RA

stichting
mathematisch
centrum | MC
REKENAFDEL ING MR 142/72 DECEMBER
£y
lﬁi;@%%

J.W. DE BAKKER and L.G.L.Th. MEERTENS

SIMPLE RECURSIVE PROGRAM SCHEMES AND
INDUCTIVE ASSERTIONS

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEL MATHEMATIZ®H CEMTRUM
AMSTERDAM

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pwre mathematics and Aits
applications. I is sponsoned by the Netherlands Govermment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free University at Amsterndam, and by industries.

ABSTRACT

By an unpublished result of Scott, the inductive characterization of the
while statement (due to Hoare) is equivalent to its minimal fixed point
characterization. In order to obtain a generalization of this result for
recursive procedures, a refinement of Floyd's technique of inductive asser-
tions is proposed. The new technique features the use of assertions depend-
ing upon the history of the computation. Technically, this is achieved by
indexing the assertions with expressions representing the stack of currently
active procedures.

The investigation is set in the framework of program schematology. Proofs
about simple - i.e., one-variable only - schemes are given by means of
Scott's induction rule which is stated and proved somewhat more abstractly
and rigorously than before. The main tool is the regularization theorem
stating, roughly, that for each "context free" program scheme an equivalent
(infinite) "regular" scheme can be constructed. The inductive assertion

theorem then provides the above mentioned generalization.

FS

CONTENTS

1. Introduction
2. Origin of the problem
3. Simple recursive program schemes
3.1. Language and interpretation
3.2. The union theorem
3.3. The induction theorem
. Inductive assertions
L.1. Attempts that failed
4.2. The regularization theorem
L.3. The inductive assertion theorem
Appendix: Derivatives and traces

References

= O o -

23
2k
25
33
38
Lo

1. INTRODUCTION

Our paper reports an investigation of the foundations of simple recursive
program schemes and their associated inductive assertions.

Simple recursive program schemes were first introduéed in Scott and

De Bakker [16]. In that paper, the notion of minimal fimed point structure
of recursive procedures - used synonymously, there and here, for simple
recursive program schemes- was developed, and a powerful rule of proof,
Scott's fiwed point induction rule, was derived from it. The variety and
multitude of applications of this rule have shown it to be a worthy successor
to McCarthy's classical rule of recursion induction [12].

Proofs based on the minimal fixed point characterization were proposed in-
dependently by Bekic [4], Morris [13] and Park [15]. In subsequent work

De. Bakker [1,2], De Bakker and De Roever [3], Hitchcock and‘Park [6], Manna
and Cadiou [8], Manna, Ness and Vuillemin [9], Manna and Vuillemin [11],
Milner [14] and others have been concerned with the development of formal
systems in which Scott's rule can be embedded, with the completeness of such
systems, with application to correctness and termination proofs about pro~
grams, with the relationship between the fixed point characterization and
various rules of computation, with the implementation of the rule in an in-
teractive program proving system, and with other applications.

OQur study of simple recursive program schemes in relation to inductive asser-
tions arose out of a problem inspired by work of Hoare [7]. Incidentally,

so did the original paper by Scott and De Bakker. *) The problem is ex-
plained in section 2. Roughly, we became interested in the relationship
between the inductive characterization of the while statement and its mini-
mal fixed point characterization. The equivalence of these two character-
izations was shown by Scott (unpublished). The question then arose how to
generalize this result for recursive procedures. The answer to this ques-

tion is the main achievement of the present paper, beside a number of tech-

The reader who takes this reminder as a gentle admonition to the prac-
tical program correctness provers, the advocates of structured program-
ming, their company and followers, that there is more to Hoare's axiom
system than meets the eye, is right.

niques used in the proof which may have some independent interest. In par-
ticular, we develop a strategy for proving properties of programs by means
of inductive assertions depending upon the history of the computation.

Tn the course of our investigations we were led to a new development of part
of the material contained in the papers Scott and De Bakker [16], and

De Bakker and De Roever [31. The novelty consists mainly in a more abstract
and general version of the previous expositions. In particular, we state
our results throughout for infinite systems of declarations (this will be
needed in section 4), our statement of the union theorem, yielding the con-
struction of the minimal fixed point by means of successive approximations,
has a more general form than before, and the induction theorem, justifying
Seott's induction rule, is proved without an explicit appeal to continuity.
The main new results follow in section L. There we prove the equivalence
between the inductive assertion - and the minimal fixed point characteriza~
tions of sytems of recursive procedures. The central tool is a certain in-
dexing technique used first in the proof of the so-called regularization
theorem which states that for each recursive program scheme an equivalent
(but always infinite) scheme can be constructed which is regular in struc-
ture (in the sense that the grammar which is associated with the scheme in
a rather natural way is regular). Half of the inductive assertion theorem
may be viewed as a justification of a generalization.of Floyd's technique
[5] of proving global properties of a program from a collection of local
properties. This generalization is twofold. Firstly, as minor point, we
have that the technique applies to systems of recursive procedures and not
to flow charts (ef. the - different - generalization of Manna and Pnueli
[10]). Secondly, and more importantly, we construct a system of inductive
assertions consisting, in a sense, of the minimal set of assumptions about
local properties needed to prove the global assertions. The minimality is
obtained by introducing assertions which depend upon the stage of the com-
putation: Let A be an elementary component of the program. Usually one re-
quires that, for some pre-(post)condition p(q), if A is entered with input
x for which p(x) is true, g(y) is true for output y from A. In our system,
however, we use an indered set P sG> o reflecting the stack of currently

active procedures, and require that, for each relevant O, pc, qo and A

&

satisfy the relationship described for p, g and A above. We first prove for
this highly structured collection of inductive assertions that Floyd's
theorem holds. But, moreover, we can now also prove the converse, i.e.,
that each system of relations satisfying the collection necessarily coin-
cides with the recursive procedures as declared by the scheme. Thus we ob-
tain the generalization of the result for while statements we set out to
prove.

As remarked above, the proofs in section 4 rely heavily on a certain strat-
egy Oof indexing procedures in various auxiliary systems in such a way that
the history of the computation leaves 1ts- trace in the index; also, we
introduce segments of initial computation, preceding an inner call of a
procedure at a given level of recursion depth. The relationship between
this notion and the notion of derivative introduced by Hitchcock and Park

[6] is settled (without proof) in the Appendix.

For -the reader who is not happy with our restriction to simple schemes only,
wé announce work in progress by W.P. de Roever in which, among other re-—
sults,fsection’3 of the present paper is generalized to polyadic relations.
Our paper is rather abstract and mathematical in nature. Another unhappy
reader, who wants to see what can be done with these techniques in practical
programming situations, is referred to the literature mentioned above, e.g.
De Bakker [1], De Bakker and De Roever [3], Manna and Vuillemin [11], or
Milner [14].

We acknowledge many helpful discussions with P. van Emde Boas. In partice-

ular, we are indebted to him for lemma 3.5.

2. ORIGIN OF THE PROBLEM ")

Let P be a program. The computation prescribed by P maps input x to output
y, with x, y elements of some domain V of state vectors, information struc-
tures, internal objects, or whatever one chooses to call them. Articulating
the structure of the objects in V is not of our concern here at all; that of
P is analysed only in a highly global manner, abstracting from most of the
properties of its constituent components. In fact, we study only the essen-
tial flow of control structure of P, and investigate it from a mathematical
as opposed to an operational or implemehtation—oriented point of view.

The mapping P is a partially defined (programs may be nonterminating)
function from V to V, or, rather, taking non-deterministic programs into
account, a binary relation cver V. We write (x,y) e P, or, more often,

xPy. Thus, xPy1, XPy2 and y& #yé may coexist.

