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Abstract

We present a specialized protocol logic that is built
around a process language for describing the actions of
a protocol. In general terms, the relation between logic
and protocol is like the relation between assertions in
Floyd-Hoare logic and standard imperative programs. Like
Floyd-Hoare logic, our logic contains axioms and inference
rules for each of the main protocol actions and proofs are
protocol-directed, meaning that the outline of a proof of cor-
rectness follows the sequence of actions in the protocol. We
prove that the protocol logic is sound, in a specific sense:
each provable assertion about an action or sequence of ac-
tions holds in any run of the protocol, under attack, in which
the given actions occur. This approach lets us prove prop-
erties of protocols that hold in all runs, while explicitly rea-
soning only about the sequence of actions needed to achieve
this property. In particular, no explicit reasoning about the
potential actions of an attacker is required.

1 Introduction

There has been considerable research on formal analy-
sis of security protocols, ranging from BAN logic and re-
lated approaches [2, 6, 19] to finite-state analysis [18, 14]
and proof methods based on higher-order logic [16]. Most
approaches in current use are based on enumeration or rea-
soning about a set of protocol traces, each trace obtained
by combining protocol actions with actions of a malicious
intruder. While automated trace-based tools can be used to
find protocol errors within a few weeks work, it remains
very time-consuming to prove protocols correct using log-

*Partially supported by the Kestrel Institute, DoD MURI “Semantic
Consistency in Information Exchange” as ONR Grant N00014-97-1-0505,
and “Games and Security in Systems of Autonomous Agents” as ONR
Grant N0014-00-C-0495.

dusko@kestrel.edu

ics that reason about traces. While it is difficult to give spe-
cific numbers, since efforts depend on the complexity of
the protocol and the experience of those involved, it seems
that most formal proofs require months of effort, even with
assistance from powerful automated tools. We have there-
fore developed a formal logic capable of relatively abstract
reasoning about protocol traces. In this logic, we are able
to prove correctness of common authentication and secrecy
protocols by derivations of twenty to sixty lines of proof.
The reason for this succinctness is that the proof rules of
the logic state general properties of protocol traces that can
be reused for many different protocols.

The logic presented in this paper includes modal oper-
ators naming sequences of actions from a process calcu-
lus. This logic provides a method for attaching assertions
to protocol actions, in a manner resembling Hoare logic for
sequential imperative programs, so that the composition of
the assertions associated with each action can provide the
basis for a protocol correctness proof. The underlying logic
is different from previous “belief” logics such as BAN and
its descendants [2, 6, 19] and from explicit reasoning about
protocol and intruder as in Paulson’s inductive method [16].
The central idea is that assertions associated with an action
will hold in any protocol execution that contains this action.
This gives us the power to reason about all possible runs
of a protocol, without explicitly reasoning about steps that
might be carried out by an attacker. At the same time, the
semantics of our logic is based on sets of traces of protocol
execution (possibly including an attacker), not the kind of
abstract idealization found in some previous logics.

Our logic uses six predicates: Sent, Created, Decrypts,
Knows, Source, and Honest. The first three make relatively
simple statements about what has happened. For exam-
ple, Sent(X,m) holds at some state in the execution of a
protocol if principal X has sent the message m. Our in-
terpretation of Knows is also very mechanical, and much
more elementary than in logics of knowledge. Specifically,



a principal “knows” a datum if the principal either gener-
ated this datum or received it in a message in a form that is
not encrypted under a key that is not known to the principal.
The last two predicates are more novel. The central pred-
icate for reasoning about secrecy, and authentication based
on secrecy, is Source. Intuitively, Source is used to identify
the “source” of some datum, i.e., the set of possible ways
that a principal might come to know the contents of some
message. The predicate Honest is used primarily to assume
that one party follows the prescribed steps of the protocol
correctly. For example, if Alice initiates a transaction with
Bob, and wishes to conclude that only Bob knows the data
she sends, she must explicitly assume that Bob is honest.
If Bob is not honest, meaning that Bob does not follow the
protocol (or, as this arises in our model, Bob’s key is known
to the attacker), then any data Alice sends to Bob could be
read by the attacker and the attacker could forge all of the
messages Alice receives from Bob. Therefore, many cor-
rectness assertions involve an assumption that one or more
principals are honest.

