f); get (f, c);
(c = "$" I get (f, sugg); true I false)

else false
fi);

int cents; readf (($ 3z"." dd $, cents))

ALGOL 68 Revised Report 1 4 5

• o n value error. The corresponding event routine is called when:
(i) during formatted transput an attempt is made to transput a value

under the control of a "picture" with which it is incompatible, o r when
the number of "frames" is insufficient. I f the routine returns true, then
the current value and picture are skipped and transput continues; i f
the routine returns false, then first, on output, the value is output by
put, and next undefined is called;

(ii) during input i t is impossible to convert a string to a value of some
given mode (this would occur if, for example, an attempt were made to
read an integer larger than max int (10.2.1.c)).

• on format end. The corresponding event routine i s ca lled when,
during formatted transput, the format is exhausted while some value
still remains to be transput. I f the routine returns true, then undefined
is called i f a new format has not been provided fo r the file b y the
routine; otherwise, the current format is repeated.

dd) Th e cony field of a file is its current conversion key (10.3.I.2.bb).
After opening a file , a default conversion key is provided. Some other
conversion key may be provided by the programmer by means of a call of
make cony (j) . Note that such a key must have been provided in the
library-prelude.

ee) Th e routine make term is used to associate a string with a file .
This string is used when inputting a variable number of characters, any of
its characters serving as a terminator.

ff) Th e available methods of access to a book which has been opened
on a file may be discovered by calls of the following routines (note that the
yield of such a call may be a function of both the book and the channel,
and of other environmental factors not defined by this Report):

• get possible, which returns true if the file may be used for input:
• pu t possible, which returns true if the file may be used for output:
• b in possible, which returns true i f the file ma y be used fo r binary
transput;
• compressible, wh ich re tu rns t ru e i f l in e s a n d pages w i l l b e
compressed (10.3.I.6.aa) during output, in which case the book is said
to be "compressible":
• reset possible, which returns true i f the file ma y be reset, i.e., i t s
current posit ion set to (1, 1, 1);
• set possible, which returns true if the file may be set, i.e., the current
position changed to some specified value: the book is then said to be a
"random access" book and, otherwise, a "sequential access" book:
• re id f possible, which returns true i f the id f field o f the book may be
changed:
• chan, which returns the channel on which the file has been opened
(this m a y b e used, f o r example, b y a rou t ine assigned b y
on physical file end, in order to open another file on the same channel).

146 v a n Wijngaarden, e t
a l .

gg) O n sequential access books, undefined (10.3.1.4.a) i s called i f
binary and character transput is alternated, i.e., after opening or resetting
(10.3.1.6.j), either is possible but, once one has taken place, the other ma
not until after another reset.

hh) O n sequential access books, output immediately causes the logical
end of the book to be moved to the current position (unless both are in the
same line): th u s input ma y no t fo llow output without fi rs t resetting
(10.3.1.6.j)
Example:

begin file fl, f2; [1 : 10000] int x; int n := 0;
open (fl , " , channel 2);
f2 := fl;

C now 11 and f2 can be used interchangeably C
make cony (f 1 , flexocode); make cony (f2, telexcode);

0 now f 1 and f2 use different codes; flexocode and telexcode are
defined in the library-prelude for this implementation C

reset (f1);
C consequently, f2 is reset too 0

on logical file end (fl, (ref file f) boo! : goto done);
for i do get (171, x [i]); n := od;

C too bad if there are more than 10000 integers in the input C
done:

reset (f1); for i to n do put (f2, x [i]) od;
close (f2) f 1 is now closed too 0

end)

a) m o d e file =
struct (ref book 9. book, union (flextext, text) 9' text, channel ?' chan,

ref format ?, format, ref int for p,
ref bool c? read mood, 9 write mood, ?' char mood, ?' bin mood,

opened,
ref pos?
,
c p o
s
C
c u
r r e
n t
p o
s i
t i
o n
C
,

string t e rm C string terminator C,
cony 9
,
c o
n y
C
c h
a r
a c
t e
r
c
o
n
v
e
r
s
i
o
n
k
e
y
C
,

proc (ref file) boo! ,?• logical file mended, 5)
, p h y s i c a l fi l e
m e n d e d ,

ib page mended, l i n e mended, ?' format mended,
? value error mended,

proc (ref file, ref char) boot ?, char error mended) ;

b) p r o c get possible = (ref file f) boo! :
(opened off I (get of chan of f) (book of f)I undefined; skip) ;

c) p r o c put possible = (ref file f) boo! :
(opened o f
f I
(p u t
o f
c h
a n
o f
f)
(b
o o
k
o
f
f
)
I
u n
d e
fi n
e d
;
s
k
i
p
)
;

d) p r o c bin possible = (ref file f) boo! :
(opened of f 1 (bin of chan o f
f) (b o o k o f
f)
u n d e fi n e d
;
s k i p
)
;

ALGOL 68 Revised Repor t 1 4 7

e) p r o c compressible = (ref file f) boo!:
(opened o f
f I
(c o m
p r e s
s
o
f
c h
a n
o f
f)
(
b
o
o
k
o
f
f
)
u
n
d
e f
i
n
e
d ;
s
k
i
p
)
;

f) p r o c reset possible = (ref file f) bool :
(opened o f
f I
(r e s e
t
o f
c h
a n
o
f
f
)
(b
o
o k
o
f
f
)
1
u n
d e
fi n
e d
;
s
k
i
p
)
;

g) p r o c set possible = (ref file f) boo!:
(opened off I (set of chan o f
f) (b o o k o f
f) I
u n d e fi n e
d ;
s k i p
)
;

h) p r o c reidf possible = (ref file f) boo!:
(opened o f
f I
(r e i d
f
o f
c h
a n
o
f
f
)
(b
o
o k
o
f
f
)
I
u n
d e
fi n
e d
;
s
k
i
p
)
;

1) p r o c chan= (ref file f) channel :
(opened o f
f I
c h a n
o f
f
I
u n d
e fi n
e d ;
s k
i p
) ;

j) p r o c make cony = (ref file f, proc (ref book) cony c) void :
(opened o f
f I
c o n y
o f
f
: =
c
(b
o o
k
o
f
f
)
u n
d e
fi n
e d
)
;

k) p r o c make term = (ref file f, string t) void : term of f := t

1) p r o c on logical file end = (ref file f, proc (ref file) bool p) void :
logical file mended off: p

m) p r o c on physical file end = (ref file f, proc (ref file) bool p) void :
physical file mended o f
f : pn) p r o c on page end = (ref file f, proc (ref file) boo! p) void :
page mended of f p

o) p r o c on line end = (ref file f, proc (ref file) boo! p) void :
line mended of f := p ;

p) p r o c on format end = (ref file f, proc (ref file) boo! p) void :
format mended of f := p

q) p r o c on value error = (ref file f, proc (ref file) bool p) void :
value error mended of f := p

r) p r o c on char error = (ref file f, proc (ref file, ref char) boo! p) void :
char error mended of f := p

s) p r o c reidf = (ref file f, string idf) void :
if opened o f
f A
r e i d f
p o s s
i b l e
(f
)
A
i
d
f
o
k
(i
d
f)

then idf of book of f i d f
fi

10.3.1.4. Opening and closing files

(aa) When, during transput,
, s o m e t h i n g
h a p p e n s
w h i c h
i s
l e f
t
u n d e fi
n e d ,

for example by explicitly .
c a l l i n g
u n d e fi n e d
(a) ,
t h i s
d o e
s
n o
t
i m p
l y
t h
a t

the elaboration is catastrophically and immediately interrupted (2.1.4.3.h),
but only that some sensible action is taken which is not o r cannot be
described by this Report alone and is generally implementation-dependent.

148 v a n W i jngaarden, et al.

bb) A book is "linked" with a file by means of establish (b), create (c)
or open (d). The linkage may be terminated by means of close (n), lock
(o) o r scratch (p).

cc) When a file is "established" on a channel, then a book is generated
(5.2.3) with a text of the given size, the given identification string, with
putting set to true, and the logical end o f the book a t (1 , 1, 1). A n
implementation m a y requ ire (g) t h a t t h e characters fo rmin g t h e
identification string should be taken from a limited set and that the string
should be limited in length. I t may also prevent two books from having the
same string. I f the establishing is completed successfully, then the value 0
is returned: otherwise, some nonzero integer is returned (the value of this
integer might indicate why the file was not established successfully).

When a file is "created" on a channel, then a file is established with a
book whose te xt h a s t h e default size f o r t h e channel a n d whose
identification string is undefined.

dd) When a file is "opened", then the chain of backfiles is searched for
the first book which is such that match (h) re turns true. (The precise
method of matching is not defined by this Report and will, in general, be
implementation dependent. For example, the string supplied as parameter
to open may include a password of some form.) I f the end of the chain of
backfiles is reached or if a book has been selected, but putting of the book
yields true, o r i f putting to the book via the channel is possible and the
book is already open, then the further elaboration is undefined. I f the file
is already open, an up gremlins provides an opportunity for an appropriate
system action on the book previously linked (in case no other copy of the
file remains to preserve that linkage).

ee) Th e routine associate may be used to associate a file with a value
of the mode specified by either ref [] char, ref [] [] char or ref [] [I []
char, thus enabling such variables to be used as the book of a file.

f 0 When a fi le i s "closed", i t s book is attached t o the chain o f
backfiles referenced by chainb file. Some system-task is then activated by
means of an up gremlins. (Th is may reorganize the chain o f backfiles,
removing this book, o r adding further copies of it . I t may also cause the
book to be output on some external device.)

gg) When a file i s "locked", i t s book is attached t o the chain o f
backfiles referenced by lockedbfile. Some system-task is then activated by
means of an up gremlins. A book which has been locked cannot be re -
opened until some subsequent system-task has re-attached the book to the
chain of backfiles available for opening.

hh) When a fi le i s "scratched", some system-task i s activated b y
means of an up gremlins. (This may cause the book linked to the file to be
disposed of in some manner.))

ALGOL 68 Revised Repor t 1 4 9

a) p r o c undefined i n t : c some sensible system action yielding an
integer to indicate what has been done; i t is presumed that the
system action ma y depend o n a knowledge o f a n y values
accessible (2.12.c) inside the locale of any environ which is older
than tha t in which th is pseudo-comment i s being elaborated
(notwithstanding that no ALGOL 68 const ruct wri t t en here could
access those values) c

b) p r o c establish
(ref file file, string idf, channel chan, int p, 1, c) int :
begin

down bfileprotect;
P RI M book book

(PRI M flex [1 : p] flex [1 : 11 flex [1 : e] char, (1, 1, 1), idf,
true, 1);

If file available (chan) A (put of chan) (book)
A estab of chan A " (pos (p, I, c) beyond max pos of chan)
A , (pos (1, 1, 1) beyond pos (p, 1, c)) A idf ok (idf)

then
(opened of file I up gremlins I up bfileprotect);
file :=

(book, text of book, chan, skip, skip,
0 state: 0 heap boo! := false, heap bool := true,

heap booi := false, heap boot := false, heap bool := true,
heap pos := (1, 1, 1), " , (standconv of chan) (book),
0 event routines: 0 false, false, false, false, false, false,

(ref file f, ref char a) boo!: false);
(- bin possible (file)I set char mood (file));
0

else up bfileprotect; undefined
fi

end ;

c) p r o c create (r e f file file, channel chan) int :
begin pos max pos =- max pos of chan;

establish (file, skip, chan, p of max pos, 1 of max pos,
c of max pos)

end;

d) p r o c open =- (ref file file, string idf, channel chan) int :
begin

down bfileprotect;
if file available (chan)
then ref ref bflle bf chai nbfil e; boo! found := false;

while (ref bfile n i l) A " found

150 v a n W i jngaarden, et al.

do
if match (idf, chan, book of bf)
then found := true
else bf := next of bf
II

od;
if found
then up bfileprotect; undefined
else ref book book := book of bf;

if putting of book v (put of chan) (book) A users of book > 0
then

up bliteprotect; undefined 0 in this case opening is
inhibited by other users - the system may either
wait, or yield nonzero (indicating unsuccessful
opening) immediately 0

else
users of book +:= 1;
((put of chan) (book)I putting of book := true);
ref ref bine (bl):= next of bl; 0 remove bfile from chain 0
(opened of file I up gremlins I up bfileprotect);
file :=

(book, text of book, chan, skip, skip,
0 state: 0 heap boo! := false, heap bool := false,

heap boo! := false, heap boo! := false,
heap boo! := true,

heap pos := (1, 1, 1), " , (standconv of chan) (book),
0 event routines: 0 false, false, false, false, false,

false, (ref file f, ref char a) boo!: false);
(- bin possible (file)1 set char mood (file));
(- get possible (file)1 set write mood (file));
(- put possible (file)1 set read mood (file));

fi
0

Ii
else up bfileprotect; undefined
11

end;

e) p r o c associate =
(ref file file, ref [I [I I char sss) void :
if int p = iwb sss; int = iwb sss [p j; int c = iwb sss I p I [11;

p=1A1=1Ac=1
then

proc t = (ref book a) boot: true;
proc f = (ref book a) boot: false;
channel chan = (t; t, t, t, f, f, f, boo!: false,

pos : (max int, max int, max int), skip, skip);
(opened of /Wel down bfileprotect; up gremlins);

g
)

ALGOL 68 Revised Repor t 1 5 1

file : .
(heap book := (skip, (upb sss + 1, 1, 1), skip, true, 1), sss, chan,
skip, skip,
0 state: C heap boo/ := false, heap boo/ := false,

heap boo/ := true, heap boo! := false, heap boot := true,
heap pos := (1, 1, 1), " , skip,
0 event routines: 0 false, false, false, false, false, false,

(ref file f, ref char a) boo!: false)
else undefined

;

f) p r o c ?' file available = (channel chan) boo!:
c true if another file, at this instant of time, may be opened on

'chan' and false otherwise c

proc i d f ok = (string idf) boo!:
c true if 'idfr is acceptable to the implementation as the

identification of a new book and false otherwise c

h) p r o c ?, match=
(string idf, channel chan, ref book book name) boo!:
c true if the book referred to by 'book name' may be identified by

'idf, and if the book may legitimately be accessed through
ichan', and false otherwise c

I) p r o c fa l se= (ref file file) boo!: false
0 this is included for brevity in 'establish', 'open' and 'associate' 0 ;

j) p r o c ?, set write mood = (ref file f) void :
if - put possible (f) v

- set possible (f) A bin mood o f
f " r e a d
m o o d
o f f

then undefined
else ref boo! (read mood of f):= false; ref boo! (write mood of f):= true
fi ;

k) p r o c ?, set read mood = (ref file f) void :
If - get possible (f) v

- set possible (f) b in mood o f
f " w r i t e
m o o d o f
f

then undefined
else ref boat (read mood of f):= true; ref bool (write mood of f):= false
fi ;

I) p r o c ?' set char mood = (ref file f) void :
If - set possible (f) A bin mood off
then undefined
else ref boo! (char mood of
f) : = t r u e ;
r e f
b o o !
(b i n
m o o
d
o f
f) :
=
f a l
s e

fi

152 v a n Wijagaarden, et al.

m) p r o c ? set bin mood = (ref file f) void :
if - bin possible (f) v se t possible (f) A char mood of f
then undefined
else ref boot (char mood of f) := false; ref boot (bin mood of f):= true

;

n) p r o c close = (ref file file) void :
If opened of file
then

down bliteproteet;
ref boot (opened of file) := false;
ref book book = book of file;
putting of book := false; users of book -:= 1;
(text of file I (flextext): ehainbfile :=

PRIM bffle := (book, chainbfile));
up gremlins

if ;

o) p r o c lock = (ref file file) void :
If opened of file
then

down bfileprotect;
ref boot (opened of file) := false;
ref book book = book of file;
putting of book := false; users of book -:= 1;
(text of file I (flextext): lockedbfile :=

PRIM bffle := (book, lockedbfile));
up gremlins

fi ;

p) p r o c scratch = (ref file file) void :
If opened of file
then

down bfileprotect;
ref boot (opened of file) := false;
putting of book of file := false;
users of book of file -:= 1;

up gremlins
fl

10.3.1.5. Position enquiries

(aa) Th e "current position" o f a book opened on a given file is the
value referred to by the epos field o f that file. I t is advanced by each
transput operation in accordance with the number of characters written or
read.

If c is the current character number and lb is the length o f the
current line, then at a ll times 1 C l b + 1. c 1 implies that the next

esac
end;

ALGOL 68 Revised Report 1 5 3

transput operation will be to the first character of the line and c = lb + 1
implies that the line has overflowed and that the next transput operation
will call an event routine. I f lb = 0, then the line is empty and is therefore
always in the overflowed state. Corresponding restrictions apply to the
current line and page numbers. Note that, i f the page has overflowed, the
current line is empty and, i f the book has overflowed, the current page
and line are both empty (e).

bb) T h e user may determine the current position by means o f the
routines char number, line number and page number (a, b, c).

cc) I f the current position has overflowed the line, page or book, then
it is said to be outside the "physical file" (f , g, h).

dd) I f , on reading, the current position is at the logical end, then it is
said to be outside the "logical file" (i)

(Each routine in this section calls undefined if the file is not open on
entry.)
a) p r o c char number = (ref file f) int :

(opened off I c of epos off I undefined);
b) p r o c line number = (ref file f) int :

(opened off I I of epos off I undefined) ;
proc page number = (ref file f) int :

(opened off I p of epos off I undefined) ;
d) p r o c cur r ent pos = (ref file f) pos :

(opened off I epos of f I undefined; skip);
e) p r o c ?, book bounds = (ref file f) pos :

begin pos epos = current pos (f);
int p = p of epos, 1= l
o t e p o s ;case text off in

(text t1):
(int pb u p b tl;
int lb (p v p pb1 01 upb ti [A);
int cb = 5_0 v 1> lb I 01 upb [P] UV;
(pb, lb, eb)) ,

(flextext t2):
(int pb = upb t2;
int lb = (p v p pb1 01 opb t2 [P]);
int cb = a v 1> lb I 01 upb t2 [P] UP;
(pb, lb, eb))

f) p r o c l i ne ended = (ref file f) boot:
(int c = c of current pos (f); e o f book bounds (f))

154 v a n Wijngaarden, et al.

g) p r o c 9
, p a g e
e n d e
d
= ,
(r
e f
t i
l e
f
)
b
o
o
t
:

(Intl =-1of current pos (f); I > lo t book bounds (f))

h) p r o c 9 physical file ended :--- (ref file f) boot:
(int p p of current pos (f); p > p of book bounds (f))

i) p r o c 9 logical file ended •= (ref file f) boot:
- (lpos of book of f beyond current pos (f))

10.3.1.6. Layout routines

(aa) A book input f rom an external medium by some system-task may
contain lines and pages not a ll of the same length. Contrariwise, the lines
and pages o f a book which has been established (10.3.1.4.cc) a re a l l
initially of the size specified by the user. However if , during output to a
compressible book (10.3.1.3.ff) , newline (newpage) i s ca lled wit h the
current position in the same line (page) as the logical end o f the book,
then that line (the page containing that line) is shortened to the character
number (line number) o f the logical end. Thus prin t (("abcde", newline))
could cause the current line to be reduced to 5 characters in length. Note
that it is perfectly meaningful for a line to contain no characters and for a
page to contain no lines.

Although the effect o f a channel whose books are both compressible
and of random access (10.3.1.3.ff) is well defined, it is .not anticipated that
such a combination is likely to occur in actual implementations.

bb) The routines space (a), newline (c) and newpage (d) serve to advance
the current position to the next character, line or page, respectively. They
do not, however, (except as provided in cc below) a lter the contents of the
positions skipped over. Thus print (("a", backspace, space)) has a different
effect from print (("a", backspace, blank)).

The current position may be altered also by calls of backspace (b), set
char number (k) and, on appropriate channels, of set (i) and reset (j)

cc) The contents of a newly established book are undefined and both its
current position and its logical end are at (1, 1, 1). As output proceeds, i t
is filled with characters and the logical end is moved forward accordingly.
If, during character output with the current position at the logical end of
the book, space is called, then a space character is written (simila r action
being taken in the case o f newline and newpage i f the book i s no t
compressible).

A call of set which attempts to leave the current position beyond the
logical end results in a ca ll of undefined (a sensible system action might
then be to advance the logical end to the current position, o r even to the
physical end o f the book). There is thus no defined way in which the
current position can be made to be beyond the logical end, nor in which
any character within the logical file can remain in its in it ia l undefined
state.