Many correctness assertions on programs can be formulated as: If x satis-
fies property p, than y satisfies property g, i.e., vx,ylp(x) A xPy » a(y)]l.
Concepts of the programming language used for the writing of P can be
characterized semantically by éorrecthess assertions. As an example, we
consider the while statement while p do A, with p & boolean expression, A

a program. As short-hand we use p*A. Hoare [T] has proposed what amounts

to the following characterizing properties:

(2.1) Vq[Vx,y[u(x) A plx) A xpy > uly)] »

vx,ylu(x) A x p*A y =+ uly)1]
(2.2) vx,y[x p*A v + ply)]

In words, (2.1) expresses an induction property: If performing A once (for
input with p true) does not change property u, then performing it zero or

more times (by p*A) does not change it either. Observe that (2.1) is a

1) The considerations of this section are mostly informal in nature. In
a more precise form they return in the sequel of the paper.

formula in second order predicate logic. (2.2) is clearly valid, since the
very termination of the while statement implies that its controlling

expression is no longer satisfied. -

Formulae such as (2.1), (2.2) can be written more concisely by using a
number of abbreviations together establishing a transliteration from predi-
cate - to relational calculus. The predicate P(x,y) is true iff (x,y) is an
element of the relation P. Thus, for ¥x,y [xP1y > ngy] we write P, c PQ'
The meaning of P1'= Pg, P1 n P2 and P1 U‘P2 should be clear. xP1;

short for 3z [xP1z‘A’zP2y]; i.e., ";" denotes the operation of relational

P2y is

composition. For the identity (empty) relation we write E(Q), i.e., xEy iff
x=y, and xQy for no x,ye V. Moreover, with each unary predicate p (possibly
partial) wé associate two subsets of E,viz.p and P, such that p u pcE,
PN DcQ, with the following intended correspondence: p(x) holds iff
(x,%) € p, 7 p(x) holds iff (x,x) € p, and p(x) is undefined iff (x,x) e

€ E\ (pup). Using these abbreviations we can write for (2.1), (2.2):
(2.3) Vu [If pjushA c Aju then u;pfA < pxhjul

(2.4) pxA © p*A;Dp.

These two formulae are not yet the whole story about the while statement.

Clearly, there is at least one other essential fact to be noted, expressed

by
(2.5) p*A = D3A3p*xA U D

or, in perhaps more familiar terms, p*A is equivalent with (in fact, may be
said to be defined recursively by) if p then begin A;p*A end else E, where
E is nothing but the "dummy statement". However, (2.5) is not the whole
truth either. This will be brought out by consideration of the special case
p*E, where we have taken for the as yet unspecified program A, the dummy
statement E. We know that, if p is true of the input, then p*E loops

infinitely (the relation between input and output being empty in this case),

£

i.e., p*E = if p then @ else E = p;Q u p = p, However, this fact is not
contained in the corresponding instance of (2.5). Specifically, (2.5) only
expresses that p*A is a solution of the functional (or, rather, relational)
equation X = p3;A;X U p, whereas our example emphasizes that we need its

minimal solution: We have to require

(2.6) vs[If p3A3;S u p = 8, then p*A c S] R

One is now confronted with the question: What is the relationship between
(2.3), (2.4) on the one hand, and (2.6) on the other hand. The answer is
provided by the following theorem:

THEOREM 2.1 (Scott). Let R satisfy: R = p;A3;R u p. Then the two assertions
(2.7a,b) are equivalent with (2.8):

(2.7a) vulIf pjusA < Aju then u3R ¢ Rjul
(2.7b) R € R;D)
(2.8) vS[If p3A3;S u p =8, then R c SI.

In words, for fixed points R of the while statement characteristic equation,
the inductive characterization (2.7) and the minimality characterization (2.8)
are equivalent, i.e., imposing either (2.7) or (2.8) upon such R implies

that R = p*A.

PROOF

1. (2.7) = (2.8).
. . arf.
First we show the following: Let A* £E"EuvAUAAU ..., and let X Dbe an
arbitrary relation over V satisfying: vul If u3A < Aju, then u3X < Xsul.

eV, Define uo(s) > Vt[sA™t > x A%t],

Then X < A*. Proof: Choose a fixed x o

0

1) A (generalized) theorem to this effect is proved in section 3.2

ke

It is easily verified, using A;A* c A#, that uO;A(g A;ub, Hence by
assumption, u ;X < X;u_, or, Vx,y[uo(x) A XXy > uo(y)], Assume x Xy.

0 0
Clearly,”uo(xo) is true. Thus, u (y), i.e., Vt[yA*t » x

0

0 A*t7 holds.

Taking t = y we obtain, since B ¢ A*,.the result that x

0
. * . .o . .o
XO was arbitrary, the proof of X ¢ A" 1is completed.}Ug;ng’thls auxlliary
result the proof of (2.7) =2 (2.8) is easily established as follows:
From (2.T7a), VulIf u;(p;A) < (p3A);u, then u3R < Rjul. Therefore,

* - * -) * =
R c (p3;A) , whence, R;p ¢ (p3A) 3p, from which, by (2.7b), R < (p3A) ;p

Xy - XOA*y. Since

is obtained. Now suppose that S = p3A;S u p. In order to show that then
R c 8, it is sufficient to show that each of E;p, p;Agﬁ; P3AD3AD, e,
(p;A)i;ﬁ,... is ingluded in 8. This follows by: S 2 p3A3S.2 ... D

5 (p3)738 = (p38) (34350 D) 2 (p3A)™;5.

2. (2.8) = (2.7).
- By the Knaster-Tarski theorem [18], as mentioned e.g. in de Bakker [1]
or Park [15], we have that (2.8) is equivalent with

(2.9) V¥S[If p3A;S u p ¢ S, then R ¢ S1.
Let R satisfy (2.8) and, hence, (2.9). Let u be such that psuzh < Ajzu.
We show that then u;R < Rju, or, equivalently, that
" af, . ' " . .

> [u(x) » ul(y)]. By (2.9), it will
be sufficient to show p3;A3;S U p c S. Clearly; P c S. Also, in order to

vx,y[xRy > [u(x) + u(y)1]. Let xSy <
show p3;A3;S < S, we must prove Vx,y,zlp(x) A xAy A [u(y) > u(z)] »

> [u(x) » u(z)l]. Assume p(x), xAy, uly) > u(z), and u(x). Since

pP;usA c Aju, we have u(y). Thus, u(z) follows from the assumption, as
desired. This completes the proof of (2.8)?==> (2;7a). That of (2.8) =
(2.70) is left to the reader.

We can now state the'origihlof the investigation leading to the present
paper: We wanted to solve the problem: Generalize theorem 2.1 for recursive

procedures.

3. SIMPLE RECURSIVE PROGRAM SCHEMES

A simple recursive program scheme is an abstract form of a program contai-
ning a system of declarations of recursive procedures. In an ALGOL-like

language the structure of such a prbgram might be

begin
procedure P1;<statement 1>;
procedure P2,<statement 2>
procedure Pn;<statement n>;
<statement>
end
where <statement 1>, ..., <statement n>, and <statement> each may contain

occurrences (i.e; calls") of P1,P2,...,P .

In section 3.1 we first give a precise description of the language in Whlch
the abstract statements, i.e., statement schemes are written. Informally,
the language allows construction from certain elementary statements - either
"otomic" actions or procedure calls - by means of composition, denoted by
the go-on operator ";", or by means of the union operator "u". For our use
of "u" compare the preVious section, whefe it was indicated how the condi-
tional statement if p then S, else 82 is represented by p;S1 U 5;82. .
For the moment, we do not yet bring these p's into the formal language.
They can wait till section L.

After the introduction of the formal language, we define how a program
scheme written in it can be interpreted as prescribing a computation.
Starting with an initial interpretation of the atomic actions and the
constants (Q and E) as mappings (relations) over some domain, we construct
from this initial interpretation the interpretation of the scheme as a
whole, using the notion of computation sequence, the definition of which
embodies, among others, the "copy rule" for procedures.

Finally, after having prescribed the form of the assertions we shall be

interested to make about program schemes; we define the notion of validity
of assertions. The fundamental thecrems about program schemes are then

derived in sections 3.2 and 3.3.

3.1 Language and interpretation

The basic components of program schemes are the two classes of symbols

introduced in

DEFINITION 3.1 (Basic symbols)

a. The class of relation symbols R = A u X u C, where A= {A1, 2,...}
{X1, 2,...}, and C = {Q,F}. Arbitrary elements of R (A,X) are deno-
ted by R,R ., (A,A_,A X,X.,X }. The elements of C are

12 2,.. 1R 1oKosen
denoted by £ and E respectively.

b. The class of procedure symbols P= {P PO,...} with arbitrary elements
denoted by P P1, PORRE :)

Remark: The distinctioﬁ between A and-X is introduced only for the technical

reason of making. available a convenient substitution mechanism; as to their

interpretation, A and X are treated in the same way.

From the classes R and P we construct the classes of statement schemes SS,

of declaration schemes DS, and of program schemes PS.

