53

The Design of Elegant Languages

Lambert Meertens

Department of Algorithmics and Architecture, CWI, Amsterdam, and
Department of Computing Science, Utrecht University, The Netherlands

0 Introduction

It was a dark and stormy week in Munich, the third week of December 1968, in which
IFIP Working Group 2.1 decided to submit MR 100 as “‘the consolidated outcome of the
work of the Group™. MR 100 was the document describing the design of the Algo-
rithmic Language ALGOL 68 [4], after many iterations, with Aad van Wijngaarden’s
MR 76 [3] as the starting point.

The weather outdoors was fair for the time of the year, a crisp cold; but darkness
had descended upon the hearts of the Working Group, and storms were raging in the hall
of the Bayerische Akademie der Wissenschaften where WG 2.1 was assembled. A sub-
stantive minority of the members had strong criticism of the outcome of the whole enter-
prise; so strong in fact, that it was apparently impossible to discuss the alleged shortcom-
ings of the proposed language” in a technical way, let alone suggest improvements that
might result in a design that could have found grace in their eyes'.

The criticism was laid down in a Minority Report, signed by Edsger Dijkstra, Fraser
Duncan, Jan V. Garwick®, Tony Hoare, Brian Randell, Gerhard Seegmiiller, Wtad Turski
and Mike Woodger.

The following is quoted from the Minority Report.

Now the language itself, which should be judged, among other things, as
a language in which to compose programs. Considered as such, a program-
ming language implies a conception of the programmer’s task. [...] More
than ever, it will be required from an adequate programming tool that it
assists, by structure, the programmer in the most difficult aspects of his job,
viz. in the reliable creation of sophisticated programs. In this respect we fail

0. There was also strong criticism of the “*how™" of the description itself next to the “‘what’” of what was
described, but I shall leave this aside.

1. In the interest of fairness it should be pointed out, however, that Fraser Duncan had before produced
proposals for more important changes, and aithough these were not followed he remained very active up to
the end in reporting technical deficiencies and suggesting minor improvements, most of which were indeed
incorporated.

2. Garwick was actually not present at the meeting, but requested afterwards that his name be included
among the signatories. Also not present was S.S. Lavrov, who in fact had drafted an early version of the
Minority Report.

54 L. Meertens: The Design of Elegant Languages

to see how the language proposed here is a significant step forward: on the
contrary, we feel that its implicit view of the programmer’s task is very much
the same as, say, ten years ago. This forces upon us the conclusion that,
regarded as a programming tool, the language must be regarded as obsolete.

What I set out to do here next, is to look at programming languages from a concep-
tion of the programmer’s task and deal with some aspects in the evolution of program-
ming languages viewed, specifically, as languages in which to compose programs. The
treatment reflects largely my personal experience and taste in programming, and as such
will not at all be comprehensive. In doing this I shall pay particular attention to
ALGOL 68. It is, however, not my aim to give a “‘critical but balanced’” assessment of
this language. Also, [will freely ascribed “‘innovations’ to language B, even though it
may be argued that the essence of the idea existed before in language A, if B was the first
to do it right, or with sufficient generality.

1 Limitations of the human mind

Except for rare cases, programs are not written in machine language, but in some pro-
gramming language. Nowadays one important aim of using a (commonly available) pro-
gramming language is to achieve program portability. This is an aspect that I shall not
consider here. [want to look at programming languages here purely as languages in
which to compose programs.

As such, a programming language is undeniably a tool, and, following the Minority
Report, we can require of an adequate programming tool that it assists, by structure, the
programmer in the most difficult aspects of his job, viz. in the reliable creation of sophis-
ticated programs. It is not necessary to give a detailed analysis of the programmer’s task
to agree that the statement that this is difficult (and difficult it is) is also a statement about
limitations of the human mind. If we had no such limitations, we would not need com-
puters or programs to start with.

The main limitations we have that are relevant here are probably the following
three.

In the first place, human long-term memory is bad for remembering ‘‘meaningless™
things, like telephone numbers or nonsense text. If we do not use or at least recall some-
thing like that daily, we tend to forget it. For meaningful things that we do recall, we
often make substitution errors. For example, we may recall the phrase **Well, he’s prob-
ably pining for the fjords™ as **He’s pining for the fjords. you know™".