ALGOL 68 Revised Report 1 5 5

dd) A reading or writing operation, o r a ca ll of space, newline, newpage,
set or set char number, may bring the current position outside the physical
or logical file (10.3.I.5.cc, dd), bu t th is does not have any immediate
consequence. However, before any further transput is attempted, o r a
further ca ll o f space, newline o r newpage (bu t not o f set o r set char
number) i s made, the current position must be brought t o a "good"
position. The file is "good" if , on writ ing (reading), the current position is
not outside the physical (logical) fi le (10.3.I.5.cc, dd). The page (line) is
"good" i f the line number (character number) has not overflowed. The
event routine (10.3.I.3.cc) corresponding to on logical file end, on physical
file end, on page end o r on line end is therefore called as appropriate.
Except i n th e case o f formatted transput (wh ich uses check pos,
10.3.3.2.c), the default action, i f the event routine returns false, is to call,
respectively, undefined, undefined, newpage o r newline. A f te r this (o r i f
true is returned), i f the position is st ill not good, an event routine (not
necessarily the same one) is called again.

ee) Th e state o f the file (10.3.I.3.bb) controls some effects o f the
layout routines. I f the read/write mood is reading, the effect o f space,
newline and newpage, upon attempting to pass the logical end, is to ca ll
the event routine corresponding to on logical file end with default action
undefined; i f it is writing, the effect is to output spaces (or, in bin mood,
to write some undefined character) o r to compress the current line o r
page (see cc). I f the read/write mood is not determined on entry to a
layout routine, undefined is called. On exit, the read/write mood present
on entry is restored.)

a) p r o c space = (ref file f) void :
If - opened off then undefined
else

boo! reading =
(read mood of f true I: write mood off 1 false
I undefined; skip);

(- get good line (f, reading)I undefined);
ref pos epos = epos of f;
If reading then c of epos -1-:= 1
else

if logical file ended (f) then
If bin mood o f
f t h e n(text o f

f I
(fl e
x t e
x t
t 2
) :

t2 [p of epos] [lo t epos] [c of epos : = skip);
c of cpos +:= 1; lpos of book of f := epos

else put char (f, ",")
fi

else c of cpos +:= 1
fi

11 ;
11

156 v a n W i jngaarden, et al.

b) p r o c backspace = (ref file Ovoid :
if - opened of f then undefined
else ref int c = c of epos of f;

(c > 11 c -:= 11 undefined)
fi ;

c) p r o c newline = (ref file f) void :
if - opened o f
f t h e n
u n d e f
i n e d

else
boot reading =

(read mood off I true I: write mood off I false
1 undefined; skip);

(- get good page (f, reading)1 undefined);
ref pos epos = epos of f, lpos = lpos of book of f;
if p of epos = p of Ipos A 1 of epos = 1 of lpos
then c of epos := c of lpos;

If reading then newline (f)
else

if compressible (f)
then ref int pl = p of lpos, 11= 1 of lpos;

flextext text = (text off I (flextext t2): t2);
text [pl] [I I] := text [pl] [11] [: c of lpos - 1]

else while - line ended (f) do space (f)oct
li;
epos := lpos := (p of epos, 1 of epos + 1, 1)

fi

fi
else cpos := (p of epos, 1 of epos + 1,1)
fi

d) p r o c newpage = (ref file f) void :
if - opened of f then undefined
else

boo! reading =
(read mood o f
f I t r u e
I :
w r i t
e
m o
o d
o f
f
I
f a
l s
e
u n
d e
fi n
e d
;

skip);
(- get good file (f, reading) I undefined);
ref pos epos = epos off, ipos = lpos of book of f;
If p of cpos = p of lpos
then epos := lpos;

if reading then newpage (f)
else

if compressible (f) A 1 of lpos 1 of book bounds (f)
then ref int pl = p of lpos, 11= 1 of lpos;

flextext text = (text of f I (flextext t2): t2);
text [pl] [I I] := text [pl] [I I] [: c of lpos - 1];
text [pl] := text [pl] [: (c of lpos > 1111111 - 1)]

g)

ALGOL 68 Revised Repor t 1 5 7

else while - page ended (f) do newline (f) od
fl;
epos := lpos := (p of epos + 1, 1, 1)

fi
else epos := (p of epos + I, I, I)
fi

;

(Each of the following 3 rout ines eit her returns true, in whic h case the
line, page or fi le is good (dd), or i t returns false, in which case the current
position ma y be outs ide t he logic al fi le o r t he page number ma y hav e
overflowed, or it loops unt il the mat t er is resolved, o r it is t erminated by a
jump. O n ex it , t h e read/ wr i t e mood i s as det ermined b y i t s read ing
parameter.)

e) p r o c ? get good line = (ref file f, bool reading) boo!:
begin boot not ended;

while not ended := get good page (f, reading);
line ended (f) A not ended

do (- (line mended o f
f) (f) 1
s e t
m o o d
(f ,
r e a d i
n g) ;
n e w
l i n e
(f
))
o
d
;

not ended
end;

f) p r o c ? get good page = (ref file f, boo! reading) boo! :
begin booi not ended;

while not ended := get good file (f, reading);
page ended (f) A not ended

do (- (page mended o f
f) (f) I
s e t
m o o d
(f ,
r e a d i n
g) ;
n e w
p a g
e
(f
))
o
d
;

not ended
end;

proc ?, get good file (r e f file f, boot reading) boo!:
begin booi not ended := true;

while set mood (f, reading);
not ended A
(reading I logical file ended physical file ended) (f)

do not ended : = (reading I logical file mended off
physical file mended off) (f)

od;
not ended

end ;

h) p r o c ?' set mood (r e f file f, bool reading) void :
(reading l set read mood (f)I set write mood (f))

i) p r o c set = (ref file f, int p, 1, c) void :
if - opened o f
f v -
s e t
p o s s
i b l e
(f
)
t h
e n
u n
d e f
i n
e d

else boo! reading =
(read mood o f
f I
t r u e
:
w r i t
e
m o
o d
o f
f
I
f a
l s
e
l
u n
d e
fi n
e d
;
s
k
i
p
)
;

158 v a n Wijngaarden, et al.

fi ;

ref pos epos ci3os o f
f , l p o s
l p o s
o f
b o o k
o f
f ;

pos cellos epos;
if (epos (p , 1, c)) beyond lpos
then epos := lpos;

(- (logical file mended o f
f) (f) I
u n d e fi n e d)
;

set mood (f, reading)
elif pos bounds -= book bounds (f);

p < lv p > p o f bounds + 1
v i < l v 1> 1 of bounds -I- 1
v e< 1 v c>cof bounds+1

then cpos cepos; undefined
Ii

fi ;
j) p r o c reset (r e f file f) void :

If - opened o f
f v
r e s e t
p o s s
i b l e
(f
)
t h
e n
u n
d e
fi n
e d

else
ref boot (read mood o f
f) - p u t
p o s s i b l
e
(f) ;

ref boot (write mood of f) g e t possible (f);
ref boot (char mood of f) - bin possible (f);
ref boot (bin mood off) f a l s e ;
ref pos (cpos o f
f)
(1 , 1 , 1
)

II;

k) p r o c set char number (r e f file f, int c) void :
If - opened o f
f t h e n
u n d e
fi n e d

else ref ref pos epos epos of f;
while c of epos c
do

ifc< 1 vc>cof book bounds (f)+ I
then undefined
&if c o f epos
then space (f)
else backspace (f)
fi

od

10.3.2. Transput values
10.3.2.1. Conversion routines

(The routines whole, fixed and float are intended to be used with the
formatless output routines put, print and write when it is required to have
a little extra control over the layout produced. Each of these routines has
a width parameter whose absolute value specifies the length of the string
to be produced by conversion of the arithmetic value V provided. Each of
fixed and float has an after parameter to specify the number o f digits
required after the decimal point, and an exp parameter in float specifies
the width allowed for the exponent. I f V cannot be expressed as a string

within the given width, even when the value of after, i f provided, has been
reduced, then a s t ring fi lled wit h errorchar (10.2.I.t) is returned instead.

Leading zeroes are replaced by spaces and a s ign is normally included.
The us er can, however, spec if y t hat a s ign i s t o b e inc luded on ly f o r
negative values by specify ing a negat ive width. I f t he wid t h spec ified is
zero, t hen t he shortes t poss ible s t r ing in t o wh ic h V c an b e converted,
consistently w i t h t h e o t h e r paramet ers , i s re t u rned. T h e f o l l owing
examples illus t rate some of the possibilit ies:

print (whole (i, -4))
which migh t p r in t " „ „ 0 " , "„ „99", " , - 99 " , "9999" or , i f i were
greater than 9999, "****", where "a" is the y ield of errorchar;

print (whole (i, 4))
which would print ",+99" rather than " „ 99 " :

print (whole (i, 0))
which might print "0", "99", "-99", "9999" or "99999";

print (fixed (x, -6, 3))
which migh t pr in t "„2.718", "27.183" o r "271.83" (i n wh ic h one
place af t er the dec imal point has been sacrificed i n order to fi t
the number in);

print (fixed (x, 0, 3))
which might print "2.718", "27.183" or "271.828";

print (float (x, 9, 3 ,
2))which migh t p r in t " - 2 . 7 1 8

1 0
+0 " , " + 2 . 7 1 8
1 0
- 1 " , o r
' 4 2 . 7 2
1 0
+ 1 1 "
(i
n

which one place af t er t he dec imal point has been sacrificed i n
order to make room for the unexpectedly large exponent).)

a) m o d e ?' number= union (< L real*, <L i nt)
b) p r o c whole = (number v, int width) string :

case v in
(L int x):

(int length := abs width - (x < L 0 v widt h> 01110),
L int n a b s x;
if width 0 then

L int m := n; length := 0;
while m ÷:= L 10; length +:= 1; rn L 0
do skip od

fi;
string s := subw hole (a, length);
if length r- 0 v char in st ring (errorchar, loc int, s)
then abs width x errorchar
else

(x < L 01 "-" I: width> 01 "+"I ") plusto s;
(width 0 (abs width - upb s)x p i u s t o s);

tOt
< (L real x): fixed (x, width, 0)4.

esac

ALGOL 68 Revised Repor t 1 5 9

160 v a n W i jngaarden, et al.

c) p r o c fixed = (number v, Int width, after) string :
case v In

(L real x):
if int length := abs width - (x < L 0 v width > 01 110);

after z.0 A (length > after v width= 0)
then L real y a b s x;

If width =0
then length := (after =01 110);

while y + L .5 x L .1 1 after L 10 1 length
do length +:= 1 od;
length +:= (after =0101 after + 1)

fi;
string s := sub fixed (y, length, after);
If - char in string (errorchar, lac s)
then (length > upb s A y < L 1.01 "0" plusto s);

(x < L 0 I "-" I: width> 01 "+" 1 ") plusto s;
(width 0 1 (abs width - upb s)x "L" plush, s);

Wit after > 0
then fixed (v, width, after - 1)
else abs width x errorchar
fi

else undefined; abs width x errorchar
fit

(L int x): fixed (L real (x), width, after)1•
esac

d) p r o c float = (number v, int width, after, exp) string :
case v in

(L real x):
if in! before = abs width - abs exp - (after 01 after + 110) - 2;

sign before + sign after > 0
then string s, L real y := abs x, int p := 0;

L standardize (y, before, after, p);
s :=

fixed (sign x x y, sign width x (abs width - abs exp - 1),
after) + "
1 0
" +
w h o
l e
(p
,
e x
p)
;

if exp =0 v char in string (errorchar, loc int, s)
then

float (x, width, (after 01 after - 11 0),
(exp > 01 exp + 11 exp - 1))

else s
fi

else undefined; abs width x errorchar
ti4
,(L int x): float (L real (x), width, after, exp)i•

esac ;

ALGOL 68 Revised Repor t 1 6 1

e) p r o c subwhol e= (number v, int width) string :
C returns a s t ring of max imum length 'width' containing a

decimal representation of the posit ive integer 'v ' C
case v in

int x):
begin string s, L int n := x;

while dig char (S (n mod L 10)) ',lust° s;
n ÷:= L. 10; n i L 0

do skip od;
(upb s w i d t h l w i d t h x errorchar I s)

end 1.

g)

esac

f) p r o c subfixed= (number v, int width, after) string :
C returns a s t ring of max imum length 'widt h' containing a

rounded decimal representation of the posit ive real number
'v'; i f 'after' is greater than zero, this s t ring contains a
decimal point followed by 'af ter' digits C

case v in
(L real x):

begin string s, int before := 0;
Lr e a l y : =x +L. 5 x L. 1 I after;
proc choosedig = (ref L real y) char :

dig char ((int : = S entier (y x:= L 10.0); (c > 91 c := 9);
y -:= K c; c));

while y L 10.0 1 before do before +:= 1 od;
y /:= L 10.0 1 before;
to before do s plusab choosedig (y)od;
(after > 0 s ;Masai) ".");
to after do s plusab choosedig (y)od;
(upb s w i d t h l width x errorcharls)

end 1.
esac

proc L standardize= (ref L real y, int before, after, ref int p) void :
0 adjusts the value of 'y' so that it may be t ransput according

to the format $ n(before)d n(af t er)d $; 'p' is set so that
y x 10 1 p is equal to the original value of 'y' 0

begin
L real g = L 10.0 1 before; L real h= gx L .1;
while y ?_,g
, d o
y
x : =
L i
;
p
+
:
=
1
o
d
;

(y L 0.0 1 while y < h do y x:= L 10.0; p -:= 1 od);
(y +L . 5 x L . 1 1 af ter h ; p+: =1)

end ;

h) p r o c ?' dig char = (int x) char : "0123456789abcder Ix + 1 :

162 v a n Wijngaarden, et al.

i) p r o c ? string to L int = (string s, int radix, ref L int i boo!:
0 returns true if the absolute value of the result is L max int 0

begin
L int Ir = K radix; boo! safe := true;
L int n := L 0, L int m = 1, max int I r ;
L int ml = L max int - m x Ir;
for 1 from 2 to upb s
while L int dig = K char dig (s Ii1);

safe := n < m v n=m A dig i t ' l l
do n := n I r + dig od;
if safe then 1:= (s [1 I = "+" I n - n); true else false

end ;
j) p r o c ?' string to L real = (string s, ref L real r) boo!:

0 returns true if the absolute value of the result is 5_
L max real 0

begin
int e := upb s + 1;
char in string ("lo"

,
e
,
s
)
;

int p := e; char in string (".", p, s);
int j := 1, length := 0, L real x := L 0.0;
0 skip leading zeroes: 0
for 1 from 2 to e - 1
while s = "0" vs I = "." v sI i i =
do j := i od;
for 1 from j + 1 to e - 1 while length < L real width
do

if s l i j " . "
then x := x x L 10.0 + K char dig (s if := il); length +:=

0 all significant digits converted 0
od;
0 set preliminary exponent: 0
int exp := (p I p - - 11 p j) , expart := 0;
0 convert exponent part: 0
boo! safe :=

if e < upb s
then string to Lint (s le + 1 : I, 10, expart)
else true
fi;

0 prepare a representation of L max real to compare with the
L real value to be delivered: 0

L real max stag := L max real, int max exp := 0;
L standardize (max stag, length, 0, max exp); exp +:= expart;
if - safe v (exp > max exp v exp = max exp A X > max stag)
then false
else r := (s [1 l= "+"1 x - x)x L 10.0 1 exp; true
fi

end ;

ALGOL 68 Revised Report 1 6 3

k) p r o c ?' char dig = (char x) int :
(x = ", " 0 I nt i; char in string (x, i, "0123456789a bcdef"); i - 1);

1) p r o c char in string = (char c, ref int i, string s) boo! :
(bool found:. false;
f or
k
f
r
o
m
l
w
b
s
t
o
u
p
b
s
w
h
i
l
e
-
f
o
u
n
d

do (c = s [k 1 I i := k; found := true) od;
found);

m) i n t L int width =
the smallest integral value such that 'L max int ' may be

converted without error us ing the pat tern n(L int width)d
(int c := 1;
while L 10 1 (c - 1) < L. l x L max int do c +:= 1 od;
c)

n) i n t L real width =
it the smallest integral value such that dif ferent strings are
produced by conversion of '1.0' and of TO + L small real' us ing
the pattern d n (L real width - 1)d (I'

1 - S entier (L In (L small real) / L In (L 10)) ;

o) i n t L exp width =
C the smallest integral value such that 'L max real' may be
converted without error us ing the pat tern
d n (L real width - 1)d e n(L exp width)d

1 + S entier (L In (L In (L max real)! L ln (I, 10)) / L In (L 10)) ;

10.3.2.2. Transput modes

a) m o d e ?' simpiout = union (f L Int*, L real*, L comp!, boot
L bits*, char, H char) ;

b) m o d e ?' outtype = c an actual-declarer specifying a mode united f rom
(2.1.3.6.a) a sufficient set of modes none of which is 'void o r
contains 'flex ible', 'reference to*, 'procedure' or 'union of ' c

c) m o d e ? ' simplin = union (t ref L int*, r e f L real*, f ref L compl*,
ref boot, f ref L bits*, ref char, ref [I char, ref string) ;

d) m o d e ?' intype = c an actual-declarer specifying a mode united f rom
(2.1.3.6.a) 'reference to flex ible row of character' together wit h a
sufficient set of modes each of which is 'reference to' followed by
a mode which does not contain 'flex ible', ' reference to',
'procedure' or 'union of c ;

(See the remarks af ter 10.2.3.1 concerning the t erm "suffic ient s e t
. .
.)10.3.2.3. St raightening

a) o p straightout (outtype x) H simplout :
c the result of "s t raightening" 'x '

164 v a n Wijngaarden, et al.

b) o p ?, straightin =(intype x)[lsimpl in :
c the result of straightening 'x'

c) T h e result of "s t raightening" a given value V is a mult ip le value W
(of one dimension) obtained as follows:
• i t is required that V (if it is a name) be not nil:
• a counter I is set to 0:
• V is "t raversed" (d) using
• W is composed o f a desc riptor ((1, I)) a n d t he elements obtained b y
traversing V:
• i f V is not (is) a name, then the mode of the result is the mode specified
by [] simplout ([I simplin).

d) A value V is "t raversed", us ing a counter i, as follows:
If V is (refers to) a value f rom whose mode that specified by s impiout is

united,
then

• i s increased by one:
• t he element of W selected by (i) is V:

otherwise,
Case A: V is (refers to) a mult ip le value (of one dimens ion) hav ing a

descriptor ((I , u)):
• f o r j I , . , . , u, the element (the subname) o f V selected by (j) i s
traversed using

Case B: V is (refers to) a mult iple value (of n dimensions, n 2) whose
descriptor is ((1• u1
) , (1
2 ' u 2
) ,
, (I
n
, u
n
))
w h e
r e
n
2
:

• f o r j 1 1' ' u 1' t he mul t ip le v alue selected (2.1.3.4.i) b y (t he

name genera t ed (2.1.3.4., j) b y) t h e t r i m (j , (1
2
, u
2
, 0) , ,

(I
n
,
u
n
,
0
)
)
i
s
t
r
a
v
e
r
s
e
d
u
s
i
n
g

Case C: V is (refers to) a s t ructured value Vl:
• t he fields (t he subnames of V ref erring to the fields) o f V1, taken
in order, are t raversed using

10.3.3. Format less t ransput

(In format less t ransput, t he elements of a "dat a l is t " are t ransput, one
after the other, v ia a specified fi le. Eac h element of the data l is t is eit her
a layout rout ine of the mode specified by proc (ref file) void (10.3.1.6) o r a
value of the mode specified by outtype (on output) o r intype (on input). On
encountering a layout rout ine in t he data lis t , t hat rout ine is called wi t h
the specified fi le a s paramet er. Ot her values i n t he dat a l i s t a re fi rs t
straightened (10.3.2.3) and the result ing values are then t ransput v ia t he
given fi le one af ter the other.

Transput normally takes place at the current posit ion but, i f there is no
room on the current l ine (on output) o r i f a readable value is not present
there (on input), then first , the event rout ine corresponding to on l ine end

(or, wh e re appropriate, t o o n page end, o n physical file end o r
on logical file end) is called, and next, i f this returns false, t he nex t "good"
character posit ion of the book is found, viz., the fi rs t charac ter posit ion of
the next nonempty line.)

10.3.3.1. Format less output

ALGOL 68 Revised Report 1 6 5

(For format less output, put (a) and pr in t (o r writ e) (10.5. I .d) ma y be
used. Each straightened value V f rom the data lis t is output as follows:

aa) I f the mode of V is specified by L int, t hen fi rs t , i f t here is not
enough r o o m f o r L int wid t h + 2 charac ters o n t he remainder o f t he
current line, a good pos it ion is f ound on a subsequent l ine (see 10.3.3):
next, when not at the beginning of a line, a space is given and then V is
output as i f under the control of the pic ture n(L int width - 1)z + d.

bb) I f the mode of V is specified by L real, t hen fi rs t , i f there is not
enough room for r e a l widt h + L exp widt h + 5 characters on the current
line, then a good posit ion is found on a subsequent line; nex t , when not at
the beginning of a line, a space is given and then V is output as i f under
control of the pic ture

+d n (L real width - 1)den(L exp width - 1)z +d.

cc) I f the mode of V is specified by L compl, then first , i f there is not
enough room f or 2 x (L real widt h + L exp widt h) + 11 charac ters on the
current l ine, t hen a good pos it ion i s f ound on a subsequent l ine: nex t ,
when not at the beginning of a line, a space is given and then V is output
as if under control of the pic ture

+d n (L real width 1)den(L exp width - 1)z +d","i
+d n (L real width - 1)den(L exp width - 1)z +d.

dd) I f the mode of V is specified by boo!, then first , i f the current l ine
is full, a good pos it ion is found on a subsequent line: nex t , i f V is t rue
(false), the charac ter y ielded by fl ip (flop) i s output (wi t h no intervening
space).

ee) I f the mode of V is specified by L bits, t hen the elements of t he
only fi e ld o f V a r e out put (a s i n d d) o n e a f t e r t he o t he r (wi t h n o
intervening spaces, and wit h new lines being taken as required).

ff) I f the mode of V is spec ified b y char, then fi rs t , i f the current l ine
is full, a good posit ion is found on a subsequent line: nex t V is output (wi t h
no intervening space).

gg) I f t he mode o f V is spec ified b y [j char, then t he elements o f V
are output (as in f f) one a f t e r t he ot her (wit h no int erv ening spaces, and
with new lines being taken as required)

166 v a n W i jngaarden, et at.

a) p r o c put = (ref file f, I I union (outtype, proc (ref file) void) x) void :
if opened off then

for i to upb x
do case set write mood (f); set char mood (f); x [i] in

(proc (ref file) void pf): pf (f) ,
(outtype ot):
begin

[I simplout y = straightout ot;
proc L real cony = (L real r) string :

float (r, L real width + L exp width + 4,
L real width - 1, L exp width + 1)1.;

for j to upb y
do case y [j] in

(union (number, f L compit)nc):
begin string s :=

case nc in
•t(L int k): whole (k, L in t width + 1)4,

real r): L real cony (r)t ,
(L
.
c
o
m
p
!
z
)
:
L
r
e
a
l
c
o
n
y
(
r
e
z
)
+

+ L real cony (im z):[
esac;
ref ref pos epos = epos of f, int n = upb s;
while

next pos (f);
(n c of book bounds (I)1 undefined);
cotepos+(colcpos=1 1 n n + 1)>
c of book bounds (f)+ 1

do (- (line mended off) (I)1 Put (I, newline));
set write mood (f)

od;
(c of epos 1 1 " pi usto s);
f o r
k
t
o
u
p
b
s
d
o
p
u
t
c
h
a
r
(
f
,
s
[
k
]
)
o
d

end C numeric C ,
(boo! b): (next pos (f); put char (f, (b fl ip l flop))) ,

(L bits lb):
fork to L bits width
do put (f, (L F ot lb) [k]) od ,

(char k): (next pos (f); put char (f, k)) ,
([] char ss):

fork from Iwb ss to upb ss
do next pos (f); put char (f, ss [k])od

esac od
end

esac od
else undefined
ft ;

ALGOL 68 Revised Report 1 6 7

b) p r o c 9
' p u t
c h a r
=
(r e
f
fi l e
! ,
c h
a r
c h
a r
)
v
o
i
d
:

if opened o f f
" -
l i n e
e n d
e d
(f
)

then ref pos epos = cpos off, Ipos l pos of book of
f ; set char mood (f); set write mood (f);

ref int p p of cpos, 1= lot epos, c = c of cpos;
char k; bool found := false;
case text of fin

(text): (k : -,- char; found := true) ,
(flextext):

for i to upb o f conv off while - found
do struct (char internal, external) key = (F of cony of f)[i] ;

(internal of key = char I k : = external of key;
found : = true)

od
esac;
if found then

case text of fin
(text t1): t i l I tlJ [c] := k ,
(flextext t2): t2 [p] [1] [c] := k

esac;
1;

if cpos beyond lpos then lpos := epos
elif - set possible (f) A pos (p of lpos, I of lpos, 1) beyond epos
then lpos : = epos;

(compressible (f)1
c the size of the line and page containing the logical

end of the book and of all subsequent lines and
pages may be increased (e.g., to the sizes with
which the book was originally established
(10.3.1.4.cc) o r to the sizes implied by max pos of
chan of f)c)

fi
else k := ",";

if - (char error mended off) (f, k)
then undefined; k :=
li;
check pos f); put char (f, k)

fi
else undefined
fi 0 write mood is st ill set 0 ;

proc 9- next pos = (ref file f) void :
(- get good line (f, read mood off) undefined)

0 the line is now good (10.3.1.6.dd) and the read/ write mood is
as on entry 0 ;

168 v a n Wijngaarden, et al.

10.3.3.2. Formatless input
(For formatless input, get (a) and read (10.5.1.e) may be used. Values

from the book are assigned to each straightened name N from the data list
as follows:

aa) I f the mode of N is specified by ref L int, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from
the book that could be "indited" (10.3.4.1.1.kk) under the control of some
picture of the fo rm +n(k.1)","n(k2)dd or n(k2)dd (where Id and k2 yield
arbitrary nonnegative integers); th is string is converted to an integer and
assigned t o N; i f the conversion i s unsuccessful, t h e event routine
corresponding to on value error is called.

bb) I f the mode of N is specified by ref L real, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from
the book that could be indited under the control o f some picture of the
form + n(k.1)"„" n(k2)d or n(k2)d followed by n (k3)d d or by ds., possibly
followed again by e n(k4)"," + n(k5)"," n(k6)d d or by e n(k5)"," n(k6)d d;
this string is converted t o a re a l number and assigned t o N; i f the
conversion is unsuccessful, the event routine corresponding to on value
error is called.

cc) I f the mode o f N is specified by re f L compl, then first , a rea l
number is input (as in bb) and assigned to the first subname of N: next,
the book is searched for the first character that is not a space; next, a
character is input and, i f i t is not " 1 " o r " i" , then the event routine
corresponding to on char error (10.3.1.3.cc) is called, the suggestion being
"1"; finally, a real number is input and assigned to the second subname
of N

dd) I f the mode o f N is specified b y ref boot, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, a character i s read; i f th is
character is the same as that yielded by flip (flop), then true (false) i s
assigned to N; otherwise, the event routine corresponding to on char error
is called, the suggestion being flop.

ee) I f the mode of N is specified by ref L bits, then input takes place
(as in dd) to the subnames of N one after the other (with new lines being
taken as required).

ff) I f the mode of N is specified by ref char, then first, i f the current
line is exhausted, a good position is found on a subsequent line; next, a
character is read and assigned to N.

gg) I f the mode of N is specified by ref [I char, then input takes place
(as in If) to the subnames of N one after the other (with new lines being
taken as required).