DEFINITION 3.2 (Schemes)

a. The class of statement schemes SS (arbitrary elements'8,81,...,8',...):
1. Ru P cSS

2. If S, s ¢ SS, then (31;32)'and (s,U8,) e ss,
b. The class of declaration schemes DS (arbitrary elements D, D1’ cee)
A declaration scheme is a set of pairs‘{Pp,Sp}peﬂ, with m a (not

necessarily finite) index set, and, for each pem, PP € P, Sp e SS.

c. The class of program schemes PS (arbitrary elements T,T ,...,T',...):

1
A program scheme is a pair (D,S) with D ¢ DS, S € SS.

10

A program scheme T = (D,S) = ({PP,SP}Pé“,S)'will usually be displayed as

e.g., for m = {1,2} we might have

p <==,A 3P 3A 3P 34, U A1;P2 uk

1 17227273
P =4 P1, 2 h u Q;P1 U A5‘
P1’A2 P2

where we have dropped the parentheses of definition 3.2, clause ag. These
may be restored by using "associativity" and the convention that ";" has

. . o, . s . :
priority over 'U : S1,82 U S3 is restored as ((81,82)US3).
Often, for a program scheme T = (D,8), we shall identify T and S when it is
clear from the context which D is meant. S,S1,...,T,T1,... will then each

range both over SS and PS.

The language allows us to state certain facts about program schemes in the

form of assertions:

DEFINITION 3.3 (Assertions)

a. An atomic formula is of the form T_l c T2, with T1,T2 e PS.

b. A formula is a set of atomic formulae: {T cT. } , with p a, not
(1,r 2,r rep

necessarily finite, index set.

c. An assertion is of the form ¢ | ¥, with ¢,p formulae.

11

(43X UE) 34, < Py

2 {X1,r S'X2,r Trep F- {A1;X1,r S-A1;X2,i'}rep

Y

S

n
M
— T

(No confusion should be caused by the - unavoidable - mixture of object-
language and ﬁétalahguage in the second assertion).

Remark: T, =T, will be used as abbreyation for T, ¢ T,, T, 1
The following notation will be used for substitution: For S,S1 € SS, and

cT

X e X, S1ES/X] denotes the result of substituting S for all occurrences of
X in 8, Also? for ™ any index set, S, spe 8S (pem), and Xp e X (pem),
S[Sp/Xp]péﬂ'denotes the rgsult of simultaneously substituting, for each
PeT, S? for all occurrences of Xp in S. The notation is extended in an
obvious way to atomic formulae, formulae and assertions. E.g.,

(T1§iT2) [s/X] is short for T1[S/X] E_TEES/X], and (@P—w)[S/X] for

o[s/x] } wIs/X3. We emphasize that substitution in a program scheme

T # (D,S)k takes place‘only in S and not in D. Without explicit mentioning,
use will be made of the chain rule for substitutions: (S[S1/X]) [SZ/XJ =
sCs,[s,/x1/x1]. ‘

We now relate the program schemes as formal objects to their intended meaning.
A program scheme T ¢ PS prescribes a class of computations. By choosing first-
ly a domain over which the computation is to take place, and secondly the
concrete realizations of the relation symbols in R over this domain, an
interpretation - depending upon these choices - is assigned to T. The pre-

cise definitions follow in definitions 3.4 to 3.6.

DEFINITION 3.4 (Initial interpretation)

An initial interpretaticn < is given bty its domain V (an arbitrary non-
empty set) and a mapping (also denoted by co) from the elements of R to

binary relations over V satisfying the condition that cO(Q) is the empty

relation over V and cO(E) the identity relation.

12

The extension of an initial interpretation <, to an (extended) inter-

pretation ¢ needs the notion of a computation sequence.

DEFINITION 3.5 (Computation sequence)

A computation sequence with respect to the declaration scheme

D={P ,S } and the initial interpretation c
P’ popem 0

sequence ‘

with domain V is a finite

(3.1) X, S1 X, 62 vee X Sn X
withn > 1, x. € V (1<iz<n+1), Si e SS (1<i<n), satisfying the condition:
For each i, 1 < i < n, one of the following six cases applies:

al. 8 R. Then i = n, and (Xi’xi+1) € cO(R).

1

2. 8, = S' u 8". Then 8. 1 = 8' or 8:4q = s", and X:q = %o
. 8 = Pp. Then 8., sp, where (PP,SP) e D, and Ko =%
b1. Si = R;8'. Then S. = g' and (xi,x.+1) € cO(R).
2. s, = (s'us");s. Then 8:41 = S';S or S. i1 T 8"35, and x; . = X..
. Si = PP;S. Then Si+1 = SP,S, where (Pp Sp) € D, and X4 =%

Example: Let D be

P1 == A 3P ;A2 U A3;P
P o Ah’ u E.

2

A possible computation sequence with respect to D and a given o is

(S1=A5;P1):

X1ATP1X P X3A§PﬁA UA3JZXuAﬁPﬁA2x5PﬁA2

X6 (A 3P A2UA3 Fé) A2 X7 A3 P2,A2 Xg P2;A2

X9 (Ah’PQUE) A2 x10 h’P A X4 P2;A2 (AM;P2UE) A

x5 B3hy Xq) 4, %45

with (x1,x2) € CO(AS)’ X, = Xy Xy T X, <Xh’x5) € CO(A1)’ ete. .
Remarks:

1. The definition of computation sequence is an elaboration of a proposal

by Scott L1T73.

13

2. A computation sequence such as (3.1) may be viewed as follows: Each Si’
1<i<n, is the program which remains to be executed, at stage i, with
current "state" x;. The execution is completed when the last statement
- which is necessarily an element of R- is performed (clause al). Clauses
a2 and b2 describe a choice between two potential continuations. Clauses
a3 and b3 give the copy rule for procedures: replace the procedure iden-
tifier by its body, and continue with the thus modified program. Clauses

b1 to b3 contain the usual meaning of ";" prescribing continuation.

We are now sufficiently prepared to define the interpretation of a program

scheme.

DEFINITION 3.6 (Interpretation)

Let T = (D,S) be a program scheme and let c. be an initial interpretation.

0]
Then the interpretation ¢ (which is said to extend cO) is defined by:

For each x,y € V, (x,y) € c¢(T) iff there exists a computation sequence

Xy By %y 8y eee X 8 X

Xn+1 =y, and S1 = S.

with respect to D and ¢ such that X, T X,

0

Usually, we are interested in assertions about program schemes which hold

for all interpretations, i.e., which are valid:

DEFINITION 3.7 (Validity)
a. An atomic formula T,27T, satisfies an interpretation ¢, iff

c(T1)g;c(T2) holds. If T, ¢ T satisfies all ¢, it is called valid.

2
b. A formula & satisfies c (is valid) iff all its elements satisfy c (are

valid).

¢. An assertion @ }-w such that, for gll c¢, if ¢ satisfies ¢ then ¢ satis-

fies ¢, is called wvalid.

Remarks:
1. Note the distinction between definition 3.7c¢ and the alternative:

o.F ¢ is called valid iff validity of ¢ implies validity of ¢. The

14

alternative is not adopted.

2. From the definitions it follows that if ¢ |y is a valid assertionm,
for arbitrary S, (¢ | v) [8/X]1 is also valid.

Examples of valid assertions

a. With respect to D = {P1 <= P}

1

P1 =0

b. With respect to D

{P1 ¢A1;P1 qu
P2 <=4, P, u E}
1772

9
|

= P2;A2, and
€ Pyid, Fa,x, va,cP

>
n

2345

The main result of section 3 is a rule for proving validity of assertions
(Scott's induction rule). An important tool in the proof of this rule is

the union theorem, dealt with in the next subsection.

3.2 The union theorem » -

We begin with a simple lemma stating some direct consequences of the
definition of interpretation.

LEMMA 3.1 ")

a. If T € R, then cO(T) = ¢(T)

b. e(T,;T,) = c(T1);c(T2)

c. c(T1uT2) = c(T1) U C(T2)

da. c(Pp) = c(Sp), for eac? P e m.

PROOF. We prove only part d.

1. ©. Assume (x,y) € c(Pp). Then there is a computation sequence
x1 S1 x2 32 cos Xn Sn Xn+1’ with x1 0+
nition 3.4, then 82 = Sp’ and x,. = x_. Therefore, x, 82 eos X

2 1
1) € c(Sp) = c(S%).

=X, X =y, and 81 = Pp' By defi-

is also a computation sequence; hence, (x,y) = (X2’Xn+

1)The lemmas of this and the following subsections always refer to suitably

defined statement, declaration, or program schemes. In particular, we al-

ways ‘assume given the declaration scheme D = {P_,5 } such that none of the
: P pPpeT

Sp contains any occurrence of an X € X.

