
CATEGORICAL LOGIC OF CONCURRENCY AND

INTERACTION.

I: SYNCHRONOUS PROCESSES

DUŠKO PAVLOVIĆ

Department of Computing, Imperial College

180 Queen’s Gate, London SW7 2BZ, United Kingdom

E-mail: D.Pavlovic@doc.ic.ac.uk

ABSTRACT

This is a report on a mathematician’s effort to understand some concurrency
theory. The starting point is a logical interpretation of Nielsen and Winskel’s
[30] account of the basic models of concurrency. Upon the obtained logical
structures, we build a calculus of relations which yields, when cut down by
bisimulations, Abramsky’s interaction category of synchronous processes [2]. It
seems that all interaction categories arise in this way. The obtained presentation
uncovers some of their logical contents and perhaps sheds some more light on
the original idea of processes as relations extended in time.

The sequel of this paper will address the issues of asynchrony, preemption,
noninterleaving and linear logic in the same setting.

1 Introduction

Concurrency in computation is modelled in many different ways. Several at-
tempts at unification have been made. Most recently, Abramsky [1, 2] has
proposed the paradigm of relations extended in time as a foundation for theory
of processes. His interaction categories are meant to capture this paradigm for-
mally. Their structure is not fully axiomatized, but rather thoroughly motivated
on examples.

In this paper, we make the way from some standard models of concurrency
to the primal example of an interaction category — the category of synchronous
processes SProc [2, sec. 2]. We begin, in section 2, by surveying some basic no-
tions of categorical logic, particularly regular fibrations [27] and the induced

calculi of relations — which will turn out to be the source of much of the struc-
ture of process calculi. In section 3, the simplest models of processes, automata
and synchronisation strees, are shown to form regular fibrations, with rich in-
trinsic logic. The structures spelled out in [30] (albeit in a different form) are
analysed logically. Processes thus appear as predicates over the corresponding
alphabets. In subsection 3.3, we refine them to predicates over safety specifi-
cations: logic of trees is relativised over logic of specifications. A non-logical
sequent calculus, capturing logic of trees, is described in section 4. Concur-
rency theorists will recognize it as the “pre-equational” part of SCCS, extended
with two apparently new operations, which correspond to the implication and
the universal quantification of trees. While the logical contents of the basic
process operations appear rather clearly, the computational significance of the
implication remains to be explored.

Finally, the bicategory of relations, induced by the regular logic of trees as
predicates over specifications, is aligned with Abramsky’s interaction category
of synchronous processes SProc in section 5. Even formally, it appears as an
embodyment of Abramsky’s paradigm of processes as relations in time. But
SProc is not just a formal calculus of relations, though: it is a proper quotient of
the bicategory of relations induced by regular logic of trees. The most interesting
part is explaining this quotient. It is induced by the equational part of SCCS,
which is also incorporated in the picture in section 5.

As a representative of a process, an automaton or a tree may be redundant:
its geometry is in principle not completely determined by its computational
behaviour; the other way around, some of its properties are computationally ir-
relevant. Therefore, processes are actually defined as classes of computationally
equivalent, bisimilar representatives, rather than individual trees or automata.
The equations of process calculi identify such classes, and determine the no-
tion of of bisimilarity. It seems that the kernel of process calculus is obtained
by cutting down the logic of trees modulo bisimilarity. The bisimilarity thus
drives concurrency off the road of universal logical operations, and into an area
unexplored in categorical logic.

In order to present processes modulo bisimilarity, we do not consider the
formal bisimilarity quotient of the regular fibration of synchronisation trees,
but rather use the concrete representation developed in [28]. Its main feature
is that, on the chosen representatives, the graph morphisms capture all the
computationally sound simulations — namely those that preserve bisimilarity.
In [28, sec. 2.3], we called such simulations sober, and argued that they are the
natural choice of computationally relevant morphisms.

The obtained category of processes uncovers a remarkable phenomenon:

while logical operations do preserve bisimilarity of representatives, they do not
preserve bisimilarity of the sober simulations between those representatives.
The upshot is that the process operations cannot be extended to functors, acting
not only on processes but also on morphisms between them! Strong bisimilar-
ity is a congruence with respect to the object part of the logical operations on
trees (which is why they can induce the process operations on the bisimilarity
classes in the first place); but it is not a congruence with respect to the arrow
part (at least not on the bisimilarity preserving simulations, for which I see no
alternative).

A straightforward solution of the problem, however, has already been built
in into SProc: collapse the simulations P → Q to the similarity preorder P ≺ Q,
recording only whether Q can simulate P or not, and disregarding the distinc-
tions between particular simulations. Indeed, SProc is not just quotient of a
bicategory of relations, but also its preorder collapse. However, may a need
for a more precise account of the dynamics of simulations ever arise, a differ-
ent solution will have to be sought: a refined notion of bisimilarity, which will
be a congruence not only with respect to processes, but also with respect to
morphisms between them.

2 Elements of Categorical Logic

In their book of 1958, Curry and Feys remarked about a “striking analogy be-
tween the theory of functionality and the theory of implication” [9, section E].
Much later, this analogy had been developed into the paradigm of propositions-
as-types, permeating logical frameworks for computation. The λ-calculus pro-
vides means for encoding constructive proofs as abstract functions.

Categorically, that “striking analogy” is explained by an adjunction: both
the function-space constructor (−)A and the implication α⇒ (−) arise as right
adjoints — namely, of the functors A× (−) and α∧ (−) respectively, which, on
their own account, arise as analogous right adjoints as well.

C
a
→ A C

b
→ B

C
〈a,b〉
−→ A× B

γ ⊢ α γ ⊢ β

γ ⊢ α ∧ β

A× B
f
→ C

B
f ′
→ CA

α ∧ β ⊢ γ

β ⊢ α⇒ γ

Based on this observation, made in the early sixties, Lawvere had defined carte-
sian closed categories, the variable-free alternative to typed λ-calculus. Pursuing

the idea of logical-operations-as-adjunctions, he went on to introduce hyperdoc-
trines [17]1, the structure capturing higher order predicate logic.

2.1 Hyperdoctrines

A hyperdoctrine ℘ is, basically, a contravariant functor from a “category of
sets” S to the category CAT of categories. The category ℘A is meant to be a
“category of predicates” over the “set” A ∈ S. The arrows of ℘A are “proofs”,
while the arrows of S are “functions”. The cartesian closed structures of ℘A
and of S respectively represent the basic propositional and the set-theoretical
operations. All of them can be determined entirely in terms of adjunctions.

The structure of a functor ℘ : Sop → CAT itself will correspond to the main
operations of predicate logic. Its arrow part yields the substitution mechanism:
given a “function” f : A→ B, the functor ℘f : ℘B → ℘A maps a “predicate”
Q(y) ∈ ℘(B) to Q(f(x)) ∈ ℘A. Following a simple but fundamental observa-
tion of Lawvere’s[17], the quantifiers are implemented as the adjoints of such
substitution functors

∃f ⊣ ℘f ⊣ ∀f : ℘(A)→℘(B).

If ℘f(Q) represents Q(f(x)), then ∃f(P) should be read as ∃x.f(x)≡y ∧ P (x),
and ∀f(P) as ∀x.f(x)≡y → P (x). With this interpretation, it turns out that the
idea of quantifiers as adjoints to the substitution is already present in their defi-
nitions in sequent calculus, which can be summarized in the following invertible
rules.

P (x) ⊢ Q(f(x))
(∃)

∃x.f(x)≡y ∧ P (x) ⊢ Q(y)

Q(f(x)) ⊢ P (x)
(∀)

Q(y) ⊢ ∀x.f(x)≡y → P (x)

A hyperdoctrine is thus a functor ℘ : Sop → CCC∃∀, where S is a carte-
sian closed category, and CCC∃∀ is the category of cartesian closed categories,
where the structure preserving functors having both adjoints play the role of
morphisms. That is the basis for abstract development of higher-order predicate
logic. There is just one subtle point, which will be illustrated by example (iii)
below.

Examples. (i) The simplest example of a hyperdoctrine is the ordinary power-
set functor. The base category S is thus Set; to each set A the functor℘ assigns
the Boolean algebra ℘A of its subsets. The functors ℘f : ℘B → ℘A map

1The term doctrine was previously used to denote a monad or an equational theory on
CAT.

subsets of B to their inverse images along f : A → B, while ∃f : ℘A → ℘B
maps subsets to their direct images. In hyperdoctrines and related structures,
we generally speak of the inverse image functors ℘f and of the direct image
functors ∃f and ∀f — on the left and on the right respectively. The inverse
image functors are usually written f# : ℘B → ℘A; a standard alternative for
∃f is f!, while ∀f is often written f#. In calculations, this alternative notation
seems more convenient.

(ii) Another simple example is the hyperdoctrine of languages. A language
on a set Σ, seen as an alphabet, is simply set of finite sequences — words in
Σ. Languages on Σ thus form Boolean algebra K(Σ) = ℘(Σ∗), where Σ∗ is
the free monoid generated by Σ. A function f : Σ → Γ induces a monoid
morphism f ∗ : Σ∗ → Γ∗, which then induces the inverse and the direct images
∃f ⊣ f# ⊣ ∀f : K(Σ)→ K(Γ).

In fact, we shall only consider the prefix closed languages here. A language
S is prefix closed if for all s, t ∈ Σ∗, st ∈ S implies s ∈ S. Since this im-
plies that the empty word is contained everywhere, one usually considers only
the nonempty prefix closed languages: the empty one leads to exceptions all
the time. On the other hand, the nonempty prefix closed languages can be
thought of as specifications. Of course, the complement of a specification is
not a specification, and the sublattices L(Σ) ⊆ K(Σ) of specifications are not
Boolean. But they are complete Heyting algebras, thus cartesian closed. We
have a hyperdoctrine L : Setop → CCC∃∀ again.

(iii) Finally, let S be the category Pos of posets and let the functor ∇ : Posop →
CCC∃∀ take a poset A to the induced complete Heyting algebra of lower sets.
The inverse and the direct images are obtained by taking the suitable lower
closures. All the structure needed for predicate logic is available. Yet there is a
sense in which this logic will be unsound.