Secondly, the amount of things that we can mentally handle simultaneously is
severely limited. As an example, try (without writing dewn intermediate results) substi-
tuting simultaneously a+b for each occurrence of a and, likewise, a-b for each
occurrence of b in the formula (2a +b)(a-2b)-(a +b)(a-3b) while at the same time
expanding the result by “‘multiplying it out "3,

Finally, when we have to perform some routine task repeatedly, we lose attention

3. For those who want to try this, here is a sim e check on the result. Evaluate the resulting formula for
a=2 and b=1. If the outcome is not 7, something went wrong.

Conference on the History of ALGOL 68 55

after some time and start making the silliest clerical errors imaginable, precisely in those
things we understand and know perfectly well.

In the best case, a programming language helps the programmer to cope with the
task of program construction by offering ways to get around such limitations. A simple
example is the programmer’s ability to choose meaningful identifiers, such as “‘vector™’,
“velocity’” and *‘version’’, instead of **V*’, **VI’" and “*V2"". In a program with hun-
dreds and hundreds of identifiers — not at all uncommon — this is of inestimable help. In
the worst case, programming is a struggle with the programming language itself, a strug-
gle in which more mental effort is spent in trying to cope with the intricacies and idiosyn-
crasies, if not idiocies, of the language, than on the actual problem.

2 The programmer’s task

Part of the difficulty of programming, and sometimes the most difficult part, may be to
decide what the program is to do in the first place, rather than how this is to be done. For
example, in creating a good code generator, the hard task is to decide and specify what
code it will generate; after that the actual “*coding’, although perhaps not entirely trivial,
is definitely only a small part of the whole problem.

Inasmuch as I have witnessed grandiose failures of software projects, fortunately
usually from a comfortable distance, these were always foreshadowed by a failure to get
a clear position on the “*what’’, or even to reach agreement between the actors involved
as to the basic objectives of the project.

Various kinds of formalisms can help to record the decisions taken, if any, but as far
as I am aware they tend not to be particularly useful in reaching these decisions, and I see
no clear role here for what I consider to be programming languages.

Deciding on the “*what’’ cannot be entirely separated from the “*how’’: sometimes
a small change in the specification that is almost irrelevant from the point of view of the
user of the program may be the difference between entirely feasible and entirely infeasi-
ble. For example, in code optimization, there are fast and reasonably simple techniques
that give very good register allocation, but for obtaining a truly optimal allocation — only
marginally better than very good — the fastest algorithms we have may easily take more
time than one could reasonably hope to gain by the optimization.

Let us, however, assume that the “*what’” is given. The next step is to go from the
“‘what”” to the “*how™", which typically involves designing. jointly, suitable data struc-
tures, and algorithms operating on data encoded in terms of such structures®. In my
experience, this part is only rarely a difficult job. Typically I see “‘immediately’” some
obvious approach. Usually there is an “*obvious’ decomposition into sub-problems for
which rather standard data structures and straightforward algorithmic techniques will do
the job. (It helps, of course, to have some knowledge of and experience with such tech-
niques.) In the rare cases in which the approach is not obvious, there is at least the satis-
faction of an intellectual challenge.

So where we are now is that in principle the algorithms to be used, including the
relevant data structures, are sufficiently clear in the programmer’s mind. and that the task

4. T am not considering the design of distributed programs, which requires 1 ver 4if poreach.

56 ' L. Meertens: The Design of Elegant Languages

at hand is to cast these abstract but clear ideas into the form of a program; to create a
concrete embodiment of the algorithms and data structures by means of a specific pro-
gramming language. It is—still in my experience — here that suffering starts, and that
that which was so clear becomes obscure, if not a mess.

As a first step a mapping of the abstract data structures has to be given in terms of
the available data types of the programming language. The mapping has to be such that
the basic operations in terms of which the abstract algorithm is formulated can be imple-
mented efficiently. This may involve explicit allocation and deallocation, requiring
extensive administration to keep track of what is being used when by whom.

The implementation of the basic operations can be viewed as programming tasks on
their own, creating as it were an abstract machine on top of which the abstract algorithm
is implemented. Ideally, the effect is that the programming language is extended with
new data types, in a way as if the language had been designed with these data types
built-in from the start. In the point of view in which a program is seen as emerging from
its proof, this separation corresponds to a factorization of the proof by separation of con-
cerns. Whereas this was a bottom-up phase, expressing the abstract algorithm in these
primitives is largely a top-down process, corresponding to the (possibly repeated) decom-
position of the problem into sub-problems.