15

2. o, Assume (x,y) € C(Sp). Thus, there is a computation sequence

i = = = . T
X, 81 x2 82 cee X 3 Xn+], with x1 X, Xn+1 ¥y, and S1 Sp hen the
1 t 1 1 Ve 1 1 1 o = + t = P !=S.
sequence X, S1 x2 82 Xm Sm Xm+1? with m n+1, S1 D’ S1 512
1= 2,3,...,m, X% = XT"Xi =X, 01T 2,3,...,m+1, is also a computa-

tion sequence, whence (x,y) € c(Pp) follows.

Remarks.

1. The result of lemma 3.1 d, is not as obvious as it may seem. In fact, it
does not necessarily hold in certain treatments of the non-monadic case,

as has been pointed out by Manna and Cadiou [81].

2. From the definitions and lemma 3.1, the validity of standard properties

of program schemes, such as Q@ < T, (81;82);83 = 81;(52383), E;T =T, if
S1 5'82 then S;S1
properties will be used in the sequel without explicit mentioning. We do

= 8;52 ete., easily follows. These and similar
mention separately the monotonicity property in its two most used forms:

LEMMA 3.2 (Monotonicity) ' N

8, <8, F8ls,/x] < sl8,/X]

1 2
8, , S5, 7 Fosts, /x.1 c sls, /X1

a.
b. .
2,r rep .Y Tr'Trep — 2,r" "r'rep

-

o L

but we omit its proof, which proceeds bty an inductive argument on the
complexity of the statement schemes concerned.
We now come to the more interesting part. First we introduce some

auxiliary concepts and notaticn.

DEFINITION 3.8.

a. A statement scheme S is called closed if it contains no occurrences of

any X € X.

b. Let S be a statement scheme. g denotes the result of replacing, in S,

all occurrences of a procedure symbol Pp by Xp for each p € .

16

LEMMA 3.3

a. For closed T, TL[P /X] = T
e Tp' Tpper
b. For arbitrary T:
{s_cpP} Folp /X 1 [S /X] c T[s_/X_1
D™ P pem P P PeET D P PET — P D penm

PROOF. Follows from the definitions, properties of substitution and

monotonicity.

Next we need, for each T, two sequences of substitution results T

T(k), k=0,1,2,...

DEFINITION 3.9

8. T[O] =T
P R s 1k =o0,1,2,...
‘ p Tpper
b. o) =g ‘
p{E*1) _ 3 [s(k)/x 1 L, k=0,1,2,...
p p pGT’f =

We immediately have

LEMMA 3.k
a. BEFT) _g(B) g o,
T 1) p/ﬁ
K1 X
b. T =T /R] L k= 0,1,2,

c. T[k+1] - (T[k])[1]-

PROOF. a and c are left to the reader.

b. We use induction on k.)
. (1) _ ~. (0 ~
k=0, T = T[g X] = T[Q/X]
(i) [o) / P pem / D peT

TN

O'\
ol /%]
P

pev"

(k]

and

17

(ii) Assume the result for k-1. We have

%, kT
= - Q =
T [sz/xp]par T[Sp /Xp]pETT C /Xp]p€1r
~ o [ke1] _
T Esp /Xp]pETr [Q/Xp]p€Tr
T [gfi:7§[9/x] /%1 = (ind. hypothesis)
P P pPET P peT
T [sék>/x] = plET)

P pem

The next two definitions are preparatory‘to the three main lemmas of this
section, lemmas 3.5 to 3.7. The definitions are of a technical nature and

are used only in the proofs of these lemmas.

DEFINITION 3.9 (Executable occurrence)
A procedure symbol Pp is said to occur executable in a computation sequence

x, S, x 82 coe X

189 % Sn X 41 1f, for some 1, 1 <1 < n, Si = Pp or Si = PP;S.

n
DEFINITION 3.10 (to Identify) -

Let . S1 X5 82 e X Sn X1 be a computation sequence. We say that a
procedure symbol Pp occurring in some S contained in Si’ 1gisn, directly
identifies the corresponding occurrence of Pp in S contained in I in

each of the following cases

= 4 = = gt ‘=
a. Si S u S and Si+1 S, or Si 8" v S, and Si+1 S.
= R3S . = 3,
b. Si R;S and Sl+1 S
c. 8. =(8'u8");S and S.,, = 8';8 or S8";S, or S. = (Sus');s"
1 i+1 i
- Lalt = 1, .an - .an
and 8. , = §;8", or 8, (s'us) ;8" and 8. ,q = 838",

d. Si = Pq;S and Si+1 = Sq;S, for some qQ € T.

The relationship to Zdentify is defined as the reflexive and transitive

closure of the relationship to Zdentify directly.

18

LEMMA 3.5 (Van Emde Boas)
Let

(3.2) X, S1 X, 82 ver X Sn X i

be a computation sequence with 8 > 0 executable occurrences of a procedure
symbol. Moreover, we assume that 5, (and, therefore, each Si’ i>2) is a
closed statement scheme. Then there exists a computation sequence
L[]
1 Q! 1 ot t at Lt ! = ! = t =
X3 81 XE-SQ e Xm Sm Xm+1’ such that x1 x1, Xm+1 Xn+1, S1 S1 s
moreover, such that for the number &' of executable occurrences of a pro-

and.,
cedure symbol_in this sequence we have §' < §-1.

PROOF. We introduce the following transformation on the computation

sequence (3.2):
8tep 1. Comnsider, for each p € w, all occurrences of the procedure symbol

Pp,in (3.2) which are identified by an occurrence of Pp in 81.

Step 2. Mark all those considered occurrences which are executable.

Step 3. Replace all other considered occurrences of Pp by Sp’ for each

pE T.

- » * »
Step 4. Replace, for each pew, all comblnatlogs ee ¥ PE;S Xj+TSp’S Xippeee

* -
or «.. xj P «ss s Where Pp 1s an occurrence of Pp,

. S .
p “j+1 Tp T2
marked as a result of Step 2, by ... ijp;S X,

J+2 LICICAEY or by

o Xj Sp xj+2 ..., respectively.

It can be verified that the result of applying this transformation to (3.2)
is again a computation sequence which has at least one executable occur-
rence of some Pp less than (3.2). In fact, at least the left-most execut
able occurrence of this Pp has been deleted. Moreover, it is clear that for
. x £1]
1 =g. =
the resulting sequence we have, by step 3 or 4, that S1 Sltsp/xp]pew 81 .
LEMMA 3.6
et x, S, ¥, S ... x 8 X
n n

171 2 72 n+1
1 i_i < n, and without any executable occurrence of a procedure symbol.

be a computation sequence with closed Si’

Then, for arbitrary Rp € B, p € 7, we have that

19

3 X s X e
X]][Rp/ p]péﬁ X2 SQERp/ p]pen X, Sn[Rp/ p]pew n+1

is also a computation sequence.

PROOF. Since none of the P_ is executable, each of its occurrences may be

replaced by an arbitrary Rp without changing the computation.

LEMMA 3.7 |
Let T be a closed statement scheme, and let (x,y) € c(T) Then there exists
k > 0 such that (x,y) € c(T())

PROOF. By assumption, there is a computation sequence X, 81 x, 82 .

cee X Sn Xn+1 ;=% Xn+1 =y, and S1 = T, Since S1 T is closed,

each Si is closed. Repeatedly applying lemmas 3.5 and 3.4c yields, for some
. [k] .
! 1 3] 1 1
k > 0, a computation sequence X4 81 X cee X Sm X 1 ? such that x% =Xy

x&+1 = y, and such that this computation sequence does not contain any exe-

cutable occurrence of a procedure symbol. Then, by lemma 3.6, we have that

, with x

Vg

[k] ’ ar
1 1 e I 'Q]
%1 81 [Q/ijpeﬂ *5 *m Sm[/Xp]pew Xm+1

is also a computation sequence. By lemma 3.4, part b, S

Ek]m/x 1= giErt)
L)),

ET 1
Thus, we have shown that (x,y) e (S

LEMMA 3.7 provides the main result for thé proof of

THEOREM 3.1 (Union theorem)

Let T be a closed statement scheme. Then, for all c,

PROOF.

a. €. This follows directly from lemma 3.7T.

b. 2. First we show that, for each p € m, and each k, P;k) c Pp. We use

induction on k.