Most of the axioms and inference rules of our logic are
ways of attaching assertions to actions, and rules for com-
bining these assertions when actions are combined in a role
of a protocol. The main inference rule that is not of this
form is a rule we refer to as the “honesty rule.” This is a
form of invariance rule, used to reason about all possible
actions of an honest principal. Using the honesty rule, it
is possible to prove that if a principal A is honest, and A
sends a message m of some form, then A must have pre-
viously received a message m' of some related form, for
example. This form of reasoning allows us to prove that if
one protocol participant completes the prescribed sequence
of actions, and a principal named in one of the message is
honest, then some secret is shared between the two princi-
pals.

Section 2 describes the process calculus used to define
protocols and section 3 describes the formulas and seman-
tics of our logic. The proof system is presented in sec-
tion 4. A sample proof is discussed in section 5 (and in
the appendix), with concluding remarks collected in section
6. The example in section 5 shows how we can prove cor-
rectness of Lowe’s variant [8] of the Needham-Schroeder
public key protocol [15]. A brief discussion in that section
also shows how the same proof outline fails to produce a
correct proof for the original Needham-Schroeder protocol,
since Alice cannot correctly establish the identity of the re-
sponder unless the protocol is repaired according to Lowe’s
suggestion.

2 Communicating Cords

Cords are the formalism we use to represent protocols
and their parts. They form an action calculus [9, 10, 17],

based on m-calculus [13], and related to spi-calculus [1].
The basic idea of 7-calculus is to represent communication
by term reduction, so that the communication links can be
created dynamically [12]. The idea of spi is to add to 7 the
suitable constructors for encryption and decryption, and an-
alyze secure communication in terms of bisimulations and
process equivalences.® We treat the encryption in the same
way, but decryption is reduced to term reduction. The idea
of cord calculus is not so much to capture security within
the meta-theory of processes, but rather to serve as a simple
“protocol programming language”, intuitive enough to sup-
port our Floyd-Hoare style logical annotations, and verifica-
tions in an axiomatic semantics. The formalism is designed
to support protocol composition and synthesis, in addition
to reasoning about protocol correctness. As the present pa-
per only addresses the latter, some features may not be ap-
parent.

In fact, cords are first of all based on the informal lan-
guage of arrows and messages, widely used in the security
community. For instance, an arrows-and-messages picture
of Lowe’s variant [8] of the Needham-Schroeder public key
protocol [15], which we will refer to as NSL, might look
something like Figure 1.

Strand spaces [5] have been developed in an effort to-
wards formalizing this language. The messages are cap-
tured in a term calculus, and decorated by + and —, re-
spectively denoting the send and the receive actions. The
roles are then presented as sequences of such actions, called
strands. Viewed as a strand space, the above protocol run is
shows in Figure 2.

The fact that an agent only sees his or her own actions,
viz sending and receiving messages, is reflected in the strand
formalism. However, communication, the fact that by re-
ceiving a message, an agent may learn something new, is
not reflected. E.g., in the above example, the strand B al-
ready contains the term {| A, m|} 5, and appears to know the
exact form of the message that he is about to receive, in-
cluding A’s fresh nonce, before the communication is ever
initiated. Indeed, the formalism is set up so that the parti-
cles +{|A,m[} g and —{|A, m[} 5 can react only when the
terms involved exactly coincide.