Now where do the problems come in? What is it that makes this so difficult? Let
me sketch the worst-case scenario. Assume that the language is such that no suitable
interface can be created between the “‘abstract machine™ and the implementation of the
abstract program because its abstraction and encapsulation mechanisms are too deficient.
This means that the concrete implementation of the abstract operations has to be spelled
out again and again. The inbuilt data types are weak, so that this implementation is com-
plex and involves awkward bookkeeping, which has to be woven through the program
under construction. So all the time the programmer has to keep two different abstraction
levels in mind, each with their own meaning, representations, and invariants. Moreover,
the programming language offers little textual support for composing programs from
sub-programs solving sub-problems, so that the programmer also has to keep track of
where the decomposition is in the traversal of a virtual tree, and this possibly again
simultaneously at different abstraction levels. This is by no means the end of the suffer-
ing of our poor programmer. By the time this process reaches the point where a construct
from the programming language can actually be used (pant pant), the question arises
what its concrete syntax is. What was its name again? Was this keyword abbreviated or
not? Are the separators here commas or semicolons? What was the order of the parame-
ters? Then, are there perhaps restrictions that apply here? Or some semantic exception?

With this scenario the programmer has to keep, all the time, a large amount of detail
in mind, while continually retrieving confusing items from long-term memory, in order
to perform a rather mindless task, the repeated expansion of substituting the concrete
implementation in the abstract operations, and weaving through that the bookkeeping
code.

Almost impossible. And yet this is what most programmers do all the time. For
most programming languages, and certainly those that have a good deal of currency,
suffer to some extent from almost all of these problems.

Conference on the History of ALGOL 68 57

3 On elegance

What makes some designs more elegant than others? In general, when we call a design
elegant, we mean that the design displays ‘‘good taste’’, both in the choice of the ele-
ments of which the design is composed and in the way they are combined. So elegance
is—to a certain extent, but undeniably — a matter of taste. A well-known saying tells us
that there is no accounting for taste, and indeed, discussing such an elusive @sthetic judg-
ment as elegance in an academic context is a somewhat precarious enterprise. Yet, as |
shall argue, elegance in programming-language design is a difficult but important aim.

The notion of “‘elegance’ can be clarified somewhat further by some reflection on
what we would, definitely, consider inelegant. Something can be inelegant because of
““too-muchness’’: when the design is suffering from an excess of elaboration, with too
many frills. Inelegance can also be due to a lack of balance, which can be defined as a
local *‘too-muchness’”. Finally, a design can display bad taste in the incompatibility of
its components, for example in style.

An elegant design, then, is one that is characterized by the apparent simplicity with
which its effect is obtained, evidenced by a certain restraint in the choice of elements, in
number as well as in style: no individual part may give the impression it is superfluous,
and the overall design should give the impression of a conceptual unity.

Most programming-language designers will argue — or so I expect — that simplicity
is a desirable property of programming languages, and that their own pet language is
simple. Now there is simple and simple. A knife is simpler than a pair of scissors. But
clipping an article from a newspaper using scissors is a simpler task than cutting it out
with a knife. It is meaningless to apply a notion like simplicity to a programming
language without reference to its use as a tool for constructing programs, and without
considering in particular the nature of that task in relation to the limitations of the human
mind.

An essential aspect of that task is that the “‘features’” of a language are not individu-
ally used as tools the way a carpenter uses a plane and then puts it aside to use next a
chisel, and so on. It is the very act of combining various elements by which the program
is constructed.

From the above discussion of the programmer’s task, we can see that all kinds of
“*bells and whistles’” do more harm than good, and that, more than many *‘ready-made
power features™, we as programmers need a careful choice of elements that lend them-
selves to easy and graceful combination. An important part of that is that the rules for
what may be combined when and how are easy. Of paramount importance for composa-
bility is the presence of abstraction mechanisms by which interfaces between abstraction
levels can be created.

We see thus how the element of elegance comes in. A language in which these
things come together nicely will be felt by its users to be elegant. A somewhat different
viewpoint is that in which programs are constructed by deriving them formally. How-
ever, the difference is more apparent than real. Precisely the same properties are
required to make this formal activity doable, and in fact even more so.

