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Abstract. As computing and computer networks become more and more inter-
twined with our daily lives, the need to develop flexible and on-the-fly methods
for authenticating people and their devices to each other has become increasingly
pressing. Traditional methods for providing authentication have relied on very
weak assumptions about communication channels, and very strong assumptions
about secrecy and the availability of trusted authorities.The resulting protocols
rely on infrastructures such as shared secrets and public key hierarchies that are
too rigid to support the type of flexible ad-hoc communication we are growing
accustomed to and beginning to rely upon.
Recently, different families of protocols allow us to weaken assumptions about
trusted infrastructure by strengthening the assumptions about communication chan-
nels. Examples include proximity verification protocols, that rely, for example, on
the round trip time of a challenge and response; and bootstrapping protocols that
rely upon human-verifiable channels, that is, low-bandwidth communication be-
tween humans. The problem now becomes:How do we ensure that the protocols
are achieve their security goals?A vast amount of literature exists on the formal
analysis of cryptographic protocols, and mathematical foundations of protocol
correctness, but almost all of it relies upon the standard assumptions about the
channels in end-to-end, and so its usefulness for nonstandard channels in per-
vasive networks is limited. In this paper, we present some initial results of an
effort towards a formalizing the reasoning about the security of protocols over
nonstandard channels.

1 Introduction

Pervasive computing has become a reality. We have long been used to the idea that
computers are everywhere, and that we interact with multiple devices that can interact
with each other and with the Internet. But there is another important aspect of pervasive
computing. Not only has the concept of a computer and a computer network changed,
but the notion of a communication channel is changing as well. Wireless channels, of
course, have been a common part of computer networks for sometime. Quantum chan-
nels are appearing on the horizon. But what is really interesting is the way the nature
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of the information sent along these channels is changing. Information is no longer re-
stricted to input typed in by users, but includes environmental information gathered by
the network itself, including location, biometric information, and weather and motion
data picked up by sensors.

These new concepts of channels have also resulted in new methods for authentica-
tion. The old mantra of “who you are, what you know, and what you have,” has been
extended to include concepts such as “where you are” (verification of location and/or
proximity), ”what you are” (use of techniques such as CAPTCHAs to verify that the en-
tity on the other end is a human being [2]) and “what you see” (use of human-verifiable
channels to boot strap secure communication, as in [20, 29]).

An important thing to note is that these new methods of authentication do not ex-
ist on their own. They are typically integrated with more traditional authentication and
key exchange protocols that use more conventional channels. This is partly because
the new channels may have particular properties that make them less practical to use
than conventional channels except when absolutely necessary. Human-verifiable chan-
nels are limited in bandwidth. Channels used to implement proximity verification and
CAPTCHAs rely on strict timing properties. And even when thenew channels do not
have these limitations, it will be necessary to integrate them with standard channels so
they can be used to interface with traditional systems.

When integrating specialized channels with traditional channels for authentication,
one is usually faced with a number of choices. One needs to choose when to use the
specialized channel, what information to send on the specialized channel, and what
information to send on the conventional channel. Differentchoices can have different
effects on the security, applicability, and efficiency of anauthentication protocol.

In this paper we introduce a system for reasoning about authentication using multi-
ple types of channels with different types of properties. The system consists consists of
two parts. The first is a graphical language for displaying cryptographic protocols that
use different types of channels. This is based closely on theusual graphical methods
for representing secure protocols. The second is a logic forreasoning about the secu-
rity of authentication protocols that use different types of channels. This logic is an
extension of the Protocol Derivation logic described in [6,22]. Both language and logic
are intended to be used to reason about, not only individual protocols, but families of
protocols, in order to help us identify and reason about tradeoffs.

Outline of the paper. In Section 2 we discuss the problem of modeling pervasive se-
curity protocols. In Section 3 we describe the introductionof channel axioms into the
Protocol Derivation Logic. In Section 4 we introduce the problem of distance and prox-
imity bounding, provide axioms for channels, and discuss how it they can be reasoned
about in PDL. In Section 5 we provide a similar discussion of human-verifiable authen-
tication via social channels. In Section 6 we conclude the paper and discuss plans for
future work.



2 Modeling pervasive security protocols

A protocol is a distributed computational process, given with a set of desired runs, or
the properties that the desired runs should satisfy. To prove security of a protocol we
usually demonstrate that only the desired runs are possible, or that the undesired runs
can be detected through participants’ local observations.

Security protocols are thus naturally modeled formally within a process calculus,
as in [22]. In order to model security protocols in pervasivenetworks, we extend the
process model from [22], used for analyzing security protocols in cyber networks. The
main complication is that in this previous work, as in most work in the analysis of
security protocols, the network itself was kept implicit inthe process model, because
every two nodes can be assumed to be linked, without loss of generality. The network
infrastructure provides for that. More precisely, the network infrastructure provides the
service of routing and relaying the messages, and hides the actual routes and relays
(unless they change the messages, in which case they are considered to be attackers).
From user’s point of view, it looks like the messages are delivered directly from the
sender to the receiver, and the network infrastructure is abstracted away.

In a pervasive network, the assumption that there is a link between every two nodes
is not justified: some devices have a range, some have access to one type of channels,
some to other type of channels, and they may not have any direct, or even indirect links
to connect them. To express this, we must make the network explicit.

Moreover, the toolkit of security primitives and security tokens, available to estab-
lish secure communication, is essentially richer in pervasive networks.

