
A Translation from Attribute Grammars to
CatamorpMsms

Maarten Fokkinga, Johan Jeuring, Lambert Meertens, Erik Meijer

November 9, 1990

Let AG be an attribute grammar, with underlying context free grammar G and
attribute evaluation rules A . The function that decorates —according to A
- aparse tree with attribute values and then delivers the synthesised attribute value of
the root node, is denoted 141 . We translate G into a functor F such that any parse
tree for G is an element of the initial F -algebra. The attribute evaluation rules A
are translated to a function 0 such that e l oD is, in a precise sense, equivalent to
IA].

1 T h e translation
We begin by fixing some terminology and notations. Let AG be an attribute grammar.
We define

G = the underlying context free grammar of AG.
X = the type of the inherited attributes (explained in (2, 3)).
Y = the type of the synthesized attributes (explained in (2, 3)).
T —— the set of parse trees for grammar G (explained in OD.
A — the attribute evaluation rules of AG (explained in (5)).
IA1 = the function that, given t E T and z E X , { decorates tree t ac-

cording to rules A when the inherited attribute of the root node of t
is set to z , and } yields as result the synthesized attribute value E Y
of the root node of t; thus (Al : TxX Y . (Explained in (6).)

In this note we construct a catamorphism for AG that is equivalent (equal) to IA1 .
(Neither IA1 nor the catamorphism is intended to yield a parse tree when given an actual
string. However, one can extend any AG to AG' in such a way that (Al (t, z) yields the
fully decorated parse tree; see Example 2.)

Plan We shall proceed as follows.
• First we show that we may assume that A G has a simple form, so that the actual

translation can be formulated without too many indices and the like.

20

• The context free grammar G determines a functor

• Lemma T is a subset of the carrier of the initial F -algebra.

• The attribute evaluation rules A determine a function : (X -4 Y)F (X Y) •

• Theorem tAl l (t ,z) = t z

We assume that we are working in the category Set, or in a Set -like category, like CPO.

Simplification of the attribute grammar For notational simplicity we make the fol-
lowing three assumptions, without loss of generality.

(1) Any terminal a is produced only by rules of the form As a where a in the
right hand side has no attributes. This can be achieved by the addition of auxiliary
nonterminal symbols, say one for each terminal symbol a

(2) Any nonterminal has precisely one inherited and one synthesized attribute. This can
be achieved for any AG by tupling the inherited attributes of each nonterminikl, and
also the synthesized ones. Notice that a tuple may be the empty tuple E 1.

All inherited attributes have one type X say, and all synthesized attributed have
one type Y say. This can be achieved thanks to the following technique. Suppose
we have t3rpes AO • • I AM 1 I BO I • • • Bn_i and f is a function of type A
i B iThen we can define fl : A
o
+ • • • + A
m
_
i + 1
-
4
B O +
•
•
•
- 1 - 1 3 „
1
- 1 - 1
b
y

(
3
)

• • t t —) /uo • • • Vn-1 •

ft = A y ••.v in
li
e
—

— i n j
n
• !
A
i
p

—— i n j
i •
f

!A —— t h e unique fct A -- 1

Function f
1 i s
e q u i
v a l e
n t
t
o
f
i
n
t
h
e
f o
l l
o w
i n
g
s
e
n
s
e
:
f
•
i
n
j
i
=
i
n
j
i
•
/
S
o
,
i
f

the actual attribute types are X0, • • • XIPS-1 and Yo) • • •)
1 r
n - - 1 t h e n w e
c a n t a k e

X = X
0
+ •
•
•
- 1 -
X „
1
- 1 -
1
a
n
d
Y
=
Y
o
+
•
•
•
Y
,
„
1
+
1
,
a
n
d
a
d
a
p
t
A
G
a
c
c
o
r
d
i
n
g
l
y
t
o

AG' with Gs = G and IA'] t • inj
o i n j
o • 1 4 4 1 A t
w h e r e
*
d e n o t e
s
c u r r y i
n g
a n
d
X
o

and Y
o
a r
e
t
h
e
a t
t r
i b
u t
e
t
y
p
e
s
o
f
t
h
e
r
o
o
t
n
o
d
e
.