58 L. Meertens: The Design of Elegant Languages

4 Before ALGOL 60

The evolution of programming languages, already before ALGOL 60, has been away from
the low-level model provided by hardware architectures, creating instead a more elegant
abstract machine model. This evolution started with so-called assemblers, which are
traditionally viewed as giving a direct mapping to machine code but with some
unpleasant chores having been taken over, and with mnemonics to aid the programmers.
However, the difference between assembly languages and higher-level languages is not
necessarily a matter of principle. For example, in C the underlying hardware with its
linear memory model as a contiguously addressable sequence of words keeps staring us
in the face. Conversely, assembler languages may have nice abstraction mechanisms that
are a valuable help in programming. It is entirely possible than to program as if the
language was high-level.

Already there we find that details of the mapping to the concrete machine that are
not relevant are taken away from the responsibility of the programmer. A quantity has to
be stored somewhere, and the same location should not be used for something else during
its lifetime, but which actual location is chosen is compietely irrelevant. The nigher the
language level, the more such irrelevant things tend to get hidden. The main innovations
of FORTRAN were an explicit parameter mechanism, automatic mapping of more-
dimensional arrays to linear memory, and — whence its name — *‘formula translation™.

5 The contribution of ALGOL 60

Suppose we have to write a program for some task 7, which is too complex to be
expressed directly as a basic step. However, whenever a certain condition C is satisfied,
the task 7 can be reduced to the simpler task 70, whereas otherwise it can be simplified to
T1. So, assuming we have programs for 70 and 71. we can now give one for 7. In FOR-
TRAN such as it was when ALGOL 60 was being designed, conditional execution was
achieved by using ‘‘conditional jumps’ in the program. This language construct was
modelled rather straightforwardly after the same low-level machine-code instruction on
the IBM 704. Using ALGOL 60 syntax style, we get then:

if not C then goto L1,
10,
goto L2;

Ll: TI;

L2:

If 70 and T1 are still too complex an are likewise decoriposed into subtasks, and so on,
we arrive at the third step at the following:

Conference on the History of ALGOL 68 59

if not C then goto L1 ;
if not CO then goto L0I;
if not C00 then goto L00I;
1000,
goto L2;
L001: T00I;
goto L2;
LOI: if not COI then goto L011;
1010,
goto L2;
LO11:T011;
goto L2;
L1: ifnotClI thengotoLll;
if not C10 then goto L101;
T100,
goto L2;
L101:T101;
goto L2,
L11: ifnotCll]thengotolLlll;
T110;
goto L2;
L111:T111;
L2:

The result looks like spaghetti but is rather more unpalatable. It is far from easy to see
from this text under what conditions exactly 7701, for example, will be executed. It is,
of course, not accidental that this resembles compiled code. It is compiled code: hand-
compiled from the abstract idea into to the limited constructs of a programming
language.

A major innovation of ALGOL 60 was that specific program-composition construc-
tions were provided for the common cases of task decomposition. For conditional execu-
tion ALGOL 60 has

ifC
then 70
else T1

With this notation, the above spaghetti program becomes:

60 ‘ L. Meertens: The Design of Elegant Languages

ifC
then if C0
then if CO0O
then 17000
eise 1001
else if COI
then 7010
else 1011
else if C1
thenif C10
then 7100
else T101
else ifC11
then T110
else 7111

The advantage should be clear.

As a result, the definition of what a permissible program is got a recursive nature.
To describe this exactly, the authors of the ALGOL 60 Report had to invent® a new gram-
matical formalism, which became known as BNF. Compiler writers tend, for reasons of
their own, to like silly restrictions that make the programmer’s life harder, such as:
identifiers may have only seven characters; or: procedures may not be nested inside other
procedures; or: expressions may only be nested five levels deep and contain at most 511
subexpressions; and so forth. In doing serious programming, programmers keep running
into such restrictions, and getting around them may take more than half of the coding
effort, if it is possible at all. The total amount of time wasted this way is several orders
of magnitude more than the time gained by the lazy compiler writer. If the syntax of a
language is described by ‘‘verbal prose’’, such restrictions are easy to put in. Using
BNF, it is easier to describe a language without such arbitrary restrictions than with.
This is, indeed, what happened with ALGOL 60.