2.1 Principals and security tokens

Principals are the computational agents that control one ormore network nodes, where
they can send and receive messages. A principal can only observe (and use in his rea-
soning) the events that happen at his own network nodes.3

Security tokens are the data used by the principals to realize secure communication.
Informally, security tokens are usually divided in three groups:

– something you know: digital keys, passwords, and other secrets4

– something you have: physical keys and locks, smart cards, tamper-resistant devices,
or

– something you are: biometric properties, e.g. fingerprints, or written signatures,
assumed to be unforgeable

The difference between these three types of security tokenslies in the extent to which
they can be shared with others:

– what you know can be copied and sent to others,

3 We shall model his observations of the actions of others as messages of special kind, i.e.
received over thesocial channels.

4 i.e., data distributed to some principals and not to the others; data known to all are not very
useful as security tokens



– what you have cannot be copied in general, but can be given away, whereas
– who you are cannot be copied, or given away.

Standard end-to-end security is in principle realized entirely by means of cryptographic
software, and the principals only use the various kinds of secrets. This means thata
principal can be identified with the list of secrets that she knows. If Alice and Bob share
all their secrets, then there is no way to distinguish them bythe challenges that can be
issued on a standard network5. For all purposes, they must be considered as the same
principal.

In pervasive networks, on the other hand, security is also supported by cryptographic
hardware: besides the secrets, a principal is also suppliedwith somesecurity devices.
They are represented as some of the network nodes, given to the principals to control.
A dishonest principal (or an honest certificate authority) can relinquish control of a
security device, and give it to another principal.

To capture the third and the strongest kind of security tokens, and distinguish the
principals by who they are, we need somebiometric devices. They are represented as
network nodes. Principals’ biometric properties, on the other hand, are represented as
some of the network nodes as well, available to respond to thechallenges from the
biometric devices. The only difference of a biometric property p from the other network
nodes given to a principalA to control is thatp always remains underA’s control,
and cannot be given away to another principal. We call the networks equipped with
biometric devices and biometric properties — biometric networks.

2.2 Modeling networks

In modeling security, principals can be identified with their security tokens, since se-
curity tokens are the material that security is built from. Summarizing the preceding
section, we can say that

– in end-to-end networks (or cyber-networks), the only security tokens are the secrets,
and the principals are reduced towhat they know;

– in pervasive networks, the security tokens also include some security devices, and
the principals are identified not just by what they know, but also bywhat they have;

– in biometric networks, the security tokens furthermore include some biometric
properties, and the corresponding biometric devices, needed to test them; the prin-
cipals are identified not just by what they know, or what they have, but now we take
into accountwho they are.

Communication networks. A communication networkconsists of

network graph N , consisting of a set of nodesN, a set of linksL, and a source-
target assignment〈δ,ρ〉 : L N×N, inducing the matrix representationN =
(Nmn)N×N with the entriesNmn= 〈δ,ρ〉−1(m,n) for m,n∈ N,

5 We assume that they share the secrets dynamically: if a new one is sent to one, it will imme-
diately be shared with the other. This implies that they alsoobserve the events on the same set
of network nodes.



channel types C , and the type assignmentθ : L C ,
set of principals (or agents)A , partially ordered by the subprincipal relation6,6.
control c© : A ℘N, such that (1), and often also (2) is satisfied:

A6 B =⇒ c©A⊆ c©B (1)

A 66 B∧A 6> B =⇒ c©A∩ c©B= /0 (2)

Remark.In a cyber network, the end-to-end assumption, that all security is done at the
”ends” and any route ”in-between” is as good as any other route implies that the network
service can be reduced to an assumption that there is a singlelink between every two
nodes, i.e.Nmn= 1 for all m andn. Moreover,C = 1, i.e. all channels are of the same
type, insecure. So the only nontrivial part of the structureis c© : A ℘N. But
controlling one network node or controlling another one makes no difference, because
a message can always be sent from everywhere to everywhere. So the only part of the
above definition visible in the process model needed for cyber security is the posetA .

Cyber networks: principals are what they know. The fact that the principals can
be identified with the lists of secrets that they know is represented by an inclusion
Γ : A T ∗, which we callenvironment. However, since a principal may learn new
secrets when a process is run (or during a protocol execution), her environment may
grow: at each stateσ, she may have a different environmentΓσA such that for ev-
ery transition σ1 σ2 holdsΓσ1A ⊆ Γσ2A. During a protocol execution, different
principals may thus become indistinguishable if they learneach other’s secrets, since
ΓA = ΓB ⇒ A = B. This means that the set of principalsA may also vary from state
to state in the execution: there is a familyAσ, with the surjectionsAσ1 Aσ2 for
every transitionσ1 σ2 , induced by identifying the principals that become indis-
tinguishable.

In the cyber network model, a principal may have a number of internal actions
involving creating nonces, incrementing counters, etc. But the principal has only three
types of external actions: send, receive, and match. In the last, the principal matches
received data with what he or she is expecting. In some models, receive and match are
identified.

Pervasive networks: principals are what they have.A pervasive networkis obtained
by distinguishing, within a cyber network as defined above, aset of mobile nodes (i.e.
security devices)̃N, from the fixed nodesN, so thatN = Ñ+N.

Besides the send, receive, and match actions, the process calculus now has two new
kinds of actions, which allow each principal to:

– move a mobile node under his control, and reconnect it elsewhere in the network;
– pass control of a mobile node to another principal.

This means that the network connections and controls of the mobile nodes can dynam-
ically change during a process run.