Construction of the functor Consider an arbitrary production rule of G, say

Here p is just a (unique) label of the rule, and to be very precise we should have subscripted
all the entries in the rule with p Let P be the set of production rule labels of G; in the

21

for i
for =
for any A

sequel we let P be the domain over which p ranges. Rule p determines a functor F
p 1and all rules together determine a functor F and an F -algebra, as follows.

FP — — 1 i f n = land v
o i s t e r m i n a l ;
r e c a l l
(1)

— l x ... xi (n times) o t h e r w i s e . The product is 1 if n = 0 a
F = dn
. , ʻ"
.
"' p : :
F
p

(7
1
1
,
i
n
)
—
t
h
e
/
a
n
1
i
n
i
t
i
a
l

___.e, AA ------- F -algebra
in • inj
p :
n
i
p
•
0
T
1

in vp i n
p
,

for alip
follows from preceding lines

(i is the identity functor, and 1 is the constant functor. Mono-functor F
X G i s d e fi n e d b yz(FxG) = 33F X ZG for any type and function a Similarly, z(Ep :: Fp) = Ep z f
p f o r a n ytype and function z .)

(4) Lemma There exists an embedding from the parse trees of G into (7
11
, i n) .Proof As we have not yet given a definition of (the algebra of) parse trees, we do it here.
A parse tree t for production rule p consists of an indication " node
p
" a n d n (p o s s i b l y
0)

immediate constituents to, 4 _ 1 such that, for all i , t
j i s a p a r s e t r e e
f o r a
p r o d u c t i o n

rule that has vi in its left hand side. Let us use the notation " n o d e
p
(t
o
, . . . , 4 _
1
) " f o r t

Thus "node
s
," i s
m a d
e
i n t
o
a
p a r
t i a
l
o p
e r
a t i
o n
o
f
t
y
p
e
T
"
-
-
t
T
.
I
t
i
s
p
a
r
t
i
a
l
s
i
n
c
e
t
h
e

arguments of operation node
p h a v e t o
s a t i s f y
a
c o n d i t i
o n .

Now derme function e : (7
1
, v p
n o d e
p
) - - - •
(7
1
' ,
v
p
i n
p
)
b
y

e(node
p
(t
o
, ,
t
n
_
1
))
=
i n
p
(e
t o
,
,
e
t
,
„
.
1
)
.
T
h
u
s
e
i
s
a
n
F
-
h
o
m
o
m
o
r
p
h
i
s
m
f
r
o
m
T
t
o

7
1
1
t
h
a
t
h
a
s
a
p
o
s
t
-
i
n
v
e
r
s
e
;
i
t
i
s
a
n
e
m
b
e
d
d
i
n
g
.
(
N
o
t
e
t
h
a
t
6
d
o
e
s
n
o
t
n
e
c
e
s
s
a
r
i
l
y
h
a
v
e
a

pre-inverse, since not every ingto, . . . , t
n
_
l
) E 7
1 1 s a t i s fi e s
n e c e s s a r i l y
t h e
c o n d i t i
o n
t h a
t

each ti has vi in its root. This happens in Example 2.)
In the sequel we identify *node, with lis
p
0Attribute evaluation Consider again production rule p , now provided with the at-

tribute evaluation mks:

P : u v
o • •
• V
n
- 1
w i t
h
(f
,
g
o
)
• • • o
g n -
1) 1

or slightly more suggestive (the A is explained below)

(
5
)
P
:
u
(
A
x
l
.
f
(
x
)
i
i
)
)
-
-
'
•
•
•
v
i
(
g
i
(
z
1
1
1
)
,
A
t
l
i
)
•
a
•

where y abbreviates (y
o
, , y
n
_
l
) ,
a n
a b b r e v i
a t i o n
t h a
t
i
s
v a l
i d
t h r o
u g h
o u t
t
h
e
s e
q u
e l
.