6 Some problems with ALGOL 60

The syntactic generality of ALGoOL 60 made it, decidedly, a much more elegant language
than FORTRAN. The majority of its authors had a background in numerical mathematics.
This shows in the absence of any inbuilt facilities to compute with texts, or with any
other kind of structure than vectors and matrices of numbers. By the mid sixties, it was
evident that this was a serious deficiency; non-numeric computing had become at least as
important as numeric computation.

Some facility was needed by which programmers could add their own types. This
required, of course, generalizing constructs to arbitrary types. In ALGOL 60 the types
were given explicitly in the syntax rules. There was a rule for a conditional integer

5. More properly: to re-invent. Chomsky had before described context-free grammar in a linguistic con-
text to characterize his ““Type 2’ languages (now generally known as context-free languages).

Conference on the History of ALGOL 68 61

expression, and also for a conditional boolean expression, but not, for example, for a con-
ditional string expression.

Another problem with ALGOL 60 had to do with type checking. The following is a
program, written in ALGOL 60, that contains a type error:

begin procedure a(b, ¢, d, e, f, g);
b(c, d, e f g a);

procedure s(t, u, v, w, x, y, z);
z(s, t, u, v, w, X, y);

a(a, a, a, a, a, s)
end

The procedure-call rule of ALGOL 60 results in the following call sequence:

a(a, a, a, a, a, s)
a(a, a, a, a, s, a)
a(a, a, a, s, a, a)
a(a, a, s, a, a, a)
a(a, s, a, a, a, a)
a(s, a, a, a, a, a)
s(a, a, a, a, a, a)

Here s is called with six parameters. But s requires seven parameters. In general there is
no foolproof way to determine in advance whether an arbitrary ALGOL 60 program con-
tains such a type error. This is rather obvious if we only consider ‘‘reachable code™,
since it is not decidable which parts of the program are reachable. One can take a more
textual view and require that under repeated replacement of calls by expanded bodies
there are no parameter mismatches. But even then the problem is undecidable, as was
shown by Langmaack [2].

There are, of course, more shortcomings of ALGOL 60, in particular the conspicuous
absence of input/output facilities. Adding these is, however, ““merely’” a matter of
adding. It does not require a really new language. The problems mentioned above could
not be solved without creating a new language.

7 From ALGOL 60 to ALGOL 68

Van Wijngaarden’s insight was that the required generalization of the syntax rules could
be obtained by introducing parametrized grammar rules [3]. Using BNF-like notation,
and applying this to ALGOL 60 syntax (somewhat simplified), we see that the rules

62 L. Meertens: The Design of Elegant Languages

(conditional boolean expression) ::=
if (condition) then (boolean expression) else (boolean expression)

(conditional integer expression) ::=
if (condition) then (integer expression) else (integer expression)

(conditional real expression) ::=
if {condition) then (real expression) else (real expression)

can be unified to a single rule

(conditional TYPE expression) ::=
if (condition) then (TYPE expression) else (TYPE expression)

if ““TYPE’’ can stand for any of ‘*boolean’’, ‘‘real’” and “‘integer’’. The generalization
requires now to describe what ““TYPE” can stand for. This description forms the
““metalevel’” of the grammar. I do not know if Van Wijngaarden was aware of other
varieties of two-level grammars, such as affix grammars or attribute grammars, but where
these had either a limited or not grammatically specified domain for the metalevel, Van
Wijngaarden grammars have for the metalevel a conventional context free grammar.

Just like context free grammar permitted to describe the recursive formation rules
for program texts in ALGOL 60, here they allow to give recursive formation rules for the
types® of ALGOL 68. And, just as for ALGOL 60, this makes it harder rather than easier to
have exceptions.

Today it is entirely commonplace that the type system of a language has recursive
formation rules. In 1968 it was an innovation; and precisely what is needed to allow the
users to define a good interface between the implementation of their **abstract machine™
and the implementation of the abstract algorithm.

The main criticism I see for the type system of ALGOL 68 is the low level of the type
constructor ‘‘ref’’, in particular the coupling of assignability with referring’. For more
detailed criticism, see Koster [1].

At least as important as the type system per se is the fact that ALGOL 68 is strongly
typed.

8 After ALGOL 68

It is inevitable that any retrospective activity has some of the power of hindsight.
ALGOL 68 was not only the brainchild of van Wijngaarden, but also a child of its time.
With our present knowledge of the principles of programming languages, surely the
current major programming languages do a much better job. Or do they?