ALGOL 68 Revised Report 1 6 9

hh) I f the mode of N is specified by ref string, then characters are read
unt il either

(i) a c harac t er i s encountered wh i c h i s c ont ained i n t h e s t r i n g
associated with the fi le by a call of the rout ine make term, or
(ii) t he c u r ren t l i n e i s exhaus ted, whereupon t h e e v e n t r ou t i ne
corresponding to on line end (or, where appropriate, t o on page end, on
physical fi le end o r on logical fi le end) i s called; i f t he event rout ine
moves the current posit ion to a good posit ion (see 10.3.3), t hen input of
characters is resumed.

The s t ring consisting of the characters read is assigned to N (note that , i f
the current line has already been exhausted, or i f the current posit ion is at
the start of an empty line or outside the logical fi le, t hen an empt y s t ring
is assigned to N).)

a) p r o c get = (ref file
!, []
u n i o n
(i n t y p e ,
p r o c
(r e
f
fi l e
)
v o i
d)
x
)
v o
i d
:

if opened of
f t h e nfor i to upb x
do case set read mood (f); set char mood (f); x t il in

(proc (ref file) void pf): pf (f) ,
(intype it):
begin

[]simplin y = sttaightin it; char k; boot k empty;
op ? -- (string s) boot:

C true if the next character, i f any, in the current line
is contained in 's' (the character is assigned to 'k')
and false otherwise C

if k empty A (line ended (f) v logical file ended (f))
then false
else (k empty get char (f, k));

k empty := char in string (k, loc int, s)
fl;

op ? = (char c) boot: ? string (c);
prio 8 ;
op ! (str ing s, char c) char :

C expects a character contained in 's'; i f the character
read is not in 's', the event routine corresponding to
'on char error' is called with the suggestion 'e'

If (k empty I check pos (f); get char (f, k));
k empty := true;
char in string (k, loc int, s)

then k
else char sugg := c;

if (char error mended of f) (f, sugg) then
(char in string (sugg, loc int, s)
sugg

I undefined; c)

170 v a n W i jngaarden, etal .

else undefined; c
II;
set read mood (f)

II;
op! = (char s, c) char : string (s)! e;
proc skip initial spaces = void :

while (k empty I next pos (I));? " Zt do skip od;
proc skip spaces = void :

while? "," do skip od;
proc read dig = string :

(string t := "0123456789" "0";
while ? "0123456789" do t plusab k od; t);

proc read sign = char
(char t = (skip spaces; ? "+-"I kl "+");
skip spaces; t);

proc read num = string :
(char t = read sign; t + read dig);

proc read real= string :
(string t := read sign;

? "•"1 t plusab read digl k empty := false);
(? "."! t piusab "." + read dig);

"lo\e" I t plusab "
t o
" +
r e a d
n u m)
;
t) ;

for j to upb y
do bool incomp := false; k empty := true;

Case
y
[j]
i n

(ref L int ii):
(skip initial spaces;

incomp := - string to L int (read num, 10, ii))t ,
(
•
r
e
f
L
r
e
a
l
r
r
)
:

(skip initial spaces;
incomp := - string to L real (read real, rr))* ,

(
•
r
e
f
L
c
o
m
p
!
z
z
)
:

(skip initial spaces;
incomp := - string to L real (read real, re of zz);
skip spaces; " i i " ! "1";
incom,p := incomp v
- string to L real (read real, im of zz))* ,

(ref booi bb):
(skip initial spaces;
bb := (flip + flop)! flop = flip) ,

(
•
r
e
f
L
b
i
t
s
l
b
)
:

for i to L bits width
do get (f, (L o f lb) o d ,

(ref char cc): (next pos (f); get char (f, cc)) ,
(ref[[I char ss):

fl
ad

end
esac od
else undefined
fi ;

ALGOL 68 Revised Repor t 1 7 1

Ion i from iwb ss to upb ss
do next pos (f); get char (f, ss [i])od ,

(ref string ss):
begin string t;
while check pos (f);

if line ended (f) v logical file ended (f)
then false
else get char (f, k);

k empty := ch a r in string (k, loc int, term off)
fi

do t plusab k od;
ss := t
end

esac;
(- k empty I backspace (f));
If ineomp
then (- (value error mended o f
f) set read mood (f)

undefined);

b) p r o c ge t char = (ref fue
l , r e f c h a r
c h a r)
v o i d
:

If opened o f
f
l i n e
e n d
e d
(f
)
A
-
•
l o
g i
c a
l
fi
l
e
e
n
d
e
d
(
f
)

then ref pos epos = epos of f;
set char mood (f); set read mood (f);
int p = p of epos, 1= lot epos, c = c of epos;
e of epos +:= 1;
char := case text o f
f i n(text t1): t l [p] [I] [c]

(flextext t2):
(char k := t2 [p] [I] [c];
boo! found := false;
Ion i to upb F of conv of f while - found
do struct (char internal, external) key = (P' of cony o f
f) [i I ;(external of key = k k := internal of key; found := true)
ad;
if found then k
else k := ",";

If (char error mended of f) (f, k)
then k
else undefined; " ,"
fl;

172 v a n Wijngaarden, etal.

set read mood (f)
(l)

esac
else undefined
II C read mood is s t il l set

c) p r o c ?' check pos (r e f fil e
!) v o i d :begin boot reading = read mood off;

boot not ended := true;
while not ended :-- not ended A get good page (f, reading);

line ended (f) A not ended
do not ended :=-• (line mended of f) (f)od

end ;
(The rout ine check pos is used in format ted t ransput before each call of

put char or get char. I f the posit ion is not good (10.3.1.0.dd), i t calls the
appropriate event rout ine, and may c al l f ur t her event rout ines i f t rue is
returned. I f the event rout ine corresponding to on page end returns false,
newpage is called but , i f any other event rout ine returns false, no default
action i s t ak en a n d n o mo r e ev ent rout ines a r e c alled. O n ex i t , t h e
read/write mood is as on entry, but the current posit ion may not be good,
in whic h case undefined wi l l be called i n t he f ol lowing pu t c har o r get
char. However, check pos is also called when get t ing st rings (hh), in which
case the st ring is then terminated if the current posit ion is not good.)

10.3.4. Format texts
(In f ormat t ed t rans put , eac h s t raightened v a lue f r o m a d a t a l i s t

(cf. 10.3.3) i s mat c hed agains t a cons t ituent p ic t ure o f a f ormat - t ex t
provided by the user. A pic ture specifies how a value is to be converted to
or f r o m a sequence o f charac ters a n d presc ribes t he lay out o f those
characters i n t he book . Feat ures wh ic h ma y b e spec ified inc lude t he
number of digits, the posit ion of the dec imal point and of the sign, i f any,
suppression of zeroes and the insert ion of arbi t rary strings. Fo r example,
using t he pic t ure -c1.3d " ," 3d " , " e z+d, t he v alue 1234.567 wou ld b e
transput as the s t ring " 1 . 2 3 4 , 5 6 7 ,
4 0
, + 3 " .

A "f ormat " i s a s t ruc tured v alue (i. e. , a n in t ernal objec t) o f mode
'FORMAT', wh i c h mi r r o r s t h e hierarc hic al s t ruc t ure o f a f ormat - t ex t
(which is an ex ternal objec t). I n t h is sec t ion a r e g iv en t he syntax o f
format-texts and the semant ics f or obtaining t heir corresponding formats .
The ac t ual f ormat t ed t rans put i s per f ormed b y t he rout ines g iv en i n
section 10.3.5 but, f or convenience, a descript ion of t heir operat ion is given
here, in association wit h the corresponding syntax.)

10.3.4.1. Collections and pictures
10.3.4.1.1. Syntax

(The following mode-declarat ions (taken f rom 10.3.5.a) a r e reflected i n
the metaproduct ion rules A to K below.

ALGOL 68 Revised Repor t 1 7 3

A) m o d e format = struct (flex [1 : 0] piece F);
B) m o d e piece = struct (int cp, count, bp, flex [1 : 01 collection c)
C) m o d e collection =union (picture, coMtem)
D) m o d e collitem =

struct (insertion ii, proc int rep, int p, insertion i2)
E) m o d e insertion =

flex [1 : 0] struct (proc int rep, union (string, char) sa);
F) m o d e picture = struct

(union (pattern, cpattem, Ipattem, gpattem, void) p, insertion i)
G) m o d e pattern = struct (int type, flex [1 : 0] frame frames);
H) m o d e frame =

struct (insertion i, proc int rep, bool supp, char marker);
I) m o d e cpattem =

struct (insertion i, int type,
struct (insertion i, int type, flex [1 : 01 insertion c)

J) m o d e fpattem = struct (insertion i, proc format pf)
K) m o d e gpattem = struct (insertion i, flex [1 : 0] proc int spec) ;)

A) F O R M A T : : s t ructured with row of PIECE field let ter aleph mode.
B) P I E C E : : s t ructured with integral field let ter c let ter p

integral field let ter c let ter o let ter u let ter n let ter t
integral field let ter b let ter p
row of COLLECTION field let ter c mode.

C) C O L L E C T I O N : : union of PICTURE COLLITEM mode.
D) C O L L I T E M : : s t ructured wit h INSERTION field let ter i digit one

procedure y ielding integral field let ter r let ter e let ter p
integral field let ter p
INSERTION field let ter i digit two mode.

E) I N S E R T I O N : : row of structured wit h procedure y ielding integral
field let ter r let ter e let ter p
union of row of character character mode field
let ter s let ter a mode.

F) P I C T U R E : : s t ructured with union of
PATTERN CPATTERN FPATTERN GPATTERN void mode
field let ter p INSERTION field let ter i mode.

G) P A T T E R N : : s t ructured wit h
integral field let ter t let ter y let ter p let ter e
row of FRAME field
let ter f let ter r let ter a let ter m let ter e let ter s mode.

H) F R A M E : : s t ructured wit h INSERTION field let ter i
procedure y ielding integral field let ter r let ter e let ter p
boolean field let ter s let ter u let ter p let t er p character field
let ter m let ter a let ter r let ter k let ter e let ter r mode.

I) C P A T T E R N : : s t ructured wit h INSERTION field let ter i
integral field let ter t let ter y let ter p let t er e
row of INSERTION field let ter c mode.

174 v a n Wijngaarden, et al.

J) F P A T T E R N :: structured with INSERTION field letter i
procedure yielding FIN/MAT field letter p letter f mode.

K) G P A T T E R N :: structured with INSERTION field letter i
row of procedure yielding integral field
letter s letter p letter e letter c mode.

L) F I V M A T
mui definition of structured with

row of structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of union of

structured with
union of PATTERN CPATTERN

structured with INSERTION field letter i
procedure yielding mui application field
letter p letter f

mode
GPATTERN void

mode field letter p
INSERTION field letter i

mode
COLLITEM

mode field letter c
mode field letter aleph

mode.
(FIVMAT• is equivalent (2.I.1.2.a) to *FORMAT.)

M) M A R K :: sign ; point ; exponent ; complex ; boolean.
N) C O M A R K :: zero ; digit ; character.
0) UNS UP P RE S S E TY unsuppr essi bl e E MP TY .
P) T Y P E :: integral ; real ; boolean ; complex ; string ; bits

integral choice ; boolean choice ; format ; general.

a) F O R M A T NEST format text(5D) : formatter(94f) token,
NEST collection(b) list, formatter(94f) token.

b) N E S T collection(a,b)
pragment(92a) sequence option, NEST picture(c)
pragment(92a) sequence option, NEST insertion(d),

NEST replicator(g), NEST collection(b) l ist brief pack,
pragment(92a) sequence option, NEST insertiontd).

c) N E S T picture(b) : NEST TYPE pattern(A342a,A343a,A344a,
A345a,A346a,A347a,A348a,b,A349a,A34Aa) option,

NEST insertion(d).
d) N E S T insertion(b,c,j,k,A347b,A348a,b,A349a,A34Aa)

NEST literal(i) option, NEST alignment(e) sequence option.
e) N E S T alignment(d)

NEST replicator(g), alignment code(f), NEST literalti) option.

ALGOL 68 Revised Report 1 7 5

f) a l i g n m e n t code(e) : let ter k(94a) symbol ; let ter x(94a) symbol
let ter 3494a) symbol ; let ter 1(94a) symbol ; let ter p(94a) symbol
let ter q(94a) symbol.

g) N E S T replicator(b,e, i,k) : NEST unsuppressible replicator(h) option.
h) N E S T unsuppressible replicator(g, i) : fixed point numeral(811b)

letter n(94a) symbol,
meek integral NEST ENCLOSED clause(31a,34a,-),
pragment(92a) sequence option.

i) N E S T UNSUPPRESSETY literal(d,e,i,A348c)
NEST UNSUPPRESSETY replicator(g,h),

strong row of character NEST denoter(80a) coercee(61a),
NEST unsuppressible literal(i) option.

j) N E S T UNSUPPRESSETY MARK frame(A342c,A343b,c,A344a,A345a)
NEST insert ion(d), UNSUPPRESSETY suppressiont1),

MARK marker(A342e,A343d,e,A344b,A345b).
k) N E S T UNSUPPRESSETY COMARK frame(A342b,c,A346a)

NEST insert ion(d), NEST replicator(g),
UNSUPPRESSETY suppression(1),
COMARK marker(A342d,f,A346b).

I) UNS UP P RE S S E TY suppression(j,k,A347b)
where (UNSUPPRESSETY) is (unsuppressible), EMPTY
where (UNSUPPRESSETY) is (EMPTY),

let ter s(94a) symbol option.
m) * f r a m e : NEST UNSUPPRESSETY MARK f rame(j)

NEST UNSUPPRESSETY COMARK f rame(k)
NEST RADIX frame(A34713).

n) * m a r k e r : MARK marker(A342e,A343d,e,A344b,A345b)
COMARK marker(A342d,f,A346b) ; radix marker(A347c).

o) * p a t t e r n : NEST TYPE patterntA342a,A343a,A344a,A345a,
A346a ,A347a,A348a,b,A349a,A34Aal.

(Examples:

a) $ p "table of "x 10a,In (lim - 1) ("x=" 12z4-d 2x,
+.12de-1-2d 3el-f x "3", " si +.10de-1-2d I) p $

b) p "table o r x 10a • I n (lim - 1) ("x=" 12z+d 2x,
-4-•12de+2d 3q"+fx"3" s i +.10de+2d 1) p

c) 120k e ("mon", "tues", "wednes", "thurs", "f r i", "satur", "sun")
"day"

d) p "table of "x
e) p "table of "
h) 10 • n aim /)
i) " t i x "3" "

si
k) "x =" 12z
1) s

176 v a n Wijngaarden, et al.

(The positions where pragments (9.2.1.a) may occur in format-texts are
restricted. In general (as elsewhere in the language), a pragment may not
occur between two DIGIT- or LETTER-symbols.)

(aa) F o r formatted output, p u t f (10.3.5.1.a) a n d p rin t f (o r write !)
(10.5.11) may be used and, fo r formatted input, getf (10.3.5.2.a) and readf
(10.5.1.g). Each element in the data list (cf. 10.3.3) is either a format to be
associated with the file o r a value to be transput (thus a format may be
included in the data lis t immediately before the values to be transput
using that format).

bb) Du rin g a call of putf or getf, transput proceeds as follows:
For each element of the data list, considered in turn,

If it is a format,
then it is made to be the current format of the file by associate format

(10.3.5.k);
otherwise, the element is straightened (10.3.2.3.c) and each element of

the resulting multiple value is output (hh) o r input (i i) using the
next "picture" (cc, gg) from the current format.

cc) A "picture" is the yield of a picture. I t is composed of a "pattern"
of some specific 'TYPE (according to the syntax o f the TYPE-pattern o f
that picture), followed b y a n "insertion" (cc). Patterns, a p a rt f ro m
'choice', ' fo rma t ' and 'general' patterns, a re composed o f " frames",
possibly "suppressed", each of which has an insertion, a "replicator" (dd),
and a "marker" to indicate whether it is a "d", "z" , " i " etc. frame. The
frames o f each pattern ma y be grouped into "sign moulds", " integral
moulds", etc., according to the syntax of the corresponding pattern.

dd) A "replicator" is a routine, returning an integer, constructed from
a replicator (10.3.4.1.2.c). Fo r example, the replicator 10 gives rise to a
routine composed f ro m In t : 10 ; moreover, n (Um - /) i s a "dynamic"
replicator and gives rise t o In t : a i m - 1). Note tha t the scope o f a
replicator restricts the scope of any format containing it, and thus i t may
be necessary to take a local copy of a file before associating a format with
it (see, e.g., 11.13). A replicator which returns a negative value is treated
as if it had returned zero ("k" alignments apart).

When a picture is "staticized", a ll of its replicators and other routines
(including those contained in i t s insertions) a re called collaterally. A
staticized pattern may be said to "control" a string, and there is then a
correspondence between the frames of that pattern, taken in order, and
the characters of the string. Each frame controls n consecutive characters
of the string, where n is 0 for an " r" frame and, otherwise, is the integer
returned by the replicator of the frame (which is always 1 fo r a "÷", " -" ,
".", "e", " i " o r "b" frame). Each controlled character must be one of a
limited set appropriate to that frame.

ALGOL 68 Revised Report 1 7 7

ee) A n "insertion", which is the yield of an insertion (10.3.4.1.2.d), is a
sequence of replicated "alignments" and strings; a n insertion containing
no alignments i s termed a " lite ra l" . A n insertion i s "performed" b y
performing its alignments (f f) and on output (input) writ ing ("expecting"
(11)) each character o f its replicated strings (a string is replicated b y
repeating it the number of times returned by its replicator).

ff) A n "alignment" i s the character
(10.14.1.2.d). A n alignment wh ich h a s
performed as follows:

• " k " causes set char number to be
parameter;
• " x " causes space to be called n times;
• " y " causes backspace to be called n times;
• " / " causes newline to be called n times;
• " p " causes newpage to be called n times;
• " q " on output (input) causes the character b lank t o be writ ten
(expected) n times.

yielded b y an alignment-code
been replicated n t ime s i s

called, with n a s i t s second

gg) A format may consist of a sequence of pictures, each of which is
selected in turn by get next picture (10.3.5.b). In addition, a set of pictures
may be grouped together to fo rm a replicated "collection" (wh ich may
contain further such collections). When the last picture in a collection has
been selected, its first picture is selected again, and so on until the whole
collection has been repeated n times, where n is the integer returned by
its replicator. A collection may be provided with two insertions, the first to
be performed before the collection, the second afterwards.

A format may also invoke other formats by means of 'format patterns
(10.3.4.9.1).

When a format has been exhausted, the event routine corresponding to
on format end is called; i f th is returns false, the fo rmat is repeated;
otherwise, i f the event routine has fa iled t o provide a n e w format,
undefined is called.

hh) A value V is output, using a picture P, as follows:
If the pattern Q of P is a 'choice' o r 'general* pattern,
then V is output using P (see 10.3.4.8.1.aa,dd, 10.3.4.10.1.aa);
otherwise, V is output as follows:

• P is staticized;
If the mode o f V is "output compatible" with 0 (see the separate

section dealing with each type of pattern),
then

• V i s converted in to a st ring controlled (dd) b y 0 (see the
appropriate section);

If the mode i s n o t output compatible, o r i f t h e conversion i s
unsuccessful,

178 v a n Wtingaarden, et al.

then
• t he event rout ine corresponding to on value error is called;
• i f this returns false, V is output using put and undefined is called;

otherwise, the s t ring is "edited" (j j) us ing Q;
• t he insert ion of P is performed.

ii) A value is input to a name N, us ing a pic ture P, as follows:
If the pat tern Q of P is a 'choice' or 'general' pat tern,
then a value is input to N us ing P (see 1.0.3.4.8.1.bb,ee, 10.3.4.10.1.bb):
otherwise,

• P is staticized;
• a s t ring controlled by 0 is "indited" (kk)
I f the mode o f N is " input compat ible" wi t h 0 (s ee t he appropriat e

section),
then

• t he s t r ing is converted t o a n appropriat e v alue suit able f o r N
using Q (see the appropriate section);
• i f the conversion is successful, the value is assigned to N;

If t h e m o d e i s n o t input -c ompat ible, o r i f t h e c onv ers ion i s
unsuccessful,

then
• t he event rout ine corresponding to on value error is called;
• i f this returns false, undefined is called;

• t he insert ion of P is performed.

j j) A s t ring is "edited", using a pat tern P, as follows:
In each part of the s t ring controlled by a sign mould,

• i f the fi rs t charac ter of the s t ring (whic h indicates t he s ign) i s "+"
and t he s ign mou ld contains a " - " f rame, t hen t h a t c harac t er i s
replaced by ", ";
• t he fi rs t charac ter (i.e. , t he s ign) i s shif ted t o t he r igh t across a l l
leading zeroes in this part of the s t ring and these zeroes are replaced
by spaces (f o r example, us ing the s ign mould 4z+, t he s t r ing "+0003"
becomes + 3 ") ;

In each part of the s t ring controlled by an integral mould,
• zeroes controlled by "z " f rames are replaced by spaces as follows:

• between the start of the s t ring and the fi rs t nonzero digit ;
• between each "d", "e" or " i " f rame and the next nonzero digit ;

(for example, us ing t he pat t ern zdzd2d, t he s t r ing "180168" becomes
"18,168";)

For each f rame F of P,
• t he insert ion of F is performed;
• i f F is not suppressed, the characters controlled by F are writ ten;

(for example, the s t ring "+0003.5", when edited using the pat tern 4z+ s. " , "
d, causes the s t ring " , „+3,5" to be writ t en and the s t ring "180168", us ing
the pat tern zd"-"zd"-19"2d, gives rise to "18-,1-1968").

ALGOL 68 Revised Report 1 7 9

kk) A string is "indited", using a pattern P, as follows:
For each frame F of P,

• the insertion of F is performed:
For each element of the string controlled by F, a character is obtained

as follows:
If F is contained in a sign mould,
then

• i f a sign has been found, a d ig it is expected, with "0 " as
suggestion:
• otherwise, e ither a " +" o r a " - " is expected, wit h " +" as
suggestion, and, in addition, i f the sign mould contains a
frame, then a space preceding the first d ig it will be accepted as
the sign (and replaced by "+");

otherwise, if F is contained in an integral mould,
then

If F is suppressed,
then "0" is supplied:
otherwise,

Case A: F is a "d" frame:
• a digit is expected, with "0" as suggestion:

Case B: F is a "z" frame:
• a digit or space is expected, with "0" as suggestion, but
a space is only acceptable as follows:

• between the start of the string and the first nonzero
digit:
• between each ud", " e " o r " i " f rame and the next
nonzero digit:

• such spaces are replaced by zeroes:
otherwise, if F is an "a" frame,
then i f F is no t suppressed, a character is read and supplied:

otherwise " ," is supplied:
otherwise, if F is not suppressed,
then if F is a "." ("e", " i" , "b") frame, a " ." ("10" or " \" or "e", " I "

or " i" , fl ip o r flop) i s expected, with " . " ("10", " I " , flop) a s
suggestion:

otherwise, if F is a suppressed "." ("e", " i") frame, the character "."
("10", " I ") is supplied.