In strand spaces, which provide the basis for a series
of interesting results and applications, roles are treated as
families of strands, parameterized by all the possible values
that can be received. However, we found this approach not
only somewhat artificial, but also technically insufficient for
our form of reasoning about secure communication. For in-
stance, it is difficult to identify the data “known” to a strand
when an agent in a protocol is parameterized by values un-
known to them. Such parameters come about, e.g., when a
role is sent a term encrypted by someone else’s key, which
it should forward, rather than attempt to decrypt. More gen-

LA notable earlier attempt at a similar approach was [7].



Figure 1. NSL as Arrows and Messages

A= +{A,m}p

B= —{A,m}p =————= +{m, B,nf}a

—{m, B,nffa === +{nl s

—{Inlis

Figure 2. NSL as a Strand Space

erally, a formal occurrence of a subterm in a strand is un-
related to the knowledge of the agent to whom that strand
belongs.

Cord spaces are a result of our effort to overcome such
shortcomings. In comparison with strands, we add variables
to the term calculus. Of course, just like a parameter, a vari-
able is just a placeholder for a family of values; but vari-
ables come with a formal binding and substitution mecha-
nism. The action of receiving a value into a variable x is
expressed by the operator (z), which binds the occurrences
of z to the right of it. The action of sending a term ¢ is now
written (t), rather than +¢. When the term ¢ is closed, i.e.
reducible to a value, the particles («) and (¢) can react: they
are eliminated, and ¢ is substituted for all occurrences of x
that were bound to (x). The value propagation resulting
from the communication is modeled by the substitution.

The cord space, corresponding to the above protocol
is shown in Figure 3. Here we introduce the notation
(vm) which is a binding operation denoting the genera-
tion of a new nonce, m. A generates m and sends the
term {|A,m[} 5 which B now receives into the variable
x, and substitutes for it on the right. In particular, the
pattern-matching operator (x/{Y, z[} ) is now instantiated
to ({{A, m[}5/{Y, z[} 5). The matching succeeds, and the
values A and m get substituted for Y and 2. The term
{lz, B, n[}y is thus instantiated to {}m, B, n[} 4, which con-
tains no variables any more, and can be sent. Now A re-
ceives this term into the variable u, and substitutes it into
(u/{{m, B,v[} 4). The encryption is matched against the
expected encryption, the first two encrypted components

against the nonce m and the name B, whereas the third
component, the nonce n is substituted for the variable v.
The term {jv[} 5 now becomes a value, which is sent, re-
ceived into w and pattern matched, viz decrypted, and tested
to be equal to the nonce n.

A formal definition of cords requires several syntactical
steps.

2.1 Termsand actions

The terms ¢ are built starting from the variables x and the
constants a. Moreover, the set of basic terms also contains
the names N, which can be variable X, or constant A.

Upon these basic sets, the term language is then gener-
ated by some given constructors p, which always include
tupling, and the public key encryption {¢[} 5, Of the term ¢
by the key named N. The decryption is not presented as a
separate constructor.

The language of actions is then built upon the terms by
further constructors. They include sending a term (¢), re-
ceiving into a variable (z), and matching a term against a
pattern (¢/p(z)). In the present paper, we shall also con-
sider nonce generation (vx) as a separate action, although
other features of the calculus could cater for it. The ex-
tensions may allow other actions, such as reading time, or
point-to-point communication.
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Figure 3. NSL as a Cord Space

In summary, we have:

(names) N == X | A
(terms) t == z | a | N |
_ tot | {thy
(actions) a == () | (z) [ (vx) | (¢/p(x))

Remark. For the sake of simplicity, this grammar is formal-
ized as if only one variable at a time can be used to receive
a message, and as if all constructors p must be unary. In a
moment, when we introduce the reduction rules, it will be-
come clear that receiving into an n-tuple of variables, and
pattern matching with an n-ary constructor can be respec-
tively implemented as

W) (/215 ,T0)
(t/p(y)) (y/1,. ..

(1,...,2pn) =
(t/p(x1,... ,24)) =

2.2 Strandsand cords

7l‘n)

A strand is just a list of actions. The idea is that they
should be the subsequent actions of a single role in a pro-
tocol. Since some actions of a role may be mutually com-
pletely independent, they can in principle be executed in
any order: e.g., (a) and (). Different strands can thus be
semantically equivalent.