Given a square

A //
f

��

g

B

��

s

C //
t

D

(1)

in S is a pullback, it seems reasonable to require that the equation s(y)≡t(z)
implies ∃x.f(x)≡y∧g(x)≡z. It follows that for every predicate Q(y) over B, the
formula ∃y.s(y)≡t(z) ∧Q(y) should imply ∃x.g(x)≡z ∧ Q(f(x)).

Well, for the hyperdoctrine ∇, it does not! Take, for instance, the arrows
s and t on (1) to be inclusions of 1 = {∗} in 2 = {0 ≤ 1}, with s(∗) = 1 and
t(∗) = 0. So we have B = C = 1, D = 2 and the pullback of s and t is A = 0.

Now if Q ∈ ∇(1) is 1, then (∃y.s(y)≡t(z) ∧Q(y)) = t# (s!(Q)) is 1 again, while

(∃x.g(x)≡z ∧Q(f(x))) = g!
(
f#Q

)
is empty. So the former does not imply the

latter.

To preclude pathologies of this kind, a hyperdoctrine must satisfy stability
conditions below.

Definition. (Lawvere [18]) A functor ℘ : Sop → CCC∃∀ is a hyperdoctrine if
the canonical arrows in ℘C

g!
(
f#Q

)
→ t#

(
s!Q

)
and (2)

g!
(
P ∧ g#R

)
→ g!(P) ∧R (3)

derived from the adjunctions, are isomorphisms, for all P ∈ ℘A, Q ∈ ℘B
and R ∈ ℘C, for any pullback (1), and any arrow g : A → C in S. The
former requirement is known as the Beck-Chevalley condition, the latter as the
Frobenius condition.

As explained in [25], without these conditions, the interpretation of variables
goes wrong: different variables interfere in substitution and quantification. We
shall come back to this point later.

2.2 Indexed and Fibred Categories

For the present paper the full structure of hyperdoctrine will not be necessary.
It will be mostly concerned with regular logic, which is limited to conjunction ∧
and the existential quantification ∃ over sorts that can be combined using the
finite products ×. Of course, a basic substitution mechanism must be provided
as well, as reindexing of “predicates” along “functions” between “sets”. For
certain purposes, it will be more convenient to present this mechanism in a
fibred rather than indexed form. This distinction is the theme of the present
subsection. Regular logic will be explained in subsection 2.4.

In the world of sets, every indexed family 〈Ai〉i∈I can be presented as a
function a : A → I , with A =

∑
Ai. The components Ai can be recovered

from this function as the fibres a−1(i). Hence the equivalence of categories
SetI ≃ Set/I .

When I is a topological space, the continuous I-indexed families can be
presented as sheaves. Again, every I-sheaf induces a morphism — a continuous
function to I . This time, however, not every such function comes from a sheaf:
only the local homeomorphisms over I correspond to some sheaves. Hence the
embedding Sh(I) →֒ Sp/I of sheaves into spaces over I . But this passage is

less trivial than the previous one, from SetI to Set/I . In fact, there is a sense
in which the total view of a sheaf, as a space in Sp/I , can offer essentially
more insight than its indexed form in Sh(I). For instance, when I is a circle,
the sheaf corresponding to the projection of a cylinder can be distinguished
from the sheaf corresponding to the projection of a Möbius band only by the
global view. Similar, perhaps more convincing examples can be made in higher
dimensions (e.g., using torus and Klein’s bottle, or various combinations). The
same phenomena occur on the level of categories.

An S-indexed category is in principle something like a functor C : Sop →
CAT. The idea is still that S is a “category of sets”. Each category C(A) is now
thought of as the category C

A of A-indexed families from some C . Ordinary
category theory can be viewed as the theory of Set-indexed categories: each
category C can be presented as a functor C

· : Setop → CAT, with C

·(A) =

C

A and C

·(f) = f# : C

B → C

A reindexing each B
Q
→ C as A

f
→ B

Q
→

C . In a sense, categories are tacitly given in this form, together with all its
powers and reindexing. Basic categorical concepts need not be much modified
to be expressed in this setteing. For instance, C will have all the set-indexed
(co)products if and only if C · has the right (resp. left) direct images. Note that
an indexed category in this form always satisfies the Beck-Chevalley condition.

Passing from Set to an abstract base S, one lifts the ordinary category theory
in abstract, S-indexed theory: for instance, the (co)products are defined as the
right (resp. left) direct images, satisfying the Beck-Chevalley condition. Other
concepts are dealt with in a similar fashion.

The Grothendieck construction. The transition from indexed categories
CATSop

to a fibred presentation in CAT/S is actually simpler than the passage
from sheaves Sh(I) ⊆ SetO(I)op to local homeomorphisms from Sp/I , because
it does not involve reconstruction of points. Given a functor C : Sop → CAT,
we form (abusing notation) a category C by glueing all C(A) together. The
fibration C : C → S then projects each C(A) to A.

More precisely, the objects of C are pairs 〈A, P 〉, where P ∈ C(A). A C-arrow
from 〈A, P 〉 to 〈B,Q〉 is a pair 〈f, ϕ〉, with f : A→ B in S, and ϕ : P → f#Q in
C(A). The composite of 〈f, ϕ〉 : 〈A, P 〉 → 〈B,Q〉 and 〈g, γ〉 : 〈B,Q〉 → 〈C,R〉

is the pair
〈
(f ; g), (ϕ; f#γ)

〉
.

P

��

ϕ

f#Q

��

f#γ

Q

��

γ

(f ; g)#R g#R R

A //

f
B //

g C

(4)

Obviously, the functor C should project each pair to the first component. This
functor is the fibration induced by C : Sop → CAT. The category C is fibred by
C over S.

Examples. (i) For every category C , the indexed category C

· : Setop → CAT

can also be viewed as the fibred category C

· . Its object are all the set-indexed

families of objects from C . A morphism from A
P
→ C to B

Q
→ C is a pair 〈f, ϕ〉,

where f : A→ B is a function while ϕ : P → (f ;Q) is a natural transformation
— in fact, just a family 〈ϕx : P (x)→ Q(f(x))〉x∈A.

(ii) The powerset hyperdoctrine ℘ : Setop → CAT induces the fibred category
of predicates ℘. The objects of ℘ are pairs of sets 〈A ⊇ P 〉. An arrow from
〈A ⊇ P 〉 to 〈B ⊇ Q〉 is a function f : A → B which maps P to Q. Formally,
this means f!P ⊆ Q, or equivalently P ⊆ f#Q. This latter inclusion is ϕ in the
formal morphism 〈f, ϕ〉 as above. But if there is such a companion for f , it is
unique, so we need not mention it explicitly.

(iii) The fibred category of specifications L is obtained by glueing together all
the lattices L(A). The objects of L are thus pairs A = 〈ΣA, SA〉, where SA is
a prefix closed language in alphabet ΣA. A morphism f : A → B in S is a
function f : ΣA → ΣB which maps every word s ∈ SA to a word f∗(s) ∈ SB.
(Of course, the monoid morphism f ∗ : Σ∗

A → Σ∗
B takes each string a1a2 · · · an to

f(a1)f(a2) · · · f(an).)

What is a fibration? How do we recover the indexed category C : Sop →
CAT from the derived fibration C : C → S? Clearly, the categories C(A) are
isomorphic with the fibres CA of C . By definition, a fibre CA is the subcategory
of C over A and its identity. We say that an object or arrow X ∈ C is over
A ∈ S if C(X) = A.

To recover the arrow part of the functor C, observe that the inverse image

of Q ∈ C(B) along f : A→ B appears in the domain of the arrow ϑfQ = 〈f, id〉 :
〈A, f#Q〉 → 〈B,Q〉 in C. Moreover, every arrow over f to Q factorizes through
such ϑfQ through a unique vertical arrow, i.e. from the fibre.

〈A, P 〉

((

〈f,ϕ〉

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

��

〈id,ϕ〉

〈A, f#Q〉 //

〈f ,id〉
〈B,Q〉

A //

f
B

(5)

In other words, ϑfQ is couniversal among the C-arrows over f to Q. The functor
f# : C(B)→ C(A) can be recovered from this couniversal property: each object
Q ∈ C(B) whould go to the domain of ϑfQ; and the couniversality of this arrow
determines the arrow part of f#.

These couniversal arrows are called cartesian. They characterize fibrations,
i.e. the functors obtained by the Grothendieck construction, or equivalent to
such functor in a strong sense. A functor will be a fibration if and only if the
vertical and the cartesian arrows induced by it form a factorisation system.

Definition. Consider a functor E : E → S. An E-arrow ϑ : Q′ → Q is cartesian
with respect to E if for every ϕ : P → Q, with E(ϕ) = E(ϑ), there is a unique
vertical arrow ϕ′ : P → Q′ such that ϕ = (ϕ′;ϑ).

We say that E has cartesian liftings in if for every arrow f : A → B in S
and every Q ∈ EB there is a cartesian arrow ϑ over f , with the codomain Q.
Such liftings will be generically denoted ϑfQ : f#(Q)→ Q.

E : E → S is a fibration if it has cartesian liftings and they are closed under
the composition.

A morphism of fibrations F : E → E′ is a functor F : E → E ′ such that
E = FE′, preserving the cartesian arrows.

As explained above, the reconstruction of the the total fibred category from
an indexed category may yield insights, but also technical advantages. Hav-
ing all “predicates” together in one category, rather than stratified over the
corresponding “sets”, may be indispensable in some logical constructions [27].

Another important point is that the crucial part of the structure of indexed
categories — the substitution functors f# : C(B) → C(A) — get encoded in
fibrations as a couniversal property. Transformations of this kind distinguish
the categorical approach from the algebraic one. On the way back, the original

structure is recovered up to isomorphism. Indeed, an arrow f : A → B can
have many isomorphic cartesian liftings at each Q over B, determining many
isomorphic inverse images f#Q. In order to extract an indexed category from an
abstractly given fibration, one must make choices among isomorphic represen-
tants of each f#Q. It may not be possible to make these choices in such a way
as to ensure strict equality between the functors (f ; g)# and

(
g#; f#

)
. However,

any choice will yield them canonically isomorphic. In principle, fibrations over
S thus do not induce functors, but pseudofunctors Sop → CAT, which preserve
composition only up to a family cfg : (g#; f#) → (f ; g)# of coherent natural
isomorphisms [13]. Pseudofunctors where cfg are identities are just functors.