6 Briefly, A is asubprincipalof B is A “speaks for”B in the sense of [1, 14] or “acts for”B in
the sense of [19]



Biometric networks: principals are what they are. A biometric networkis obtained
by distinguishing, among the nodes of a pervasive network asdefined above, two more
sets

– Br ⊆ Ñ of biometric properties, and
– Bc ⊆ N of biometric verifiers.

The intended interpretation of these two sets of nodes is implemented by ther require-
ment that:

– control of the elements ofBr cannot be passed to another principal,
– the elements ofBc are related with the elements ofBr , so that the former can issue

biometric challenges to the latter.

2.3 Message delivery modes

The main source of the new security phenomena in pervasive network is the fact that
different types of channels have different message delivery modes.

In cyber networks, a message is usually in the formA to B : m, whereA is the
claimed sender,B the purported receiver, andm the message payload. As explained
before, the network service is implicit in this model, so that A andB refer both to the
principals and to the network nodes that they control. All three message fields can be
read, intercepted, and substituted by the attacker. The point of the end-to-end security is
that the receiver can still extract some assurances, even from a spoofable message, be-
cause the various cryptographic forms ofm limit attacker’s capabilities. Moreover, this
message form is an abstract presentation of the fact that themessage delivery service
provided by the network and the transportation layers, say of the Internet.

In pervasive networks, different channel types provide different message delivery
services. In general, there is no universal name or address space, listing all nodes. An-
notating all messages by sender’s and receiver’s identities thus makes no sense, and the
principal’s identities are added to the payload when that information is needed.

There may be no link between two nodes, and no way to send a message from one
to the other. On the other hand, a message can be delivered directly, e.g. when a smart
card is inserted into a reader, without either of the principals controlling the card and
the reader knowing each other.

The different message delivery modes determine the different security guarantees
of the various channel types.

3 Templates and Logics

3.1 Templates

In this section we give an introduction to the use of templates and logics.
A templateis a graphical specification of the desired behavior of a protocol that can

be filled in with a number of actual protocol specifications. Atemplate begins by de-
scribing the different types of channels available betweenprincipals. This is done sim-
ply by drawing a line indicating a channel between two principals that share the channel.



Different types of lines indicate different types of channels. Messages passed between
principals along a channel are indicated by arrows between principals corresponding to
the channel type. Internal transitions are indicated by arrows from a principal to itself.

For example, the following template gives a common situation in which Alice gen-
erates a nonce (νx), and sends a cryptographic challengecABx containingx to Bob, after
which Bob sends a responserABx to Alice. Note at this point we give no details about
the operationscAB andrAB.

A B

m n

◦

νx

◦
cABx

◦

◦ ◦
rABx

Fig. 1: Challenge-Response Template

What we would like to say, of course, is if that Alice createsxand sendscABx to Bob,
and subsequently receivesrABx, she knows that Bob sentrABx after receivingcABx. The
Protocol Derivation Logic we describe below will give us a way of stating and proving
this requirement.

3.2 Protocol Derivation Logic (PDL)

PDL Syntax. PDL is a descendant of an early version of the Compositional Proto-
col Logic (CPL) [9] and has certain of its axioms in common with it. Like CPL, it is
intended to be used to prove security of protocols without explicitly specifying the be-
havior of the attacker. Unlike CPL, it is a logic about authentication only, although it
can be interfaced with a companion secrecy logic [22] when itis necessary to reason
about secrecy. In PDL principals are partially ordered setswhereA⊂ B (A is asubprin-
cipal of B) if A “speaks for” B in the sense of [1, 14] or “acts for”B in the sense of
[19]. The logic makes use of cryptographic functions that only certain principals can
compute; thus keys do not need to appear explicitly unless weare reasoning about key
distribution.

In PDL principals exchange messages constructed using a term algebra consisting of
constants, variables, and function symbols. The term algebra may obey an equational
theoryE, or it may be a free algebra. The constants and variables usedin the term
algebra may or may not obey a type system which is specified by the protocol writer.

We consider a protocol as a partially ordered set of actions,as in Lamport [13],
in which a< b means that actiona occurs before actionb. We let(t)A denotet being



received byA, 〈t〉A denote a message being received byA. We let 〈t〉A< wheret =
f (x1, · · · ,xn) denoteA creatingt by applying the functionf to the argumentsx1, · · · ,xn

and then sending it ; thus this is the first timeA sendst. We letx≺ y denote the statement
“if an action of the formy occurs, then an action of the formx must have occurred
previously.” We letν. n denote the generation of a fresh, unpredictable nonce,n, and
(µ. n)A denote the generation of some arbitrary termn thatA has never generated before.
We think of ν andµ as acting a binders and write them as such. Finally, we letA : S
denoteA knowsS, andHA to denote that fact thatA is an honest principal following the
rules of the protocol.

We let〈〈s〉〉A denoteA sending a message that was computed usings. We let((s))A

denoteA receiving a message that was computed usings. Finally, we let〈〈s〉〉A〈
denote

A’s computings for the first time (that is, the first time forA) and sending it in a message.
We use certain syntatic subterm conventions to determine ifa term was used to

compute a message. Suppose that〈m〉A or (m)Ais an event. We use the convention that
if s occurs as a subterm ofm thens could have been used to computem. We conclude
thats musthave been used to computem is for all legal substitutionsσ to the variables
in m, and for ally=E σm, sappears as a subterm ofy. 7

We define a legal substitution as follows:

Definition 3.1. Let P be a protocol specification, together with a type system T. Let R
be an description of a run inP where R is a set of PDL events partially ordered by the
< relation. We say that a substitutionσ to the free variables in R islegalif

1. If a type system has been specified, then for any variable v in R,σR is well-typed,
and the type ofσv is a subtype of the type of v, and;

2. The runσR does not disobey any PDL axioms when s a subterm of event(x)Vor
〈x〉V occurring in R is interpreted as((s))V or 〈〈s〉〉V , respectively.