A cord is an equivalence class of behaviorally indistin-
guishable strands. The variable binding mechanism allows
us to extract, in the basic calculus of cords, the minimal
equivalence relation . The more precise behavioral equiv-
alence relations can be captured in the extended versions of
the calculus. In any case, the list of syntactic categories now
extends to

(strands) S := aS
(cords) C u= S/~

The second production here is something of an abuse of
notation: cords are equivalence classes of strands, modulo
a specific equivalence relation = that allows renaming of
bound variables and reordering of non-conflicting actions.
For example, = identifies strands like (z){a) and (a)(x),

with the independent actions permuted. In contrast, the ac-
tions (z) and ({|«[} 4) are not independent, because a value
must be received into x before it can be sent out in a mes-
sage. In general, the strands S and 7" will be considered
independent if no values can be passed between them. For-
mally, we capture this by requiring that ~ includes the rela-
tion ~ defined

FV(S)NBV(T)
FV(T) N BV(S)

0
0

where the operators F'V and BV, assigning to the strands,
respectively, the sets of the free and of the bound variables,
are inductively defined as follows:

ST ~TS <+ {

V(1)) = FV()UFV(S)
V((x)S) = FV(5)\{z}
V((t/p(x))S) = FV(t) UFV(S)\{z}
V((vz)S) = FV(S)\{z}
V(1)) = BV(S)

V((z)S) = BV(S)U{z}
V((t/p(x))S) = BV(S)U{z}
V((vz)S) = BV(S)U{z}

The set FV (t) of the free variables occurring in a term ¢
is defined as usually: whenever a variable x is used in the
formation of a term ¢, it is added to F'V (¢).

The actions “receive” (x), “match” (or “test”) (¢/p(zx))
and “new” (vz) thus bind the variable x. The scope is al-
ways to the right, with the usual extrusion rules. A value is
propagated through a strand by substituting it for = every-
where within the scope of a binding operator. In this way,
the condition F'V(S) N BV(T') = 0 indeed ensures that .S
cannot depend on 7.

The equivalence relation = is generated as the transitive,
reflexive closure of ~, and then also closed under the a-
conversion, viz renaming the bound variables. The strands
S and T will thus be ~-equivalent, and represent the same
cord, if and only if one can be obtained from the other by
renaming the bound variables, and permuting the actions
within the scopes of the bound variables, i.e. in such a way
that no free variable becomes bound, or vice versa.



Remark about tupling again. Note that (x)(y) is equivalent
with (y)(z), but very different from (z,y) = (2)(z/z,y).
The cord [(x)(y)] will be used only when the messages to
be received into x and y are truly unrelated, and can be re-
ceived in any order.

2.3 Cord spacesand runs

A cord space is a multiset of cords. It is the space of all
the roles that may be involved in a protocol, or in the chem-
ical abstract machine speak, a “soup” in which the particles
may react. For instance, one run of the NSL protocol arises
from the cord space

A®B =
[(vm){A,m}B)...] @ [(2)(@/{Y,z2[}5...]

With the binary operation ® and the empty cord [] as the
unit, cord spaces form the free commutative monoid gener-
ated by cords.

The runs of a protocol are represented as reaction se-
quences in cord spaces. The basic reactions are shown in
Table 1. The substitution (¢/x) is assumed to act on the
strand left of it, viz R’. As usually, it is assumed that no
free variable becomes bound after substitution, which can
always be achieved by renaming of the bound variables.

The intuitive motive for the condition F'V (¢) = () should
be clear: a term cannot be sent, or tested until all of its
free variables are instantiated. In other words, our variables
are not public names, or references that could be passed
around, but strictly private stores. This security-specific fea-
ture distinguishes cord calculus from the closely related, but
general-purpose process and action calculi, to which it oth-
erwise owes the basic ideas and notations.