11) A member o f a se t o f characters S i s "expected", wit h the
character C as suggestion, as follows:
• a character is read:
If that character is one of the expected characters (i.e., a inember of S).
then that character is supplied:
otherwise, the event routine corresponding to on char error is called, with

C as suggestion: i f this returns true and C, as possibly replaced, is one
of the expected characters, then that character is supplied: otherwise,
undefined is called.)

180 v a n Wijngaarden, et al.

10.3.4.1.2. Semantics

(A f ormat is brought into being by means of a format -tex t . A f ormat is
best regarded as a t ree, wi t h a collect ion a t each node and a pic ture at
each t ip. I n order to avoid v iolat ion of the scope restrict ions, each node of
this t ree is, in this Report , packed into a value of mode 'PIECE'. A f ormat
is composed of a r o w of such pieces and t he pieces contain pointers t o
each other in the f orm of indices select ing f rom that row. An implement er
wi l l doubtless s tore the t ree in a more effic ient manner. This is possible
because the field-selector of a f ormat is hidden f rom the user in order that
he may not break it open.

Although a format -tex t may contain ENCLOSED-clauses (i n replicators
and f ormat -pat t erns) o r u n i t s (i n general-pat t erns), t hes e a r e n o t
elaborated a t t h i s s t age b u t a r e , r a t he r , t u r n e d i n t o rout ines f o r
subsequent c all ing as and when t hey a re encountered dur ing f ormat t ed
transput. Indeed, t he elaborat ion of a f ormat -t ex t does not res ult i n any
actions of any significance to the user.)

a) T h e y ield of a format -tex t F, in an env iron E, is a s t ruc tured value
whose only fi eld i s a mul t ip le value W, whose mode is ' r o w o f PIECE',
composed of a descriptor ((1, n)) and n elements determined as follows:
• a counter i is set to 1;
• F is "t rans formed" (b) in E into W, us ing

b) A f ormat -t ex t o r a collect ion-lis t -pack C i s "t rans f ormed" i n a n
environ E into a mult iple value W whose mode is ' row of PIECE', us ing a
counter i, as follows:
• t he element of W selected by (i) i s a s t ruc tured value, whose mode is
'PIECE' and whose fields, taken in order, are

• (cp) undefined;
• (count) undefined;
• (bp) undefined;
• (c) a mult iple value V, whose mode is ' row of COLLECTION', hav ing
a descriptor ((1, m)), where m is the number of const ituent collect ions
of C, and elements determined as follows:
For j 1 , m , let t ing C. be the j-th constituent collect ion of C,

Case A: The direc t descendents of C. inc lude a pic ture P:

• t he constituent pat tern T, i f any, and the insert ion 1 of P are
elaborated collaterally :
• t he j- t h element o f V i s a s t ruc tured value, whos e mode i s
'PICTURE' and whose fields, taken in order, are

• (p) the y ield of T, i f any, (e, 10.3.4.8.2, 10.3.4.9.2, 10.3.4.10.2)
and, otherwise, empty:
• t i l the y ield of I ((JO:

ALGOL 68 Revised Repor t 1 8 1

Case B: The direc t descendents of C. inc lude a fi rs t insert ion 11, a

replicator REP, a collect ion-lis t -pack P and a second insert ion 12:
• i is increased by 1;
• 11, REP and 12 are elaborated collaterally ;
• t he j-t h element o f V i s a s t ruc tured v alue whos e mode i s
'COLLITEM and whose fields, taken in order, are

• (i i) the y ield of 11 (d);
• (rep) the y ield of REP (c);
• (p H;
• (i2) the y ield of 12;

• P is t ransformed in E into W, us ing

c) T h e y ield, i n an env iron E, o f a NEST-UNSUPPRESSETY-replicator
(10.3.4.1.1.g,h) is a rout ine whose mode is 'procedure y ielding integral' ,

composed of a procedure-y ielding-integral-NEST-rout ine-text whose uni t is
U, together wi t h t he env iron necessary (7.2.2.c) f o r U i n E, where U i s
determined as follows:
Case A: R contains a meek-integral-ENCLOSED-clause C:

• U is a new unit ak in (1.1.3.2.k) to C;
Case B: R contains a fixed-point -numeral D, but no ENCLOSED-clause:

• U is a new unit ak in to D;
Case C: R is invisible:

• U is a new unit ak in to a fixed-point -numeral whic h has an int rins ic
value (8.1.1.2) of 1.

d) T h e y ield o f a n insert ion 1 (10.3.4.1.1.d) i s a mul t ip le v alue W
whose mode is 'INSERTION', determined as follows:
• l e t U
l
,
,
U
n
b
e
t
h
e
c o
n s
t i
t u
e n
t
U N
S U
P P
R E
S S
E T
V -
r e
p l
i c
a t
o r
s
o
f
1
,

and l e t A . , 1 , , n, b e t h e denoter-coercee o r al ignment -c ode

(immediately) following U
i
:• l e t R
i
,
,
R
n
a
n
d
D
i
,
,
D
n
b
e
t
h
e
(
c
o
l
l
a
t
e
r
a
l
)
y
i
e
l
d
s
o
f
U
l
,
,
U
n

and A 1 " 'A w h e r e t he y ie ld o f an alignment -code i s t he (charac tern
which is the) int rins ic value (8.1.4.2.b) of its LETTER-symbol;
• t he descriptor of W is ((1, n));
• the element of W selected by (I), I -,- 1, , n, is a structured value [of
the mode specified by struct (proc int rep, union (string, char) sa)) whose
fields, taken in order, are

• (rep) R
i
;• (sa) D
i
.e) T h e yield of an integral-, real-, boolean-, complex-, str ing- or bits-

pattern P (10.3.4.2.1.a, , 10.3.4.7.1.a) is a s t ruc tured value W
whose mode is 'PATTERN', determined as follows:

182 v a n wijngaarden, et al.

• l e t V1 " V b e the (collateral) y ields of t he constituent f rames o f P (f); n
• t he fields of W, taken in order, are

• (type) 1 (2 , 3, 4, 5) i f P is an int egral- (real-, boolean-, complex-,
string.) -pat t ern a n d 6 (8 , 12 , 20) i f P i s a bit s -pat t ern whos e
constituent RADIX is a radix -two (-four, -eight, -sixteen);
• (f rames) a mult iple value, whose mode is ' row of FRAME', hav ing a
descriptor ((1, n)) and n elements, that selected by (i) being V
i
.f) T h e y ield of a f rame F (10.3.4.1.1.m) is a s t ruc tured value W whose

mode is 'FRAME', determined as follows:
• t he insert ion and the replicator, i f any, of F are elaborated collaterally ;
• t he fields of W, taken in order, are

• t i l the y ield of its insert ion:
• (rep) the y ield of its replicator (c), i f any, and, otherwise, the y ield of
an inv is ible replicator;
• (supp) t rue i f i t s UNSUPPRESSETY-suppression contains a let ter-s -
symbol and, otherwise, false;
• (mark er) (the charac ter whic h is) t he int rins ic v alue (8.1.4.2.b) o f a
symbol S determined as follows:
Case A: F i s a const ituent unsuppressible-zero-f rame o f a s ign-mould

(such as 3z+) whose constituent s ign-marker contains a plus-symbol:
• S is a let ter-u-symbol;

Case B: F i s a const ituent unsuppressible-zero-f rame o f a s ign-mould
(such a s 3z -) whos e cons t ituent s ign-mark er c ont ains a minus -
symbol:
• S is a let ter-v-symbol:

Other cases:
• S is the constituent symbol of the mark er of F.

(Thus the zero-marker z may be passed on as the charac ter "u", "v " or "z "
according to whether i t forms part of a s ign-mould (wi t h descendent plus-
symbol or minus-symbol) o r of an integral-mould.)

10.3.4.2. Integral patterns

10.3.4.2.1. Syntax

a) N E S T integral pattern(A341c,A343c)
NEST sign mould(c) option, NEST integral mould(b).

b) N E S T integral mould(a,A343b,c,A347a)
NEST digit frame(A341k) sequence.

c) N E S T sign mould(a,A343a)
NEST unsuppressible zero frame(A341k) sequence option,

NEST unsuppressible sign frame(A341j).
d) z e r o marker(f ,A341k) : let ter z(94a) symbol.
e) s i g n marker(A341j) : plus(94c) symbol ; minus(94c) symbol.
f) d i g i t marker(A341k) : let ter d(94a) symbol ; zero markerld).

ALGOL 68 Revised Repor t 1 8 3

(Examples:

a) "x="12z+d b) d
c) "x -. " 12z+

(For the semantics of integral-pat terns see 10.3.4.1.2.e.)

(aa) T h e modes whic h are output (input) c ompat ible wi t h an ' integral'
pattern are those specified by L in t (by ref L int).

bb) A value V is converted to a s t ring S us ing an ' int egral' pat tern P
as follows:
• i f P contains a sign mould, then the fi rs t charac ter of S is the s ign of V;
otherwise, i f V < 0, the conversion is unsuccessful;
• t he remainder of S contains a dec imal representat ion of V determined
as follows:

• t he element s o f S c ont rol led b y " d " a n d " z " f r ames a r e t h e
appropriate digits (thus the pat tern specifies the number of digits to be
used):
• i f V c annot b e represented b y such a s t r ing, t h e convers ion i s
unsuccessful.

(For example, t he v alue 99 c ould be converted t o a s t r ing us ing t he
pattern zzd, but 9999 and -99 could not.)

cc) A s t ring S is converted to an integer suitable f or a name N, us ing
an 'integral' pattern, as follows:
• t he integer I f o r which S contains a dec imal representat ion (8.1.1.2) i s
considered;
• i f I i s great er t han t he larges t v alue t o wh i c h N c a n ref er , t h e
conversion is unsuccessful; otherwise, I is t he required int eger (e.g. , i f
the mode of N is specified by ref short int, and the value of short max int is
65535, t hen n o s t r ing containing a dec imal representat ion o f a v a lue
greater than 65535 may be converted) .)

10.3.4.3. Real patterns

10.3.4.3.1. Syntax

a) N E S T real pattern(A341c,A345a1 : NEST sign mould(A342c) option,
NEST variable point mould(b)
or alternatively NEST floating point mould(c).

b) N E S T variable point mould(a,c) : NEST integral mould(A342b),
NEST point frame(A341j), NEST integral mould(A342b) opt ion

NEST point frame(A341j), NEST integral mould(A342b)•
c) N E S T float ing point mould(a)

NEST variable point mould(b)
or alternatively NEST integral mould(A342b),

NEST exponent frame(A341j), NEST integral pattern(A342a).
d) p o i n t marker(A341,j) point(94b) symbol.
e) e x p o n e n t marker(A341j) : letter e(94a) symbol.

184 v a n W i jngaarden, et al.

(Examples:

a) -1-zd.lid • +.12de-E2d
c) .12de-1-2d)

b) zd.11d • .12d

(For the semantics of real-patterns see 10.3.4.I.2.e.)

(aa) T h e modes wh i c h a r e out put (input) c ompat ib le wi t h a ' r ea l '
pattern are those specified by L real and L in t (by ref L real).

bb) A value V is converted t o a s t ring S us ing a *real* pat t ern P as
follows:
• i f P contains a sign mould, then the fi rs t charac ter of S is the s ign of V;
otherwise, i f V < 0, the conversion is unsuccessful;
• t he remainder of S contains a dec imal representat ion of V determined
as follows:

• i f necessary, V is widened to a real number;
• t he element of S cont rolled by the ". " ("e") f rame, i f any, of P is ". "
rio")
If P contains an "e" f rame,
then

• l e t W b e t he sequence o f f rames preceding, a n d I P b e t he
' integrar pat tern following, that "e" f rame:
• a n exponent E is calculated b y s tandardiz ing V t o t he larges t
value convert ible using W (see below):
• t he part of S cont rolled by IP is obtained by convert ing E us ing
IP (see 10.3.4.2.1.bb);

otherwise,
• l e t W be the whole of P;

• t he elements of S controlled by the "d " and "z " f rames of W are the
appropriate digits (thus the pat tern specifies the number of digits to be
used, and the number of digits to be placed af t er the dec imal point , i f
any):
• i f V c annot b e represented b y s uc h a s t r ing, t h e convers ion i s
unsuccessful.

cc) A s t ring S is converted to a real number suitable f or a name N,
using a 'real ' pattern, as follows:
• t he real number R f o r whic h S contains a dec imal representat ion i s
considered:
• i f R i s great er t han t he larges t v a lue t o wh i c h N c a n re f er , t h e
conversion is unsuccessful: otherwise, A is the required real number.)

10.3.4.4. Boolean patterns

10.3.4.4.1. Syntax

a) N E S T boolean pattern(A341c)
NEST unsuppressible boolean frame(A.341j).

b) b o o l e a n marker(A.341j,A348b) : letter b(94a) symbol.

(Example:

a) 14x b

(For the semantics of boolean-patterns see 10.3.4.1.2.e.)

(ea) T h e mode whic h i s out put (input) c ompat ib le wi t h a 'boolean'
pattern is that specified by boot (ref boot).

bb) A value V is converted t o a s t r ing us ing a 'boolean' pat t ern as
follows:
• i f V is true (false), then the s t ring is that y ielded by fl ip (flop)

10.3.4.5. Complex patterns

10.3.4.5.1. Syntax

ALGOL 68 Revised Report 1 8 5

cc) A s t r ing S i s converted t o a boolean value, us ing a 'boolean'
pattern, as follows:
• i f S is the same as the s t ring y ielded by fl ip (fl op) , t hen t he required
value is true (false).)

a) N E S T complex pattern(A341c) : NEST real patternIA343a),
NEST complex frame(A341j), NEST real pattern(A343a).

b) c o m p l e x marker(A341j) : let ter i(94a) symbol.

(Example:

a) +.12de-1-2d 3q"-Fjx"3"," si +.10de-1-2d 1

(For the semantics of complex-patterns see 10.3.4.12.0

(ea) T h e modes whic h are output (input) c ompat ible wi t h a *complex '
pattern are those specified by L comp!, L real and L in t (by ref L comp!).

bb) A value V is converted to a s t ring us ing a 'complex ' pat tern P as
follows:
• i f necessary, V is widened to a complex number;
• t he element of S controlled by the " i " f rame of P is " I " :
• t he part of S cont rolled by the fi rs t (second) ' rea l ' pat t ern of P is t hat
obtained by convert ing the fi rs t (second) fi e ld o f V t o a s t ring us ing the
first (second) ' real ' pat tern of P (10.3.4.1.bb);
• i f either conversion is unsuccessful, the conversion of V is unsuccessful.

cc) A s t ring is converted to a complex value C suitable f or a name N,
using a 'complex ' pat tern P, as follows:
• t he part of the s t ring controlled by the fi rs t (second) ' rea l ' pat tern of P
is converted to a suitable real number (10.3.4.1.cc), whic h then f orms the
first (second) fi eld of C;
• i f either conversion is unsuccessful, the conversion to C is unsuccessful.)

186 v a n Wijngaarden, et al.

10.3.4.6. St ring patterns

10.3.4.6.1. Syntax

a) N E S T st ring pattern(A341c)
NEST character frame(A341k) sequence.

b) c h a r a c t e r marker(A341k) : let ter a(94a) symbol.

(Example:

a) p "table orot 10a)

(For the semantics of string-patterns see 10.3.4.1.2.e.)

(aa) T h e modes whic h a re output (input) c ompat ib le wi t h a *s t ring'
pattern are those specified by char and [I c har (by ref char, ref [I c har
and ref string).

bb) A value V is converted t o a s t r ing us ing a ' s t r ing pa t t e rn P as
follows:
• i f necessary, V is rowed to a s t ring;
• i f the length of the s t ring V is equal to the length of the s t ring controlled
by P, then V is supplied; otherwise, the conversion is unsuccessful.

cc) A s t ring S is converted t o a charac ter o r a s t ring suitable f or a
name N, using a 's t ring' pat tern, as follows:
Case A: The mode of N is specified by ref char:

• i f S d o e s n o t c ons is t o f o n e c harac t er , t h e c onv ers ion i s
unsuccessful; otherwise, that character is supplied;

Case B: The mode of N is specified by ref [I char:
• i f the length of S is not equal to the number of characters ref erred
to by N, the conversion is unsuccessful; otherwise, S is supplied;

Case C: The mode of N is specified by ref string:
• S is supplied.)

10.3.4.7. Bits patterns

10.3.4.7.1. Syntax

a) N E S T bits pattern(A341c)
NEST RADIX f rame(b), NEST integral mould(A342b).

b) N E S T RADIX f rame(a) : NEST insertion(A341d), RADIX(82d,e,f,g),
unsuppressible suppression(A3411), radix marker(c).

c) r a d i x marker(b) : let t er r(94a) symbol.

(Examples:

a) 2r6d26sd b) 2 r)

(For the semantics of bits-patterns see 10.3.4.1.2.e.)

(aa) T h e modes wh ic h a r e out put (input) c ompat ib le wi t h a *bit s '
pattern are those specified by L bits (ref L bits).

ALGOL 68 Revised Repor t 1 8 7

bb) A v alue V i s converted t o a s t r ing us ing a ' b i t s pa t t e rn P as
follows:
• t he integer I corresponding to V is determined, us ing t he operat or abs
(10.2.3.8.1);
l i t h e " r " f rame of P was y ielded by a radix -two- (-four-, -eight-, -sixteen-)

-f rame,
then I i s converted t o a s t ring, cont rolled b y t he in t egra l mo u l d o f P,

containing a binary (quaternary , octal, hexadec imal) representat ion of
I (cf . 10.3.4.2.1.bb);
• i f I c annot be represented b y s uc h a s t r ing, t h e convers ion i s
unsuccessful.

cc) A s t r ing S is converted t o a bit s v alue suitable f o r a name N,
using a 'bits ' pat tern P, as follows:
• i f t he " r " f r ame o f P wa s y ielded b y a radix -t wo- (-f our-, -eight -,
-sixteen-) - f rame, t hen t he int eger I f o r wh ic h S c ont ains a b i n a r y
(quaternary, octal, hexadecimal) representat ion is determined;
• t he bits value B corresponding t o I is determined, us ing t h e operat or
bin (10.2.3.8.j);
• i f the width of B is greater than that of the value to which N refers, the
conversion is unsuccessful.)

10.3.4.8. Choice patterns

10.3.4.81 Syntax

a) N E S T integral choice pattern(A341c) : NEST insertion(A341d),
let ter c(94a) symbol, NEST praglit (c) lis t brief pack,
pragment(92a) sequence opt ion.

b) N E S T boolean choice pattern(A341c)
NEST insertion(A341d), boolean marker(A344b),

brief begin(940 token, NEST praglit (c), and also(94f) token,
NEST praglit (c), brief end(94f) token,
pragment(92a) sequence option.

c) N E S T praglit (a,b) : pragment(92a) sequence option,
NEST literal(A341i).

(Examples:

a) 120k c ("mon", "tues", "wednes", "thurs", " fri" , "satur", "sun")
b) b (" , "error")
c) "mon")

(aa) A value V is output using a pic ture P whose pat tern 0 was y ielded
by an integral-choice-pattern C as follows:
• t he ins er t i on o f 0 i s s t at ic iz ed (10.3.4.1.1.dd) a n d p e r f o r me d
(10.3.4.1.1.ee):
If t he mode o f V i s spec ified b y int , i f V > 0, a n d i f t he number o f

constituent literals in the praglit -lis t -pack of C is at least V,

188 v a n W i jngaarden, et al.

then
• the literal yielded by the V-th literal is staticized and performed:

otherwise,
• the event routine corresponding to on value error is called:
• i f this returns false, V is output using put and undefined is called:

• the insertion of P is staticized and performed.

bb) A value is input to a name N using a picture P whose pattern Q
was yielded by an integral-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
• each of the literals yielded by the constituent literals of the praglit-list-
pack of C is staticized and "searched for" (cc) in turn:
If the mode of N is specified by ref Int and the i-th literal is the first one

present,
then i is assigned to N:
otherwise,

• the event routine corresponding to on value error is called:
• i f this returns false, undefined is called:

• the insertion of P is staticized and performed.

cc) A litera l is "searched for" b y reading characters and matching
them against successive characters of the literal. I f the end of the current
line o r the logical end o f the file is reached, o r i f a character fa ils to
match, the search is unsuccessful and the current position is returned to
where it started from.

dd) A value V is output using a picture P whose pattern Q was yielded
by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
If the mode of V is specified by boat,
then

• i f V is true (false), the literal yielded by the first (second) constituent
literal of C is staticized and performed:

otherwise,
• the event routine corresponding to on value error is called:
• i f this returns false, V is output using put and undefined is called:

• the insertion of P is staticized and performed.

ee) A value is input to a name N using a picture P whose pattern Q
was yielded by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed;
• each of the literals yielded by the constituent literals of C is staticized
and searched for in turn;
If the mode of N is specified by ref boo!, and the first (second) insertion is

present,
then true (false) is assigned to N:

ALGOL 68 Revised Report 1 8 9

otherwise,
• t he event rout ine corresponding to on value error is called:
• i f this returns false, undefined is called:

• t he insert ion of P is staticized and performed.)

10.3.4.8.2. Semantics

The y ield of a choice-pattern P is a s t ruc tured value W whose mode is
'CPATTERN', determined as follows:
• l e t n be the number of const ituent NEST-literals of the praglit -lis t -pack
of P;
i • let S., 1 , , n, be a NEST-insert ion ak in (1.1.3.21) to the i-th of those1
constituent NEST-literals;
• t he ins ert ion I o f P a n d a l l o f S
i , S
2
, , S
n a r e
e l a b o r a t e d

collaterally;
• t he fields of W, taken in order, are

• (i) the y ield of I:
• (t ype} 1 (2) i f P is a boolean- (integral-) -choice-pat tern;
• (c) a mult ip le value whose mode is ' r o w of INSERTION', hav ing a
descriptor ((1, n)) a n d n elements , t hat selected b y (i) , 1 , , n,
being the y ield of S
i
.10.3.4.9. Format patterns

10.3.4.9.1. Syntax

a) N E S T format pattern(A341c)
NEST insertion(A341d), let ter f(94a) symbol,

meek FORMAT NEST ENCLOSED clause(31a,34a),
pragment(92a) sequence option.

(Example:

a) f (uirl (Int): $ 5d $, (real): $ ct3d $))
(A format -pat tern may be used to prov ide formats dynamically f or use

in t ransput . When a ' f o rma t p a t t e r n i s encountered du r i ng a c a l l o f
get next picture, i t is s tat ic ized and i t s insert ion i s perf ormed. Th e fi rs t
picture of the f ormat returned by the rout ine of the pat tern is supplied as
the next picture, and subsequent pictures are taken f rom that f ormat unt i l
it has been exhausted.)

10.3.4.9.2. Semantics

The y ield, in an env iron E, of a NEST-format-pat tern P is a s t ruc tured
value whose mode is 'FPATTERN' and whose fields, taken in order, are

• (i) the y ield of its insert ion;
• I PA a r ou t i ne whos e mo d e i s ' p roc edure y i e l d i n g FO RMA T' ,

190 v a n W i jngaarden, et al.

composed o f a procedure-y ielding-FORMAT-NEST-rout ine-tex t whos e
unit U is a new unit ak in (1.I.3.2.k) t o t he meek-FORMAT-ENCLOSED-
clause of P, together with the env iron necessary f or U in E.