20

(i) k = 0. Clear. .
(k+1)

(ii) Assume the result for k. Then:,PP = (lemma 3.%)
(k) _ (k-1) plk)
S s S X] =S [P =
P [/ D pem P p /X P péﬂ -
d. hypoth s [P X] =8 = (lemma 3.1) P_.
(in ypothesis) / o lpen o (1e 3.1) o

Next, we show that T(k) : (k) = T[S(k)/X] - = ﬁ[P;k+1)/XP] é

o
< T[PP/XPJ (lemma 3.3) T Thus, Lé T(k) c T follows, whence the proof
of part b.

Remark: In thé sequq1 we shall abbreviate the statement "For all c,

C(T) = Lj c(T(k))" to: T = U T(k).
k=0 k=0
As & corollary to theorem 3.1, we immediately obtain the minimal fixed

point property of procedures:

COROLLARY 3.1

1 = t , P 1
(s [Sp/Xp]me < Sp}pe'rr = {.P c P}p€TT

PROOF. We use P = U P(k)
p k=0 P

(i) P;O) < Sé is clear.

and induction on k.

(ii) Assume the result for k. Then, for each p e m, P(k+1) = S;k) =
s (k+1) [}]
SPESp /Xp]peﬂ c (ind. hypothesis) 3 [SP/ oiper S Sp-

Finally, we are now in a position to prove the induction theorem, the

importance of which justifies devoting a separate section to it:

3.2. The induction theorem

THEOREM 3.2 (Scott's induction theorem)

Let & be a closed formula. Then:

21

If

o F w[sz/xp]pETr

and

o,¥ w[sp/xp:lpEﬂ

are valid, then

X P
o F v p/Xp]pETT

is wvalid.

PROOF. It is sufficient to show the following:
If (*) (T15T2)[Q/Xp]p€ﬂ, and (**) T, < T, + (T2 [s /X] o 2re valid,

then (T,cT.)[P./X 1. 1is valid. Observe that the T T may contaln occur-
1—2 P T ppem -

1’
rences of the P ; in other words, we do not necessarily have that

P .]
Ti[Pp Xp]p€ﬂ = Ti’ 1= 1,2,... . The proof proceeds in four steps:
o. We show that T [8'5)/x 7 T [s(k)/x] K = 0,1,2,..., by induc-
- ; 1 p ppé,n,._ pE,n. 2 '9%=> k]

" 4ion on k. The case k = 0 follows from (*). Next, assume as induction

) (k) (k) '
hypothesis that T [SP /X] per [= T2[Sp /Xp]pETT hPlds. By (**) we have
that {T c T, F (T,<T,)[S /X] }[S(k)/X'] . From this,
P P pem

k . .
(T1ST)[s ()/X] }"(‘1'15'.['2)[SI()k'”)/Xp]pmT follows. Combination with

. . . k+1
the 1nduct10n hypothe31s yields that (T €T,)[S()/X] holds.

b, For k = 0,1,2,..., and any T, we have (T[p /X 1])(k+1) c (k)/X]
P bew b b

pem’

. ktl _ 0 T ralk) (k)
since (TCP /X 1) =7lp /X 1 [s8 77/x] < T[S /X1, by
; P P pem P ppem P P pem P P€ﬂ
lemma 3.k.
c. By b \J (TLP_/X_1)(k+1) c (D 'T[S(k)/X] c T[P /X_1] Also
’ p' “ppem =xzp P '"ppem = " p "pperm ’
by theorem 3.1, which applies since TP /Xp]psn is closed, we have that

éug (T[Pp/Xp]pen)(k+1) = T[P /Xp]peﬂ' Thus, we obtain that

k)
W b /xp]peﬂ = T[PP/XPJPEF

&

22

d. Combination of parts a and ¢ cdmpletES'thé'proof of the induction

theorem.,

Example: Let w = {1,2} and D=${P1 = A1;P1 U A2’
P2 <“——=.4,];P2 u E}.
We show that P1 = PQ;A2 (this standard example was used first in [16]).

1. <. Take for ® the empty list and for ¥: X1 < P2;A2. Then, for this ¥,

w[Q/X?]pé{1 2} is the assertion 9 ¢ P2;A2, which is clearly wvalid. Next,
2 ~

have as instance of [s /x 1 s
e L NE S

XT_C_ Py, F A3 U A, € PyiA,.

Since, by lemma 3.1.4d, P2 = A1;Eé u E, we must prove

X, € PyiA, F AsX, U Ay s (A3PLUE)A, = AP

1 p = APy, U A

23 2
which is valid by monotonicity. We conclude that wEPp/Xp]pé{1,2}’ i.€4,

21.5 P2;A2, holds. R

2. 2. Take ¢ again empty agd for ¥: X2;A2 € P,. Validity of w[Q/Xp]pé{T,Q}
 is clear. Also, ¥ fﬁ w[Sp/Xp]pe{152} takes the form

X534, € P, + (A1;X2UE);A2 cP (= Ay 3PUA,)

and the desired result follows again by monotonicity, implying, by

theorem 3.2, the validity of w[Pp/Xp]p€{1,2}’ i.e., of PQ;AQ [P1.

A large number of examples, in varying degrees of difficulty, of applying
the rule, is contained in the papers mentioned at the end of the intro-

duction. Section U4 will provide another - more advanced - application.

23

4, INDUCTIVE ASSERTIONS

In this sectibn we introduce thé notion of a system of inductive assertions
associated with a simple recursive program scheme, and we prove the main
theorem sbout them which states the equivalence of charaéterizing reéursive
procedures in terms of inductive assertions, and in terms of the minimality
of fixed points.

Our terminology is derived from the "inductive assertion method" of Floyd
[5], which may be viewed as a technique for deriving global properties of a
program>from local properties of its components. The form in which this
method is presented here is more abstract and geheral than the usual one.
Observe that our description of it in the framework of recursive program
schemes has the flow chart definition as a special case (each flow chart
can be described by a (regular, see section 4.2) system of recursive pro-
cedures). Note also that the usual requirement of having at least one as-
sertion "breaking each loop" for the flow chart case has no counterpart
here, since it is dealt with automatically if a system of recursive pro-
cedures is associated in the usual way with a flow chart.

One half of the main theorem (theorem L.2, part 1) is a generalization of
theorem 6.1 from De Bakker and De Roever [3].

OQur formal treatment of Floyd's method needs an extegsion of our formal
language in order to deal with the entrance - and exit conditions of the
program and its components.

Therefore, we extend the formal language by adding to R a special class of
relation symbols, the class Ap = {pT’p2f"'} of predicate symbols, arbitrary
elements of which are denoted by 10 B Y e This extension of R
needs an extension of the definition of initial interpretation (definition
3.4): We require that, for each p € Ap, co(p) c cO(E); i.e., each p is
interpreted as a subset of the identity relation. In this way we can find,
for each inductive assertion formulated as a sentence in predicate calculus:
Vx,y[p(x) A xAy » a(y)] an equivalent formula in our language: p3;A ¢ Ajq,
with the property that, for each model in which this sentence is true, we

can find an initial interpretation c_ with extension ¢ such p3A € Ajq

0
satisfies ¢, and vice versa.

2k

With section 4.1 we hope to provide the reader with some feeling for the

problem of proving the second half of our main theorem (theorem L4.2, part 2).

4.1. Attempts that failed

In section 2, we considered the while statement p*A = pj;A;p*A U 5. In terms
of program schemes, the characterizing theorem for while statements (theo-
rem 2.1) can be reformulated as: Let P be declared by: P <= A1;P U A2.

Then for each T, the following assertion

n

P3h, € Agsp
P— p;T < Tsq

p3h, € Assa

is equivalent with T c P. Now for its generalization. Let us consider P1

declared by P1 = A1;P1;A2 U A3. One might, as first attempt, try to prove

the equivalence of T ¢ P1 and

P3A, < AP
Q385 € Ay3a - 3T < Tsa
p3hAy < Agsq

but this fails. E.g., T = A, A _3A A satisfies the inductive assertions

1309358377
requirement, but it is not true that T ¢ P1. As next trial we use an in-
finity of ;95 i=0,1,2,..., each i reflecting the current recursion

depth:

P;3hy S Ayspy oy
R] {psT = Tsasdig 10,0

p;3hy € Ag3y $20,1,2,...

is now valid. How to generalize this once more? Con-

3P

and, indeed, T ¢ P1
sider P, ¢==4A1;P2;A2 p3hg U A). Directly taking over the {pi’qi}i=0,1,...
approach is easily seen to fail. One soon realizes that one has to dis=-

tinguish the .two occurrences of P, at the right hand side, and one might

&

25

try to use two systems {P q; }. j= and {r 2S: 1. , with

=0,1,...° i=0, 1,...

assertion

DA, € AP

54138 & ApiTy 4y

d
v
H
In
+3
o

In

A3;qi > e

@
:D
In

A3ss;
p;sh) < Ay sq.

roshy S hsss 0,1,

This does not work either. Counterexample: T = A1;Ah;A2;Au,A3 A3 A3,A2,A1,A
So far for the attempts that failed. The reader may have developed -some
understanding for the complexity of the remaining sections, in particular
for the need to refine the indexing strategy for the prédicates in order to
keep a closer eye on the history of the computation. |

The successful attempt begins with the development of the important auxil-

iary theorem of the next subsection.