The run of the NSL protocol, displayed in Figures 1-3
can now be completely formalized as a sequence of syntac-
tic reaction steps, which are shown in Table 2. Steps (a), (c)
and (e) are based on rule (1), steps (b), (d) and (f) on (2),
and (d) and (f) also use rule (3). In a sense, these six reduc-
tion steps correspond to the five arrows in Figures 1 and 2,
plus the final test of n, that B performs, which was omitted
in the diagrams. On the other hand, the three arrows that ap-
pear in Figure 3 correspond to the applications of rule (1).
The tests, based on rule (2), were represented in Figure 3
not by arrows, but by displaying the corresponding actions.

It is often said that the most ubiquitous errors in reason-
ing about security arise from hidden steps, and implicit as-
sumptions that may or may not be satisfied. A solid founda-
tion for protocol design and analysis should at least include
a method for capturing and displaying all relevant steps,
and their intended meanings. We believe that cord calculus
caters for this need. While providing precision on one hand,
it easily scales up, and extends by additional features, such
as point-to-point communication, time stamps etc. While

the increased precision and the added features necessarily
extend and complicate notation, judicious choice of syntax
has so far allowed us to keep the calculus, in all the exten-
sions considered so far, as succinct as the competing infor-
mal notations. E.g., by introducing abbreviations, the code
in the core calculus introduced above can be reduced to the
size of the informal arrows-and-messages descriptions: the
ubiquitous combination (y)(y/p(x)) can be abbreviated to
(p(z)). For p(z) a constant, this gives for receive-and-test

(m) = (z)(x/m)
Similarly, receiving and matching p(z) = {J=[} » becomes

({zf}a)-

2.4 Protocols

And finally, how do we represent a protocol? A proto-
col is a set of roles, such as initiator, responder and server,
each representing the actions of a participant in a protocol
session. Each cord captures one role, but a principal may
consist of several cords, which form a cord space. To rep-
resent the initial state of a protocol, we form a cord space
including the cords of all of its principals. To distinguish
which cord belongs to which principal, we subscript them
by their names. In the above example, each principal has
just one role, but we shall in principle write

A®B =
[(vm){A,mlp) .. ]a @ [(@)(@/{Y: 25 15

The protocol attacker is given by a set of actions, includ-
ing receiving a message, decomposing into parts, decrypt-
ing if the key is known, remembering parts of messages,
and generating and sending new messages. This is the stan-
dard “Dolev-Yao model”, which appears to have developed
from positions taken by Needham and Schroeder [15] and a
model presented by Dolev and Yao [4]; see also [3].

A run of a protocol with attacker starts with selection of
some number of honest principals and assignment of one
or more roles to each honest principal. In addition, a num-
ber of compromised keys are generated and revealed to the
attacker. Once this configuration is established, honest prin-
cipals send and receive messages according to the roles as-
signed to them and the attacker may intercept and replace
messages at will.

Since a principal may follow many roles, it could be pos-
sible for actions in one role to affect another role of the
same principal. This gives rise to the following technical
lemma, forbidding such “crosstalk”, which is necessary for
the soundness of the logic.

Lemma 2.1 (No Crosstalk) If principal A follows role R,
then all data sent be A as R is either generated by A as R
or received by A as R.



S > (FV(t)=
R'|... b (Fv@E)=
> (zgFV(R))) >

0> [RR(t/z)]@[SS"]... 1)
0> [RR(t/z)]... 2
[RR]... ©)

Table 1. Basic reaction steps

Jel@) (@Y, z}5). ]
[(({A, mlts/{Y; 2} 5)(vn) ({2, B,nly) - -]

n) {({m, B,nfta) (w)...]

vm) ({{m, B,nlta/{m, B, v[a) ({{v[ )] © [(vn)(w)...]
) n)(w)(w/{nlt5)]

A®B = [(vm)({Am}s)(u)..
> [(vm)(u)...]®
>m) e [(vm)(u)(u/{{m, B,vla)...]®@[(v
> (o) [(
>@e [({Infr)]®[(v
> e @ [wn){nls/{nl5)]
> @ ]

Table 2. NSL example reaction

Note that this lemma normally holds true in real world
scenarios — multiple processes running a protocol on the
same machine don’t generally share information. This is
an assumption about the honest participants in a protocol,
not about the attacker.