So perhaps the reader will now be willing to accept the inconvenience of
allowing pseudofunctors, with all their coherences, among indexed categories
too. Such indexed categories come about naturally. For instance, it should
be possible to develop S itself into an S-indexed category: it is the “category
of sets” there. As a Set-indexed category, Set is, of course, the functor Set · :
Setop → CAT, with Set ·A = SetA. However, if S is not Set, the category SA may
not be defined for abstract A ∈ S. A solution of this problem is suggested by
the equivalence SetA ≃ Set/A. The slice S/A is defined for any S and all A ∈ S.
So we can put S ·(A) = S/A as the object part of S · : Sop → CAT. Looking at
the example of sets again, we see that the reindexing S ·(f) = f# : S/B → S/A
now becomes a choice of pullbacks along f : A→ B. But it will very seldom be
possible to make this choice globally, in such a way that the pullback functors
(f ; g)# and (g#; f#) come out strictly equal. Most of the time, S · : Sop → CAT

will be incurably a pseudofunctor — with a choice of pullbacks and canonical
isomorphisms between them.

On the other hand, the corresponding fibration is simply the codomain func-
tor Cod : S/S → S, where S/S is the category of arrows from S, with the com-
mutative squares as morphisms. This is the base fibration over S. Its cartesian
arrows are the cartesian (i.e. pullback) squares in S. (Hence the terminology.)

Using the ambiguity of notation, we shall freely switch between fibred and
indexed categories.2

2For more on this theory, the reader may wish to consult the sources [14, 13, 23]. No
suitable textbook exposition exists — perhaps for a good reason. Conceptually, the story of
fibred and indexed categories contains very little beyond the familiar notions from ordinary
categories. Technically, some of these notions do tend to become more demanding in an
abstract setting, and need to be carefully worked out; but books which do such things for you
are usually not much fun.

2.3 Logic in Fibrations

The “propositional” and the “set theoretical” operations are described in a
fibred category in the same manner as in an indexed category — the latter
in the base S, the former in the fibres, and preserved by the inverse images.
However, the notions related to the “quantification” appear in a different light.

Definition. The functor E : E → S is an opfibration if Eop : Eop → Sop is a
fibration. The cartesian arrows with respect to Eop are called opcartesian with
respect to E. The opcartesian lifting of f : A → B at P over A is written
σfP : P → f!P .

A functor is a bifibration if it is both a fibration and an opfibration. A
morphism of bifibrations must preserve both cartesian and opcartesian arrows.

While fibrations over S induce contravariant functors Sop → CAT, opfibra-
tions induce covariant pseudofunctors S → CAT. IfE is a bifibration, the inverse
image functors derived from Eop are left adjoint to the inverse image functors
derived from E: the universal property of σfP and the couniversal property of
ϑfQ (5) ensure this. Therefore, bifibrations induce pseudofunctors Sop → CAT∃.
The morphisms of CAT∃ are the functors with a left adjoint.

If we start from a bifibration E : E → S such that the fibrewise dual fibration
Eo : Eo → S is a bifibration too, we get a pseudofunctor from Sop to CAT∃∀,
where morphisms have both adjoints. The category E o is constructed from E
by formally inverting the vertical arrows, and only them. The objects of E o

are thus the same as in E; the arrows from P to Q are the isomorphism classes

of spans in the form P
ψ
← f#Q

ϑ
→ Q, where ψ is vertical and ϑ cartesian.

(Note that the arrows of E itself can be presented as the isomorphism classes of

decompositions P
ϕ
→ f#Q

ϑ
→ Q.)

A hyperfibration, corresponding to a hyperdoctrine, is thus a fibrewise carte-
sian closed fibration E : E → S, such that both E and Eo are bifibrations.
Of course, the Beck-Chevalley and the Frobenius conditions must be satisfied.
There are various ways to express the Beck-Chevalley condition for a bifibra-
tion, and even for a mere fibration [25]. For instance, the pseudofunctor induced
by a bifibration will satisfy the Beck-Chevalley condition if and only if the op-
cartesian arrows are stable under the pullbacks along the cartesian arrows [27,
prop. A.8(a)]. The induced pseudofunctor will satisfy the Frobenius condition
if and only if the opcartesian arrows are stable under the pullbacks along the
vertical projections [27, prop. A.8(b)]. For this reason, we sometimes refer to
the Beck-Chevalley and the Frobenius conditions as the stability conditions.

2.4 Regular Fibrations

Definition. A functor E : E → S is a regular fibration if

• S has the finite products,

• E has the finite fibrewise products,

• E is a bifibration, satisfying the Beck-Chevalley and the Frobenius condi-
tions. (In other words, E has the small fibrational coproducts and they
distribute over the finite products.)

Morphisms of regular fibrations are bifibration morphisms preserving the finite
fibrewise products.

This structure supports regular logic, the {∃,∧}-fragment of the many-sorted
first order logic with equality. Indeed, the structure of a regular fibration can
be described in logical notation, with variables and the equality predicate. Let
us explain this informally, but in some detail.

Firstly, recall that a “function” f : A→ B can be “substituted” in R(x, y) ∈
E(A× B) using the inverse image:

R
(
x, f(x′)

)
= (id× f)#(R).

Multiple variables are manipulated using projections and diagonals. If the vari-
able x needs to be repeated in two positions, it is substituted along the diagonal
d : A→ A× A.

R
(
x, f(x)

)
= d#

(
(id× f)#(R)

)
= 〈id, f〉#(R).

On the other hand, a dummy variable z of type C ∈ S can be substituted along
the projection p : A× B × C → A× B:

R(x, y, 6z) = p#(R).

The conjunction corresponds to the fibrewise products and R(x, y)∧S(y, z)
actually denotes the product R(x, y, 6z) ∧ S(6x, y, z) in E(A× B × C).

The direct images along the projections correspond to the quantification:

∃y.R(x, y) = p!(R).

However, this makes sense only when the Beck-Chevalley and the Frobenius
conditions are satisfied. Namely, the conveniton of writing the quantifiers on
one side of the formula, while the substitution occurs on the other, is based on

the assumption that these two operations commute: the formula ∃y.R(x, y, 6z)
does not tell whether the quantification, or the substitution of the dummy had
occurred first. As explained in [25], the Beck-Chevalley condition ensures that
the order of these operations indeed does not matter. The Frobenius condition,
on the other hand, makes isomorphic the predicates P (x) ∧ ∃y.R(x, y) and
∃y.P (x) ∧ R(x, y). In a sense, these two conditions take care that different
variables do not interfere.

While the direct images along the projections p : A × B → A provide for
the quantifiers, the direct images along the diagonals d : B → B × B yield the
equality predicate [18]

(y′B≡y′′) = d!(⊤B).

Using the stability conditions, we get things like

(
f(x)B≡y

)
= (f × B)#(B≡) ∼= 〈idA, f〉!(⊤A)(

∃x.f(x)
B
≡y

)
∼= p! (〈idA, f〉!(⊤A)) ∼= f!(⊤A)(

∃x.f(x)B≡y ∧ P (x)
)
∼= . . . ∼= f!(P)

Putting d for f in the second formula yields (y ′≡y′′) ∼= (∃y.d(y)≡〈y′, y′′〉), which
perhaps sheds some light on the idea behind the above definition of the equality.
Substituting in the last formula the identity for f shows that this equality
is indeed sound for the substitution, since P (x) ∼= (∃x′.x≡x′ ∧ P (x′)). More
importantly, that last formula allows us to express all direct images in a logical
form, using quantifiers and equations. But to interpret these quantifiers and
equations, we only need direct images along projections and diagonals. So we
can derive all direct images from this special class.

Proposition. Consider a fibration E : E → S, and suppose that there are
finite products in S and the finite fibrewise products in E. Then E is a regular
fibration as soon as it has stable opcartesian liftings of the projections and of
the diagonals.

2.5 Regular Logic and Calculus of Relations

Every regular fibration E : E → S induces a bicategory of relations R = Rel(E).
The objects (0-cells) of R are the same as in S. The hom-categories are

R(A,B) = EA×B . (6)

The 1-cells — the relations — are thus the binary predicates P (x, y) over A×B,
while the 2-cells are the proofs ψ : P → P̃ . As a 1-cell, a relation P (x, y) ∈
R(A,B) will be written P : A→| B. The composite with Q : B→| C will be

(P ;Q)(x, z) = ∃y.P (x, y)∧ Q(y, z). (7)

In standard notation, this would be

(P ;Q) = r!
(
p#P ∧ q#Q

)
, (8)

with projections p : A × B × C → A × B, q : A × B × C → B × C and
r : A × B × C → A × C . This construct is clearly functorial. Its arrow part
thus tells how the 2-cells should be composed. The stability conditions ensure
the associativity up to a canonical isomorphism, and also that the equality
predicates

(
A
≡) = d!(⊤A) (9)

can play the role of identity 1-cells.

Examples. Applied to the powerset hyperfibration (examples 2.1(i) and 2.2(ii)),
the construction described above yields the ordinary bicategory of sets and re-
lations. More generally, the calculus of relations in a category C arises from
the regular fibration Cod : Mon/C → C, where Mon/C is the subcategory of the
arrow category of C, spanned by the monics. This fibration is regular if and only
if the category C regular. Otherwise the relations in C do not form a bicategory.

Furthermore, every stable factorisation through a given familyM of abstract
“monics” in C induces a regular fibration Cod : M/C → C — and hence an
abstract bicategory of relations. This was studied in [26]. More general regular
fibrations, induced among others, by sites and triposes over C, were studied in
[27].

Structure. The structural correspondence of regular fibrations and the induced
bicategories is rather subtle. In their book [11], Freyd and Scedrov have thor-
oughly analyzed it for the interval between regular categories and toposes. E.g.,
the former correspond to unitary tabular allegories [op.cit., sec. 2.154]. Carboni
and Walters’ cartesian bicategories [7] accomodate similar analyses, even more
general.

In the bicategory R = Rel (E : E → S), the product × from S induces a
tensor product ⊗. The diagonals and the projections from S induce diagonals
and projections in R, but these do not form natural families. Indeed, the
diagonals and projections from Set are not natural with respect to all relations
in the ordinary (bi)category of relations, but just with respect to the total and

single-valued ones. In general, are lax natural, but this is not enough for a
universal property. Indeed the coproducts from of sets become biproducts in
the bicategory of relations — both ordinary and abstract.