4.2, The regularization theorem

Consider the declaration scheme D = {P ,Sp}péﬂ, with each SP a statement

scheme over {P }PETT U R. There is a natural correspondence between D and a

y°

(infinite, if m is infinite) context free grammar G, established as follows:

R is the class of terminal symbols of G, {PP}Péﬁ is the class of non-

terminals, D' is its set of production rules, where D' is obtained from D

138, U S1,S3, by dropping everywhere the ";"s,

and by replacing, e.g., Pp == S1] 82 by the two production rules Pp-+ S

by rewriting 81;(8) as S
12
Pp > SQ, etc.. As designated nonterminal of G any Pp may be selected.
Clearly, the typology of grammars carries over to declaration schemes. In
partlcular, this gives us the notion of a regular scheme: D is regular, iff

its correspondlng grammar G is regular. E e w1th reference to subsection

&

26

4.1, the scheme for P is regular, but those for P, and P2 are not.

The theorem of this subsection tells us, roughly speaking, that for each
(finite or infinite) context free declaration scheme an equivalent (but
always infinite) regular declaration scheme can be constructed. This theorem

will be the main tool in our proof of the inductive assertion theorem below.

THEOREM 4.1 (The regularization theorem)

Let 7 be an index set, and let DTr = {Pp’sp}pen be a closed declaration
scheme, with each S:p a statement scheme over {Pp}pen u R. Then there is an

index set p and a closed declaration scheme Dp = , each Sr a

{Pr’Sr}rep
statement scheme over {Pr}rep u R, such that

a. Dp is regular.

b. There is a mapping A from 7 into p such that PA(p) = PP, for each

p e .

(The last equivalence should be understood as stating equivalence under all
interpretations based upon computation sequences with respect to the decla-

ration scheme D = DTT U Dp.)

PROOF. By, if necessary, repeatedly applying S;(S'us") = 538" u 538", we

may assume that, for each p € w, Sp has the form

(k,1) 8 =8 u S U ... US
P P

P,1 P:2 ’M ’

P

where M_ is some integer > 1, and where, for each p € m, 1 <] f_Mp, SP 3
3

has the form 1) (raising subscripts for typographical reasons):

(h.2) S(Paj) = R(pajao)§P(st91);R(Paj=1)S"';P(stst’j)iR(stst j)
)

with Kp 5 some integer > 0, with R(p,j,k) ¢ R, 0 < k i_KP 3 and

2 2
P(p,J,k) € {P_} 1<k<K ..
(p2J k) ppen’ | =7 = P,

1)

Observe that it may be necessary to insert some E's or auxiliary P's
declared as E, in the originally given Sp, in order to obtain this form

£

27
Let us put

Y = j 1<j<M,1<k<K .

o =lmdk) [pem1cjm, 1cksK .}

and let us define the function h: ZO + 7 by h(p,Jj,k) = q iff P(p,j,k) = q.
Observe that each occurrence of a procedure symbol Pq in some SP is unique~-

ly identified by the index triple (p,Jj,k).

Example: Let D be: {P == A1,P1,A2 P2 A3 h;PQ;AS’
P = RgsPyshy U Agh
Then I, = {(111)(112)(121)(21 1)}, and h(1,1,1) = 1, n(1,1,2) =

n(1,2,1) = 2, and h(2,1,1) = 1. Let Zo,be the set of all finite sequences
of elements of ZO’ including the empty word €. We define the language I,

. * .
consisting of words in I by means of a context free grammar with produc-

O’
tions

o > €

{oc ~ 0o} -
p pem

g > J .k
o (psd,k)

3.k)]
9% 7 (p»J»k) “n(p,J,k) (p>J,k)eZy

¥ is the collection of all words in Z; produced by o. o will also be used

to dencte an arbitrary element of I.

Example: For the D just mentioned, possible o are: e, (1,1,1),
(1,1,1)(1,1,2)(2,1,1), or (2,1,1)(1,2,1)(2,1,1), ete.

Observe that each ¢ € %, produced with an application of the rule o +‘cp

as first step, may be viewed as defining a path in the tree of incarnations
of the procedures of the system with Pp as root, or, alternatively, o re-
presents the stack of currently active procedures, each triple in o repre-
senting one procedure call, Compare the following figure (with respect to

D again)

28

Ali 1EA 3Po3h3
. \\f\ _(1,1,2)
Ve -
A1,P1,A27P2,A3
AN CRRY
/ A~

The sequence o = (1,1,1)(1,1,2)(2,1,1) represents the calling structure
indicated by the drawn lines, where the first component of the first triple
in ¢ - here 1 - is the index of the root of the tree.

T is used in the construction of the index set p we are looking for in the

following manner: p is defined as:
p=1mx % x {1,2}

i.e., each Pr’ r € p, is of one of the two forms P(p,c,1)’ or P(p,c,Z)’

with p € m, 0 € £, and 1,2 € {1,2}.

Moreover, we define, for each p € w, A(p) as: A(p) = (p,e,2) € p. For
easier readibility, we use the notation PY for P and Q® for P .
easier re ility, w e ph (p,GQT)’ Qo or (p,0,2)
Thus, in this notation

D
P =P = o
A(p) (p,e,2) =

We now have to define, for each r € ¢, the statement scheme Sr’ and to
prove that the system {Pr’sr}rep has the desired properties, in particular,
P = . '
that P QE |
The definition of the Sr’ for r = (p,0,1), is given inductively on the

length of the o:

PP «—= E
£
h(p,j,1) b, .
(4.3) 9 PO(p,j,T) = PO,R(P,JaO)
. h(p,J,k+1) h(p,J,k) :
P i == 203 =R k for 1 <k <K .-1
- o(szsk+1) QG(PaJsk), (P’J,)’ - — Psd

29

and for r = (p,0,2) by

PYiR(p,3,0) - ifrK, =0
}]
p \D‘% 4 '
(h.h) Q, = v
J h(st’Kp J) () ’
. *Y R].K . ifX .>0
LQO(P,J,KP’j)’ Padotpli’ 03

Example: Let m = {1,2}, and let P be declared by P ¢==.A1;P;A2;P;A3 UA.
We have, dmitting complications in the indices which are unnecessary for
. . * .
this simple scheme, and taking £ = {0,1} , as regular scheme:
P < E
€

Poo & Foity

o1 00’ 2

= q .3A, U P A .
% Qc1’A3 R
From these definitions we have:

Q = Q1;A3 U_ée;Ah = (Q11;A3QP1;Ah);A3 u Ah“
= Q11;A3;A3 U QO;AQ;AH;AS u Ah

= ,.. U (QO1;A3UPO;Ah);A2;Ah;A3 u A

= Les U s0s U PO;AM;A2;Ah;A3 U Ah

= ,e. U 4o U PE;A1;AM;A2;AM;A3 U AQ

= e U sna UVA1;Ah;A2;Ah;A3 U Ah'

This suggests that Q€==P, as will indeed follow by the theorem we are in

the process of proving.

30

Remarks:

1. Observe the distinction between the notation h(p,j,k) denoting the
result of applying the function h to (p,jsk) € ZO, yielding an element
of m, and o(p,j,k) denoting the result of concatenating the elements

o € ¥ and (p,j,.k) € Zye

2. For each p e 7, 0 € I, Pp has the following intuitive meaning. Let, for
some 5 > 0, 0 = (pysd sk,) (ps;jsgks), with p = h(ps,js,ks). As we
saw above, 0 keeps track of a specific path through the tree of incarna-

tion with Pp as root, leading to the inner call of Pp' Then the com-
Py o
putation prescribed by P£ is precisely the computation starting with the
outermost call of Pp , and up to, but not including, this inner call.