25 Static binding and cord category

Finally, as the reader familiar with action calculus may
have noticed, cords, taken as particles, generate an action
category [11, 17].2 The idea is that a cord space C, dis-
played in the form

Y = (Io...l‘i_l)c<y0...yj_1>

can be viewed as an arrow v : ¢ —» j, where arities 4,j
are the objects of the category. The variables x,, assumed
mutually different, form the input interface: the operator
(zo, ... ,x;) binds their occurences to the right. The vari-
ables y, in the output interface may not be mutually differ-
ent, nor different from x,. Of course, all expressions are up
to a-conversion, i.e. up to variable renaming.

Given a morphism § : j — k, in the form

o6 = (UQ .. .Uj_l)D<U0 . .Uk_]_)
the composite v ; ¢ : ¢ — k will be the cord morphism
Ii—l) CD(ZI/’J) <’U0 e Uk_1>

where it is assumed that the names in the interfaces of ~
and ¢ have been chosen so that no clashes occur when 3 is
substituted for .

v;6 = (zo...

2Indeed, this is the source of the equivalence relation ~.

The idea is that the dynamic binding by (z) and (vx)
captures value propagation by communication, the static
binding of the input interface is now used to compose agents
at design time. The static interfaces are thus not used for
passing any actual messages, but for propagating the pub-
lic keys, connecting the various roles of the same principal,
and for static links in general, independent of and prior to
the execution. The role A above can be designed as the
composite A = Ay ; A1, where

Ao = (X, )[m) ({IX, mly )X, Y,m)
A = (X7,2) [ (v/{2 7, 0hg) obs)] 0

The constant values of A and B can be passed to it, at design
time, by precomposing it with the morphism ()[](A, B).

Static binding plays, in the present paper, an essential
role only in applications of rule HON. The details and
the usage of the action calculus of cords must be left for a
later occasion, but for the present paper we will display the
interface only when it is relevant, and in other cases assume
that all variables are bound.

3 A Protocol Logic
3.1 Syntax
The formulas of the logic are given by the following
grammar:
¢ == Sent(t1,t2) | Knows(t1,t2) | Source(ty, ta,ts3)
| Created(t1,t2) | Decrypts(t1,t2) | Honest(t1)
[¢NG | ¢ |[P]x¢



Most protocol proofs use formulas of the form [P]x¢,
which means that after X executes actions P, formula ¢ is
true about the resulting state of X. Here are the informal in-
terpretations of the predicates, with precise semantics given
in the next section:

Knows(Z, x): principal Z knows information x. This is
“knows” in the precise sense of having either generated the
data or received it in the clear or received it under encryp-
tion where the decryption key is known. If Z knows {|m[} x
and does not know K 1, then Z does not know m from this
message.

Sent(Z, m) means principal Z sent message m. This
implies that Z knows the message m.

Decrypts(Z, {ml} x ) means principal Z received a mes-
sage in a role that expected the message and was able to
decrypt it. This implies that Z knows the message {|m/} k.,
and the decrypted text, m.

Created(Z, m) means that principal Z created message
m. This also means that Z knows some parts of the message
m, particularly if it is an encrypted message {|m/[} k, then
Z also knows the encryption key K and the plaintext m/'.

Honest(Z) means that the actions of principal Z in the
current run are precisely an interleaving of the initial seg-
ments of a set of instantiated roles of the protocol. In other
words, Z assumes some set of roles and does exactly the set
of actions prescribed by them.