The structure of cartesian bicategories seems to be based on the idea that
the tensor ⊗ in R can be recognized as the rudiment of the cartesian structure
of S. The distinctive property of this ⊗ as a “relational view of the carte-
sian product” is the fact that each object carries a canonical structure of a
⊗-comonoid — with the diagonal as the comultiplication, and the terminal ar-
row as the augmentation. Hence, the structure of a cartesian bicategory thus
consists of a tensor ⊗ and prescribes a canonical ⊗-comonoid structure on each
object. These data are pinned down to diagonals and terminals from some old
cartesian category by requiring that they are lax natural, and self-adjoint —
which means that they are total and single-valued as relations3, i.e. maps. Of
course, the structure must be “disciplined” by natural but tedious coherence
conditions, which Carboni and Walters have avoided restricting attention to
the posetal case.

The bicategories of relations, induced by regular fibrations, are always carte-
sian — although seldom posetal. In fact, they are rather special cartesian
bicategories: their logical origin is captured by the discreteness condition [7,
def. 2.1], echoing the stability of logical operations (i.e., the Beck-Chevalley
and the Frobenius conditions). At any rate, the described construction yields a
functor4 Rel from regular fibrations to cartesian bicategories.

Adjunction. In a suitable sense, the Rel-construction has a right adjoint. In
principle, it echoes the reconstruction of the powerset hyperfibration from the
ordinary bicategory of relations. In technical details, though, this general recon-
struction is considerably more complicated, and reaches far beyond the scope
and the needs of the present paper. We shall just outline the main steps, which
glorify5 the idea that the passage from predicate logic to calculus of relations is
just a change of presentation, preserving the contents and the expressive power.

Given a cartesian bicategory R, the associated regular fibration E : E → S
will be derived as follows.

The base category S will consist of the cocommutative ⊗-comonoids in R,
discrete in the mentioned Carboni-Walters sense [op. cit.], and such that the
comonoid structure 1-cells are maps. It can be proved that the morphisms

3The unit of a self-adjoint relation says that it is total; the counit — that it is single-valued
[27, sec. 4].

4some people would call it bicategory homomorphism, but I am a member of the club
(founded probably by Kelly) which tries to use “functors”, “adjunctions” etc. in all dimensions

5i.e., “lift into categories” (This is almost a technical term, first used Lawvere.)

between such comonoids are maps as well. The right adjoint of a comonoid
morphism P : A→| B will be the relation P#, defined as the composite

B

��

P# ❴

∼= B ⊗ I //
B⊗h✤

B ⊗ A⊗ A

��

B⊗P⊗A❴

A ∼= I ⊗ A B ⊗ B ⊗ Aoo

e⊗A

✤

(10)

where the arrow h : I→| A→| A ⊗ A is obtained from the comonoid structure
on A, while e : B ⊗ B→| B→| I is derived from the adjoints of the comonoid
structure on B.

Since the 2-cells between maps like this are always iso, [26, sec. 3], the iso-
morphism classes of these comonoid morphisms will form an ordinary category
S, with trivial 2-cells. It is not hard to see [10] that the tensor ⊗ becomes the
cartesian product in it.

The fibre EA — the predicates over A ∈ S — should be the relations on A,
which are captured in the hom-category R(I, A). Of course, I is the unit of ⊗.
The direct and the inverse images along a map P : A→| B in S are now given
by postcomposing with P , or its right adjoint P# respectively.

EB

��

P#⊣

= R(I, B)

��

(−;P#)⊣

EA

OO

P!

= R(I, A)

OO

(−;P) (11)

The Frobenius condition for the resulting bifibration is just the the modularity
law, derivable in a bicategory of relations — essentially using the discreteness
condition [7, thm. 2.4]. On the other hand, to get an idea why the Beck-
Chevalley condition is satisfied, notice that (s!; t

#) ∼= (f#; g!), interpreted log-
ically as in 2.1(iii), comes close to saying that the square formed by the maps
f , g, s and t is a pullback (cf. [25, 28, (Appendix B)]).

Finally, the fibrewise product R ∧A R̃ ∈ EA, for R, R̃ ∈ R(I, A) will be
defined using the diagonals and their adjoints:

I

��

R∧R̃❴

//
∼=

I ⊗ I

��

R⊗R̃❴

A A⊗ Aoo

d′

(12)

3 Predicate Logic in Models of Concurrency

Some typical examples of regular fibrations can be found in [27]. They can be
thought of as a common generalisation of sites and triposes. Here, we shall first
study two concrete regular fibrations, closely related to the examples from [30]:
automata and synchronisation trees, fibred over the alphabets. Synchronisation
trees actually form a hyperfibration: they have the implication and the universal
quantifiers. In the end of the section, we refine them into a hyperfibration over
specifications.

For simplicity, it can be assumed that the base category S is Set, although
any pretopos with natural numbers will do as well.

3.1 Automata, Transition Systems

Nondeterministic automata can be viewed as directed graphs with labelled
edges. The vertices are the states, the edges — the transitions. One vertex
is distinguished as the initial state. Starting from it, the automaton reads some
input — a symbol from a given alphabet — and tries to make an accordingly
labelled transition. This is where nondeterminism comes in: there may be any
number of such transitions from a state; or none, in which case the automaton
is deadlocked. If it is not, it chooses a suitable transition, and then reads the
next symbol from the input and looks for a suitable transition again. It runs
like this until it exhausts the input, or deadlocks. In the former case, we say
that it has accepted the word. A run of an automaton is thus a directed path
of transitions. The trace of a run is the word accepted in it, i.e. its sequence of
labels. The accepted language of an automaton — its trace — is, by definition,
the set of traces of all runs through it.

The structure of automata sometimes includes a distinguished set of final
states as well. A run, as described above, is then required to terminate in one
of final states. We shall assume that all states can be final. This means that
the automaton can halt at any moment, so that the accepted language has to
be prefix closed.

Formally, an automaton P will be a diagram

ΣP TPoo

λ

//
δ

//
̺

SP 1oo
ι

(13)

in S. The operations λ, δ and ̺ assign to each transition respectively a label, a
source and a target; the constant ι is the initial state. A morphism ϕ : P → Q

of automata is a natural transformation between the diagrams as (13).

ΣP

��

Σϕ

TP

��

Tϕ

oo

λ

//
δ

//
̺

SP

��

Sϕ 1

ee ι❑❑❑❑❑❑

yy ιss
ss
ss

ΣQ TQoo
λ //

δ
//

̺
SQ

(14)

So ϕ is in fact a triple of functions 〈Σϕ,Tϕ,Sϕ〉. The latter two form a graph
morphism, preserving the initial state and the labelling — in the sense that it
takes an a-labelled transition to a Σϕ(a)-labelled one. With morphisms like this,
the automata form the category A. It is fibred by the functor ΣA : A → S,
which projects each automaton to the corresponding alphabet. A morphism
ϕ is cartesian if and only if the left-hand square in (14) is a pullback, while
Sϕ is an isomorphism. A morphism ϕ is opcartesian if and only if Tϕ and Sϕ
are both isomorphisms. Clearly, the opcartesian liftings always exist; and the
cartesian liftins only require that S has pullbacks. The inverse image f#Q
along f : A → B will thus be constructed by putting on the set of the states
SQ exactly f−1(b) copies of each b-labelled transition. The direct image f!P is
obtained by simply relabeling the underlying graph of P : just put f(a) in place
of a. The Beck-Chevalley and the Frobenius conditions are immediate.

The product Q ∧ Q̃ within the fibre over B ∈ S is obtained by taking the
product SQ×SQ̃ as S

Q∧Q̃
; and the set of the pairs of equally labelled transitions

as T
Q∧Q̃

. This latter set can be obtained as a pullback of λ : TQ → B and

λ̃ : T
Q̃
→ B.

The functor ΣA : A → S is thus a regular fibration. Hence the predicate
logic of automata. For future reference, let us mention that the coproducts in
S yield the fibrewise coproducts in A, which are calculated in a straightforward
way.

An automaton is deterministic if each label determines exactly one transition
from every state. This means that 〈δ, λ〉 : T −→ S×Σ must be an isomorphism.
A transition system, on the other hand, is an automaton where there is at most
one transition with a given label between any two given states. In other words,
〈δ, λ, ̺〉 : T −→ S × Σ× S must be monic.

We shall not go into deterministic automata here, and just remark that each
automaton induces a transition system: the image of 〈δ, λ, ̺〉 determines the new
set of transitions. In other words, we are identifying all the transitions with the
same sources, same labels and same targets. Clearly, this operation changes
nothing in the computational behaviour of the automaton. It determines a left

adjoint functor to the inclusion At →֒ A of transition systems into automata.
Both the inclusion and its reflection preserve the inverse images: if the codomain
of a cartesian arrow is a transition system, the domain must be too. The
transition systems thus form a fibred reflective subcategory of the category of
automata. The fibrewise products are inherited. The direct images are induced
by the reflection. So we have a regular fibration At → S again.

There is also a regular fibration Ar → S, spanned by reachable automata,
where each state can be reached from the initial state. The inclusion Ar →֒ A
has a right adjoint, i.e. reachable automata span a coreflective subcategory
of automata. The unreachable states, just like the parallel transitions, are
computationally irrelevant, and all three fibred categories, A, At and Ar are
conceptually equivalent, as far as the computation is concerned; but calculating
inA is somewhat simpler. However, the fibred subcategory T of synchronisation
trees, coreflective in all three of them, offers more significant advantages.

3.2 Trees

Let N be the poset of natural numbers

1 // 2 // 3 // · · ·

A tree can be understood as a presheaf over N, i.e. a diagram P

P1 P2
oo
p1

P3
oo
p2

· · ·oo
p3

in S. So trees form a presheaf topos T1 = SNop
. The elements of each Pi are

the vertices at the i-th level of P ; the function pi−1 projects them on their
predecessors. There is an edge from x to y if x = pi−1(y) for some i. The root
is left implicit.