0
Example: Referring to the figure on page 28 we have

1
P(1,1,1)(1,1,2)(2,1,1) = AyshysPysh,shg.

3. (As we shall show below) Qp Pp P , 80 with PP equivalent to the com-
putation preceding the inner call of P with hlstory O, QP is equivalent

to this computation but includzng the innercall of PP.

Once we have shown Qp"Pp °PP, we will have obtained our goal, since, for
the special case o = g, QP Pp Pp’ hence, by the deflnltlon of Pp as E, we

obtain

p = % = Pp,e,2) T Pa(p)

Moreover, from (4.3) and (L4.4) it is immediate that Dp is regular.
The next step is the definition of another system of procedures over the

same index set p: Dp = {Pr’sr}rep’ as follows:

For r = (p,0,1), the §r are (apart from the procedure symbols) the same as
S :
T

31

~

€
(k.5) ?h(p’4’1) ¢==.PP-R(p j,0)
) 0(9’391) "o’ e
(Rl T) QP(P’Q’F)‘ (psdok),. 1<k <K .-
G(p’J3k+1) G(szak)’ e > . - - Psd

but for r = (p,0,2) we have different definitions:
=P =P,
(b.6) T = BB .

We shall show that, for each r € o, Fr = Pr’ i.e., for each p € 7, 0 € I,

_3P P _FP
Pﬁ Pc’ Qo Qc'

Combining this with (L4.6) will yield Q® = PP;PP, as desired.

Part 1. {P_ < P } .
r r rep

By the corollary of theorem 3.1, it is.sufficient to show that {Fr}rep
satisfies

(h.7) {Sr[Pr/Xr]rep < Pr}rep'

(p,0,1), this is immediate, since, by definitions (k4.3) and (L.5),

a, If r =
§ = § 3 hence
r r
{sr[Pr/Xr]rEp =»Sr[Pr/Xr]rsp = Pr}rsp’

where the last equivalence follows by the fixed point property (lemma
3.1¢).

b. Let r = (p,0,2). For each j, 1 < E_MP, we distinguish two cases:

b1. = 0. Then, by (4.1), (k.2), R(p,j,0) = 8(p,j) ¢ sp = Pp. Hence,

K. .
Psd
1.%:;R(PJ,O) < Fﬁ;Pp = Qﬁ, qsing (L.6).

32

b2. X_ . > 0. Then,

j
= B5p U5 BiR(2,5,003P(053, 105+ 3R (DS,)
(455) 5 _ﬁgg’g H,P(p,J,T),,,,,R(p,J K 0.
(456) Qﬁg’j:;g,R(p,j,1,);,;,';R,(p,é,Kp,j)
(hy5) 5 gEg:j:g;,P(p,j,z);...;R(p,j,Kp,jy)
2 h(p’j’ j)P(p.J L5 R(RsduE)
2 Fo(p,i.K o, J)’ 2J oK YW
) G,)

Psd

From b1 and b2 we see that (L.T) is indeed satisfied.
Part 2. {P_ c P } .
r T rep
Again, by the corollary of theorem 3.1, it is sufficient to show that the
{Pr}rep satisfy

(L.8) {S [Pr/xr]r > g r}rep'

As in part 1, this is clear for the Pg. In order to show this for the Qg,
we apply the induction theorem 3,2 in the following form: Let & be empty,
and let ¥ be:

c @F}

0 pem,0€l’

; P . . .
That w[Q/X] cm? Leges {PG,Q_QP}p€1T gey» 1S valid, is clear. Let us put

X(p,j,k) = Xq, iff n(p,j,k) = q. In order to verify the second assumption
of the induction theorem in this case, we have to show: If (*)

P
{Po,x QP}

e then, for each p ¢ 7, 0 € I,

33

My

. . . c oP
PP’JLJ‘l {R(PSJSO) X(P’Jﬁ‘l)""’ (p,J,Kpgj)’R(p,J,KP,j)} — Qo.‘

- . | -
(a) If K . =0, then PP:R(p,j,0) < @, by (4.b).

2

Let X . > 0. Then
(B) Le 0,5 2

2

PP5R(p:j9O)§X(P:j:1);~"§R(P5jst j) = (h-3)

s

h(P 3’1) ‘
G(P9J31)’ (p’J’1)""’R(P’J’ p,j),s (%)
h(p,3,1) . .
QU(P,J,])’R(p’J’1)"":R(PSJ3KP,j) € o0 &
h(p,j.K_)

DPsd . < oP
Yo,k)P 5) < % ()

() and (B) together imply that we have proved the second assumption of the
induction theorem. Thus, we conclude that w[P /X] holds, i.e., that

P. b
{P P Qo}pew gel
therefore, of the regularlzatlon theorem is completed.

. From this, (4.8) follows and the proof of part 2, and,

k.3, The inductive assertion theorem

Let p be an index set, and let D = {Pr Sr}r o be a closed declaration

scheme over {Pr}rep uAuC (i.e., the Sr contain no occurrences of an

X e Xorof apeA). As in subsection 4.2, we assume that each Sr is of
the special form (4.1), (L4.2). (We replace from now on p(w) by r(p) in order
to avoid conflicts of notation.)

Let K , Mr ;. and I be as above, and let Z -{(r,J,k) |rep,1§j§ﬁr,O§g§Mr jL
R 9

"y

_ . r Ty
Let E {p o}rep Gex be a collection of predicate symbols, gontalned in
A L

b
We define the <nductive assertion pattern ALD,E] with respect to the decla-

ration scheme D and the collection of predicate symbols E as follows: First,

for each 0 & I, (r,j,k) € oy W define agr,j,k)[D’E] by putting

If

If

Now let ALD,El= {a

K

. =0, then, .

s

GO
(r,

K

jsO)[D’EJ

. > 0, then

rsd

o8
(r

For

o
(

o
(

. E
,J,O)[D’ 1

K .-

1 <k <
- - Tsd

r,j,k)[D’E]

r,j.K(r

,j))[D’E] =

e} ’ .
N .
(r:Jak) sza(rsJ9k)€zo+

34

In

pﬁ;R(r,j,O)

r . \
PG;R(r,J,O)

In

’h(rajak)

U(rgjsk);R(r’J

h(r,j,K(r,j)).
qo(r,j:K(r’j)),

.

provides the éolution to our problem.

R(r,j,O);p

F PRES Tr
R(r,JsO);qG-

h(r,j,1)
O(r:j:1)‘

h(r,j,k+1)

sk) < R(raJsk)§p0(r’j’k+1)°

R(r’jsK(r3j)) < R(r3j9K(rsj))§qz'

Then, as we shall see, A[D,E]

Example: Let D be the declaration scheme {P <= A1;P;A2;P;A3 U Ah}' We have
for ALD,E]:

~
pch1 c A15poo

Us3ho S Bo3Pyy

C

2

| %1383 = 4339

\pG;Ah € Aysag

N

.

oex={0,1}"

The followiﬁg picfure, fefefring to an inner call of P with history o

(060 and o1) may illustrate the idea:

35

First we prove a lemma.

LEMMA 4.1,

Let D,E be as above. Let {Tr}rep be arbitrary statement schemes over

P uA uC. Then the following two assertions are equivalent:

1. {T_cP}
r T rep
r r
2. AID,E] | {p 3T, < Tr’qg}rep,cezf
PROOF
1, 1 => 2. First we prove this for the special case that {T = Pr}rep By

Scott's induction rule (theorem 3.2) it is sufficient to prove that

F o535, = 5 3a}

r’*0 rep,0€l’

r I'
(4.9) ALD,ET, {p X, € X 3a.} rep,oel

where, as usual, gr results from Sr by substituting for each r ¢ p, Pr
for Xr' In order to prove (4.9) it is sufficient to show that, for each

J» 123 E-Mr’ we can infer from its assumptions that

r . . . -
po,;R(rsJ 30);X(r933]);' oo ;R(I‘,J ,K(I"J)) <

R(r,3,0);X(r,j,1);5... ;R(r,j,K(r,j));qi.

36

By AD,E, py3R(r;3,0) € R(r;j',o)spﬁgi’g’gi
2 -]

on the X , and the definition of the h-functiom, p

. By the assumption in (L.9)
h(r,j,1).)
G(r,j,ﬂ’X(r’J’” E

r .
< X(r,j,1);qg§;’g’}g. Repeating this argument, which is straightforward
3dJ 9

from the definition of ALD,E], the desired result follows, i.e., the
proof of 1 = 2 for the case that {Tr = Pr}rep holds, is completed.