To give an example, consider the run

(νx)B.(z)A < 〈x〉B<

The substitutionσz= x is not legal, since it would violate the PDL axiom (which we
will present later) that says that a fresh variable can’t be sent or received until if is sent
for the first time by its creator.

In the case in which the term algebra is a free algebra, we conclude that, for any
messagem sent or received,s is a subterm ofm means thats must have been used to
computem. For other term algebras obeying some equational theory, this may not be
the case. Consider the following:

〈x〉A < (x⊕y)A

where⊕ stands for exclusive-or with the usual cancellation propertiesx⊕x= 0,x⊕0=
x. It is easy to see that ifσy= x⊕ zwe get

7 Note that the convention used here is a little different fromthat used in [16] in which the
interpretation in terms of legal substitutions was only used for received messages.



〈x〉A < (z)A

so thatx was not necessarily used to compute the message thatA received.
In [16], we develop a syntactical means of checking, for the basic PDL axioms,

whether or not a message was created was created using a termx, where the term algebra
in question is the free algebra augmented by exclusive-or.

PDL Axioms. PDL axioms are of three types. The first type describe basic properties
of the communication medium. These are standard axioms thatdo not change; the main
innovation of the work we describe in this paper is that we will be introducing new
channel axioms for different types of channels. The second type describes the properties
of the cryptosystems used by the protocols; these need to be augmented whenever a new
type of cryptosystem is used. The third type describes the actions of honest principals
in a protocol run. These, of course, are different for each protocol.

The basic channel axioms are as follows:
The receive axiom says that everything that is received musthave been originated

by someone:

A : ((m))A ⇒ ∃X. 〈〈m〉〉X< < ((m))A (rcv)

Thenew axiom describes the behavior of theν operator.

(νn)B∧ (aA = ((n))A∨〈〈n〉〉A)⇒ (νn)B < aA (new)

∧ (A 6= B⇒ (νn)B < 〈〈n〉〉B < ((n))A ≤ aA))

whereFV(a) denotes the free variables ofa. Thus, any eventa involving a fresh term
must occur after the term is generated, and if the principalA engaging in the event is
not the originator of the termB , then a send event byB involving n and a receive event
by A involving n must have occurred between the create anda events.

An example of an axiom describing the properties of a cryptographic function, is
the following, describing the behavior of pubic key signature.

〈〈SA(t)〉〉X< =⇒ X = A (sig)

This simply says that, if a principalX signs a termt with A’s digital signature and sends
it in a message, thenX must beA.

An example of a protocol specification isA’s role in the challenge-response proto-
col:

HA=⇒ (νx)A.〈〈c
ABx〉〉A

In other words, ifA is honest she creates a fresh valuex and sends it in a challenge.
We are now able to express the Challenge-Response requirements template that we

expressed in graphical form in Section 3.1 in PDL as follows:



A : (νx)A. 〈〈cABx〉〉A < ((rABx))A
=⇒ 〈〈cABx〉〉A < ((cABx))B < 〈〈rABx〉〉B< < ((rABx))A

(cr)

We consider it a proof obligation that will be discharged in PDL.
Suppose that we instantiatecAB with the identity andrAB with SIGB. Then we can

prove the challenge-response axiom in the following way.

1. We start out with whatA observes:A : (νx)A. 〈x〉A< < (SB(x))A

2. Applying thercv axiom, we obtainA : ∃Q. 〈〈SB(x)〉〉Q < (SB(x))A

3. Applying thenew axiom, we obtainA : ((νx))A. ∃Q. 〈x〉A< < ((x))Q < 〈〈SB(x)〉〉Q〈
<

(SB(x))A.
4. Applying thesig axiom, we obtainq= B, and we are done.

For the purposes of analyzing protocols that use different types of channels, we will
need a means of specifying which channels we are using. Thus we extend PDL with a
channel notation. We denote send actions taken along a channel κ as〈a : κ〉 and receive
actions taken alongκ as(a : κ). When no channel is specified we assume that standard
cyber channel that obeys only thercv andnew axioms is being used.

4 Timed channel protocols

4.1 Proximity authentication

Our assumptions about cyber channels are very basic: 1) if a message is received it
must have been sent by somebody, and 2) a few simple assumptions about the ordering
of actions involving nonces. However, there are many cases where that is not enough.
We consider for example the authentication problem in Section 3.1 as it might arise in
a pervasive setting. In a pervasive network, Alice is, say, agate keeper that controls a
smart card readerm, which is a network node. Bob arrives at the gate with his smart
cardn, and creates a network link betweenm andn. Alice may not know Bob, but she
is ready to authenticate any principalX who arrives at the gate, and links his smart
cardx to the readerm. She will allow access to anyone whose credentials are on her
authorization list. Authentication with a fresh nonce bound to the secret credentials
is necessary to prevent replay. ThisGate KeeperChallenge-Response template extends
Fig. 1 by one prior step, where Bob identifies himself to Aliceby sending his name. The
point of discussing this very simple scenario is to emphasize therole of the network link
in the authentication. The goal of the authentication is to assure that

– (a) Bob is authorized to enter, and
– (p) he is at the gate.