A synchronisation tree P can be presented as a diagram

P1

��

λ1

P2

��

λ2

oo
p1

P3

��

λ3

oo
p2

· · ·oo
p3

Σ Σ Σ

(15)

in S. It is thus simply a tree with all vertices, except the root, labelled from
Σ ∈ S. But this can be better understood as edge-labelling — since each vertex,
except the root, receives exactly one edge.

Synchronisation trees are clearly presheaves again. They form a topos T .
A morphism ϕ : P → Q is a natural family, preserving the labelling and the
predecessors.

P1

��

ϕ1

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

��

λ1

P2

��

ϕ2

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

��

λ2

oo
p1

P3

��

ϕ3

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

��

λ3

oo
p2

· · ·oo
p3

Σ Σ Σ

Q1

==

λ1

⑤⑤⑤⑤⑤⑤⑤⑤

Q2

==

λ2

⑤⑤⑤⑤⑤⑤⑤⑤
oo
q1

Q3

==

λ3

⑤⑤⑤⑤⑤⑤⑤⑤
oo
q2

· · ·oo
q3

(16)

If each synchronisation tree P is projected to its alphabet Σ, we get the fibration
ΣT : T → S. The topos T1 of unlabelled (or trivially labelled) trees appears
as its fibre over 1. In fact, the other fibres are toposes too: the category TΣ of
Σ-labelled trees is isomorphic with the slice category T1/GΣ, where G : S → T1
is the right adjoint to the forgetful functor T1 → S, which maps each tree to
the set of its vertices. The tree GΣ is thus cofree over the set Σ. It is fairly
easy to describe: starting from the root, add at each vertex exactly Σ edges. At
the i-th level, there will be (GΣ)i = Σi vertices. The function pi−1 : Σ

i → Σi−1

projects away the i-th component.

Standard topos theory now shows that ΣT : T → S is a hyperfibration.
Synchronisation trees thus support full higher order predicate logic. We shall
calculate some relevant operations, and try to grasp their meaning.

The left direct image of an Σ-tree P along f : Σ → Γ is again just its
relabelling. If P is presented as on (15), we relabel it by postcomposing all
λi with f . The inverse image of a Γ-tree Q along f is also based on a similar
idea as for automata: a b-labelled edge in Q should be replaced by f−1(b) edges
coming out of the same vertex. But these edges now introduce new vertices
in the tree. The subtree of Q coming out of that b-labelled edge we started
with should be copied above each of these new vertices, before we go on with
replacing the other b-edges up the tree.

Similarly for the product Q ∧ Q̃. Its vertices should, of course, be pairs of
vertices from Q and Q̃ labelled by the same letter. However, their predecessor
should also be such a pair, and so on. So we come to the requirement that the
paired vertices from Q and Q̃ should have the same trace. The trace of a vertex
is the sequence of labels obtained by climbing up the tree from the root to that
vertex.

Let us formalize this construction, in order to see that indeed yields the
product. The sets (Q ∧ Q̃)i of pairs of vertices with the same trace of length i

are obtained by recurrent pullbacks.

(Q ∧Γ Q̃)1

��

=

(Q ∧Γ Q̃)2oo

��

h2

��

(Q ∧Γ Q̃)3

��

h3

��

oo · · ·oo

��

��

Q1 ×Γ Q̃1

��

e1

��

Q2 ×Γ Q̃2

��

e2

��

xx

k1

♣♣♣
♣♣♣

♣♣♣
♣♣

Q3 ×Γ Q̃3

��

e3

��

xx

k2

♣♣♣
♣♣♣

♣♣♣
♣♣

zz

k3

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉

Q1 × Q̃1

��

(π′;λ̃1)

��

(π;λ1)

Q2 × Q̃2

��

(π′;λ̃2)

oo

q1×q̃1

��

(π;λ2)

Q3 × Q̃3

��

(π′;λ̃3)

oo

q2×q̃2

��

(π;λ3)

Γ Γ Γ

(17)

First calculate all the equalizers ei (which are actually the pullbacks of λi :
Qi → Γ and λ1 : Q′

i → Γ). Hence ki = (ei+1; (qi × q
′
i)). Starting from h1 = id,

pull back each (hi; ei) along ki to get hi+1.

One can directly check that this construction yields the product in TΓ; or
observe that we have calculated a pullback over GΓ in T1, which is the product
in T1/GΓ.

The inverse image f#Q, described informally further above, are formalised
along the same lines. The construction again follows a tower of pullbacks

(f#Q)1

��

=

(f#Q)2oo

��

h2

��

(f#Q)3

��

h3

��

oo · · ·oo

��

��

Q1 ×Γ Σ

��

e1

��

Q2 ×Γ Σ

��

e2

��

xx

k1

qq
qq
qq
qq
qq

Q3 ×Γ Σ

��

e3

��

xx

k2

qq
qq
qq
qq
qq

zz

k3

✈✈
✈✈
✈✈
✈✈
✈✈
✈

Q1 × Σ

��

(π′;f)

��

(π;λ1)

Q2 ×Σ

��

(π′;f)

oo

q1×id

��

(π;λ2)

Q3 ×Σ

��

(π′;f)

oo

q2×id

��

(π;λ3)

Γ Γ Γ

(18)

which corresponds to pulling back along Gf : GΣ → GΓ in T1. This is the
functor f# : T1/GΓ→ T1/GΣ.

Besides regular logic of ∧ and ∃, the fibration ΣT : T → S also supports ∨,
⇒ and ∀. The disjunction is represented by the fibrewise coproducts of trees,
which are calculated in a completely straightforward way; the implication Q⇒
Q̃ is the exponent in the topos T1/GΓ = TΓ; and the universal quantification
∀f(Q) = f#Q is the dependent product along Gf : GΣ → GΓ in the topos
T1. We spell out the latter two in some detail, as they seem not to have been
noticed in a computational setting.

The descriptions are simplified by the fact that the topos TΓ is generated by
the tree Γ∗. The words s ∈ Γ∗ are represented as branches, i.e. the trees with
at most one vertex at each level. The fact that they generate means that each
Γ-tree is a colimit of Γ-branches6. We actually need a weaker fact, namely that
each Γ-tree is a colimit of its one-word truncations:

Q = lim
−→
s∈Γ∗

(Q ∧ s) (19)

Seen as the full subcategory of TΓ, the set Γ∗ is a meet semilattice, with s ≤ s′

means that s is a prefix of s′. The product Q ∧ s, on the other hand, is the
subtree of Q consisting of those vertices which leave s or one of its prefixes
as the trace7. This follows from the above description of the products. More
precisely, for s ∈ Γi and j ≤ i, the set (Q∧s)j will consist of those vertices from
Qj which trace s ↾j∈ Γj, the j-prefix of s. For j > i, (Q∧ s)j will be empty. So
Q ∧ s is indeed the truncation of Q by s.

Using (19) we derive a useful representation of the hom-sets of TΓ

TΓ(Q, Q̃)
i
∼= TΓ

(
lim
−→

Q ∧ s, Q̃
)

ii
∼= lim
←−
TΓ

(
Q ∧ s, Q̃

)

iii
∼= lim
←−
TΓ(Q ∧ s, Q̃ ∧ s)

iv
∼= lim
←−
s∈Γ∗

T1(Q ∧ s, Q̃ ∧ s). (20)

Step i is just (19); step ii follows from the definition of a colimit; step iii is
a consequence of the fact that every branch s is a subobject of the terminal
object; finally, step iv is based on the fact that the elements of each (Q∧s)j are
all labelled by the j-th letter of s— so that the label preservation is automatic.
In other words, the TΓ-morphisms Q ∧ s −→ Q̃ ∧ s can be viewed as ordinary
tree morphisms.

In terms of representation (20), one directly proves that the following formu-
las define the exponents in TΓ and the right direct image functor f# : TΣ → TΓ
respectively:

(Q⇒Γ Q̃)i =
∑

s∈Γi

T1(Q ∧ s, Q̃ ∧ s) (21)

6This is meant internally in the topos S. Otherwise, the statement is generally not true,
since the terminal object 1 (“at most one vertex”) does not generate.

7Recall that the trace of a vertex is the sequence of the labels of all its predecessors, plus
its own.

(f#P)i =
∑

s∈Γi

TΣ(f
#s, P) (22)

The elements of sets (21–22) are thus in the form 〈s, ϕ〉, where s is a word of
the length i, and ϕ is a suitable morphism — a natural transformation where
only the first i components are nontrivial. In both cases, the operation λi should
assign to each 〈s, ϕ〉 the last element of s as the label. The predecessor operation
qi−1 : (Q ⇒ Q̃)i −→ (Q ⇒ Q̃)i−1 should truncate 〈s, ϕ〉 to 〈s ↾i−1, ϕ ↾i−1〉.
The same holds for f#P . Of course, s ↾i−1∈ Γi−1 is the string s without the
last element, while ϕ ↾i−1 is the natural transformation ϕ without the last
component.

To better understand (21), let us describe a vertex 〈s, ϕ〉 ∈ (Q ⇒ Q̃)i “in
words”. Suppose that s is the sequence b1b2 . . . bi. First extract from Q1 all
the b1-labelled vertices; among their successors in Q2, extract only those that
are labelled by b2; from Q3 take only the further successors that are labelled by
b3. . . So you have Q ∧ s. Do the same with Q̃. Now ϕ is just a tree morphism
between the obtained trees. It begins as an ordinary function at the level 1,
assigning to each b1-labelled vertex x1 a b1-labelled vertex ϕ1(x1). Further assign
to each b2-labelled successor x2 of x1 a b2-labelled successor ϕ2(x2) of ϕ1(x1).
And so on.

Finally, to understand (22), first look at the tree f#s. It is a subobject in
the terminal object GΣ of TΣ. If bj is the j-th element of s and if we write Σj

for f−1(bj), then

(f#s)n =
n∏

j=1

Σj .

From each vertex of f#s at the level n, there are exactly Σn+1 edges coming
out.

Now we describe f#P . At the level 1, a b1-labelled vertex will be a choice
of one a-labelled element of P1 for each a ∈ Σ1. To get a b2-labelled element of
(f#P)2, among the successors of each previously chosen vertex from P1 we must
further select from P2 an a-labelled vertex for each a ∈ Σ2. The elements of
(f#P)i will thus be the various copies of the trees f#s in P , for various s ∈ Γi.