It has been remarked that ALGoL 60 was an improvement over most of its

6. In ALGoL 68 idiom, the term ‘*mode’’ is used for what is usually called ““type’”. In this article I use the
more common term ‘‘type’’.

7. This is especially severe since the obvious way to define ‘‘algebraic’” types, with recursion through
“union’ and *‘struct’’, requires the use of “‘rei’” for *‘shielding to yin"". (see rules 7.4.1 of the Revised
Report).

Conference on the History of ALGOL 68 63

successors®. To make a joke in the style of van Wijngaarden, but reflecting my personal
opinion: ALGOL 68 would have been an improvement over most of its successors, had it
had any.

Is it true that the ‘“implicit view of the programmer’s task’” underlying the design of
ALGOL 68 was very much the same as, say, 19587 Whether this was so or not, ALGOL 68
introduced a view on types that makes programming easier. It is a view that is common
now. Unfortunately, not much has been added since, at least not in major available
languages. Although C owes much of its type system from ALGOL 68, it is clearly a step
back towards the machine level. In particular, it is annoying—to put it extremely
mildly — that the allocation and deallocation of dynamic ‘‘non-stack’ storage is the
responsibility of the C nrogrammer, and that the semantics of C gives no <uppert for
keeping pointers in check.

A true improvement, in my opinion, is type polymorphism. I am more dubious
about the object-oriented paradigm. I’ve seen no linguistic approach to that seems of an
acceptable neatness to me.

9 Final remarks

There is a tension between two viewpoints concerning the relation between language
design and program correctness. One viewpoint is that a good language makes it hard to
write bad programs. The other viewpoint is that it makes it easy to write good programs.
Van Wijngaarden was an outspoken adherent of the latter viewpoint; he considered the
first one “‘paternalistic’’. Nevertheless, the design of ALGOL 68 is such that many if not
most “‘clerical errors’” may be statically detected, and this was already so in the version
of 1968.

No language design can really prevent programmers to create an inextricable mess,
and a language in which it is really hard to write bad programs probably also makes it
hard to write good programs. Nevertheless, some things in ALGOL 68 are error prone
(like “‘ref’” mentioned before), and I think the language could have been better if more
attention had been paid to such problems. The same is true for almost all languages that
saw the light since.

For the record, I want to state that— although my name is associated with, in partic-
ular, the Revised Report [S]—1 do not feel I have, personally, a stake in any evaluation
of the design of ALGOL 68. My role has mainly been confined to ‘*debugging’” and pol-
ishing an existing description of an existing design, and this has had at most a marginal
influence on the language as a programmer perceives it. I do feel responsible for remain-
ing errors in the Revised Report (not counting the section on Transput declarations); in
particular, being reminded of the painful fact that I overlooked that ‘‘real field letter y
integral field letter I'” contains “‘yin’" (see rule 7.3.1.c of the Revised Report) still can
make me blush.

8. I do not remember to whom this witticism should be ascribed, but Tony Hoarc comes 1 mind as a plau-
sible source. In any case [am pretty sure it was not Niklaus Wirth.

64 ‘ L. Meertens: The Design of Elegant Languages

References

1. C.H.A. Koster (1976). The mode system in ALGOL 68. New Directions in Algo-
rithmic Languages 1975 (S.A.|Schuman, ed.), 125-138, IRIA, Rocquencourt.

2. H. Langmaack (1973). On correct procedure parameter transmission in higher pro-
gramming languages. Acta Informatica 2, 110-142.

3. A.van Wijngaarden (1965). Orthogonal design and description of a formal
language. Mathematisch Centrum, Amsterdam, Mathematical Centre Report
MR 76.

4. A.van Wijngaarden (Editor), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster (1968).

Final Draft Report on the Algorithmic Langunge ALGOL 68. Mathematisch Contrum,

Amsterdam, Mathematical Centre Report MR 100.

A.van Wijngaarden, B.J. Mailloux, J.E.L.Peck, C.H.A.Koster, M. Sintzoff,

C.H. Lindsey, L.G.L.T. Meertens and R.G. Fisker, Eds (1975). Revised Report on

the Algorithmic Language ALGOL 68. Acta Informatica §, 1-236.

thn