10.3.4.10. General patterns

10.3.4.10.1. Syntax
a) N E S T general pattern(A341c) : NEST insertion(A341d),

let ter g(94a) symbol, NEST width specification(b) opt ion.
b) N E S T width specification(a) : brief begin(94f) token,

meek integral NEST unit(32d),
NEST af ter specification(c) opt ion, brief end(94f) token,
pragment(92a) sequence option.

c) N E S T af ter specification(b)
and also(94f) token, meek integral NEST unit(32d),

NEST exponent specification(d) option.
d) N E S T exponent specification(c)

and also(94f) token, meek integral NEST unit(32d).

(Examples:
a) g • g(-18,12, -3) b) -18, 12, -3
c) 1 2 , -3 d) , -3)

(aa) A value V is output using a pic ture P whose pat tern 0 was y ielded
by a general-pat tern G as follows:
• P is staticized:
• t he insert ion of C) is performed;
If Q is not parametrized (i.e., G contains no width-specificat ion),
then V is output using put;
otherwise, i f the mode of V is specified by L int or L real,
then

• i f Q contains one (t wo, t hree) paramet er (s) , V i s converted t o a
string using whole (fixed, float);
• t he st ring is writ t en using put;

otherwise,
• t he event rout ine corresponding to on value error is called;
• i f this returns false, V is output using put, and undefined is called;

• t he insert ion of P is performed.

bb) A value is input to a name N us ing a pic ture P whose pat tern is a
'general' pat tern as follows:
• P is staticized:
• (any parameters are ignored and) t he value is input to N using get.)

10.3.4.10.2. Semantics

The y ield, in an env iron E, o f a NEST-general-pat tern P is a s t ruc tured
value whose mode is 'GPATTERN' and whose fields, taken in order, are

• (i) the y ield of the insert ion of P;

ALGOL 68 Revised Repor t 1 9 1

• (spec) a mult iple value W whose mode is ' row of procedure y ielding
integral', hav ing a des c ript or ((1, n)), wh e r e n i s t h e n u mb e r o f
constituent meek-integral-units o f t he width-spec ificat ion-opt ion o f P,
and n elements determined as follows:
For i 1 , , n,

• t he i-t h element o f W i s a rout ine, whos e mode i s *procedure
yielding integral' , composed o f a procedure-y ielding-integral-NEST-
routine-text whose unit U is a new unit ak in (1.1.3.2.k) t o the i-th of
those meek-integral-units, together with the environ necessary for U
in E.

10.3.5, Formatted transput
a) m o d e format = struct (Ilex [1 : 0] piece F)

mode ? piece = struct (int cp 0 pointer to current collection 0,
count C number of times piece is to be repeated C,
bp C back pointer 0,
flex [1 : 0] collection c)

mode ?collection = union (picture, collitem)
mode ? collitem = struct (insertion ii,

proc int rep 0 replicator 0,
int p C pointer to another piece 0, insertion i2)

mode ? Insertion = flex [1 : 0] struct (proc int rep C replicator 0,
union (string, char) sa)

mode ? picture =
struct (union (pattern, cpattem, 'pattern, gpattem, void) p, insertion i)

mode ? pattern = struct (int type 0 of pattern C,
flex [1 : 0] frame frames) ;

mode ? frame = struct (insertion i,
proc int rep c replicator 0,
bool supp 0 true if suppressed 0,
char marker)

mode ?cpattem = struct (insertion i,
int type C boolean or integral 0,
flex [1 : 0] insertion c)

mode ? 'pattern = struct (insertion i, proc format pl)
mode ?' gpattem = struct (insertion i, flex [1 : 0] proc int spec) ;

b) p r o c ? get next picture = (ref file f, bool read, ref picture picture) void :
begin
boo' picture found : = false, format ended : = false;
while - picture found
do if forp of f = 0 then

if format ended
then undefined
&if - (format mended of f) (f)
then ref int (forp of f):= I;

cp of (F of format of f) [I] := 1;

192 v a n W i jngaarden, et al.

count of (1' of format of f) [1] := 1
else format ended := true
fi

else
ref int forp = forp o f
f ;ref flex [pi ece aleph = F of format of
f ;case (c of aleph [forp])[cp of aleph [forp]] in

(collitem cl):
([1 : upb (11 of cl)] sinsert Si;
bp of aleph [p of el] := forp; forp := skip;
(staticize insertion (il of cl, si),

count of aleph [p of cl] := rep of cl);
(aleph : F of format of f undefined);
(read get insertion (f, si)1 put insertion (f, si));
cp of aleph [p of cl] := 0;
forp := p of cl) ,

(picture pict): (picture found := true; picture := pict)
esac;
while

(forP 0 cp of aleph [forp] = upb c of aleph [forPl false)
doll (count of aleph [forp] -:= 1) 10
then

if (forp := bp of aleph [forp]) 0
then

insertion extra =
case (c of aleph [forp]) [cp of aleph [forp]] in
(collitem cl):

(bp of aleph [p
o t
e l l :
0 ;
i 2
o f
c l
)
,

(picture pict):
case p of pia in
(fpattem fpatt):

(int k := forp;
while bp of aleph [k l i forp do k +:= 1 od;
aleph := aleph [: k - 1];
i of pict)

esac
esac;

int m = upb jot picture, n = upb extra;
[1 : m+12] struct (proc int rep, union (string, char) sa) c;
c [1 : in] i of picture; c [m + 1 : m + n] := extra;
i of picture := c

fi
else cp of aleph [forp : = 0
H
o
d
;

(forp 01 cp of aleph [forp] +:= 1)
fi od
end ;

c) m o d e 9
'
s i n s e r t
=
s t r u
c t
(i
n t
r e
p ,
u n
i o
n
(s
t r
i n
g ,
c
h
a
r
)
s
a
)

d) p r o c staticize insertion = (insertion ins, ref [j sinsert sins) void :
0 calls collaterally all the replicators in 'ins' 0

If upb ins = 1
then

rep of sins [1] := rep of ins [1];
sa of sins [1] := sa of ins [1]

elif upb ins > 1
then (staticize insertion (ins [1], sins [I I),

staticize insertion (ins [2 :] , sins [2 : I))
fi ;

e) m o d e 9 sframe str uct (flex 11 : s i ns e r t Si, int rep, boot supp,
char marker) ;

f) p r o c staticize frames =
([] frame frames, ref [I sframe sframes) void :

0 calls collaterally all the replicators in 'frames' 0
if upb frames = 1
then

[1 : upb (i of frames [
1])]
s i n s e r t
s i ;

(staticize insertion (i of frames [1], si),
rep of sframes [1 : = rep of frames [1]);

si of sframes [1] := si;
supp of sframes [1] := supp of frames [1];
marker of sframes [1] := marker of frames [1]

eill upb frames > 1
then (staticize frames (frames [1], sframes [1]),

staticize frames (frames [2 : 1, sframes [2 1))
fi

ALGOL 68 Revised Repor t 1 9 3

g) p r o c 9 put insertion = (ref file f, [I sinsert si) void :
begin set write mood (f);

for k to upb si
do

esac
od

end ;

case sa of si [ki ln
(char a): alignment (f, rep of si [k], a, false) ,
(string s):

to rep of si [k]
do

od

for i to upb s
do check pos (f); put char (f, s [i]) od

194 v a n Wijngaarden, et al.

h) p r o c ?, get insertion = (ref file!, [I sinsert si) void :
begin set read mood (f);

f or
k
t
o
u
p
b
s
i

do

esac
od

end ;

i) p r o c al i gnment = (ref file
!, i n t r ,
c h a r a ,
b o o l
r e a d)
v o i d
:

If a = "x" then to r do space (f)od
eM a = "y" then to r do backspace (f)od
elif a = "/" then to r do newline (f) od
slit a = "p" then to r do newpage (f)od
elif a = "k" then set char number (f, r)
elif a =
then to r

do

od
fi

case sa of si [k i
l n (char a): alignment (f, rep of si [kb a, true) ,

(string s):
(char c;
to rep of si [k]
do

od)

If read
then char c; check pos (f); get char (f, c);

(c i blank
((char error mended of f) c := blank)
I undefined); set read mood (f))

else check pos (f); put char (f, blank)
fi

for i to upb s
do check pos (f); get char (f, c);

(c s [il
I (c h a r error mended o f
f) (f , c : =
s
1 undefined);

set read mood (f));
od

j) p r o c ?' do fpattern = (ref file!, fpattem [pattern, boo! read) void :
begin format pf;

[1 : upb (i of [pattern)] sinsert Si;
(staticize insertion (i of [pattern, si),

pf := pl of ['pattern);
(read get insertion (f, si)I put insertion (f, si));

ALGOL 68 Revised Report 1 9 5

ref int forp = forp of f;
ref flex [] piece aleph =I ' of format of f;
int m = upb aleph, n= upb (F of pf);
[1 : m + n] piece c; C [1 : m] := aleph;
c [m +1 : m + n] : = Fol pf ;
aleph := c; bp of aleph [m + 1] := forp;
forp := m + 1; cp of aleph [forp] := 0;
count of aleph [forp] := 1;
fori fromm+1 t om +n
do

for j to upb c of aleph [i]
do

case (c of aleph [i]) U] in
(collitem cl):

(c of aleph [i]) Li] :=
collitem (il of cl, rep of cl, p of cl + m, i2 of cl)

esac
od

od
end;

k) p r o c 9
,
a s s o c i
a t e
f o r
m a t
: .
(r
e f
fi l
e
f
,
f o
r
m
a t
f
o
r
m
a
t)
v
o
i
d
:

begin
format of f :=

c a newly created name which is made to refer to the yield
of an actual-format-declarer and whose scope is equal to
the scope of the value yielded by 'format' c

format;
forp of f h e a p int := 1;
cp of (1' of format of f) [1] 1 ;
count of (F of format of f) [1] 1 ;
bp of (1' of format of f) [1] := 0

end;

10.3.5.1. Formatted output

a) p r o c putf = (ref file f,[] union (outtype, format) x) void :
if opened of
f t h e nfork to upb x
do case set write mood (f); set char mood (f); x [k i ln

(format format): associate format (f, format) ,
(outtype ot):
begin int j := 0;

picture picture, [I simplout y = straightout ot;
while(j +:= 1) i upb y
do bool incomp fa l se ;

get next picture (f, false, picture);

196 v a n Wijngaarden, e t
a l .

set write mood (f);
[1 : upb (i of picture)] sinsert sinsert;
case p of picture in
(pattern pattern):
begin int rep, sfp := 1;

[1 : upb (frames of pattern)] strame sframes;
(staticize frames (frames of pattern, sframes),

staticize insertion (i of picture, sinsert));
string s;

op ? = (string s) boo! :
C true if the next marker is one of the elements of

's' and false otherwise
if sfp u p b sframes
then false
else sframe sf = sframes [sfp];

rep := rep of sf;
If char in string (marker of sf, loc int, s)
then sfp -4-:= 1; true
else false
II

II;
op ? = (char c) boo!: ? string (c);
proc int pattern = (ref bool sign mould) int :

(int 1 := 0;
while ? "zuv" do (rep 0 1 1 +:= rep) od;
sign mould := ? "+-";
while ? "zd" do (rep 0 I 1 +:= rep) od; 1);

proc edit L int = (Lint i) void :
(bool sign mould; Int 1 := int pattern (sign mould);
string t = subwhole (abs i, 1);
if char in string (errorchar, loc int, t) v 1= 0

v - sign mould A i< LO
then incomp := true
else t plusto s;

(1- upb t)x "0" plusto s;
(sign mould' (i < L
O l " -
" "
+ "
)
O u s t
°
s)

proc edit L real = (L real r) void :
(Int : = 0, a := 0, e:= 0, exp := 0, L real y:= abs r,
bool signi, string point := " ;
b := int pattern (sign1);
(? "." I a := int pattern (loc book point :=
if ? "e"
then L standardize (y, b, a, exp);

ALGOL 68 Revised Report 1 9 7

edit int (exp);
"
1
0
"
p
l
u
s
t
o
s

II;
string t = subfixed (y, b + a + (a O i l 0), a;
II char in string (errorchar, loc int, t) v a + b = 0

v sign1 A r< L 0 v sig n 2 A exp < 0
then incomp := true
else t [: b j + point + t [b + 2:] piusto s;

(b+a+(a i01110)- upb t)x "0" Must° s;
(sign11 (r < L 0 " " + ") piusto s)

ti)t;

proc edit L compl = (L compi z) void :
(while - ? "1" do sfp +:= 1 od; edit L real (im z);
"1" plusto s; sfp ;= 1; edit L real (re z))t;

proc edit L bits = (L bits lb, int radix) void :
(L int n := abs lb; ? "r"; Intl := int pattern (loc boo!);
while dig char (S (n mod K radix)) plusto s;

n +:= K radix; n iL O
do skip od;
If upb s
then (1 - upb s)x "0" plus to s
else incomp := true
fi)t,

proc charcount = int : (int 1 := 0;
while ? "a" do (rep 01 1 +:= rep) od; 1);

case type of pattern in
0 integral C

Ul I
(L
i n
t
i
)
:
e
d
i
t
L
i
n
t
(
i
)
*

incomp := true),
0 real 0

Lil I
(L real r): edit L real (r)t ,

•t(L int i): edit L real (i)*
I incomp := true) ,

boolean
(Y
(boot b): s := (b1 flip flop)
incomp := true) ,

0 complex 0
(Y Lill
• (L comp! z): edit L compl (z)* ,
• (L real r): edit L compl (r)*
(Lint i): edit L compl (i)t
incomp := true),

198 v a n Wijngaarden, et al.

0 string 0
fY
(char c): (charcount = 11 s := cl incomp := true),
([] char
t) : (charcount = upb t i w b t + 1

I s : =t [@ 1]
1 incomp := true)

incomp := true)
out

C bits C
6
1
L
i
]
1

(L bits lb): edit L bits (lb, type of pattern 4) f
incomp := true)

esac;
If - incomp
then edit string (f, s, sframes)
fi

end,

(cpattem choice):
begin

[1 : upb (i of choice)] sinsert Si;
staticize insertion (i of choice, si);
put insertion (f, si);
Intl=

case type of choice in
boolean

(boot 1)): lb I 11 2)
incomp := true; skip) ,

C integral 0
6/ L
.
d i
anti): i
incomp := true; skip)

esac;
if incomp
then

if I > upb (c of choice) v i 0
then incomp := true
else

[1 : upb ((c of choice) [I])] sinsert ci;
staticize insertion l(c of choice) [1], ci);
put insertion (f, ci)

ti
II;
staticize insertion (i of picture, sinsert)

end,

od
end

esac od
else undefined

;

ALGOL 68 Revised Repor t 1 9 9

(Ipattem fpattern):
begin

do fpattern (f, fpattern, false);
for i to upb sinsert do sinsert [i] := (0, ") od;

-:= I
end,

(gpattem gpattern):
begin

[1 : upb (i of gpattern)1 sinsert si;
[p ro c int spec = spec of gpattern; int n = upb spec;
[1 : n] Int s;
(staticize insertion (j
o t
g p a t t e r n ,
s i) ,

staticize insertion (j
o t p i c t u r e ,
s i n s e r t
) ,

s := (nl spec [1], (spec [1], spec [2]),
(spec [1], spec [2], spec OD ()));

put insertion (f, si);
if n =0 then put (f,Y[1])
else

number yj =
(Y [Al L Mt i): •] 1, real r):
incornp := true; skip);

if - incomp
then case n in

put (f, whole (34, s [1])) ,
put (f, fixed (yj, s [1], s [2])),
put (f, float (yj, s [1], s [2], s [31))
esac

fi
end,

fi

(void):
(j -:= 1; staticize insertion (i of picture, sinsert))

esac;
if incomp
then set write mood (f);

(- (value error mended off) p u t Y Lii);
undefined)

Ii;
put insertion (f, sinsert)

200 v a n Wijngaarden, et

b) p r o c 9 edit string =- (ref file f, string s, I sframe sic) void :
begin bool supp, zs := true, signput := false, again, int : = 0, sign;

proc copy = (char c) void :
(- supp I check pos (f); put char (f, c));

for k to upb sf
do sframe sfk = sf [k]; supp := supp of sfk;

put insertion (f, si of sfk);
to rep of sfk
do again := true;

while again
do j +: = 1; again := false;

char sf = s La marker = marker of sfk;
if marker =
then copy (sf); zs := true
ell, marker = "z" then

(sf "0"1 copy azs I %" I sk
si = "+" I again : = true

I zs : = false; copy (sj
.
))

elif marker = "u" v marker = "v" then
(sj = "+" I sign := 1; again := true

= "
-
"
a
s
i
g
n
:
=
2
;
a
g
a
i
n
:
=
t
r
u
e

sf = "0"I copy qzsi" I sk
I (- signput I

copy ((sign I (marker = "u"I "+" " ,"),"-"));
signput : =true);
copy (sj); zs := false)

Wit marker = "+" then
(sj = "+" v sj = "-"I copy (sj)
(- s ignput copy ((sign i "+", "-")));

-: = 1)
eilf marker = "-" then

(sj = "+" copy ("
sj= ”-" I copy (sj)

(- signputI copy ((signI " ,", "-")));
j -:= 1)

alit marker = "." then
copy (".")

Of marker = "e" v marker =
v marker = "a" v marker =

then copy (sj); zs := true; signput := false
&if marker = "r"
then j = 1
fi

od
od

od
end;

ALGOL 68 Revised Repor t 2 0 1

10.3.5.2. Format t ed input
a) p r o c getf = (ref file f, [I union (intype, format) x) void :

if opened of I then
for k to upb
do case set read mood (f); set char mood (f); i n

(format format): associate format (f, format) ,
(intype it):
begin int.) := 0;

picture picture, [simpl in y = straigh tin it;
while (j +:= 1) u p b
ydo boo' incomp := false;

get next picture (f, true, picture); set read mood (f);
[1 : upb (i of picture)] sinsert sinsert;
case p of picture in
(pattern pattern):
begin

[1 : upb (frames of pattern)] sframe sframes;
(staticize frames (frames of pattern, sframes),

staticize insertion (i of picture, sinsert));
string s;
int radix =

(type of pattern 61 type of pattern 41 10);
indit string (f, s, sframes, radix);
case type of pattern in

0 integral 0
(Y

(ref Lint ii):
incomp := - string to L int (s, 10, ii)*

1 incomp : = true) ,
0 real 0

[l]
(ref L real rr):

incomp := - string to L real (s, rr)t
1 incomp := true) ,

0 boolean
(31
(ref bool bb): bb := s = flip
1 incomp : = true) ,

0 complex 0
(3
,
M
t

(ref L comp! zz):
(int i, boo! bi, b2; char in string (" 1" , i, s);
bl := string to L real (s [: - 1], re cat zz);
b2 := string to L real (s [i + 1 : j , im of zz);
incomp := - (b1 A b2))*

1 incomp := true) ,

202 v a n Wijngaarden, et al.

0 string 0
I

(ref char cc):
(upb s = 11 cc := s [111 incomp := true) ,

(ref[[c ha r ss):
(upb ss - iwb ss 1 = upb s I ss [@ 1] := s
1 incomp := true) ,

(ref string ss): ss := s
incomp := true)

out
0 bits 0

(3
,
[
A
i

(ref L bits lb):
if Lint 1; string to L int (s, radix, i)
then lb := bin i
else incomp := true

incomp := true)
esac

end,

(cpattem choice):
begin

[1 : upb (i of choice)] sinsert si;
staticize insertion (i of choice, si);
get insertion (f, si);
int c = c of cpos of f, char kk;
int k := 0, bool found := false;
while k < upb (c of choice) A " found
do k 1 ;

11
:
u
p
b
(
(
c
o
f
c
h
o
i
c
e
)
[
k
]
)
]
s
i
n
s
e
r
t
s
i
;

boot bool := true;
staticize insertion ((c of choice) [k], si);
string s;
for i to upb si
do s piusab

(sa of si [i l l (string ss): ss) x rep of si [i]
od;
forjj to upb s
while bool := bool A " line ended (f)

A log ica l file ended (f)
do get char (f, kk); boot := kk s o d ;
(- (found := bool)I set char number (f, c))

od;
if - found then incomp := true
else

case type of choice in

od
end

esac od
else undefined
ti

ALGOL 68 Revised Report 2 0 3

boolean 0
(Y
(ref boot b): b := k = 1
incomp := true) ,

0 integral 0
(Y UJI
(ref int i): i := k
incomp := true)

esac
fi;
staticize insertion (i of picture, sinsert)

end,

(fpattem fpattern):
begin do fpattern (f, fpattern, true);

for i to upb sinsert do sinsert [i] := (0, ") od;
-:= 1

end,

(gpattem gpattern):
(II : upb (i of gpattern)] sinsert Si;
(staticize insertion (i of gpattern, si),

staticize insertion (i of picture, sinsert));
get insertion (f, si);
get (f, Y U1)) ,

(void):
-:= 1; staticize insertion (i of picture, sinsert))

esac;
if incomp
then set read mood (f);

(- (value error mended o f
f) (f) 1
u n d e fi n e d)

li;
get insertion (f, sinsert)

b) p r o c i ndi t string = (ref file f, ref string s, [] strame sf, int radix) void :
begin

boot supp, zs : = true, sign found := false, space found ;= false,
no sign := false, int sp := I, rep;

prio = 8;

204 v a n Wijngaarden, et at.

op ! = (string s, char c) char :
0 expects a character contained in 's'; i f the character
read is not in 's', the event rout ine corresponding to 'on
char error' is called wit h the suggestion 1
c
1 0

if char k; check pos (f); get char (f, k);
char in string (k, loc int, s)

then k
else char sugg := c;

If (char error mended o f
f) (f , s u g g)
t h e n

(char in string (sugg, lac Int, s) s ugg I undefined; c)
else undefined; c
fl;
set read mood (f)

fi;
op! = (Char s, c) char : string (s)! c;
[] char good digits = "0123456789abcder 1: radix] ;
s : = 1 1
+
I ffor k to upb sf
do dram° sfk = sl [k]; supp := supp of sfk;

get insert ion (f, si of sfk);
to rep of sfk
do char marker = marker of sfk;

if marker ="d" then
s piusab (supp I "0"I good digits ! "O"); zs := true

O f marker ="z " then
s plusab (supp " 0 "

I char c = ((zs I ") + good digits)! "0";
(c " , " 1 zs := false); c)

elif marker = "u" v marker " + " then
if sign found
then zs := false; s plusab ("0123456789" ! "0")
else char c = ("+-" + (marker ="u"1 ". "I ")) I

(c = "+" v c = " - " I sign found := true; s [sp] := c)
fi

elif marker = "v " v marker = " - " then
if sign found
then zs := false; s piusab ("0123456789" ! "0")
elif char c; space found
then c := "+- ,0123456789"!

(c = "+" v c = "-"I sign found := true; s [sp] := c
c " ," I zs :7 false; sign found := true; s plusab c)

else c := "+- ," "+";
(c = "+" v c = "-"1 sign found := true; s [sp] : = c
I space found := true)

fi
&If marker = ": " then

s plusab (supp " . " " . " ! ". ")

&if marker ="e" then
s piusab (suPPI"lo" I "10\e" ! "
1 0
" ; "
l o
") ; s i g n
f o u n d : .
f a l s e ;

zs := true; s piusab "+"; sp:= upb s
elif marker ="i" then

s piusab (suPP I " 1" I "i l " "1"; "1");
sign found := false; zs := true; s piusab "+"; sp:= upb s

&if marker ="b" then
s plusab (flip + flop)! flop; no sign := true

elif marker ="a" then
s piusab (suPPI I char c; check pos (f); get char (f, c);
c);
no sign := true

&if marker ="r"
then skip
fi

od
od;
if no sign then s := s [2 :I
f !end ;

ALGOL 68 Revised Report 2 0 5

10.3.6. Binary t ransput

(In binary t ransput , the values obtained by s t raightening the elements
of a data lis t (c f . 10.3.3) a re t ransput, v ia the specified fi le, one af ter the
other. The manner in which such a value is stored in the book is defined
only t o the extent that a value of mode M (being some mode f rom whic h
that spec ified b y s implout i s unit ed) ou t pu t a t a g iv en pos it ion m a y
subsequently be re-input f r o m t hat s ame pos it ion t o a n a me o f mode
'reference t o M' . No t e t hat , du r ing inpu t t o t he n a me re f er r ing t o a
mult iple value, the number of elements read wi l l be t he ex is t ing number
of elements referred to by that name.