The occurrences ' Az ' and ' Ayi ' are binding occurrences, their scope is the entire rule and
systematic renaming is allowed. This rule says, for a tree t = i n
p
(t
o
, i n w h i c h

every node has been assigned two values (called attributes), that

the second attribute of t = A z , y)
the first attribute of t
i — g i
(z , y)
f o r
a l
l
i

22

where z is the first attribute of t and y
i i s t h e
s e c o n d
a t t r i b u t e
o f t
i
N o w
[A l
i s
d e fi n e
d

to be aithe function such that
(6) [A l (t , z) L e t ti be tree t in which every node has been assigned two

values (called attributes) in such a way that the first attribute
of the root of ti equals z and all subtrees satisfy the above
condition (for the appropriate p). Then yield as result the
second attribute of the root of ts

We assume that AG is such that a IA1 exists; in the proof of Theorem (8) we shall further
narrow the choice for tAl T h e specification implies
(7) 1 A 1 z) = f (z , y) where i - [Al (t
i
, s (z , y)) .
The equation suggests to compute the second attribute of any (sub)tree by "attribute
evaluation" within that (sub)tree; hence this attribute is called synthesized. Similarly,
the equation suggests that the first attribute of any (sub)tree is to be determined by the
context, i.e., by attribute evaluation in the enclosing tree or by the environment in case
the (sub)tree is the entire parse tree; hence this attribute is called inherited. As argued in
assumptions (2, 3), the typing within rule p (5) is: z : X , y r l , : X xY" , and
g
i
:
X
x
Y
"
X

Construction of the catamorphism Attribute grammar rule p (5) determines a func-
tion O
p ,
a n
d
a l
l
r
u l
e
s
t
o
g
e
t
h
e
r
d
e
t
e
r
m
i
n
e
a
f
u
n
c
t
i
o
n
4
,
a
n
d
a
c
a
t
a
m
o
r
p
h
i
s
m
0
)
a
s
f
o
l
l
o
w
s
.

= () t z :: f(z,y) where i y a = th(gi(z, OD possibly n - 0
: - 4 Y r X -Or

(vp / /p)
: (X Y) F -t(X - O r)
: T t (X ---,Y).

Notice that the where-clause defines y by recursion; this corresponds to the potential
circularity in the attribute evaluation when IA] z) is computed as suggested by grammar
rule p (5).
(8) Theorem 1A1(t,z) - t z
The equality holds for all t E r
t n o t o n l y
f o r t
E
T .
T h i s
i s
p o s s i
b l e
t h a n
k s
t
o
o u
r

assumption (2) that any node in a parse tree has precisely two attributes; these have not
been named, and have been referred to as "the first" and "the second" attribute of the
node, in the attribute evaluation rule (6). Also, we have assumed in (3) that all functions
f and gi accept all kinds of values (though they may return a result in the summand
1 for wrong inputs). The theorem could have been formulated as IA1* (0) , where *
denotes the currying operation.
Proof By induction on the structure of C. Suppose t = i n
p
(t
o o , 4 _
1
) (N o t i c e
t h a t

possibly n - 0 so that inp : I -+ (X -4 Y); this covers the so-called base case.) We
calculate

23

(0 t z
____ c a s e assumption on t

04 (in„(t
o
, . . .
, t
n
_
1
))
z

= evaluat ion rule for catamorphisms
Op OM tot • • • t CO t22-1) z

= u n f o l d definition of Op
f(x,y) where i :: yi = (0) ti (g
i
(x , y))

(*) = induct ion hypothesis
f(z,y) where i :: yi = 1 4 4 1 (t
i
, g
i
(z , y))

= a t t r i b u t e evaluation equation (7)
tAl (inp(tot • • - 2 4-1)2 z)

— c a s e assumption on t
1A1 (t, 2) .

In step (*) of the calculation it turns out that the circularity in the attribute evaluation
and the mutual recursion in the definition of #p should be resolved in the same way. For
example, if in the definition of 44, the y
i a r e d e fi n e d
t o b e
t h e
l e a s t
fi x e d
p o i n t
s
o f
t h e

equations i :: yi = Oi(gi(z,y)), then so must specification (6) of IM1 be understood. 0

2 Examples
Linear parse trees Consider the following attribute grammar AG:

p : u (A 2 3 , f y) —0 titqz, Ay).
q : u (A z , hz) —0 .