3.3 Relativising over Specifications

Mathematically, processes are usually presented either as languages, or as syn-
chronisation trees, or as automata (transition systems). As explained in [30],

these three categories are related by adjunctions.

L //
⊥

J
// T
oo
ST

//
⊤

�

� A
oo
(̂−)

(23)

We comment on them briefly, since the presentations here are different. To
present a tree P as an automaton P , augment it first with the root p0 : P1 →
P0 = 1. The vertices of P are now in SP =

∑∞
i=0 Pi. Together, the predecessor

operations pi induce the obvious endomorphism p : SP → SP . The edges of
the graph P run from p(y) to y; so the set of the transitions is TP = {〈x, y〉 ∈
S2|x = p(y)}.

Hence the full and faithful functor T → A. It is (bi)fibred, since it preserves
the inverse (and the left direct) images. It does not preserve the products, so

it cannot have a left adjoint. The right adjoint (̂−) : A → T is obtained by
unfolding each automaton as the tree of its runs, i.e. the directed paths of
starting from ι. They become the vertices of the associated tree.

To describe the unfolding of an automaton P formally, first consider the
functor P̃ : S/SP −→ S/SP , which maps

(
X


→ SP

)
7−→

(
{〈x, f〉 ∈ X × TP |(x) = δ(f)}

π
→ T

̺
→ S

)
.

What does P̃ actually do? The domain of the arrow P̃ (ι), for instance, consists
of all the edges coming out of the initial state ι. P̃ (ι) itself projects each of them
onto its target. The edges coming out of these target states will be added if we
further apply P̃ to P̃ (ι). The domain of P̃ 2(ι) consists of the two-step runs of P ,
i.e. of the pairs of “composable” transitions starting from ι. In general, the set
Dom

(
P̃ i(ι)

)
will consist of the runs of length i. The vertices of the unfolding

of P at the level i should thus be

P̂i = Dom
(
P̃ i(ι)

)
. (24)

These sets form a synchronisation tree, since each Dom
(
P̃ ()

)
comes with the

obvious projection to Dom() and with the labelling inherited from TP .

The trace functor ST : T → L assigns to each tree the language it accepts.
The right adjoint J : L → T of ST , on the other hand, displays a specification
A = 〈Σ, S〉 as a tree JA, with

(JA)n =
n∏

j=1

Sj, (25)

where Sj ⊆ Σj is the set of all safe words of length j, contained S. Seen as a
vertex, each word is labelled by its last symbol. Clearly, J is full and faithfull.

Viewed as a process, the language of a tree or an automaton is, in a sense,
its “extensional collapse”: it only records the performance, and neglects the
behaviour. On the other hand, a safety specification, as a performance require-
ment, can also be represented as a prefix-closed language. A process is then
said to satisfy such a specification if the accepted language is contained in it.

In a sense, the hyperfibration ΣL : L → S displays the logic of specifications
as predicates over alphabets. The hyperfibration ΣT : T → S of synchroni-
sation trees refers to the logic of processes. The fibred adjunction between T
and L, displayed on (23), allows us to refine this logic by relativizing it over
specifications. This is achieved by a method sometimes applied in model theory:
first, the universe is enlarged by new sets, definable in a given theory (in our
case, by specifications); the logical operations are then relativized with respect
to the added sets; finally, a new theory, using the relativised operations, is built
over the refined universe.

Formalised categorically, the described procedure will expand the fibration
of trees T → S into (at least) a regular fibrewise fibration over the fibration
of specifications L → S. In other words, we shall build a regular fibration in
the category of (regular) fibrations over S, rather than in the ordinary category
of (regular) categories. Fortunately, (regular, resp. hyper)fibrations in the
category of (regular, hyper)fibrations are just those morphisms the fibrewise
components of which happen to be (regular, hyper)fibrations in the ordinary
sense [24, prop. II.3.84(ii) and 85(ii)]. Because of this, expanding T → S into
a fibrewise regular fibration over L → S turns out to be fairly simple.

First of all, the functor ST : T → L happens to be a fibration itself. The
inverse image of a tree Q along an arrow f : A → SIQ in L is obtained by
taking a pullback

f#Q //
ϑ

��

Q

��

η

JA //

Jf
JSIQ

(26)

in T . The only problem is that ST does not have the direct images. As they
will be needed, we construct the free regular fibration generated by ST .

In principle, the free regular fibration induced by a fibration E : E → B will
be obtained by the comma construction E/B, provided that B has finite limits
and E finite fibrewise products [6, 27, (3.4,7)]. But we must lift this construction
from ordinary fibrations, in the category of categories, to fibrewise fibrations,

in the category of fibrations over S. Therefore we take the fibrewise comma
construction, instead of the ordinary one. Given some morphisms F,G : E → E ′

of fibrations, the objects of the fibrewise comma category F/G are the triples

〈A, FA
f
→ GB,B〉, where f is a vertical arrow.

The free fibrewise regular fibration generated by ST : T → L will thus be
the functor SP : P → L, where the fibred category P = ST /L is obtained by
the fibrewise comma construction. The adjunction ST ⊣ J yields an alternative
presentation, since ST /L is isomorphic with T /J . The objects of P can thus
be viewed as triples U = 〈Σ, P, S〉, where the synchronisation tree P satisfies
the specification S ⊆ Σ∗ — i.e. ST P ⊆ S, or equivalently P → JS8. This last
arrow is unique because JS is the subobject of the terminal object JΣ∗ in TΣ.

The point is now that the functors ΣP : P → S and SP : P → L, projecting
a process U respectively to the alphabet Σ and to the specification 〈Σ, S〉— are
both hyperfibrations. Moreover, as a morphism in the category of hyperfibra-
tions over S, the latter is a fibrewise hyperfibration. We describe the structure,
but leave all checking to the reader.

Let f : Σ → Γ be a function in S, and U = 〈Σ, P, S〉 and V = 〈Γ, Q, T 〉
predicates in P . The inverse and the direct images with respect to ΣP : P → S
are

f#V = 〈Σ, f#Q, f#T 〉 (27)

f�U = 〈Γ, f�P, f�S〉, (28)

where � ∈ {!,#}. The structure appearing on the right hand side comes from
the hyperfibrations ΣT : T → S (18,22) and ΣL : L → S (easy). Ditto in

V�ΓṼ = 〈Γ, Q�ΣQ̃, T�ΣT̃ 〉, (29)

where � ∈ {∧,⇒}.

Now we want to calculate the inverse and the direct images with respect to
SP : P → L. Recall that a morphism f : A → B of specifications A = 〈Σ, S〉
and B = 〈Γ, T 〉 is a function f : ΣA → ΣB such that for every safe string
s ∈ S ⊆ Σ∗ holds f∗(s) ∈ T ⊆ Γ∗. The existential quantifiers

f!U = 〈Γ, f!P, T 〉. (30)

which are strict and canonical, are obtained directly from the definition of P as
the comma category ST /L. The tree f!P on the right hand side of (30) is the

8More precisely, one should write 〈Σ, S〉, and not just S. But the alphabet Σ is fixed here
and it can be safely omitted.

direct image with respect to ΣT : T → S, i.e. the relabelling of P along f . Its
traces are surely contained in T , because the traces of P are in S and s ∈ S
implies f ∗(s) ∈ T .

However, the inverse images and the right direct images (universal quanti-
fiers) with respect to ΣT : T → S do not in general the satisfaction of spec-
ifications. Their results will have to be restricted to the safe strings, in order
to yield the corresponding structures for SP : P → L. This restriction can be
obtained using the fibrewise products ∧, described on (17):

f#V = 〈Σ, f#Q ∧Σ JA, S〉 (31)

f#U = 〈Γ, f#P ∧Γ JB, T 〉. (32)

The rest of the structure on the right hand side is from (18) and (22). Note
that f#Q ∧Σ JA is a subtree of f#Q, since JA is a subobject of the terminal
object J〈Σ,Σ∗〉 in TΣ. For the same reason holds f#P ∧Γ JB ⊆ f#P .

For propositional operations, on one hand we have that the product Q∧Γ Q̃
in TΓ has an arrow to JB as soon as either Q or Q̃ has it. Therefore, it must
satisfy any specification that either of them satisfies. The fibrewise product over
a specification B is thus

V ∧B Ṽ = 〈Γ, Q ∧Γ Q̃, T 〉. (33)

On the other hand, the exponent Q ⇒Σ Q̃ (21) may not satisfy the same
specification as Q and Q̃, and must be restricted, in the same way as above:

V ⇒B V
′ =

〈
Γ, (Q⇒Γ Q̃) ∧Γ JB, T

〉
. (34)

Alternatively, the restriction in formulas (32) and (34) could be enforced by
presenting them respectively in form (22) and (21), but with restricted indexing:
the sums should not be taken over s ∈ Γi but over s ∈ Ti, where Ti ⊆ Γi is the
set of the safe strings from T of the length i.

4 Logic in Process Calculus

In this section, we present the described logical operations on trees as operations
on indexed sets — but “extended in time”. In this form, their correspondence
with the SCCS-operations becomes apparent.

4.1 Algebra of Trees

Traditionally, automata as processes were studied from the point of view of the
accepted languages. The finite ones were completely reduced to the calculus of
regular expressions [15, ch. 2–3]. The computational behaviour and nondeter-
minism were thus left out of the picture. Indeed, for every automaton there is
a deterministic one (such that 〈δ, λ〉 : T → S×Σ is isomorphism) accepting the
same language.

The issue of the computational behaviour was first addressed in Milner’s
Calculus of Communicating Systems (CCS) [19]. The idea is that, when we
observe an automaton running, we not only get to know which words it accepts
and which lead to a deadlock, but also wittness the deadlocks that may occur,
due to nondeterminism, in reading otherwise acceptable words. For instance,
Milner pointed out, the processes

��������

a

❁❁
❁❁

❁❁
❁❁

a

✂✂
✂✂
✂✂
✂✂

��������

a

��������

b

��������

c

and ��������

b

✂✂
✂✂
✂✂
✂✂ c

❁❁
❁❁

❁❁
❁❁

�������� �������� �������� ��������

accept the same language {a, ab, ac}, yet they behave in observably different
ways. While the one on the right hand side always accepts an element of this
language, the other one deadlocks half of the times: whenever it chooses to
go left while reading ac, and when it chooses do go right while reading ab. If
nondeterminism is to be taken into account, the above two processes should not
be identified. As they depict, respectively, the regular expressions ab+ ac and
a(b+ c), Milner concluded that the distributive law should be dropped from the
algebra of processes.