The current posit ion is advanced af ter each value by a suitable amount
and, a t t he end o f each l ine o r page, t he appropriat e event rout ine i s
called, and next, i f this returns false, t he nex t good charac ter posit ion of
the book is found (cf. 10.3.3).

For binary output, put bin (10.3.6.1.a) and wr i t e b in (10.5.1.h) ma y be
used and, for binary input, get bin (10.3.6.2.a) and read bin (10.5.1.i).)

a) p r o c ?' to bin = (ref file f, simplout x) [_I char :
c a value of mode 'row of character' whose lower bound is one

and whose upper bound depends on the value of 'book of 1
7and on the mode and the value of 'xi; furthermore,

= from bin (f, x, to bin (f, x)) c ;
b) p r o c ?' from bin = (ref file f, simplout y,[c ha r c) simplout :

c a value, if one exists, of the mode of the value yielded by 'y',
such that c = to bin (f, from bin (f, y, c))

206 v a n W i jngaarden, et al.

10.3.6.1. Binary output

a) p r o c put bin = (ref file
!, [I
o u t t y p e
o t)
v o i d
:

If opened of I then
set bin mood (f); set write mood (f);
for
k
t
o
u
p
b
o
t

do [I simplout y = straightout ot [k];
forj to upb y
do [c ha r bin. to bin (f, y Lii);

for i to upb bin
do next pos (f);

set bin mood (f);
ref pos epos = epos o f
f , l p o s
=
l p o s
o f
b o o k
o f
f ;

case text of f
i n(flextext t2):

t2 [p of epos] o f epos] [c
o t
e p o s] : =
b i n
[i]

esac;
c of epos +:= 1;
If epos beyond lpos then lpos := epos
&if - set possible (f)

A pos (p of lpos, I of lpos, I) beyond epos
then lpos := epos;

(compressible (f)1
c the size of the line and page containing the

logical end of the book and of all
subsequent lines and pages may be
increased c)

fi
od

od
od

else undefined
;

10.3.6.2. Binary input
a) p r o c get bin = (ref file f, [] intype it) void :

If opened off then
set bin mood (f); set read mood (f);
fork to upb it
do [simpl in y = straightin it [kJ;

torj to upb y
do

simplout yj = case y [j] in
$ (ref L int i): i , (r e f L real r): r t ,
(ref L compl z): 21. , (ref boot b): b ,

•f (ref L bits 1b): 1b4, (ref char c): , (ref []
c h a r s) : s ,(ref string ss): ss esac;

esac
od

od
else undefined
ft ;

ALGOL 68 Revised Report 2 0 7

[1 : upb (to bin (f, yj))] char bin;
for i to upb bin
do next pos (f); set bin mood (f);

ref pos cpos. cpos of f;
bin [il

case text of f
i n(flextext t2):

t2 [p of epos] [l
o t
c p o s]
[c
o t
c p o
s]

esac;
c of cpos

od;
case y Ul in

•t (ref L int ii): fr ol n bin (f, b i n) 1 (L int i): : • = i)t ,
(ref I, real rr):

(from bin (f, rr, bin)! (L real r): rr := ,
(ref L comp! zz):

(f rom bin (f, zz, bin)I (L compi z): zz : z) * ,
(ref boo! bb): (from bin (f, bb, bin) I (boo! b): bb : b) ,

(ref L bits 1b):
(from bin (f, lb, bin), (L bits b): lb :r-- b) ,

(ref char cc): fr om bin (f, cc, bin)I (char c): cc c) ,
(ref [I char ss):

(from bin (f, ss, bin)I ([I char s): ss : = s),
(ref string ssss):

(from bin (f, ssss, bin) 1 ([ch a r s): ssss := s)

(But Eeyore wasn't listening. He was taking
the balloon out, and putt ing it back again,
as happy as could be.
Winnie-the-Pooh, A.A.Milne.)

208 v a n Wijngaarden, et al.

10.4. The system prelude and task lis t

10.4.1. The system prelude

The representat ion of the system-prelude is obtained f rom the following
form, t o whic h ma y be added f urt her f orms not defined i n t his Report .
(The syntax of program-tex ts ensures t hat a dec larat ion contained in the
system-prelude m a y n o t c ont radic t a n y dec larat ion c ont ained i n t h e
standard-prelude. I t i s int ended t ha t t he f u r t her f o rms s hould c ont ain
declarations that are needed f or the correc t operat ion of any system-tasks
that may be added (by the implementer, as prov ided in 10.I.2.d).)

a) s e m a ?, gremlins = (sema s; F of s := P RI M Int 0 ; s)

10.4.2. The system task lis t

The representat ion of the (firs t) const ituent system-task of the system-
task-list is obtained f rom t he f ol lowing f orm. The ot her system-tasks, i f
any, a r e n o t defi ned b y t h i s Re p o r t (b u t m a y b e defi ned b y t h e
implementer i n o r d e r t o ac c ount f o r t h e pa r t i c u la r f eat ures o f h i s
operat ing env ironment , espec ially i n s o f a r as t hey int erac t wi t h t he
running of part icular-programs (see, e.g., 10.3.1.I.dd)).

a) d o down gremlins; undefined; up bfileprotect od
(The intent ion is that this call of undefined, whic h is released by an up

gremlins whenever a book is closed, may reorganize the chain of backfiles
and the chain of locked backfiles, such as by remov ing the book i f it is not
to be available f o r f urt her opening, o r by insert ing i t in t o t he c hain o f
backfiles several t imes over i f it is t o be permit t ed f or several part icular-
programs t o read i t s imultaneously . Not e t hat , when a n u p gremlins is
given, bfileprotect is always down and remains so unt i l such reorganizat ion
has taken place.)

10.5. The part icular preludes and postludes

(From ghoul ies a n d ghos t ies a n d l o n g -
leggety beasties and things that go bump
in the night,
Good Lord, deliver us!

Ancient Cornish litany)

10.5.1. The part icular preludes

The representat ion o f t h e part ic ular-prelude o f eac h us er-t as k i s
obtained f rom t he f ol lowing f orms , t o wh ic h ma y be added such ot her
forms as may be needed f or the proper funct ioning of the fac ilit ies defined
in t he const ituent l ibrary -prelude of the program-tex t (, e.g., dec larat ions
and c a l ls o f open f o r addi t ional s t andard fi les). Howev er , f o r eac h
QUALITY-new-new-PROPSI-LAYER2-defining-indicator-with-TAX c ont a ined

ALGOL 68 Revised Repor t 2 0 9

in s u c h a n add i t iona l f o r m, t h e pred ic a t e • wh e r e Q UA L I TY T A X
independent PROPS! ' (7.1.1.a,c) mus t hold (i.e., no dec larat ion contained in
the standard-prelude may be contradicted).

a) L int L last random ro u n d (L max Intl L 2) ;
b) p r o c L random L real : L next random (L last random);
c) fi l e stand in, stand out, stand back ;

open (stand in, " , stand in channel) ;
open (stand out, " , stand out channel) ;
open (stand back, " , stand back channel) ;

d) p r o c print ([1 union (outtype, proc (ref file) void) x) void :
put (stand out, x),

proc write ([1 union (outtype, proc (ref file) void) x) void :
put (stand out, x)

e) p r o c read -= ([] union (intype, proc (ref file) void) x) void :
get (stand in, x)

f) p r o c printf ([1 union (outtype, format) x) void : putf (stand out, x),
proc writef ([] union (outtype, format) x) void : putf (stand out, x)

g) p r o c readf ([] union (intype, format) x) void : getf (stand in, x)

h) p r o c write b in. ([1 outtype x) void : put bin (stand back, x);
i) p r o c read bin ([1 intype x) void : get bin (stand back, x)

10.5.2. The part icular postludes

The representat ion o f t h e part icular-pos t lude o f eac h user-task i s
obtained f r om t he f ol lowing f o rm, t o whic h ma y b e added such ot her
forms as may be needed for the proper funct ioning of the fac ilit ies defined
in the constituent library -prelude of the program-tex t (, e.g., c al ls of lock
for addit ional standard files).

a) s t o p : lock (stand in); lock (stand out); lock (stand back)

Examples

11.1. Complex square root

proc compsqrt. (compl z) comp!:
it the square root whose real part is nonnegative of the complex
number 'z'

begin real x r e z, y I m z; real rp s t i r t ((abs x sq rt (x I 2 + y I 2)) / 2);
real ip (rp .010 y / (2 x rp));

210 v a n Wijngaarden, et al.

if x 0 then rp i p else abs ip (y I rpl -rp)fl
end

Calls (5.4.3) using compsqrt:
compsqrt (w)
compsqrt (-3.14)
compsqrt (-1)

11.2. Innerproduct 1

proc innerproduct 1 (i nt n, proc (Int) real x, r e a l :
0 the innerproduct of two vectors, each with 'n' comptments, x (i),
y (i), 1 , , n , where 'x' and 'y' are arbitrary mappings from
integer to real number C

begin long real s := long 0;
for i to n do s +:= long x (i)x Mng y Nod;
shorten s

end

Real-calls using innerproduct 1:
innerproduct 1 (m, (Int j) real : xl [j], (int j) real : y l [j])
innerproduct 1 (n, nsin, ncos)

11.3. Innerproduct 2

proc innerproduct 2 (r e f [[real a, b) real :
It upb a - iwb a u p b b - iwb b
then 0 the innerproduct of two vectors 'a' and 'b' with equal numbers

of elements 0
long real s := long 0;
ref [] re a l al = a [@ 1], bl =b [@ 1];

0 note that the bounds of 'a [@ 1]' are [1 : upb a iwb a + 1[0
for i to upb al do s +: l e ng al [i] l e ng bl [i] od;
shorten s

fi

Real-calls using innerproduct 2:
innerproduct 2 (xl , yl)
innerproduct 2 (y2 [2, 1. y2 [,3])

11.4. Largest element

proc absmax (r e f [,[real a, 0 result 0 ref real y,
C subscripts 0 ref Int i, k) void :

0 the absolute value of the element of greatest absolute value of
the matrix 'a' is assigned to 'y', and the subscripts of this element
to 'i' and ik1

begin y := - 1;
for p from 1 iwb a to 1 upb a
do

for q from 2 Iwb a to 2 upb a
do

if abs a [p, y then y := abs a [i := p, k:= q] fl
od

od
end

Calls using absmax:
absmax (x2, x, j)
absmax (x2, x, bc int, Mc Int)

11.5. Euler summat ion

proc euler = (proc (int) real f, real eps, int tim) real :
0 the sum for 'i' from 1 to infinity of 'f (0', computed by means of
a suitably refined Euler transformation. The summation is
terminated when the absolute values of the terms of the
transformed series are found to be less than 'eps"timi times in
succession. This transformation is particularly efficient in the
case of a slowly convergent or divergent alternating series 0

begin int n:= 1, t; real mn, ds := eps; [1: 16] real m;
real sum := (m [1] := f (1)) / 2;
for i from 2 while (t : = (abs ds < eps t + 1 1))
do mn:= f (i);

f o r
k
t
o
n
d
o
m
n
:
=
(
(
d
s
:
=
m
n
)
+
m
[
k
]
)
1
2
;
m
[
k
]
:
=
d
s
o
d
;

sum +:= (ds := (abs mn < abs m [n] A n < 161 n +:= 1; m [n] m n ;
mn / 2 mn))

od;
sum

end

A call using euler:
euler ((int i) real : (odd i - 1 / i l l / i), 1
1 0
- 5 , 2)11.6. The norm of a vector

ALGOL 68 Revised Report 2 1 1

proc norm = (ref [I real a) real :
0 the euclidean norm of the vector 'a' 0

(long real s := long 0;
for k from iwb a to upb a do s +:= Mng a [k] I 2 od;
shorten long sort (s))

For a use of norm in a call, see 11.7.

212 v a n Wijngaarden, et al.

11.7. Determinant of a mat r ix

proc det= (ref [,] real x, ref[] Int p) real :
if ref [,] real a = x [@ 1, @ 1];

1 upb a =2 upb a A 1 upb a = upb p - Iwb p 1
then int n =1 upb a;

C the determinant of the square matrix 'a' of order 'n' by the
method of Crout with row interchanges: 'a ' is replaced by its
triangular decomposition, 1 x u, with all u [k, k] = 1. The
vector 'p' gives as output the pivotal row indices; the k-th
pivot is chosen in the k-th column of '1' such that
abs I [i, k] / row norm is maximal C

[1: n] real v; real d := 1, s, pivot;
for i to n do v [i I := norm (a [i,]) od;
f or
k
t
o
n

do int kl = k - 1; ref int pk = p [@ 1] [k]; real r := -1;
ref [,] real al= a [,1 : k l] , au= a [1 : k l ,] ;
ref [] real ak = a [k,], ka = a [, a l k = al [k,], kau = au [, k];
for i from k to n
do ref real aik = ka [i];

if (s := abs (aik -:= innerproduct 2 (al [i,], kau)) / v [i])> r
then r := s; pk :=
fl

od;
v [pk] := v [k]; pivot := ka [ph]; ref [] real apk = a [pk,];
for j to n
do ref real akj = ak [f], apkj = apk [j] ;

r := akj;
akf := it j t h e n apki

else (apkf - innerproduct 2 (alk, au [, j])) / pivot fl;
If pk i k then apkj := r ft

od;
d x:= pivot

od;

fl

A call using det:
det (y2, il)

11.8. Greatest common div isor

proc gcd = (int a, b) int :
0 the greatest common divisor of two integers C

(b =01 abs al gcd (b, a mod b))

A call using gcd:
gcd (n, 124)

11.9. Cont inued f ract ion

ALGOL 68 Revised Report 2 1 3

op / = ([1 real a, [] real b) real :
C the value of a / b is that of the continued fraction
al / (b1 a 2 I (b2 a n b n)) C

if hvb a = 1 A twb b = 1 A upb a= upb b
then (upba=0101 a [l] l (b[11+a[2:] / b[2: 1))
Ii

A formula using
oci / y l

(The use of recurs ion may of ten be elegant rat her t han effic ient as in
the rec urs iv e proc edure 11.8 a n d t h e rec urs iv e operat ion 11.9. See,
however, 11.10 a n d 11.13 f o r ex amples i n wh i c h rec urs ion i s o f t h e
essence.)

11.10. Formula manipulat ion

begin
mode form = union (ref const, ref var, ref triple, ref call);
mode const = struct (real value);
mode var = struct (string name, real value);
mode triple str uct (form left operand, int operator,

form right operand);
mode function = struct (ref var bound var, form body);
mode call = struct (ref function function name, form parameter);
int plus = 1, minus =2, times = 3, by =4, to = 5;
heap const zero, one; value of zero := 0; value of one := 1;
op = = (form a, ref const b) bool : (al (ref const ec): ec :=: b I false);
op + = (form a, b) form :

(a = zero' bl: b = zero' al heap tripM = (a, plus, b));
op - = (form a, b) form : (b = zero a l heap triple := (a, minus, b));
op x= (form a, b) form : (a = zero v b = zerol zero': a = one b I: b = onelal

heap triple := (a, times, b));
op / = (form a, b) form : (a = zero A " (b = zero)I zero': b = one' al

heap triple := (a, by, b));
op 1 = (form a, ref const b) form :

(a = one v (b :=: zero)1 one': b :=: one' al heap triple := (a, to, b));
proc derivative of = (form e, C with respect to C ref var x) form :

case e in
(ref const): zero,
(ref var ev): (ev :=: x I one zero) ,
(ref triple et):

case form u = left operand of et, v = right operand of et;
form udash = derivative of (u, C with respect to C x),

vdash = derivative of (v, C with respect to C x);

214 v a n Wijngaarden, e t
a l .

in
operator of et

udash + vdash,
udash - vdash,
ux vdash + udashx v,
(udash - et x vdash) / v,
(vI (ref const ec): v x u I (heap const c;

value of c := value of ec 1 ; c)x udash)
esac ,

(ref call ef):
begin ref function f = function name of ef;

form g = parameter of ef; ref var
y = b o u n d
v a r o f
f ;

heap function fdash := (y, derivative of (body o f
f , y)) ;(heap call := (fdash, g))x derivative of (g, x)

end
esac;

proc value of = (form e) real :
case e in

(ref const ec): value of ec ,
(ref var ev): value of ev, ,
(ref triple et):

case real u = value of (left operand of et),
v = value of (right operand of et);
operator of et

in u v , u - v, u v , u / v, exp (v xln (u))
esac ,

(ref call ef):
begin ref function f functi on name of ef;

value of bound var of f := value of (parameter of ef);
value of (body off)

end
esac;

heap form f, g;
heap var a := ("a", skip), b := ("b", skip), x : = ("x", skip);

0 start here 0
read ((value of a, value of b, value of x));
f : =a +x l(b +x);
g := (f + one) / (f - one);
print ((value of a, value of b, value of x,

value of (derivative of (g, 0 with respect to 0 x))))
end 0 example of formula manipulation 0

11.11. Informat ion ret rieval

begin
mode ta = ref auth, rb = ref book;

ALGOL 68 Revised Report 2 1 5

mode auth = str ut (string hame, ra next, rb book),
book = struct (string title, rb next);
ra auth, first auth := nil, last auth;
rb book; string name, title; int i; file input, output;
open (input, " , remote in); open (output, " , remote out);
putf (output, ($p

"to enter a new author, type " au tho r" , a space,"x
"and his name."1
"to enter a new book, type " b o o k" , a space,"x
"the name of the author, a new line, and the title."1
"for a listing of the books by an author, type " l is t " , " x
"a space, and his name."I
"to find the author o f a book, type " fi n d " , a new line,"x
"and the title."1
"to end, type " e n d " a l$, "."));

proc update = void :
If ra (first auth) :=: nil
then auth := first auth := last auth := heap auth := (name, nil, nil)
else auth := first auth;

while ra (auth) n i l
do

(name = name of auth I go to known l auth := next of auth)
od;
last auth : n e xt of last auth := auth :=

heap auth := (name, nil, nil);
known: skip

fl;

do
try again:

getf (input, ($e(" author","book","list","find","end","), x30al,
80aIS, i));

case i in

(P author
(getf (input, name); update) ,

book
begin getf (input, (name, title)); update;

if rb (book of auth) :=: nil
then book of auth := heap book := (title, nil)
else book := book of auth;

while rb (next of book) : n i l
do

(title = title of book
go to try again I book := next of book)

od;

216 v a n Wijngaarden, et al.

end

fi
end,

(title t i t le of book
I next of book := heap book := (title, nil))

0 list 0
begin get'
.
(i n p u
t ,
n a
m e
) ;
u p
d a
t e
;

putf (output, ($p"author: "Wa ll& name));
if rb (book := book of auth) :=: nil
then put (output, ("no publications", newline))
else on page end (output,

(ref file f) bool :
(putf (f, ($p"author: "Wa in k"continued"14, name));
true));

while rb (book) n i l
do putf (output, ($1804 title of book)); book := next of book
od;
on page end (output, (ref file f) boo!: false)

fi
end,

C find 0
begin getf (input, (loc string, title)); auth := first auth;

while ra (auth) n i l
do book := book of auth;

while rb (book) : n i l
do

if title = title of book
then putf (output, ($1"author: "30a$, name of auth));

go to try again
else book := next of book
fi

od;
auth := next of auth

od;
put (output, (newline, "unknown", newline))

end,

0 end 0
(put (output, (new page, "signed off", close)); close (input);

goto stop) ,

0 error C
(put (output, (newline, "mistake, t ry again")); newline (input))

esac
od

11.12. Cooperating sequential processes

ALGOL 68 Revised Report 2 1 7

begin int nmb magazine slots, nmb producers, nmb consumers;
read ((nmb magazine slots, nmb producers, nmb consumers));
[1 : nmb producers] file infile, [1 : nmb consumers] file outfile;
for i to nmb producers do open anfile [i], "", inchannel [i]) od;

1
i
n
c
h
a
n
n
e
a
n
d
'
o
u
t
c
h
a
n
n
e
r
a
r
e
d
e
f
i
n
e
d
i
n
a
s
u
r
r
o
u
n
d
i
n
g

range (P
for i to nmb consumers
do open (outfile [i], "", outchannel [i]) od;
mode page = [1 : 60, 1 : 132] char;
[1 : nmb magazine slots] ref page magazine;
int C pointers of a cyclic magazine in d e x := 1, exdex := 1;
sema full slots = level 0, free slots = level nmb magazine slots,

in buffer busy = level 1, out buffer busy = level 1;
proc par call = (proc (int) void p, int n) void :

0 call 'n' incarnations of ip' in parallel (t
(n 0 I par (p (n), par call (p, n - 1)));

proc producer = (int Ovoid :
do heap page page;

get (infile [i], page);
down free slots; down in buffer busy;

magazine [index] := page;
index modab nmb magazine slots Ousel) 1;

up full slots; up in buffer busy

end

od;
proc consumer = (int Ovoid :

do page page;
down full slots; down out buffer busy;

page := magazine [exdex];
exdex modab nmb magazine slots plusab 1;

up free slots; up out buffer busy;
put (outfile [i], page)

od;
par (par call (producer, nmb producers),

par call (consumer, nmb consumers))

11.13. Towers of Hanoi

f or
k
t
o
8

do file : = stand out;
proc p a n t me, de, ma) void :

if ma > 0 then
p (me, 6 - me - de, ma - 1);
putf (f, (me, de, ma));

218 v a n Wijngaarden, et al.