While the authorization requirement (a) is emphasized, theproximity requirement (p)
must not be ignored. If it is not satisfied, then an intruder Ivan may impersonate Bob.
Ivan needs to control a smart card readerm′ at another gate, where real Bob wants to
enter; and he needs to establish a radio link between the cardreaderm′ and a smart card
n′, with which he himself arrives at Alice’s gate.



A I I B

m n′ m′ n

◦

νx

◦
B

◦
B

◦
B

◦
A,cABx

◦
A,cABx

◦
A,cABx

◦

◦ ◦
rABx

◦
rABx

◦
rABx

Fig. 2: Attack on Gate Keeper Protocol

In a cyber network (assuming that the radio link betweenm′ andn′ is realized as
an ordinary network link), this would be a correct protocol run: Ivan is only relaying
the messages. Indeed, Bob’s and Alice’s records of the conversation coincide, and the
matching conversation definition of authenticity is satisfied.

In a pervasive network gate keeper model, the above protocolrun is considered as
a Man-in-the-Middle attack: although unchanged, the messages are relayed through the
nodes under control of a non-participant Ivan. This would allow Ivan to impersonate
Bob and enter Alice’s facility unauthorized. These attacks, by the way, are not hypo-
thetical; for example they have been demonstrated by Tippenhauer et al. in [27], in
which location spoofing attacks on iPods and iPhones are implemented.

This example shows why pervasive networks require strongerauthentication re-
quirements than those routinely used in cyber security. Thestrengthening requires ver-
ifying not just that the principal Bob has sent the response,but also that he has sent it
directly from a neighboring network node. This is theproximity requirement. It arises
from taking the network into account, as an explicit security concern.

One way to verify whether a proximity requirement is satisfied is to use timed chan-
nels in distance bounding protocols. That is, if we can measure the time between the
sending of a challenge and the receipt of the response, and weknow the speed at which
the signal travels, we can use this information to estimate the distance between two
devices. The trick is to do this in a secure way.

4.2 Proximity verification by timing

Timed channels. We model a timed channel simply as a channel that allows the sender
to time the message it sends and receives. More precisely, the difference between the
timed channel and the standard channel is that

– the send and receive times can be measured only on the timed channel,
– the purported sender and receiver are a part of every messageonly on the standard

channel.



Timed challenge-response.The main assumption about the timed channels is that the
messages travel at a constant speedc, and that the length of network links is approxi-
matelyd, say at mostd+ε. By measuring the timet that it takes to a messagex to arrive
from a nodem to a noden, one can verify whetherx has travelled through a direct link
by making sure thatct ≤ d+ε. If Victor is the owner of the nodemand Peggy owns the
noden, then Peggy can prove to Victor that she is in the neighborhood by very quickly
responding tox, say by f x. If Victor sendsx at timeτ0 and receivesf x at timeτ1, then
he needs to verify thatc(τ1 − τ0) ≤ 2(d+ ε)+ θ, whereθ is the time that Peggy may
need to generate and sendf x.

Thetimed challenge-responsetemplate, capturing this idea, looks like this:

V P

m n

◦

νx

•
x
τ0

◦

• ◦
f x

τ1

Fig. 3: Timed Challenge-Response Template

where the principals are nowV (Victor the Verifier) andP (Peggy the Prover).
An action along a timed channel is calledtimedif the principal performing it notes

the time (on its local clock) at which it was performed,untimedif the principal does
not. A timed actiona performed by a principalN is denoted byτia, wherea is an
action andτi denotes the time at whichN performed the action. The taking of the time
measurement in the diagram is noted by a bullet• under the name of the principal
performing the action. Intuitively, this template says that after sending a fresh valuex
at timeτ0 and receivingf x at timeτ1, Victor knows that there is someone within the
range of at mostc2(τ1 − τ0). This template can be interpreted as a specification of the
security property of the functionf .

We make a comment here about implementation of timed challenge and response.
For example, consider the case wheref is the identity. Peggy can start responding to
Victor as soon as she receives the first bit ofx. Depending on the degree of accuracy
needed, this can give Peggy a considerable advantage. Thus,unless Peggy is a trusted
principal who will wait until she receives the entire nonce,it is advisable to use a bit-by-
bit challenge and response, where the chance of Peggy guessing the correct bit response
is bounded above by a constant. We can then choosex large enough so that the chance
of Peggy cheating without being detected is negligible. A more thorough discussion of



bit-by-bit challenge and response and the security issues involved in implementing it
are found in [7]. In this paper we abstract away from these issues and make the notation
< stand for both the conventional and bit-by-bit notions of precedes.

Specifying timed channels in PDL. PDL has already been used to analyze distance
bounding protocols in [16], for which we defined a timestamp function and some ax-
ioms governing it. However, this had the disadvantage that we could not specify in
a natural way the actions for which timestamps were or were not defined. Moreover,
specifying axioms in terms of which channels they apply to allows us to structure our
specifications in a more modular way, in keeping with the spirit in which PDL was de-
veloped. In this section we describe how to do this, using a timestamp function similar
in construction to the one used in [16]. However, in this casethe function is used to
describe properties of the channel.