Dropping the distributivity brings us in the realm of trees. Finite Σ-labelled
trees can be viewed as the elements of the free algebra with no generators, with
a single constant Ø, with Σ unary operations, and one commutative, associative,
binary operation +, for which Ø is the unit. No distributivity. The constant Ø
represents the trivial tree, just one vertex. Each operation a ∈ Σ maps a tree
P to the tree aP , obtained from P by adding a new root, and connecting it to
the old one by an a-labelled edge. This is called prefixing. It delays the proces
P until the action a is executed. The tree aØ, with a single edge, is usually
abbreviated to a.

The sum P + P ′ corresponds to the tree obtained by identifying the roots
of P and P ′. Computationally, P + P ′ represents the nondeterministic choice

between the processes P and P ′. Categorically, this is the coproduct in the
category TΣ. Logically, it is the disjunction P ∨ P ′ of the predicates P and
P ′ over Σ. Finally, if P and P ′ are interpreted as ∈-trees of some sets, this
operation should correspond to the union P ∪ P ′ — which is just what P + P ′

used to be in the calculus of regular expressions.

Generated by delays and the nondeterministic choices, trees are the “moral
minimum” of process calculi.

4.2 Trees as Sets in Time

In an ∈-tree, each vertex represents a set. The elements of a set are represented
as its successors: an edge P → Q means P ∋ Q. Further successors capture the
elements of Q and so on. A constructible set [12], unfolded as a tree, displays
its history: how it came about in the cumulative hierarchy. The tree depicting
a set is its extent in time.

This brings us close to Abramsky’s idea of processes as relations extended
in time [2, sec. 2.1]. It is couched in Aczel’s view of processes arising similarly
to constructible sets — in a coinductive iteration of the power-set operator [4].

Of course, the poetry of trees in time can also be expressed categorically. If
the chain N — the least fixed point of the delay functor — is taken as a picture
of time (endless, discrete, irreversible. . .), then trees, presented as in subsection
3.2, are just sets extended in time. The tree morphisms appear as functions
extended in time. If trees P and Q represent sets, an ordinary function P → Q
just assigns to each element of P an element of Q. These elements are the
vertices from P1 and Q1 — so we have a function ϕ1 : P1 → Q1. A function
extended in time does not stop here: having assigned x to ϕ1(x), it goes on
and assigns to each element of x an element of ϕ1(x), etc. It is a hereditary
function. Indeed, every x ∈ P1 represents a set as well, namely p−1

1 (x) ⊆ P2;
while ϕ1(x) = y ∈ Q1 represents q−1

1 (y) ⊆ Q2. That function from x to ϕ1(x)
is thus displayed in our presentation of trees as the restriction of ϕ2 : P2 → Q2

to p−1
1 (x). . .

The exponents of trees, depicted in (21), just collect these functions in time.
The product P ∧Q of trees similarly extends the product of sets through time,
in the sense that it does not collect just the pairs of elements 〈x, y〉, but their
actual (hereditary) products :

P ∧Q = {x ∧ y|x ∈ P and y ∈ Q} (35)

This formula is a very succint form of (17). Describing all logical operations on
trees according to this set-theoretical idea, we get a system similar to SCCS.

4.3 Sequent Calculus for Trees

A sequent in the form P
a
∋ Q means that the tree aQ is contained in P .

P/.-,()*+

Q/.-,()*+

a

⑧⑧⑧⑧⑧⑧⑧

A tree P , as on (15), becomes a set of sequents pi(x)
λ(x)
∋ x, for x ∈ Pi+1, i ∈ N;

and x ∈ P1 become P
λ(x)
∋ x.

Let us write P = {ax,ax
′,by,cz . . .} to abbreviate a set of sequents

P
a
∋ x, P

a
∋ x′, P

b
∋ y, P

c
∋ z . . .

Writing, suggestively ∨ instead of +, we can now present the operations
from subsection 4.1 in the form

aP = {aP} and (36)

P ∨Q = {ax|P
a
∋ x or Q

a
∋ x} (37)

An alternative presentation is provided in the sequent calculus below, which
also captures the operations from subsection 3.2.

Notation. While P
a
= {x, x′ . . .} denotes the set of all a-labelled elements of

P , an I-tuple of a-labelled edges, possibly with repetitions, is
(
Pi

a
∋ P ′

i

)
i∈I

.

(·)
{aP}

a
∋ P

Pj
a
∋ P ′

(
∨j
I)∨

i∈I

Pi
a
∋ P ′

(
Pi

a
∋ P ′

i

)
i∈I (

∧
I)∧

i∈I

Pi
a
∋

∧

i∈I

P ′
i

Q
a
= {Qi}i∈I Q̃

a
= {Q̃j}j∈J g : I → J

(⇒)(
Q⇒ Q̃

) a
∋

∧

i∈I

(
Qi ⇒ Q̃g(i)

)

P
a
∋ P ′

(∃)

f!P
f(a)
∋ f!P

′

Q
f(a)
∋ Q′

(#)
f#Q

a
∋ f#Q′

(
P

a
∋ Pa

)
a∈f−1(b) (∀)

f#P
b
∋

∧

a∈f−1(b)

f#Pa

Remarks. Note that these sequents do not represent logical entailment, but
edges of trees. Therefore, the logical meaning of the displayed operations can-
not be deciphered simply by comparing the corresponding rules with familiar
Gentzen-style sequent calculi. There does not seem to be a way of avoiding the
logical analysis of the category of trees, like in subsection 3.2.

On the other hand, with the exception of (⇒) and (∀), the rules are fa-
miliar from Milner’s Calculus of Communicating Systems [20]. (

∨
) is the non-

deterministic sum (Σ), (∃) is the relabelling, while the restriction appears as
the special case of (#). Finally, (

∧
) corresponds to the synchronous product

[op.cit., sec. 9.3] — so that we are modelling a version of the synchronous cal-
culus SCCS. The derived calculus of relations will thus yield the category of
synchronous processes.

Of the two new rules, (∀) is readily understood by comparison with (∃).
Given a process P satisfying a specification A, and a morphism f : A→ B, rule
(∃) says that a b-action in f!P chooses nondeterministically for some a ∈ f−1(b)

a process f!P
′, such that P

a
∋ P ′. On the other hand, rule (∀) says that a b-

action in f#P invokes for every a ∈ f−1(b) a process f#Pa, P
a
∋ Pa, and executes

all of them in parallel. In a sense, f#P is a parallel relabelling, since it pursues
all actions relabelled to b at the same time, whereas the ordinary relabelling
f!P is nondeterministic, since it pursues only one of them, arbitrarily chosen.

Rule (⇒) seems a bit more difficult to explain computationally. A compu-
tation s in Q ⇒ Q̃ corresponds to a choice, for each way s that can be traced
in Q, of a way to simulate it in Q̃.

5 SProc

Let us put the threads together: apply the construction described in 2.5 to
hyperfibration from 3.3, and use the calculus from 4.3 to interpret the result.

The obtained bicategory of relations

R = Rel (SP : P → L) ,

will turn out to be the closest “logical relative” of the category of synchronous
processes SProc.

5.1 Synchronous Processes as Relations

First of all, the objects of the two categories clearly coincide: are just specifica-
tions. So we must compare the hom-categories

R(A,B) = PA×B (38)

SProc(A,B) = {〈A, P,B〉|P |= A⊗ B} (39)

the former based on (6), the latter summarising [2, 2.2]. But an object P ∈
PA×B is a tree P satisfying the specification A×B, i.e. such that ST P ⊆ A×B
— which is exactly what Abramsky writes P |= A⊗B, since the tensor product
⊗ in SProc is just the cartesian product × of L.

Furthermore, the formulas for the identities and the composition in SProc

exactly correspond to the identity relations and the standard relational compo-
sition of R, only presented in the CCS-style. The identity relation (

A
≡), defined

in (9), can for R be derived

(·)
⊤A

a
∋ ⊤A/a

(∃)

d!(⊤A)
〈a,a〉
∋ d!(⊤A/a)

The terminal object ⊤A in PA is the tree9 JA, described in (25). The specifica-
tion A/a has the same alphabet as A, but its safe strings are {s ∈ Σ∗

A|as ∈ SA}.
The first step in the above derivation is thus just another form of (25). Substi-
tuting its conclusion in (9), we get

(A≡) =
∨

a∈ΣA

{
a

(
A/a
≡

)}

which is clearly the original definition of the identity in SProc, just expressed
in terms of (36–37).

9Strictly speaking, it is the triple 〈ΣA, JA, SA〉; but we abuse notation, and denote it all
by JA.

As for the relational composition, expanding formula (8) in a CCS-style
derivation yields

P
〈a,b〉
∋ P ′

(#)

p#P
〈a,b,c〉
∋ p#P ′

Q
〈b,c〉
∋ Q′

(#)

q#Q
〈a,b,c〉
∋ q#Q′

(∧2)

p#P ∧ q#Q
〈a,b,c〉
∋ p#P ′ ∧ q#Q′

(∃)

r!
(
p#P ∧ q#Q

) 〈a,c〉
∋ r!

(
p#P ′ ∧ q#Q′

)

Substituting (8), this derivation can be summarized as the composite rule

P
〈a,b〉
∋ P ′ Q

〈b,c〉
∋ Q′

===================

(P ;Q)
〈a,c〉
∋ (P ′ ;Q′)

(40)

— which is just the original formula for composition in SProc.

Remark. Cockett and Spooner [8] have proposed a presentation of SProc as a
formal quotient of the bicategory of spans in L. Of course, this bicategory can
be viewed as the bicategory of relations, induced by the basic regular fibration
Cod : L/L −→ L. The derivation of SProc can be explained in terms of a
cartesian functor L/L −→ P , which maps each specification morphism f : A→
B to the direct image f!⊤A. This functor is tacitly used in the explanation how
the SProc-morphisms can be obtained from spans in L. It is surjective on objects
and faithful, but apparently not much more. Nevertheless, the surjectiveness
suffices for reconstructing all relations of R, and hence morphisms of SProc.