This is a very simple example since there is no circularity at all. The parse trees are linear.
Attribute evaluation of a tree t of depth n gives un • h • g lz as synthesized attribute
value of the root node when its inherited attribute value is set to z . I n other words,
1A1 (t , 2) — (r • h • 912. Our construction of the previous section gives

F : 1 1 + 1' N
M O = (A z :: fy where y — #(11(2,0)) s o (It
i
, = C g o - + f)
0,0 = (A z :: hz) 8 0
4 = h
.
0 = 4 v Oil 8 0 0 = (g 0 - ' 1)
1
%
1
e

(F1 40 : N --, (X —• Y)
(OP — (g o-t f) • • • • • (g o-, f) i P h = fn • h • gn

where, in the last line, t is assumed to have depth n, i.e., t — (in, • • • • • in, • i n
g
) () .

24

Binary parse trees The following attribute grammar works on binary (parse) trees
with numbers at the tips. The attribute evaluation yields (as synthesized attribute value)
a tree of the same shape as the input parse tree t , having all tip numbers equal to the
minimum tip value in t . This function has been discussed by a number of people, e.g.,
Bird [11, Kuiper and Swierstra [3, 4], Fokkinga [21. We use * as join-operation of trees, [.)
as tip-former, 1 as minimum-operation, and we let a, t vary over trees and k, m,n over
numbers. The type of trees with numbers at the tips is denoted N* . Let us first present
the attribute grammar in the conventional form, i.e., not yet simplified.

p :
d 7 :
Ti :

In rule p we see that the (synthesized) first attribute value of v is specified to be equal
to the (inherited) second attribute value, and in rules q and r we see (by induction) that
the second attribute value of v is specified to be the minimum of the input parse tree. So,
eventually, in the third attribute value of v the required tree is delivered. (Kuiper and
Swierstra [3] need ten lines for this grammar.)

Nonterminal u has no inherited attribute; it may considered to have a "nullary" at-
tribute of type 1. Rather than taking X = 1 + IsT for all inherited attributes, we give u
a dummy inherited attribute of type N ; this avoids the introduction of many injections
and inspections. Also, we give u an extra synthesized attribute, and then tuple the two
synthesized attributes everywhere giving values of type Y = DT x Nog; in order to avoid
many projections we use "parameter matching" at the binding lambdas. Thus we get the
following attribute grammar that satisfies the assumptions (1, 2, 3):

p •
q:
r
i
:The construction of the catamorphism gives now the following.

F
T
1OAS)
0 .16
6
4)
=

On()
0

CO

MIE E M
1

A MOS

• IMME ,

Wm• IM

,
E
•
I
I
P

••

•
•

U(t) —
4 v
(m ,
A
m
,
i
t
)
.

v()k, min, a-H-t) v (k ,)m, As) v(k, An,)it).
v()sk,i, [le]) --0 i.

u(Ak, (m, ID v (m , Mm, ID.
v(Alc,(min, sift)) ---t v(le, A(m,$)) v(k,A(n,t)).
v(Alc,(i, RD) —
4 i s

I I - I -1- (Ei : :1)
the carrier of the initial F -algebra
(Ak :: (m,t) where (n, t) = On)
(Ak :: (min, a-H-t) where (m, a) — Ok, (f t , t) = skk)
Pik :: (i, RD)
O
p
v
O
g
v
(
v
i
:
:
4
4
,
)

(DI .--,, INx1N3OF --+ (Ik1 —p IsbctI*)
T' —4 (N —, isixN*)

25

for all numbers i

for all i

for all i

Notice that, as you can see from the equation for F , T
1 n o t o n l y
c o n t a i n s
b i n a r y
t r e e s
(a s

each parse trees is), but also trees in which a node has just one immediate constituent;
these trees can not result from parsing by the underlying context-free grammar. See also
the discussion just following Theorem (8).

References
[1] R.S. Bird. Using circular programs to eliminate multiple traversals of data. Acta

Informatica, 21:239-250, 1984.

[2] ACM. Fokkinga. Tupling of catamorphisms yields a catamorphism. May 1990. CIVI,
Amsterdam.

[3] M.F. Kuiper and S.D. Swierstra. Using attribute grammars to derive efficient func-
tional programs. I n Computing Science in The Netherlands, pages 39-52, Stichting
Informatica Onderzoek in Nederland, SION, GINVI, Amsterdam, November 1987.

141 M.F. Kuiper. Parallel Attribute Evaluation. PhD thesis, Utrecht University, 1989.

I

26