An eventa taking place along a timed channel is denoted byτia, whereτi is a real
number denoting the time at which the event takes place. Since recording of time can
only take place on timed channels, and axioms involving timed channels involve time-
recorded events only, we do not need any timed channel identifier. We have one axiom,
saying that local times increase:

τ0aA < τ1bA =⇒ τ0 < τ1 (inc)

We also use the following definition of distance:

Definition 4.1. Let A and B be two principals. We define thedistancebetween A and B,
or d(A,B) to the minimumτ of all possible(τ0− τ2)/2 such that the following occurs:

(νn)A. (νm)B. τ0〈〈n〉〉A< < ((n))B < 〈〈m〉〉B< < τ1 ((m)) A

The inc axiom guarantees that this is well-defined.

Security goals of proximity authentication. The task is now to design and analyze
protocols that validate theproximity challenge-response template, which is the timed
challenge-response template augmented with a conclusion about time and distance. It
is expressed in PDL as follows:

V : (νx)V . 0〈x〉V < δ( fVPx)V
=⇒ 0〈x〉V < (x)P < 〈 fVPx〉〉P< < ( fVPx))P < δ( fVPx)V ∧ d(V,P)≤ δ (crp)

The (crp) template says that, ifV creates a nonce, and sends it along the timed
channel at time 0, and then receives a response at timeδ, thenP must have received the
challenge afterV sent it and then sent the response beforeV received it. Moreover, the
distance betweenV andP is less than or equal toδ.



4.3 Distance bounding protocols

The simplest way to achieve our goal is to combine the cryptographic challenge-response
from Fig. 1 with the timed challenge-response from Fig. 3. The authentication reason-
ing will then follow from the templates(cr) and (crp), takingcVPx = x in the former,
sending both challenges together. The only part of the cryptographic challenge sent on
the standard channel that is not sent on the timed channel arethe purported sender and
receiver. So they need to exchange some messages on the standard channel, to tell each
other who they are.

Cryptographic response to a challenge usually takes time tocompute. This means
that it either (1) needs to be sent separately from the timed response, or (2) that it must
be very quickly computable, as a function of the challenge. These two possible design
choices subdivide distance bounding protocol in two families: those with two responses,
and those with one response.

The easiest approach, from a design point of view, is to use two responses, since this
allows one to avoid the challenging task of developing a function that both provides the
necessary security and is fast to compute. However, in orderto accomplish this the two
responses must be linked together securely.

The approach of using two responses is that followed by the original distance bound-
ing protocol of Brands and Chaum [3]. There, the response sent on the timed channel is
the exclusive-or of the prover’s nonce with the verifier’s, sent as a sequence of one-bit
challenge-response pairs. The response sent on the conventional channel is the digital
signature on the two nonces. The binding message is a commitment (e.g. a one-way
hash function) that the prover computes over its nonce, and sends to the verifier be-
fore the responder . IňCapkun-Hubaux [5] the binding function is the same, the timed
challenge and response is a single exchange of nonces, and the response sent on the con-
ventional channel is a hash taken over the nonces. In Meadowset al. [16] the response
sent over the timed channel is a one-way hash function taken over the prover’s name
and nonce, exclusive-ored with the verifier’s nonces. This combination of commitment
with timed response reduces the message complexity of the protocol.

Hancke and Kuhn [16], who developed their protocol independently of Brands and
Chaum, take the approach of using just one response. They do that by using a function
⊞ which is quick to compute, but for which it not possible for a principal who has seen
x⊞ y for only one value ofx to computey. This is obviously impractical to use ify is a
secret key shared between verifier and prover, so instead prover and verifier use a keyed
hash computed over a fresh values and a counter exchanged earlier in the protocol.

A detailed formal analysis of Hancke and Kuhn’s distance bounding protocol has
been presented in [24]. A sketch of a PDL analysis of the Brands-Chaum protocol is
given in [23]8

5 Social channel protocols

Social channels arise from the fact that many pervasive devices, such as cellular phones,
PDAs, and laptop computers, use their humans not only to promulgate in space, but

8 The details of these analyses were written after the workshop version of the present paper was
completed.



also to exchange information. For instance, a great part of the initial address books
on many devices is usually received through this channel: a human manually enters
some addresses of other devices. The devices often use theirhumans to exchange short
messages.

5.1 A timed social protocol that we all use

Often, an address received through a human channel is authenticated using a timed
channel: one device sends a message to the other one through anetwork channel, as-
sumed to have some minimal speed, and then it observes through the human channel
whether the message is received by the other device within a reasonable amount of time.
This protocol can be interpreted asbinding a challenge sent on a timed channel with
a response on a human channel. This binding is assured by the human observing the
caller’s number on the receiver’s device. The run is thus as on Fig. 4 where the notation

A B

m n

•
x
τ0

◦

⊙ (x)τ1

Fig. 4: Toy example

b τ ⊙ means that the⊙-sideseesthe other side perform the actionb at timeτ. In

this caseA seesB performb = (m), i.e. he receivesm. This message may be justA’s
own identifier. Althoughm thus may not be fresh, if the waiting timeτ1− τ0 is suffi-
ciently small, the chance that the message thatB receives is not the same message that
A has sent is assumed to be negligible.

5.2 Formalizing social channels

The non-local observations through social channels have deep repercussions on the
problems of authentication. As pointed out in the beginning, the source of the prob-
lem of authentication in computer networks arises from the fact that all observations
are local: a computer Alice can only observe her own actions (among which are the ac-
tions of sending and receiving messages). However, a mobilephone Alice can ascertain
that another mobile phone Bob has received her message, if their humans are standing
next to each other, observing both devices. The other way around, the mobile phone



Bob can ascertain that Alice has sent that message, because Bob’s human has seen the
message on Alice’s screen, and Alice’s human pushing the send button. Moreover, be-
sides observing each other’s actions, Alice and Bob can alsosend and receive brief
messages through their humans, which are considered authentic because the humans
observe each other.