5.2 The difference

However, in spite of the clear structural and conceptual parallelism, SProc does
not actually coincide with the bicategory of relationsR: it has fewer morphisms.
Namely, the SProc-morphismsmust be the canonical representatives of processes
[2, 2.2.], and they do not exhaust all the labelled trees. This turns out to be
a fairly essential point, with considerable conceptual weight, and significant
structural repercussions. Understanding the effect of this restriction seems to
be the most difficult part of the purported analysis, since it distorts the described
logical operations. However, similar transformations under a change of context
are a frequent phenomenon, rather than a pathology: cf. the way in which the
standard tensor product in a category of relations is obtained from what used
to be the cartesian product in the corresponding category of sets. The tensor

product of vector spaces boils down to the cartesian product of the chosen bases
in a similar fashion.

Irredundant trees. As mentioned in the introduction, if trees (or automata)
as processes are observed only via computations, some of them turn out to be
indistinguishable, i.e. represent the same process, in spite of their geometric
differences. Therefore, processes should not be presented as individual trees
(or automata), but as classes of computationally equivalent, bisimilar repre-
sentatives. But rather than working with such bisimilarity classes, one usually
chooses a canonical representative for each of them, irredundant in the sense
that it only carries computationally relevant data. Irredundant representatives
of processes can be obtained as elements of Aczel’s terminal coalgebra [4, ch. 8]
or as its small subcoalgebras [28]. The morphisms of SProc are defined using
the former class, the irredundant trees. An intrinsic characterisation of such
trees can be worked out, with a bit of effort, along the lines of the last section of
[5]. If it is well-founded, an irredundant tree can be recognized by the fact that
it has a trivial group of automorphisms. This means that, viewed as a ∋-tree,
it satisfies the law

{x, x, y . . .} = {x, y . . .} (41)

— i.e. represents a set. Indeed, well-founded irredundant trees were considered
as a model for set theory long time ago [29, 4]. Irredundant trees in general can
be obtained as colimits of towers of well-founded ones. In other words, a tree is
irredundant if and only if each of its well-founded subtrees can be embedded in
a well-founded tree with a trivial automorphism group.

From a different direction, irredundant trees can be obtained by unfolding
irredundant automata [28]. Either way, the same (up to isomorphism) category
of processes P̃ →֒ P is obtained. Its objects are the canonical representatives of
processes. The graph morphisms between them, preserving the labels and the
initial states, capture all the sober, i.e. bisimilarity preserving simulations.

Restricting operations. It is easy to see that the class P̃ is not closed under
any of the described operations on P , except prefixing. However, every tree
represents some process, and has an irredundant collapse. In other words, there
is a mapping |P| −→ |P̃|, left inverse to the object part of the inclusion P̃ →֒ P .
Since the morphisms of SProc are objects of P̃ , while the morphisms of R are
objects of P , the morphism part of the structure of R is transferred on SProc

using this inclusion and its retraction. In this way, the categorical structure of
SProc is completely induced from R. This holds not only for the identities and
the composition, but also for the tensor, biproducts and the cofree comonoid
construction. All this is inherited from the relational calculus.

However, at the level of 2-cells, the parallelism does not pertain. The reason
is that the irredundant collapse construction |P| −→ |P̃| cannot be extended
into a functor on all tree morphisms. It can be defined on the sober ones, and
we get a left adjoint of the inclusion P̃ →֒ Psober. However, none of the relevant
operations on P , taken as functors, preserve the sobriety of morphisms — none
of them restricts to Psober. The arrow part of the logical structure of P does
not restrict to Psober, and cannot be transferred to P̃. In a rather nonaccidental
way, SProc does not inherit the 2-dimensional structure of R, which is induced
by this arrow part.

5.3 Dynamics is preorder

According to its original definition, SProc does not distinguish particular simula-
tions between processes, but is enriched only by the simulation preorder P ≺ Q,
which records whether there exists some simulation P → P ′ between processes
P, P ′ : A→| B. In other words, SProc should not be derived from R, but from
its preorder collapse R≺. Indeed, there is a functor

(̃−) : R≺ −→ SProc, (42)

which leaves the objects unchanged, and maps each tree P : A→| B to its irre-
dundant collapse P̃ : A→| B. Since P ≺ P ′ implies P̃ ≺ P̃ ′, this is an enriched
functor. Since SProc(A,B) appears as a reflective subpreorder of R≺(A,B), it
forms a soft equivalence with the inclusion SProc →֒ R≺.

But note that R≺ is actually the bicategory of relations corresponding to
the regular fibred preorder P≺ −→ L, obtained by making the functor P −→ L
faithful, which collapses its fibres to preorders. Finally, SProc itself can be
obtained as the calculus of relations induced by P̃≺ −→ L, a regular preorder
too!

One could thus assert that SProc, after all, does realize the slogan of processes-
as-relations in a strictly formal sense. The signalled disharmony between R and
SProc simply disappears upon the passage from simulations to the similarity re-
lation. — So categories of processes should be abandoned, always reduced to
preorders? On one hand, the dynamic laws [20, 3.2] of CCS, which make the
nondeterministic sum P ∨ Q into the join of processes, do enforce this. The
resulting notion of bisimilarity creates the described gap between R and SProc.
On the other hand, we have seen that the basic process operations stem from
logical operations, universal up to isomorphism, and not just modulo similarity
both ways. The similarity preorder, imposed by the dynamic laws, is too loose
to capture their contents. A more precise setting, in which the nature of process

operations would be reflected on process morphisms, seems to require a refined
notion of bisimilarity.

Acknowledgements

Thanks to Samson Abramsky for his patience and interest; and to Lindsay
Errington and Greg Meredith for answering some of my naive questions.

References

[1] S. Abramsky, Interaction Categories and Communicating Sequential Processes,
in: A. W. Roscoe (ed.), A Classical Mind: Essays in Honour of C.A.R. Hoare,
(Prentice Hall 1994)

[2] S. Abramsky et al., Interaction categories and the foundations of typed concur-
rent programming, in: Proceedings of the Marktoberdorf Summer School 1994
(Springer 1995)

[3] S. Abramsky, S. Gay and R. Nagarajan, Constructing and verifying typed pro-
cesses, abstract of a talk given at the CONFER Workshop (Edinburgh 1993)

[4] P. Aczel, Non-Well-Founded Sets, Lecture Notes 14 (CSLI 1988)

[5] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci.
114(1993) 299–315

[6] J. Bénabou, Fibrations petites et locallement petites, C. R. Acad. Sci. Paris Sér.
A, Math. 281(1975) 897–900

[7] A. Carboni and R.F.C. Walters, Cartesian bicategories I, J. Pure Appl. Algebra
49(1987) 11-32

[8] J.R.B. Cockett and D. Spooner, SProc categorically, in: Proceedings of CON-
CUR 94, Lecture Notes in Computer Science (Springer 1994)

[9] H.B. Curry and R. Feys (with W. Craig), Combinatory Logic I, Stud. Log. Found.
Math. (North-Holland, 1958)

[10] T. Fox, Coalgebras and cartesian categories, Com. in Algebra 4(1976) 665–667

[11] P.J. Freyd and A. Scedrov, Categories, Allegories, Mathematical Library 39
(North-Holland 1990)

[12] K. Gödel, The Consistency of the Continuuum Hypothesis, Ann. Math. Studies
3 (Princeton Univ. Press 1940)

[13] J.W. Gray, Fibred and cofibred categories, in: S. Eilenberg (ed.), Proceedings of
the Conference on Categorical Algebra, La Yolla 1965, (Springer, 1966) 21–84

[14] A. Grothendieck, Catégories fibrées et descente, Exposé VI, Revêtements Etales
et Groupe Fondamental (SGA1), Lecture Notes in Mathematics 224 (Springer,
1971) 145–194

[15] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages
and Computation (Addison-Wesley 1979)

[16] A. Joyal, M. Nielsen and G. Winskel, Bisimulation and open maps, Proceedings
of the Eight Symposium on Logic in Computer Science (IEEE 1993) 418–427

[17] F.W. Lawvere, Adjointness in foundations, Dialectica 23(1969), 281–296

[18] F.W. Lawvere, Equality in hyperdoctrines and comprehension schema as an ad-
joint functor, Proc. Sympos. Pure Math XVII(1970), 1–14

[19] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer
Science 92 (Springer 1980)

[20] R. Milner, Communication and Concurrency, Internat. Ser. in Comp. Sci. (Pren-
tice Hall, 1989)

[21] P. Panangaden et al., A Categorical view of concurrent constraint programming,
in: J.W. de Bakkee et al. (eds.), Semantics: Foundations and Applications,
Lecture Notes in Computer Science 666 (Springer 1993) 457–476

[22] D. Park, Concurrency and Automata on Infinite Sequences, Lecture Notes in
Computer Science 104 (Springer 1980)

[23] R. Paré and D. Schumacher, Abstract families and the adjoint functor theorems,
in: Indexed categories and their applications, Lecture Notes in Mathematics661
(Springer 1978) 1–125

[24] D. Pavlović, Predicates and Fibrations, thesis (Rijksuniversiteit Utrecht 1990)

[25] D. Pavlović, Categorical interpolation: descent and the Beck-Chevalley condition
without direct images, in: A. Carboni et al. (eds.), Category Theory, Lecture
Notes in Mathematics 1488 (Springer, 1991) 306–326

[26] D. Pavlović, Maps I: relative to a factorisation system, Report 93-06 from McGill
University (March 1993), 35 pp.; to appear in J. Pure Appl. Algebra

[27] D. Pavlović, Maps II: Chasing diagrams in categorical proof theory, Report 93-08
from McGill University (May 1993; revised), 46 pp.; submitted

[28] D. Pavlović, Convenient categories of processes and simulations I: modulo strong
bisimilarity, in: D. Pitt et al. (eds.), Category Theory in Computer Science,
Lecture Notes in Computer Science (Springer 1995)

[29] D. Scott, A different kind of model for set theory, unpublished lecture given at
the Congress of Logic, Methodology and Philosophy of Science (Stanford 1960)

[30] G. Winskel and M. Nielsen, Models for concurrency, em in: S. Abramsky et al.
(eds.), Handbook of Logic in Computer Science, vol. IV (Clarendon Press) to
appear