The Source predicate is used to reason about the source
of a piece of information, such as a nonce. Intuitively, the
formula

Source(m, X, M)

means that the only way for a principal Y different from X
to know m is if Y learned m from a message in the set M,
possibly by some indirect path.

3.2 Semantics

A formula may be true or false at a run of a protocol.
More precisely, the main semantic relation, Q, R = ¢, may
be read, "formula ¢ holds at the end of run R of proto-
col @ In this relation, R may be a complete run, with all
roles that are started in the run completed, or an incomplete
run with some principals waiting for additional messages to
complete one or more roles.

As preliminaries to the inductive definition of Q, R = ¢,
we make a few definitions regarding runs and the intruder.
If @ is a protocol, then let

Q=(Q®Ig)

where Ig is the set of intruder actions for @). (There is
essentially only one set of intruder actions, enumerated in
section 2.4. However, these actions must be adapted to the

set of possible messages of @Q.) Let Runs(Q) be the set
of traces of protocol @ with intruder, as described in Sec-
tion 2.4, each a sequence of states and actions.

A useful abbreviation is

EVENT(R,B, P, i, &) =
([SPS"|p®...) bo> ([SS'(7/Z)]p®...) €R)

In words, EVENT(R, B, P,7,Z) means that in run R,
principal B executes actions P, receiving data 7 into vari-
ables Z. If P does not contain a receive action, then 7 and
Z will be empty.

Also we use m C m/ to indicate that m is a syntactic
subterm of m/ and m C m/ to indicate that m is a syntactic
subterm of m, not hidden by encryption. We use {(.,.) to
indicate pairing, i.e. (z,y) is the tuple containing = and y.

We define satisfaction Q, R = ¢ by induction on ¢ as
follows:

e Q,R = Sent(B,m) if EVENT(R, B, (m),0,0)

e Q,R | Knows(B,m) if Ji.Know;(B, m) where
Know; is defined by induction on j as follows:
(Knowg (B, m) if (m € FV(R|g)) V (m = B)
V EVENT(R, B, (vm),0,0)
V EVENT(R, B, (z), m, x)
and Know; 1 (B, m) if Know;(B,m')
A(m =mvVm' ={m,m")yvm' = (m",m)
V(m' ={mlx
A EVENT (R, B, (m'/{ly} k), m,v))))

e QQ, R | Source(m, B,M) if
EVENT(R, B, (vm),0,0) A
(VCNm/ (EVENT(R,C,{(m/),0,0) A (m C m'))
D (@Am "  m Cm” Cm')Am’ e M)

e Q,R = Created(B, {m|} k) if
Knows(B, K) A Knows(B, m)
A EVENT (R, B, (m/),0,0) A ({{m[x € m)

e Q,R = Created(B, (z,y)) if
Created(B, z) V Created(B, y)

e Q, R = Decrypts(B, {{m[} k) if
EVENT(R, B, (y)(y/{lz} k), m, )

e @, R = Honest(A) if R| 4 is an interleaving of instan-
tiated roles of Q.

e QRE(p1N2)ifQ,RE¢rand Q, R = ¢
¢ QRE9IfQ,R¥ ¢

e Q,R = [P]x ¢ if P matches R|x implies Q, R |= ¢,
where P matches R|x precisely if R|x is the inter-
leaving of a set of initial segments of instantiated roles
of @ and one of these instantiated roles is exactly P.



We write Q = ¢ if Q,R |= ¢ for all R € Runs(Q).
Some consequences of the definitions are

@, R = Honest(A) D ¢
if @, R = Honest(A) implies Q, R = ¢

where D is regarded as an abbreviation for a combination
of A and —, as usual, and

Q = [P]x¢ if YR € Runs(Q).
(if P matches R|x then Q, R = ¢)

4 Proof System
4.1 Axiomsand rulesabout protocol actions

The axioms and inference rules about protocol actions
are listed in Table 3. For the most part, these are relatively
simple “translations” of actions into atomic formulas of the
logic. For example, axiom AN1 “says” that if principal X
generates a new value m, then the only principal who knows
m is X. By definition,

Q, R = [(vm)]x Knows(Y,m) D (Y = X)

if Q,R = Knows(Y,m) D (Y = X) whenever (vm)
matches R|x. By definition of matches, (vm) matches R| x
only if (vm) is the last action of one of the roles of X in R.
But in this case, X cannot have sent m to any other princi-
pal and therefore only X knows m. This shows that axiom
ANT1 is sound.