Formally, we consider social actions in the form

⋖B to A : ϑ⋗

which intuitively mean that Bob displays a term or an actionϑ for Alice to see. We
attempt to capture this intended meaning by the following axioms

⋖B to A : β⋗ =⇒ A : βB (sc1)

⋖B to A : β⋗ ⊲ ⋖C to A : γ⋗ =⇒ A : βB⊲ γC (sc2)

⋖B to A : β(t)⋗∨⋖B to A : t⋗ =⇒ σt ∈ ΓA (sc3)

∀T ∈ Θ∀t ∈ T∃u∈ T. u 6= t ∧ σu= σt (sc4)

which should be read as follows:

– (sc1) If A observes the actionβB, then she knows thatβB really occurred.
– (sc2) If A observes the actionβB beforeγC, then she knows thatβB occurred before

γC.
– (sc3) If A observes an action with a termt, or is shown the termt itself, thenA

knows the digestσt.
– (sc4) For every sufficiently large set of termsT, and everyt ∈ T it is feasible to find

a different termu∈ T with the same digestsσt = σu.

Intuitively, the prefixσ can be construed as a short hash function, leading to many colli-
sions. Still more concretely, in the above scenario with mobile devices, this corresponds
to the fact that Alice’s human sees Bob’s human receive a message, but if the message
is long, he can only see a part that fits on Bob’s screen; if the message is numeric, he
can only discern a couple of digits. Therefore, many messages look the same, and the
message that Bob has received may not be the one that Alice hadsent after all.

The task is to design protocols to bootstrap authenticationusing these low band-
width fully authentic social channels.

Graphic notation.In protocol diagrams, we use the following graphic elements:

– βB ⊙A represent⋖B to A : β⋗

– βB
σt

⊙A represents⋖B to A : β(t)⋗

– ◦B
σt

⊙A represents⋖B to A : t⋗

The annotations byσ can be omitted, since they are redundant. Yet it is may be useful,
at least in the initial derivations, to keep a reminder that all social communication is low
bandwidth, and shold be viewed as digested through a short hash functionσ.



5.3 Socially authenticated key establishment

We begin from one of the simplest protocol tasks: Bob announces his public keye
(or an arbitrary message) on the standard channel, and his human displays a digest on
the social channel to authenticate it. The two announcements can be made in either
order, as on Fig. 5. Both cases are open to a Man-in-the-Middle (MitM) attack. The

A B

m n

⊙ ◦
σ(e,B)

◦ ◦
e,B

A B

m n

◦ ◦
e,B

⊙ ◦
σ(e,B)

Fig. 5: Low and high bandwidth announcements

problem is that, by axiom (sc4), the Intruder can easily find apublic/private key pair
(ĕ, d̆) such thatσ(ĕ,B) = σ(e,B). As always, the Intruder is also assumed to be in
control of the standard channel. So in the first case, he can find (ĕ, d̆) such thatσ(ĕ,B) =
σ(e,B), and replace Bob’s announcement ofe,B by ĕ,B. In the second case, the Intruder
needs to intercept and hold Bob’s announcement ofe,B, computeσ(e,B), find (ĕ, d̆) as
above, announce ˘e,B in Bob’s name, and wait for Bob’s human to announce the digest
σ(e,B) =σ(ĕ,B). In both cases, the Intruder ends up with the keyd̆ to read the messages
sent to Bob, and Bob cannot read them.

Social commitment. The MitM attack on the social channel authentication can be
prevented in the same way as in the case of timed channel authentication: by binding
the communications on the two channel types. For this purpose, Bob generates a fresh
nonce, to be included in the social digest. The value of this nonce is publicly announced
only after of the key, so that the Intruder, at the time when the key is announced, cannot
know what the value of the digest will be, and cannot look for the collisions. On the
other hand, in order to bind this nonce to the key (and to the protocol session, in order
to prevent confusion), the nonce needs to becommittedfrom the beginning, and, of
course, decommitted in time to verify this binding. The two abstract templates from
Fig. 5 thus refine to Fig. 6.

Authentication before decommitment. A particularly simple instance of the template
on the left has been discussed by Hoepman [11]. The noncey is also used as the private
key, corresponding to the public keye= gy. He takes the simple commitment schema
wherectx= Hx is just a sufficiently strong hash function, whereas the decommitment
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m n

◦

νy

◦ ◦
e, ct(e::y)

⊙ ◦
σ(e::y)

◦ ◦
dt(e::y)

A B

m n

◦

νy

◦ ◦
e, ct(e::y)

◦ ◦
dt(e::y)

⊙ ◦
σ(e::y)

Fig. 6: Authentication before and after decommitment
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◦

νy

◦ ◦
H(gy)

⊙ ◦
σ(gy)

◦ ◦
gy

Fig. 7: The template for Hoepman’s protocol



is simplydtx= x. The protocol boils down to Fig. 7. Of course, the main point of the
Diffie-Helman exchange it to get a shared keygxy by composing the above protocol with
its mirror image, where Alice generatesx and announcesgx. Hoepman also considers a
final key validation phase. There are interesting possibilities to employ social channel
here as well.