Next assume that {Tr c P

c r}rep' Then, clearly,

. T o LTy,
ALD,E] f‘ {Pc’Tr s PU’Pr < Pr’qo}rép,c€z.

r . r . .

Also, {pc’Tr < Tr}rep,osz' Since {qO c E}rep,cez’ the desired coneclusion
r r

A[D,E1 |- {pc’Tr c Tr’qo}rep,cez follows.

2 == 1, We have to show: For all interpretations c, {C(Tr) c C(Pr)}rep'

Let ¢ be an arbitrary interpretation, and let o be its initial inter-

. . . r r .
pretation, 1.e., c, = C] R. Since none of the P,sQ, Occurs 1in Tr or Sr’

0

we can extend ¢, to cé without causing any change in c, as follows: Let

V be the domain of co, and let, for each r € p, xr'be an arbitrary
element of V. We put (x,y) € cé(pg)_iff x =y, and, moreover, (xr,x) €

€ c(Pg), where Pi is the procedure defined in (k4.3). Similarly,

(x,y) € cé(qz) iff x = y, and, moreover, (xr,x) € c(Qﬁ), with Q§ defined
as in (L4.4). Let c¢' be the extension of c'. About this c¢' we can now

0

prove: Each element of {a? satisfies c¢'. In fact,

r,j,k)}cez,(r,j,k)ezo+
our extensive preparations are rewarded here, since the proof is direct

from the definitions of ALD,E], Pi, and Qﬁ. By the assumption of the

.qr}

. . e , T
lemma we have, since A[D,E] satisfies c', that {pc’Tr s T sq, rep,oex’

also satisfies c¢'. In particular, for o = I, we have that

{Pz;Tr E'Tr;qz}rep satisfies c¢'. Next, we use that (x,y) € cé(pi) iff
x = x_, which follows from Pl; = E, and that (x,y) € c(')(q];) iff

(Xr’X) € c(Qz) = C(Pe)’ which follows from P_ = QZ. Thus, we have shown
that: if x = x_, and xc(Tr)y, then xc(Pr)y. Since x was an arbitrary
element of V, we conclude that fc(Tr) < c(P)}

r' rep’
This completes the proof of lemma 4.1,

It is now easy to give the proof of the inductive assertion theorem:

&

37

THEOREM 4.2 (the inductive assertion theorem)

Let D, E be as above, and letv{Tr}r€p be fixed points of the statement

schemes {S_ } , i.e., let
r rep

{Sr[Tr/Xf]rep = Sr}rep'

Then the following two assertions afe<equivalent

X vk 1 v - 1
i {Sr[Tr/XrJrep & Tr}rep a {Tr s Tr}rep’

i.e., the {T_} are minimal fixed points.v
r rep

r T
2. AIDE] b {p3T, € Tsagh, o o o
9

PROOF

1. 1 == 2. If the {Tr}rEp are minimal fixed points, then, by Corollary 3.1,

{T =P} , and the result follows by lemma kh.1.
r rrep -

2, 2 ==> 1, By lemma 4.1, if 2 holds, then {Tr < Pr}rep follows. Thus, the
{Tr}rep are fixed points which are included in, and thus equal to, the

minimal fixed points {P_} .
T rep

38

APPENDIX: DERIVATIVES AND TRACES

In [6], Hitchcock and Park introduce the notion of derivative of a program
scheme, and use it in the development of a technigue for giving proofs of
termination of programs.

Roughly speaking, the derivative relates states at successive nested calls
of a procedure to each other. Therefore, the question arose as to the clari-
fication of the relationship between this notion and our "tracing" con-
structs P_. In this appendix we state (without proof) a theorem settling
this question.

First we repeat the definition of [6], somewhat reformulated for the present

purpose:
Let T be a statement scheme over {Pr}rsp u R. Then-%%— is defined inductive=-
ly as follows: r
3T
a. If T ¢ R, then 3 Q.
r
3P,
b. If T € {Pr}rep, then —=— = E, r,=r
r
=Q, T, #r,
3T 3T
- m . of __1 2
¢, IfT T = T1,T2, then) 5P U TT’aP .
r r r
3T 3T
_ T _ °71 2
d. If T=T, U T,, then o3 5 U 3P -
r r r
8(A1;P;A2;P;A3)
Example: 5P = A1 U A1;P;A2.

The theorem relating derivatives and traces now follows:

THEOREM A

Let {P_,S.} _ be a declaration scheme.
r T rep

Let Ar T be defined by: Ar 7 = E, r1 = rz,
e e Q, r, #1T
> 1 2°
Let, for r ,r, € 0, d. Pr be a new procedure "symbol", with declaration:

172

£

39

95,
. : r P
{dr Pr Ar ,T v U (aP ;dT Pr)}rjep'
172 1°72 rep r 1
r2€D

(The expression (J ... is only seemingly of infinite length, since only
‘ rep 95
r

for finitely many r, 5?72'¢ Q.)
r

Let ¢ be the empty set.

Let £ ={we I | o, = w}u (if r, = r_ then {e} else #) (cf. the
1,r2 0 r1 1 2 ’ ;
definition of page 27).
Then
r, ,
{a 1Pr2 = Zu 5 }1,169’r co°
Oy r

Lo

REFERENCES

L1l

21

[3]

[4]

[51

[6]

[Tl

£81

[9l

£10]

111

De Bakker, J.W., Recursive Procedures, Mathematical Centre Tracts 2k,

Mathematical Centre, Amsterdam (1971).

De Bakker, J;W., Recursion, induction and symbol,manipulation, in Proc.
MC-25 Informatica Symposium, Mathematical Centre Tracts 37,
Mathematical Centre, Amsterdam (1971).

De Bakker, J.W. & W.P. de Roever, A calculus for recursive program
schemes, to appear in Proc. IRIA Symposium on Automata, Formal

Languages and Programming, North-Holland, Amsterdam.

Bekié, H., Definable operations in general algebra, and the theory of

automata and flowcharts, Report IBM Laboratory Viemna (1969).

Floyd, R.W., Assigning meanings to programs, in Proc. of a Symposium in
Applied Mathematics, Vol, 19, Mathematical Aspects of Computer
Science, pp. 19-32 (ed. J.T. Schwartz), AMS, Providence (1967).

Hitchcock, P. & D. Park, Induction rules and proofs of termination, to
appear in Proc. IRIA Symposium on Automata, Formal Languages and

Programming, North-Holland, Amsterdam.

Hoare, C.A.R., An axiomatic basis for computer programming, Comm. ACM

12, pp. 576-583 (1969).

Manna, Z. & J.M. Cadiou, Recursive definitions of partial functions and
their computations, in Proc. of an ACM Conference on proving

assertions about programs, pp. 58-65, ACM (1972).

Manna, %., S. Ness & J. Vuillemin, Inductive methods for proving
properties of programs, in. Proc. of an ACM Conference on

proving assertions about programs, pp. 27-50, ACM (1972).

Manna, Z. & A. Pnueli, Formalization of properties of functional

programs, J. ACM, 17, pp. 555-569 (1970).

Manna, Z. & J. Vuillemin, Fixpoint approach to the theory of computa-

tion, C. ACM, 15, pp. 528-536 (1972).

b1

[12] McCarthy, J., A basis for a mathematical theory of computation, in
Computer Programming and Formal Systems, pp. 33-70 (eds.
P. Braffort and D. Hirschberg), North-Holland, Amsterdam (1963).

[13] Morris Jr,. J.H., Another recursion induction principle, C. ACM, 1k,
pp.351-354 (1971).

(147 Milner, R., Implementation and applications of Scott's logic for com-
putable functions, in Proc. of an ACM Conference on proving

assertions about programs, pp. 1-6, ACM (1972).

[15] Park, D., Fixpoint induction and proof of program semantics, in
Machine Intelligence, Vol. 5, pp. 59-78 (eds. B. Meltzer and
D. Michie), Edinburgh University Press, Edinburgh (1970).

[16] Scott, D. & J.W. de Bakker, A theory of programs, unpublished notes,
' IBM Seminar, Vienna (1969).

[17] Scott, D., in Minutes of the fourth meeting of the IFIP Working Group

2.2 on Formal Language Description Languages, Essex University

(1969).

[18] Tarski, A., A lattice theoretical fixpoint theorem and its applications,

Pacific J. of Math., 5, 285-309 (1955).