0 move f rom peg 'me' to peg 'de' piece 'ma' 0
p (6 - me - de, de, ma - 1)

fl;
p u t f , (f, ($1"k •=- "d1, n((2 1 k+15)+16)(2(2(4(3(d)x)x)x)14, k));
p (1,2,k)

od

12. Glossaries

12.1. Technical terms

Given below are the locat ions of the defining occurrences of a number
of words which, in this Report , have a specific technical meaning. A word
appearing i n dif f erent grammat ic al f orms is giv en once, us ual ly as t he
infinit ive. Te r ms wh ic h a r e us ed on l y wi t h i n p ragmat ic remark s a r e
enclosed within braces.

abstraction (a protonot ion of a protonot ion) 1.I.4.2.b
acceptable to (a value acceptable to a mode) 2.I.3.6.d
access (ins ide a locale) 2.I.2.c
action 2.1.4.I.a
active (act ion) 2.I.4.3.a
after (in the textual order) 1.I.3.2.i
akin (a product ion t ree to a product ion tree) I.1.3.2.k
(alignment) 10.3.4.1.I.ff
alternat ive 1.1.3.2.c
apostrophe 1.1.3.I.a
arithmet ic value 2.1.3.I.a
ascribe (a value or scene to an indicator) 4.8.2.a
assign (a value to a name) 5.2.I.2.b
asterisk 1.1.3.I.a
(balancing) 3.4.1
before (in the textual order) 1.I.3.2.i
blind alley I.1.3.2.d
(book) 10.3.1.1
bound 2.1.3.4.b
bound pair 2.1.3.4.b
built (the name built f rom a name) 6.6.2.c
built (the mult iple value built f rom a value) 6.6.2.1)
calling (of a rout ine) 5.4.3.2.b
(channel) 10.3.1.2
character 2.1.3.I.g
chosen (scene of a chooser-clause) 3.4.2.b
(close (a fi le)) 10.3.1.4.ff
collateral act ion 2.I.4.2.a
collateral elaborat ion 2.I.4.2.1
(collection) 10.3.4.1.I.gg

ALGOL 68 Revised Report 2 1 9

colon 1.1.3.1.a
comma 1.1.3.I.a
complete (an action) 2.I.4.3.c, d
(compressible) 10.3.I.3.ff
consistent substitute 1.1.3.4.e
constituent 1.1.4.2.d
construct 1.1.3.2.e
construct in a representat ion language 9.3.13
contain (by a hypernot ion) 1.1.4.I.b
contain (by a product ion tree) 1.I.3.2.g
contain (by a protonot ion) 1.1.4.I.b
(control (a s t ring by a pat tern)) 10.3.4.1.1.dd
(conversion key) 10.3.1.2
(create (a fi le on a channel)) 10.3.I.4.cc
(cross-reference (in the syntax)) 1.1.3.4.f
(data list) 10.3.3
defining range (of an indicator) 7.2.2.a
deflex (a mode to a mode) 2.1.3.6.b
(deproceduring) 6
(dereferencing) 6
descendent 1.I.3.2.g
descendent act ion 2.I.4.2.b
descriptor 2.I.3.4.b
designate (a hypernot ion designat ing a protonot ion) 1.1.4.1.a
designate (a paranot ion designat ing a construct) 1.I.4.2.a
develop (a scene f rom a dec larer) 4.6.2.c
direct action 2.1.4.2.a
direct descendent 1.I.3.21
direct parent 2.1.4.2.c
divided by (of arithmet ic values) 2.1.3.1.e
(dynamic (rept icator)) 10.3.4.1.1.dd
(edit (a s t ring)) 10.3.4.1.1.jj
elaborate collaterally 2.I.4.2.f
elaborat ion 2.1.4.I.a
element (of a mult iple value) 2.I.3.4.a
elidible hypernot ion 1.1.4.2.c
endow with subnames 2.1.3.3.e, 2.1.3.4.g
envelop (a protonot ion enveloping a hypernot ion) 1.1.4.I.c
environ 2.1.1.I.c
(environment enquiry) 10.2
equivalence (of a character and an integer) 2.1.2.d, 2.1.3.1.g
equivalence (of modes) 2.1.I.2.a
equivalence (of protonotions) 2.1.I.2.a
establish (an environ around an environ) 3.2.2.13
(establish (a fi le on a channel)) 10.3.I.4.cc
(event rout ine) 10.3.1.3

220 v a n Wijngaarden, et al.

(expect) 10.3.4.1.1.11
(external object) 2.1.1
field 2.1.3.3.a
(file) 10.3.1.3
(fi rm (pos it ion)) 6.1.1
(fi rmly related) 7.1.1
fixed name (referring to a mult iple value) 2.1.3.4.f
flat descriptor 2.I.3.4.c
flexible name (referring to a mult iple value) 2.I.3.4.f
follow (in the textual order) I.1.3.2.j
(format) 10.3.4
(frame) 10.3.5.I.bb
generate (a 'TAG generat ing a name) 2.1.3.4.1
generate (a t r im generat ing a name) 2.1.3.4.j
ghost element 2.1.3.4.c
halt (an action) 2.I.4.3.f
hardware language 9.3.a
(heap) 5.2.3
hold (of a predicate) 1.3.2
hold (of a relat ionship) 2.1.2.a
hyper-rule 1.I.3.4.b
hyperalternat ive 1.1.3.4.c
hypernotion 1.1.3.1.e
hyphen 1.1.3.I.a
ident ify (an indicator ident ify ing an indicator) 7.2.2.b
implementat ion (of ALGOL 68) 2.2.2.c
implementat ion of the reference language 9.3.c
in (a construct in an environ) 2.I .5.b
in place of 3.2.2.a, 5.4.4.2
inactive (act ion) 2.1.4.3.a
incompat ible actions 2.1.4.2.e
(independence (of propert ies)) 7.1.1
index (t o select an element) 2.1.3.4.a
(indit (a s t ring)) 10.3.4.1.1.kk
init iate (an action) 2.1.4.3.b, c
(input compat ible) 10.3.4.1.1.ii
inseparable action 2.1.4.2.a
(insertion) 10.3.4.1.1.ee
integer 2.1.3.1.a
integral equivalent (of a character) 2.1.3.I.g
(internal object) 2.1.1
interrupt (an act ion) 2.I.4.3.h
intrinsic value 8.1.1.2, 8.1.2.2.a, b, 8.I.4.2.b, c
invis ible I.1.3.2.h
is (of hypernotions) 2.I.5.e
large syntactic mark 1.1.3.I.a

ALGOL 68 Revised Repor t 2 2 1

largest integral equivalent (of a character) 2.1.3.1.g
lengthening (of arithmet ic values) 2.I.2.d, 2.1.3.1.e
(link (a book with a fi le)) 10.3.I.4.bb
(literal) 10.3.4.1.I.ee
local environ 5.2.3.2.13
locale 2.1.1.1.b
(lock (a fi le)) 10.3.I.4.gg
(logical end) 10.3.1.I.aa
(logical fi le) 10.3.I.5.dd
lower bound 2.I.3.4.b
make to access (a value inside a locale) 2.I.2.c
make to refer to (of a name) 2.I.3.2.a
(marker) 10.3.4.1.I.cc
meaning 1.1.4, 2.1.4.1.a
meaningful program 1.I.4.3.c
(meek (posit ion)) 6.1.1
member 1.I.3.2.d
metanotion 1.1.3.I.d
metaproduct ion rule 1.I.3.3.b
minus (of arithmet ic values) 2.1.3.1.e
mode 2.1.I.2.b, 2.I.5.f
(mult iple selection) 5.3.1
mult iple value 2.1.3.4.a
name 2.I.3.2.a
necessary for (an environ f or a scene) 7.2.2.c
nest 3.0.2
newer (of scopes) 2.I .2.f
newly created (name) 2.I.3.2.a
nil 2.I.3.2.a
nonlocal 3.2.2.b
notion 1.1.3.I.c
number of extra lengths 2.1.3.1.d
number of extra shorths 10.2.I.j, 1, 2.1.3.I.d
number of extra widths 10.2.I.j, 1
numerical analysis, in the sense of 2.1.3.1.e
object 2.1.1
of (construct of a construct) 2.1.5.a
of (construct of a scene) 2.1.1.1.d
of (env iron of a scene) 2.1.1.I.d
of (nest of a construct) 3.0.2
older (of scopes) 2. I .2. f
(on rout ine) 10.3.1.3
(open (a fi le)) 10.3.I.4.dd
original 1.I.3.2.f
other syntactic mark 1.1.3.I.a
(output compat ible) 10.3.4.1.I.hh

222 v a n Wijngaarden. et at.

(overflow) 2.I.4.3.h
(overload) 4.5
parallel act ion 10.2.4
paranotion 1.1.4.2.a
(perform (an alignment)) 10.3.4.1.1.ff
(perform (an insert ion)) 10.3.4.1.1.ee
(pattern) 10.3.4.1.1.cc
permanent relat ionship 2.1.2.a
(physical fi le) 10.3.I.5.cc
(picture) 10.3.4.1.1.cc
plain value 2.1.3.1.a
point 1.1.3.1.a
pragmat ic remark 1.1.2
(pre-elaboration) 2.1.4.I.c
precede (in the textual order) 1.1.3.2.j
predicate 1.3.2
primal environ 2.2.2.a
process 10.2.4
produce 1.I.3.2.f
production rule I.1.3.2.b
production t ree 1.I.3.2.f
program in the st ric t language 1.1.I.b, 10.1.2
(property) 2.1.1.1.b, 3.0.2
protonotion 1.1.3.1.b
pseudo-comment 10.I.3.Step 7
publicat ion language 9.3.a
(random access) 10.3.1.3.ff
(reach) 3.0.2
real number 2.1.3.I.a
refer to 2.1.2.e, 2.I.3.2.a
reference language 9.3.a
relat ionship 2.1.2.a
(replicator) 10.3.4.1.I.dd
representation language 9.3.a
required 1.I.4.3.b
resume (an action) 2.1.4.3.g
routine 2.1.3.5.a
(rowing) 6
same as (of scopes) 2.I .2.f
scene 2.1.1.I.d
scope (of a value) 2.1.I.3.a
scope (of an env iron) 2.1.1.3.b
(scratch (a fi le)) 10.3.1.4.hh
select (a 'TAG' select ing a field) 2.1.3.3.a
select (a 'TAG selec t ing a mult iple value) 2.I.3.4.k
select (a 'TAG' select ing a subname) 2.1.3.3.e

ALGOL 68 Revised Report 2 2 3

select (a field-selector select ing a field) 2. I .5.g
select (an index selecting a subname) 2.I.3.4.g
select (an index selecting an element) 2.I.3.4.a
select (a t r im selecting a mult iple value) 2.I.3.4.i
semantics 1.1.1
semicolon 1.1.3.1.a
sense of numerical analysis 2.1.3.1.e
(sequential access) 10.3.I.3.ff
serial act ion 2.I.4.2.a
simple substitute I.1.3.3.d
size (of an arithmet ic value) 2.1.3.I.b
small syntactic mark 1.1.3.1.a
smaller (descendent smaller than a product ion tree) I.1.3.2.g
smaller than (of arithmet ic values) 2.I.2.d, 2.1.3.1.e
(soft (posit ion)) 6.1.1
(sort) 6
specify (a dec larer specifying a mode) 4.6.2.d
(spelling (of a mode)) 2.1.1.2
standard env ironment 1.1.1, 10
(standard function) 10.2
(standard mode) 10.2
(standard operator) 10.2
(state) 10.3.1.3
(staticize (a pic ture)) 10.3.4.1.I.dd
stowed name 2.I.3.2.b
stowed value 2.1.1.I.a
straightening 10.3.2.3.c
strict language 1.1.I.b, 1.1.3.2.e, 10.1.2
(string) 8.3
(strong (posit ion)) 6.1.1
structured value 2.I.3.3.a
sublanguage 2.2.2.c
subname 2.I.2.g
substitute consistently 1.1.3.4.e
substitute s imply 1.I.3.3.d
superlanguage 2.2.2.c
(suppressed f rame) 10.3.4.1.I.cc
symbol 1.1.3.I.f
(synchronization operat ion) 10.2.
syntax 1.1.1
terminal metaproduct ion (of a metanot ion) 1.I.3.3.c
terminal product ion (of a not ion) 1.1.3.2.1
terminal product ion (of a product ion tree) 1.I.3.2.f
terminate (an action) 2.1.4.3.e
textual order 1.I.3.2.i
t imes (of arithmet ic values) 2.1.3.1.e

224 v a n Wijngaarden, et al.

t ransform 10.3.4.1.2.10
(transient name) 2.1.3.6.c
transit ive relat ionship 2.I.2.a
(transput declarat ion) 10.2.
(transput) 10.3
traverse 10.3.2.3.d
t r im 2.I.3.4.h
truth value 2.1.3.I.f
typographical display feature 9.4.d
undefined 1.1.4.3.a
united f rom (of modes) 2.1.3.6.a
(unit ing) 6
upper bound 2.I.3.4.b
vacant locale 2.1.1.1.b
value 2.1.1.I.a
variant (of a value) 4.4.2.c
variant of ALGOL 68 I.1.5.b
version (of an operator) 10.1.3.Step3
visible I.1.3.2.h
void value 2.1.3.1.h
(voiding) 6
(weak (posit ion)) 6.1.1
(well formed) 7.4
widenable to (an integer to a real number) 2.1.2.d, 2.1.3.1.e
(widening) 6
yield (of a scene) 2.1.2.13, 2.1.4.I.b, 2.1.5.c, d

(Denn eben, wo Begriffe fehlen,
Da stelit ein Wort zur rechten Zeit sich ein.
Faust, J . W . von Goethe.)

12.2. Paranot ions

Given below are short paranot ions represent ing the not ions defined i n
this Report , wit h references to their hyper-rules.

after-specification 10.3.4.10.1.c
alignment 1113.4.1.1.e
alignment-code 10.3.4.1.1.f
alternate-CHOICE-clause 3.4.1.d
assignation 5.2.1.1.a
bits-denotation 8.2.1.1
bits-pattern 10.3.4.7.1.a
boolean-choice-pattern 10.3.4.8.1.13
boolean-marker 10.3.4.4.1.b
boolean-pattern 10.3.4.4.1.a
boundscript 5.3.2.I.j

call 5.4.3.I.a
case-clause 3.4.I.p
case-part-of-CHOICE 3.4.1.i
cast 5.5.1.1.a
character-glyph 8.1.4.1.c
character-marker 10.3.4.6.1.b
choice-clause 3.4.1.n
chooser-CHOICE-clause 3.4.1.b
closed-clause 3.1.1.a
coercee 6.1.1.g
coercend 6.1.I.h

collateral-clause 3.3.I.a, d, e
collection 10.3.4.1.I.b
complex-marker 10.3.4.5.I.b
complex-pattern 10.3.4.5.1.a
conditional-clause 3.4.I.0
conformity-clause 3.4.I.q
constant 3.0.I.d
declaration 4.1.I.a
declarative 5.4.1.1.e
declarator 4.6.I.c, d, g, h, o, s
declarer 4.2.I.c, 4.4.I.b, 4.6.I.a, b
definition 4.1.I.d
denotation 8.1.0.I.a, 8.1.1.I.a,

8.1.2.I.a, 8.1.3.I.a, 8.1.4.I.a,
8.1.5.I.a, 8.2.I.a, b, c, 8.3.1.a

denoter 8.0.I.a
deprocedured-to-FORM 6.3.1.a
dereferenced-to-FORM 6.2.1.a
destination 5.2.1.1.b
digit-cypher 8.1.1.1.c
digit-marker 10.3.4.2.I.1
display 3.3.I.j
do-part 3.5.1.h
dyadic-operator 5.4.2.1.e
enquiry-clause 3.4.I.c
establishing-clause 3.2.I.i
exponent-marker 10.3.4.3.1.e
exponent-part 8.1.2.1.g
exponent-specification 10.3.4.10.I.d
expression 3.0.I.b
field-selector 4.8.I.1
fixed-point-numeral 8.1.1.I.b
floating-point-mould 10.3.4.3.I.c
floating-point-numeral 8.1.2.1.e
for-part 3.5.I.b
format-pattern 10.3.4.9.1.a
format-text 10.3.4.1.1.a
formula 5.4.2.I.d
fractional-part 8.1.2.1.d
frame 10.3.4.1.1.m
general-pattern 10.3.4.10.I.a
generator 5.2.3.I.a
go-to 5.4.4.1.b
hip 5.1.a
identifier-declaration 4.4.1.g
identity-declaration 4.4.I.a

ALGOL 68 Revised Report 2 2 5

identity-definition 4.4.1.c
identity-relation 5.2.2.1.a
identity-relator 5.2.2.1.13
in-part-of-CHOICE 3.4.I.f, g, h
in-CHOICE-clause 3.4.1.e
indexer 5.3.2.1.1
indicator 4.8.1.e
insertion 10.3.4.1.I.d
integral-choice-pattern 10.3.4.8.1.a
integral-mould 10.3.4.2.1.b
integral-part 8.1.2.I.c
integral-pattern 10.3.4.2.I.a
intervals 3.5.1.c
joined-label-definition 10.1.1.h
joined-portrait 3.3.1.1)
jump 5.4.4.1.a
label-definition 3.2.1.c
literal 10.3.4.1.1.1
loop-clause 3.5.1.a
lower-bound 4.6.1.m
marker 10.3.4.1.1.n
mode-declaration 4.2.1.a
mode-definition 4.2.1.1)
monadic-operator 5.4.2.1.f
nihil 5.2.4.1.a
operand 5.4.2.1.g
operation-declaration 4.5.I.a
operation-definition 4.5.1.c
other-string-item 8.1.4.1.d
other-PRAGMENT-item 9.2.I.d
parallel-clause 3.3.1.c
parameter 5.4.1.1.g, 5.4.3.1.c
parameter-definition 5.4.1.1.f
particular-postlude 10.1.I.i
particular-program 10.1.I.g
pattern 10.3.4.1.1.0
phrase 3.0.1.a
picture 10.3.4.1.I.c
plain-denotation 8.1.0.1.1)
plan 4.5.I.b, 4.6.1.p
plusminus 8.1.2.1.j
point-marker 103.4.3.1.d
power-of-ten 8.1.2.I.i
praglit 10.3.4.8.1.c
pragment 9.2.1.a
preludes 10.1.1.b

226 v a n Wijngaarden, et al.

priority-declaration 4.3.I.a
priority-definition 4.3.1.b
program 2.2.1.a
program-text 10.1.I.a
radix-digit 8.2.I.m
radix-marker 10.3.4.7.I.c
range 3.0.I.f
real-pattern 10.3.4.3.1.a
repeating-part 3.5.1.e
replicator 10.3.4.1.I.g
revised-lower-bound 5.3.2.I.g
routine-declarer 4.4.1.b
routine-plan 4.5.I.b
routine-text 5.4.1.I.a, b
row-display 3.3.1.1
row-rower 4.6.I.j, k, 1
row-ROWS-rower 4.6.I.i
rowed-to-FORM 6.6.1.a
sample-generator 5.2.3.1.b
selection 5.3.1.I.a
serial-clause 3.2.1.a
series 3.2.I.b
sign-marker 10.3.4.2.I.e
sign-mould 10.3.4.2.I.c
skip 5.5.2.1.a
slice 5.3.2.1.a
softly-deprocedured-to-FORM 6.3.I.b
source 5.2.1.1.c
source-for-MODINE 4.4.1.d
specification 3.4.1.j, k
stagnant-part 8.1.2.1.f
statement 3.0.1.c
string 8.3.1.b
string-denotation 8.3.1.c
string-item 8.1.4.1.b
string-pattern 10.3.4.6.I.a
structure-display 3.3.I.h
subscript 5.3.2.1.e
suppression 10.3.4.1.1.1
symbol 9.1.I.h
system-task 10.1.1.e
tasks 10.1.I.d
times-ten-to-the-power-choice
token 9.1.1.g
t r immer 5.3.2.1.f
trimscript 5.3.2.I.h

unchanged-from-FORM 6.1.I.f
unit 3.2.I.d
unitary-clause 3.2.I.h
united-to-FORM 6.4.I.a
unsuppressible-literal 10.3.4.1.1.i
unsuppressible-replicator 10.3.4.1.I.h
unsuppressible-suppression 10.3.4.1.1.1
upper-bound 4.6.1.n
user-task 10.1.I.f
vacuum 3.3.I.k
variable 3.0.1.e
variable-declaration 4.4.1.e
variable-definition 4.4.1.f
variable-point-mould 10.3.4.3.I.b
variable-point-numeral 8.1.2.I.b
voided-to-FORM 6.7.I.a, b
while-do-part 3.5.1.f
while-part 3.5.1.g
widened-to-FORM 6.5.I.a, b, c, d
width-specification 10.3.4.10.1.b
zero-marker 10.3.4.2.I.d
ADIC-operand 5.4.2.1.c
CHOICE-again 9.1.1.c
CHOICE-finish 9.1.1.e
CHOICE-in 9.1.1.b
CHOICE-out 9.1.1.d
CHOICE-start 9.1.I.a
CHOICE-clause 3.4.1.a
COMMON-joined-definition 4.1.I.b, c
DYADIC-formula 5.4.2.1.a
EXTERNAL-prelude 10.1.1.c
FIELDS-definition-of-FIELD 4.6.1.f
FIELDS-portrait 3.3.1.f, g
FIELDS-portrayer-of-FIELDS! 4.6.1.e
F O R M
-
c o e r
c e e
6 . 1
.
1 . a
,
b
,
c
,
d
,
e

FRORYT-part 3.5.I.d
INDICATOR 4.8.1.a, b
MOIDS-joined-declarer 4.6.I.t, u
MONADIC-formula 5.4.2.1.b
NOTETY-pack I.3.3.d
NOTION-bracket 1.3.3.e
NOTION-list 1.3.3.c

8.1.2.I.h NOTION-option I.3.3.a
NOTION-sequence 1.3.3.b
N O T I O N
-
t o k e n
9 . 1 .
1 . f

PARAMETERS 5.4.3.I.b

PARAMETERS-joined-declarer
4.6.1.q, r

PRAGMENT 9.2.I.b
PRAGMENT-item 9.2.1.c
QUALITY-FIELDS-field-selector

4.8.I.c, d
RADIX 8.2.1.d, e, f , g
RADIX-digit 8.2.I.h, i, j, k
RADIX-f rame 10.3.4.7.I.b
ROWS-leaving-ROWSETY-indexer

5.3.2.I.b, c, d

12.3. Predicates

Given below are abbrev iated
Report.

'and' 1.3.1.c, e
'balances' 3.2.I.f, g
'begins with' 1.3.1.h, i, j
'coincides with* 1.3.I.k, 1
'contains' 1.3.1.m, n
'counts' 4.3.I.c, d
•deflexes to' 4.7.1.a, b, c, d, e
'deprefs to fi rm' 7.1.1.n
'develops f rom' 7.3.I.c
'equivalent ' 7.3.I.a, b, d, e, f , g, '

h, i, j, k, q
'false* 1.3.I.b
'fi rmly related' 7.1.I.k
'ident ified in* 7.2.1.a
'incestuous' 4.7.I.f

12.4. Index to the standard prelude

< 10.2.3.0.a, 10.2.3.3.a, 10.2.3.5.c,
10.2.3.5.c, d, 10.2.3.6.a, I0.2.3.9.a,
10.2.3.10.a, g, h

<=- 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
I0.2.3.9.a, 10.2.3.10.b, g, h

+ 10.2.3.0.a, 10.2.3.3.i, j, I0.2.3.4.i, j,
10.2.3.5.a, b, 10.2.3.6.b, 10.2.3.7.j,
k, p, q, r, s, 10.2.3.10.i, j, k

• 10.2.3.0.a,10.2.3.11.d, e, f , o, p, q, s
• 10.2.3.0.a, 10.2.3.11.r, t

ALGOL 68 Revised Report 2 2 7

TALLY-dec larer 4.2.I.c
THING1-or-alternat ively-THING2

1.3.3.f
UNSUPPRESSETY-literal

10.3.4.1.I.i
UNSUPPRESSETY-suppression

10.3.4.1.1.1
UNSUPPRESSETY-COMARK-frame

10.3.4.1.I.k
UNSUPPRESSETY-MARK-frame

10.3.4.1.I.j

forms o f t he predicates defined i n t his

'independent' 7.1.I.a, b, c, d
'is' 1.3.I.g
'is derived f rom' 5.3.1.1.b, c
'is fi rm' 7.1.1.1, m
'like' 5.4.1.I.c, d
*may follow' 3.4.I .m
'number equals' 7.3.1.o, p
'or' 1.3.1.d, f
'ravels to' 4.7.1.g
'related' 7.1.1.e, f, g, h, i, j
'resides in* 7.2.I.b, c
'shields* 7.4.1.a, b, c, d
'subset of' 7.3.1.1, m, n
't rue' 1.3.I.a
'unites to' 6.4.I.b

+x 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

+ *10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

& 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
A 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
0 10.2.3.0.a, 10.2.3.81, 10.2.3.9.b
r 10.2.3.0.a, 10.2.3.1.c, e
I 10.2.3.0.a, 10.2.3.8.h
L 10.2.3.0.a, 10.2.3.I.b, d,

10.2.3.4.r

10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,
10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

v 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c
I 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

10.2.3.5.e, f

i= 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,
10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b,

+ 10.2.3.0.a, 10.2.3.3.m 10.2.3.9.a, 10.2.3.10.d, g, h
+x 10.2.3.0.a, 10.2.3.3.n % 10.2.3.0.a, 10.2.3.3.m
+x:= 10.2.3.0.a, 10.2.3.111 %x 10.2.3.0.a, 10.2.3.3.n
÷* 10.2.3.0.a, 10.2.3.3.n %x:= 10.2.3.0.a, 10.2.3.111
+*:= 10.2.3.0.a, 10.2.3.11.k %*10.2.3.0.a, 10.2.3.3.n
+:= 10.2.3.0.a, 10.2.3.11.j %*:= 10.2.3.0.a, 10.2.3.11.k
x 10.2.3.0.a, 10.2.3.3.1, 10.2.3.4.1, %:= 10.2.3.0.a, 10.2.3.11.j

228 v a n Wijngaarden, et al.