Authentication after decommitment. The problem with the template on the right
hand side in Fig. 6 the is that the Intruder can simply hold thecommitment message
until the decommitment is sent, and then proceed with the MitM attack as before. To
prevent this, we need to introduce a message from Alice at thedotted lines, confirming
that the commitment is received. Note that this message needs to be authenticated as
well: if the Intruder can fake it, he can get the decommitmentfrom Bob, and again
launch his MitM attack. But the only way to authenticate Alice’s message, in absence
of all other infrastructure, is the social channel again. SoAlice needs to generate and
send a fresh value as her acknowledgement, and this value also needs to be included in
the social digest. Hence the following template

A B

m n

◦

νy

◦

νx

◦
e, ct(e::y)

◦
x

◦

◦ ◦
dt(e::y)

⊙ ◦
σ f (e,x,y)

Fig. 8: Authentication after decommitment template

Remark.Authentication on the social channel does not follow the challenge-response
template of authentication. There is no reason why it should: the challenge-response
template implementsindirect authentication, based on demonstrating a capability (to
invert cryptographic functions, or to quickly respond on a timed channel), whereas the



social channel implements adirect authentication, based on observing other principals’
actions.

Mutual authentication.The analogous use of the noncesx andy in (8) is quite con-
venient when both Alice and Bob want to announce their keys. Alice’s noncex, used
in (8) just to acknowledge receipt of Bob’s commitment can now also be used to bind
Alice’s announcement to its social digest, whereas Bob’s noncey, which was used for
this purpose in (8) can now also be used to acknowledge receipt of Alice’s commitment.
Composing (8) with its mirror-image version, where Alice and Bob exchange the roles,
thus leads to a remarkably symmetric protocol.

A B

m n

◦

νx

◦

νy

◦

eA, ctA(eA::x)

◦

eB, ctB(eB::y)

◦

dtA(eA::x)

◦

dtB(eB::y)

⊙ ⊙
σ f (eA,eB,x,y)

Fig. 9: Mutual authentication after decommitment template

The coupled messages from Alice to Bob and vice versa, as wellthe mutual social
authentication at the end, are new graphic elements, corresponding to concurrent, or
parallel actions of both principals. Note, however, that both concurrently sent messages
in the second line must be received before either of the messages in the third line is sent.
The social exchange in the end can be viewed in a similar way, as a pair of messages
sent and received concurrently, this time on the social channel; but it may be more
natural to view social authentication as a joint action of both principals.

Instances of the protocols from Figures 8 and 9.Vaudenay’s SAS-authentication [28]
(where SAS stands for ”Short Authenticated Strings”) is an instance of (8), withf (e,x,y)=
x⊕ y. The special case of Nguyen-Roscoe’s Symmetrized HCBK protocol, reduced to



two principals is an instance of (9), withf (e,x,y) = e::(x⊕ y), with the simple com-
mitment schema9 implemented by a short digest functionct(y) = H(y), anddt(y) = y.
Security of this protocol essentially depends on the special properties of this function,
discussed in detail in [21].

HCBK protocol: matching conversations socially.The paradigm of”matching conver-
sations” is, in a sense, the ultimate goal of authentication: if Alice’s and Bob’s views of
all their conversation coincide, then they surely see theiractions correctly, since Alice
sees her own actions correctly, and Bob his. In order to matchtheir views, each of them
must derive the actions of the other from their own.

Nguyen and Roscoe’s HCBK protocol [21] directly attacks theproblem ofsimulat-
neous mutual authentication of whole groupsof principals. The strategy is to use social
channels fordirect simultaneous matching of the conversations: all principals announce
on their social channels the digests of their views (records) of the conversation con-
versations, and their humans check that the digests match. This is a remarkably direct
approach to authentication.

The point is that template (9) readily lifts from 2 ton principals: instead of just Alice
and Bob sending their commitments in parallel, and then waiting for each other, alln
principals can do that in parallel. The process expressionsabove remain quite similar
to the two party case above. The technical proviso for this extension is that a suitable
format forn-way matching on the social channel needs to be agreed upon. In particular,
the principals must agree about

– (1) a method for each of them to arrive to the same ordering of the announcements
that each of them has recorded, and needs to hash,

– (2) a social protocol to compare the values of all digests.

Both problems require ”breaking the symmetry” in a coordinated way. The first one
can be deferred to the social channel, by adding an initial social message, announcing
a linear ordering of all principals’ names. The second problem, minimizing the number
of comparisons between the digests, requires imposing a tree structure on the group.
Both problems have been major concerns in the Bluetooth design [12].

6 Conclusion

We have described some of the different types of channels that arise in pervasive net-
works, and the challenges and opportunities they give for authentication. We also give
a formal description of several types of channels that arisein pervasive computing, and
demonstrate a graphical template language for describing the behavior of protocols that
make use of these different channels. We also describe some of the axioms that describe
the behavior of some of these channels.

We are currently extending our work to develop logic for reasoning about the se-
curity of authentication protocols that make use of these different channels. We have

9 They include Bob’s identity explicitly in the commitment. We keep principal’s identity implicit
in every commitment.



found earlier that this approach, combined with the use of graphical templates that can
describe both abstract and concrete specifications of protocols can be useful, not only
in describing and organizing protocols that already exist,but generating new protocols
that satisfy different types of requirements. We expect this to be the case here as well.

We do not intend to limit ourselves to proximity and social authentication. We ex-
pect this approach to work for other types of channels as well. In particular, we intend to
investigate applications of our approach to quantum cryptography. Any quantum pro-
tocol, in order to be practical, will need to be harnessed together with conventional
protocols as well. Although there as been a substantial amount of work on formal meth-
ods for quantum computation and quantum cryptography, verylittle of it addresses this
aspect of the problem. We expect our methods to provide a natural way of doing this.
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