1 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, * * 1 0 . 2 . 3 . 0 . a , 10.2.3.3.p, 10.2.3.5.g,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.81, 1 0 . 2 . 3 . 7 . t
10.2.3.9.a, 10.2.3.10.e, g, h * : = 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u

10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s,
10.2.3.10.1,m, n, o

x:= 10.2.3.0.a, 10.2.3.11.g, h, i, n,
o, p, u

- 10.2.3.2.c, 10.2.3.8.m
I 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,

10.2.3.71, 10.2.3.8.g
* 10.2.3.0.a, 10.2.3.3.1, 10.2.3.4.1,

10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s,
10.2.3.10.1, m, n, o

abs 10.2.1.n, 10.2.3.21, 10.2.3.3.k,
10.2.3.4.k, 10.2.3.7.c, 10.2.3.81

and 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
arg 10.2.3.7.d
bin 10.2.3.8.j
bits 10.2.2.g
boot 10.2.2.b
bytes 10.2.2.h
channel 10.3.1.2.a
char 10.2.2.e
comp! 10.2.21
conj 10.2.3.7.e
divab 10.2.3.0.a, 10.2.3.111, m, n, o,
down 10.2.3.0.a, 10.2.3.8.h, 10.2.4.d
eMm 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b

- 10.2.3.2.c, 10.2.3.8.m
- 10.2.3.0.a, 10.2.3.3.g, h, 10.2.3.4.g, h,

10.2.3.5.a, b, 10.2.3.7.h, i, p, q, r, s
-:= 10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p
/ 10.2.3.0.a, 10.2.3.3.0, 1 0
.
. 2 . 3 . 4 . m ,

10.2.3.5.a, b, 10.2.3.7.m, p, q, r, s
/:= 10.2.3.0.a, 10.2.3.11.1, m, n, o, p

> 10.2.3.0.a, 10.2.3.31, 10.2.3.41,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.101, g, h

>. 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.1,
10.2.3.9.a, 10.2.3.10.e, g, h

= 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,
10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.71, u, v, w, x, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

antler 10.2.3.4.r
eq 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,

10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, u, v, w, x, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

file 10.3.1.3.a
format 10.3.5.a
ge 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.81,
10.2.3.9.a, 10.2.3.10.e, g, h

gt 10.2.3.0.a, 10.2.3.3.1, 10.2.3.41,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,

p 1 0 . 2 . 3 . 1 0 . f , g, h
i 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

10.2.3.5.e, f

im 10.2.3.7.b
int 10.2.2.c
le 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a,10.2.3.10.b, g, h

leng 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n,
10.2.3.8.n, 10.2.3.9.d

level 10.2.4.b, c
It 10.2.3.0.a, 10.2.3.3.a, 10.2.3.4.a,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.a, g, h

lwb 10.2.3.0.a, 10.2.3.1.b, d
minusab 10.2.3.0.a, 10.2.3.11.a, b,

c, n, o, p
mod 10.2.3.0.a, 10.2.3.3.n
modab 10.2.3.0.a, 10.2.3.11.k
ne 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v , w, x, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

not 10.2.3.2.c, 10.2.3.8.m
odd 10.2.3.3.s
or 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c

arccos 10.2.3.121
arcsin 10.2.3.12.h
arctan 10.2.3.12.j
associate 10.3.1.4.e
backspace 10.3.I.6.b
bin possible 10.3.13.d
bits lengths 10.2.1.h
bits pack 10.2.3.81
bits shorths 10.2.1.1
bits width 10,2.I.j
blank 10.2.1.0
bytes lengths 10.2.1.k
bytes pack 10.2.3.9.c
bytes shorths 10.2.1.1
bytes width 10.2.1.m
chan 10.3.1.3.1
char in string 10.3.2.1.1
char number 10.3.I.5.a
close 10.3.1.4.n
compressible 10.3.1.3.e
cos 10.2.3.12.e
create 10.3.1.4.c

ALGOL 68 Revised Report 2 2 9

over 10.2.3.0.a, 10.2.3.3.m
overab 10.2.3.0.a, 10.2.3.11.j
plusab 10.2.3.0.a, 10.2.3.11.d, e, f ,

n, o, p, q
, splusto 10.2.3.0.a, 10.23.11.r, t

re 10.2.3.7.a
real I0.2.2.d
repr 10.2.1.0
round 10.2.3.4.p
sema 10.2.4.a
shi 10.2.3.0.a, 10.2.3.8.g
shorten 10.2.3.3.r, 10.2.3.4.0, 10.2.3.7.0,

10.2.3.8.0, 10.2.3.9.e
shr 10.2.3.0.a, 10.2.3.8.h
sign 10.2.3.3.t, 10.2.3.4.q
string 10.2.2.1
timesab 10.2.3.0.a, 10.2.3.II.g, h,

n, o, p, u
up 10.2.3.0.a, I0.2.3.3.p, 10.2.3.5.g,

10.2.3.71, 10.2.3.8.g, 10.2.4.e
upb 10.2.3.0.a, 10.2.3.1c, e
void 10.2.2.a

errorchar 10.2.1.t
estab possible 10.3.1.2.c
establish 10.3.1.4.13
exp 10.2.3.12.c
exp width 10.3.2.1.0
fixed 10.3.2.1.e
fl ip 10.2.1.r
float 10.3.2.1.d
flop 10.2.I.s
get 10.3.3.2.a
get bin 10.3.6.2.a
get possible 10.3.1.3.b
getf 10.3.5.2.a
int shorths 10.2.1.13
int width 10.3.2.I.m
last random 10.5.1.a
line number 10.315.13
In 10.2.3.12.d
lock 10.3.1.4.o
make cony 10.3.I.3.j
make term 10.3.I.3.k
max abs char 10.2.1.p

230 v a n Wijngaarden, et al.

max int 10.2.I.c
max real 10.2.11
newline 10.3.I.6.c
newpage
next random 10.2.3.12.k
null character 10.2.1.q
on char error 10.3.1.3.r
on format end 10.3.1.3.p
on line end 10.3.1.3.0
on logical file end 10.3.1.3.1
on page end 10.3.1.3.n
on physical file end 10.3.I.3.m
on value error 10.3.1.3.q
open 10.3.1.4.d
page number 10.3.1.5.c
pi 10.2.3.12.a
print 10.5.1.cl
pr int ! 10.5.1.1
put 10.3.3.I.a
put bin 10.3.6.1.a
put possible 10.3.I.3.c
put ! 10.3.5.1.a
random 10.5.1.b
read 10.5.1.e
read bin 10.5.1.1
read! 10.5.1.g
real lengths 10.2.1.4:1
real shorths 10.2.1.e
real width 10.3.2.1.n
reidf 10.3.1.3.s
reidf possible 10.3.1.3.h
reset 10.3.1.6.j
reset possible 10.3.I.3.1
scratch 10.3.1.4.p
set 10.3.1.6.1
set char number 10.3.1.6.k
set possible 10.3.1.3.g
sin 10.2.3.12.g
small real 10.2.1.g
space 10.3.I.6.a
sqrt 10.2.3.12.b
stand back 10.5.I.c
stand back channel 10.3.1.2.g
stand in 10.5.1.c
stand in channel 10.3.1.2.e
stand out 10.5.1.c

stand out channel 10.3.1.21
standconv 10.3.1.2.d
stop 10.5.2.a
tan 10.2.3.12.1
whole 10.3.2.1.13
write 10.5.1.d
write bin 10.5.1.h
write! 10.51.f
L bits 10.2.2.g
L bytes 10.2.2.h
L compl 10.2.21
L in t 10.2.2.c
L real 10.2.2.d
L arccos 10.2.3.121
L arcsin 10.2.3.12.h
L arctan 10.2.3.12.j
L bits pack 10.2.3.8.1
L bits width 10.2.I.j
L bytes pack 10.2.3.9.c
L bytes width 10.2.1.m
L cos 10.2.3.12.e

exp 10.2.3.12.c
L exp width 10.3.2.1.0
L i n t width 10.3.2.1.m
L last random 10.5.1.a
L in 10.2.3.12.d
L max int 1
0 . 2 . 1 . cL max real 10.2.1.1
L next random 10.2.3.12.k
L pi 10.2.3.12.a
L random 10.5.1.1)
L real width 10.3.2.1.n
L sin 10.2.3.12.g
L small real 10.2.1.g
L sqrt 10.2.3.12.13
L tan 10.2.3.12.1

beyond 10.3.1.1.d
bffie 10.3.1.1.e
book 10.3.1.1.a

?, collection 10.3.5.a
coMtem 10.3.5.a
cony 10.3.1.2.b
cpattem 10.3.5.a
flextext 10.3.1.1.b
fpattem 10.3.5.a

?, frame 10.3.5.a

gpattem 10.3.5.a
insertion 10.3.5.a
intype 10.3.2.2.d
number 10.3.2.1.a
outtype 10.3.2.2.b

?.• pattern 10.3.5.a
picture 10.3.5.a

?' piece 10.3.5.a
pos 10.3.1.1.c
rows 10.2.3.I.a
sframe 10.3.5.e
simplin 10.3.2.2.c
simplout 10.3.2.2.a
sinsert 103.5.c
straightin 10.3.2.3.b
straightout 10.3.2.3.a
text 10.3.1.1.b

? alignment 10.3.5.i
? associate format 10.3.51
? bfileprotect
? book bounds 10.3.1.5.e

chainbfile 10.3.1.1.1
? char dig 10.3.2.1.k
? check pos 10.3.3.2.c
? current pos 10.3.I.5.d
? dig char 10.3.2.1.h
? do fpattern 10.3.5.j
? edit string 10.3.5.1.b
? false 10.3.1.4.1
? file available 10.3.I.4.1
? from bin 10.3.6•b
? get char 10.3.3.2.b

12.5. Alphabet ic lis t ing of metaproduct ion rules

ALGOL 68 Revised Report 2 3 1

? get good file 10.3.I.6.g
? get good line 103.1.6.e
?get good page 10.3.I.6.f
? get insertion 10.3.5.h
? get next picture 10 .3.5.13
? gremlins 10.4.1.a

idf ok I0.3.1.4.g
indit string 10.3.5.2.b

? line ended 10•11.5.1
lockedbfile 10.3.1.1.g

? logical file ended 10.3.1.5.i
? match 10.3.1.4.h
? next pos 10.3.3.I.c
? page ended 10.3.I.5.g
? physical file ended 10.3.1.5.h
? put char 10.3.3.1.10
? put insertion 10.3.5.g
? set bin mood 103.1.4.m
? set char mood 10.3.1.4.1
?set mood 10.31.6.h
? set read mood 10.3.1.4.k
? set write mood 10.3.1.4.j
? standardize 10.3.2.I.g

staticize frames I0.3.5.1
staticize insertion 10.3.5.d

? string to L int 10.3.2.1.1
? string to L real 10.3.2.1.j

sublixed 10.3.2.1.1
subwhole 10.3.2.1.e

? to bin 10.3.6.a
? undefined 10.3.1.4.a

L standardize 10.3.2.I.g

ABC{9421}: : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 ; m ; n ; 0 ; p ;
c l ; r ; s ; t ; u ; v ; w ; x ; y ; z .

ADIC(542C) : : DYADIC ; MONADIC.
ALPHA(13B) : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 1 ; m ; n ; o ; p ;

c l ; r ; s ; t ; u ; v ; w ; x ; 37;z .
BECOMESETY(942J) : : c um becomes ; c um assigns to ; EMPTY.
BITS(65A1 : : s t ructured wit h

row of booleau field SITHETY let ter aleph mode.
BYTES(6513) : : s t ructured with

row of character field SITHETY let ter aleph mode.
CASE(3413) : : choice using integral ; choice using UNITED.

232 v a n Wijngaarden, et al.

CHOICE(34A) :: choice using boolean ; CASE.
COLLECTION(A341C) :: union of PICTURE COLLITEM mode.
COLLITEM(A34.1D) :: structured with INSERTION field letter i digit one

procedure yielding integral field letter r letter e letter p
integral field letter p
INSERTION field letter i digit two mode.

COMARK(A341N) :: zero ; digit ; character.
COMMONRIA) :: mode ; priority ; MODINE identity

reference to MODINE variable ; MODINE operation
PARAMETER ; MODE FIELDS.

COMORF(61G) :: NEST assignation ; NEST identity relation
NEST LEAP generator ; NEST cast ; NEST denoter
NEST format text.

CPATTERNIA341I) :: structured with INSERTION field letter i
integral field letter t letter y letter p letter e
row of INSERTION field letter c mode.

DEC(1.23E) :: MODE TAG ; priority PRIO TAD; MOLD TALLY TAB;
DUO TAD; MONO TAM.

DECS(I.23D) :: DEC ; DECS DEC.
DECSETY(123C) D E C S ; EMPTY.
DEFIED(48B) :: defining ; applied.
DIGIT(942C) :: digit zero ; digit one ; digit two ; digit three ; digit four

digit five ; digit six ; digit seven ; digit eight ; digi t nine.
DOP1942M1 :: DYAD ; DYAD cum NOMAD.
DU0(1.23111 :: procedure with PARAMETER]. PAR AMETER2 yielding MOID.
DYAD(942G) :: MONAD ; NOMAD.
DYADIC(542A) :: priority PRIO.
EMPTY(12G)
ENCLOSED1122A) :: closed ; collateral ; parallel ; CHOICE ; loop.
EXTERNAL(AIA) :: standard ; l ibrary ; system ; particular.
FIELD(I2J) :: MODE field TAG.
FIELDS(12I) :: FIELD ; FIELDS FIELD.
FIRM(6IB) :: MEEK ; united to.
FIVMAT(A3411,) m u i definition of structured with row of

structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p row of union of structured
with union of PATTERN CPATTERN
structured with INSERTION field letter i
procedure yielding mui application field
letter p letter f mode GPATTERN void mode field letter p
INSERTION field letter i mode COLLITEM mode field
letter c mode field letter aleph mode.

FLEXETY112K) :: flexible ; EMPTY.
FORM(61E) M O W ' ; COMORE
FORMAT(A341A) :: structured with row of PIECE field letter aleph mode.

ALGOL 68 Revised Repor t 2 3 3

FPATTERN(A341J) :: structured with INSERTION field letter i
procedure yielding FIVMAT field letter p letter f mode.

FRAME(A341H) :: structured with INSERTION field letter i
procedure yielding integral field letter r letter e letter p
boolean field letter s letter u letter p letter p
character field letter m letter a letter r letter k
letter e letter r mode.

FROBYT(35A) :: from ; by ; to.
GPATTERN(A341K) :: structured with INSERTION field letter i

row of procedure yielding integral field
letter s letter p letter e letter c mode.

HEAD(73B) :: PLAIN ; PREF ; structured with ; FLEXETY ROWS of ;
procedure with ; union of ; void.

INDICATOR(48A) :: identifier ; mode indication ; operator.
INSERTIONtA341E) :: row of structured with

procedure yielding integral field letter r letter e letter p
union of row of character character mode field
letter s letter a mode.

INTREAL(12C) S I Z E T Y integral ; SIZETY real.
LAB(123K) :: label TAG.
LABS(I23J) :: LAB ; LABS LAB.
LABSETY(123I) :: LABS; EMPTY.
LAYER(123B) :: new DECSETY LABSETY.
LEAP(4413) :: local ; heap ; primal.
LENGTH(65D) :: letter I letter o letter n letter g.
LENGTHETY(65F) :: LENGTH LENGTHETY ; EMPTY.
LETTER(942B) :: letter ABC ; letter aleph ; style TALLY letter ABC.
LONGSETY(12E) :: long LONGSETY ; EMPTY.
MARK(A341M) :: sign ; point ; exponent ; complex ; boolean.
MEEK(61C) :: unchanged from ; dereferenced to ; deprocedured to.
MODE(12A) :: PLAIN ; STOWED ; REF to MODE ; PROCEDURE;

UNITED ; MU definition of MODE ; MU application.
MODINE(44A) :: MODE ; routine.
MOID(12R) :: MODE ; void.
MOIDS(46C) M O I D MO I DS MOID.
MOIDSETY(47C) M O I D S ; EMPTY.
MONADIC(542B) :: priority
MONAD(942H) :: or ; and ; ampersand ; differs from ; is at most

is at least ; over ; percent ; window ; floor ; ceiling
plus i times ; not ; tilde ; down ; up ; plus ; minus
style TALLY monad.

MON0(123G) :: procedure with PARAMETER yielding MOID.
MOOD(1213)

PLAIN ; STOWED ; reference to MODE; PROCEDURE; void.
MOODS{12T} :: MOOD ; MOODS MOOD.

234 v a n Wijngaarden, et al.

MOODSETY(47B) :: MOODS ; EMPTY.
MORF(61F) :: NEST selection ; NEST slice ; NEST routine text

NEST ADIC formula ; NEST call
NEST applied identifier with TAG.

MUII2V) m u T A L L Y .
NEST(123A) :: LAYER ; NEST LAYER.
NOMAD(942I) :: is less than ; is greater than ; divided by ; equals

times ; asterisk.
NO NP RE MB) :: PLAI N; STOWED;

procedure with PARAMETERS yielding MOID ; UNITED ; void.
NONPROC(67A) :: PLAIN ; STOWED ; REF to NONPROC

procedure with PARAMETERS yielding MOID ; UNITED.
NONSTOWED(47A) :: PLAIN ; REF to MODE ; PROCEDURE; UNI TED;

void.
NOTETYR3C) :: NOTION ; EMPTY.
NOTION(13A) :: ALPHA ; NOTION ALPHA.
NUMERAL(810B1 :: fixed point numeral ; variable point numeral

floating point numeral.
PACK{31B) :: STYLE pack.
PARAMETER(12()) :: MODE parameter.
PARAMETERS(12P) :: PARAMETER ; PARAMETERS PARAMETER.
PARAMETY(120) :: with PARAMETERS; EMPTY.
PART(73E) :: FIELD ; PARAMETER.
PARTS(73D) :: PART; PARTS PART.
PATTERN(A341G) :: structured with

integral field letter t letter y letter p letter e
row of FRAME field
letter f letter r letter a letter m letter e letter s mode.

PICTURE(A341F) :: structured with union of PATTERN CPATTERN
FPATTERN GPATTERN void mode field letter p
INSERTION field letter i mode.

PIECE(A34IB) :: structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of COLLECTION field letter c mode.

PLAIN(12B) I N T R E A L bool ean ; character.
PRAGMENT192A) p r a g m a t ; comment.
PRAM(45A) :: DUO ; MONO.
PREF(71A) :: procedure yielding ; REF to.
PREFSETYPIC1 P RE F PREFSETY ; EMPTY.
PRIMARY{5D} :: slice coercee ; call coercee ; cast coercee

denoter coercee ; format text coercee
applied identifier with TAG coercee ; ENCLOSED clause.

PRIO(123F1 i ; ill ; iii i i l l ; ill ill; iii ill i l l ill i l l
PROCEDUREWN) :: procedure PARAMETY yielding MOID.
PROP(48E) :: DEC ; LAB ; FIELD.

ALGOL 68 Revised Repor t 2 3 5

PROPS(48D) : : PROP ; PROPS PROP.
PROPSETY(48C) : : PROPS ; EMPTY.

QUALITY(48F) : : MODE; MOLD TALLY ; DYADIC ; label ; MODE field.
RADIX(82A) : : radix two ; radix four ; radix eight ; radix sixteen.
REF(I2M) : : reference ; t rans ient reference.
REFETY(531A) : : REF to ; EMPTY.
REFLEXETY(531B) : : REF to ; REF to flex ible ; EMPTY.
ROWS(1.21,) : : row ; ROWS row.
ROWSETY(532A) : : ROWS ; EMPTY.

SAFE(73A) : : safe ; MU has MODE SAFE ; y in SAFE; yang SAFE;
remember MOID1 MOID2 SAFE.

SECONDARY(5C)
LEAP generator coercee ; selection coercee ; PRIMARY.

SHORTH(65E) : : let ter s let ter h let ter o let ter r let ter t.
SHORTHETY(65G) S H O R T H SHORTHETY ; EMPTY.
SHORTSETY(12F) : : short SHORTSETY ; EMPTY.
SITHETY(65C) : : LENGTH LENGTHETY S H O R T H SHORTHETY ; EMPTY.
SIZE(810A) : : long ; short.
SIZETY(12D) : : long LONGSETY ; short SHORTSETY ; EMPTY.
SOFT(61D) : : unchanged f rom ; sof t ly deprocedured to.
SOID(31A) : : SORT MOID.
SOME(122B) : : SORT MOID NEST.
SORT(122C) : : s t rong ; fi rm ; meek ; weak ; soft.
STANDARD(942E) : : integral ; real ; boolean ; charac ter ; f ormat ; void

complex ; bits ; bytes ; s t ring ; sema ; fi le ; channel.
STOP(A1B) : : label let ter s let ter t let ter o let ter p.
STOWED(12H) : : s t ructured wit h FIELDS mode

FLEXETY ROWS of MODE.
STRONG(61A) : : FIRM ; widened to ; rowed to ; voided to.
STYLE(133A) : : brief ; bold ; style TALLY.

TAB(942D) : : bold TAG ; SIZETY STANDARD.
TAD(942F) : : bold TAG ; DYAD BECOMESETY ;

DYAD cum NOMAD BECOMESETY.
TAG(942A) : : LETTER ; TAG LETTER ; TAG DIGIT.
TAILETY(73C) M O I D FI E L DS mode ; PARAMETERS y ielding MOID ;

MOODS mode ; EMPTY.
TALLETY(542D) : : TALLY ; EMPTY.
TALLY(12W) i ; TALLY
TAM(942K) : : bold TAG ; MONAD BECOMESETY ;

MONAD cum NOMAD BECOMESETY.
TA0(45B) : : TAD ; TAM.
TAX(4EIG) : : TAG ; TAB ; TAD ; TAM.
TERTIARY(513) A D I C formula coercee n i h i l ; SECONDARY.
THING(13D) : : NOTION ; (NOTETY1) NOTETY2

THING (NOTETY1) NOTETY2.

236 v a n Wijngaarden, et al.

TYPE(A341P) : : integral ; real ; boolean ; complex ; s t ring ; bit s
integral choice ; boolean choice ; f ormat ; general.

UNIT(5A) : : assignation coercee ; ident ity relat ion coercee
rout ine text coercee ; jump ; sk ip ; TERTIARY.

UNITED(12S) : : union of MOODS mode.
UNSUPPRESSETYlA3410) uns uppres s ib le ; EMPTY.
VICTAL(46A) V I R A C T ; f ormal.
VIRACT(46B) : : v irt ual ; actual.
WHETHER(13E) : : where ; unless.