Axiom AN2 says that if principal X generates a new
value m and does no further actions in this role, then X
knows m, while Axiom AN3 states that if principal X gen-
erates a new value m and does no further actions in this role,
then the set of messages that can contain m is empty.

Axiom AM2 is about the binding of static variables of a
protocol role. Inthis case the z in (z ...)[]x, is a value de-
termined when the roles for each participant were assigned.
Typically this will be the identity of the participant, and pos-
sibly the identity of other participants an initiator will try to
talk to, along with shared keys, etc.

Perhaps the most subtle is the inference rule S1, which
says that if X sends a message containing m, then the set
of messages that might allow another principal to obtain m
is increased by one.

4.2 Axiomsrelating atomic predicates

Table 4 shows the relationships between the various
properties, most of which follow naturally from the seman-
tics outlined above. For example, if X decrypts {{ml[} k,
then X knows m because that is the result of the decryp-
tion.

Axiom SEC is an assumption about protocols that we
adopt in this paper for simplicity. This axiom says that prin-
cipals do not reveal their private decryption keys. This is
easily verified for many protocols by inspection: if no prin-
cipal ever sends their key in any message, then it remains
secret. While we could prove this formula for specific pro-
tocols, we assume this as an axiom and only consider proto-
cols (in this paper) that obviously satisfy this formula. We
repeat: axiom SEC is used here to shorten and simplify
proofs; there is nothing inherent in this approach that re-
quires us to restrict our attention to protocols that satisfy
SEC.

Note that CSent is an abbreviation for “created and sent”.

4.3 Preservationrules

Most predicates are preserved by additional actions. For
example, if X knows m before an action, then X will also
know m after the action, regardless of what the action is.
The reason is that we define the knowledge of X to include
all data available to X at any step of the protocol execu-
tion. Inference rules showing preservation of properties are
shown in Table 5.

The exception to preservation is Source.  Since
Source(m, X, M) means the only way for a principal other
than X to know m is from messages in M, this atomic for-
mula may become false if X sends another message con-
taining m. In this case, the relevant inference rule adds the
message containing m to the set M of network messages
containing m.

In all of these formulas, the “principal” referred to is a
single principal who may be participating in multiple roles.
A consequence of our formulation of protocols is that, while
a principal Alice may participate in many instances of many
roles at the same time, there will be no communication be-
tween the various instances if Alice is honest. This is the
“No Crosstalk Lemma,” Lemma 2.1.

4.4 Thehonesty rule

Intuitively, the honesty rule is used to combine facts
about one role with inferred actions of other roles. For ex-
ample, suppose Alice receives a response from a message
sent to Bob. Alice may wish to use properties of Bob’s role
to reason about how Bob generated his reply, for example.
In order to do so, Alice may assume that Bob is honest and
derive consequences from this assumption. Perhaps an anal-
ogy will help. In the game of bridge, one player may call
out a series of bids. The player’s partner may then draw
conclusions about the cards in the player’s hand. If we were
to formalize the partner’s reasoning, we might use impli-
cations such as, “if the player is following the Blackwood
bidding convention, then she has three aces.” The intuition



AN1 |
AN2 |
AN3 |

AS1 |
AR1 |
AR2 |
AM1 |
AM2
AM3 |

vm)]x Knows(Y,m) D (Y = X)
)]

vm)|x Knows(X,m)

m)]x Sent(X,m)

{m[} x)]x JY.Created(Y, {m[} k)
m)]x Knows(X,m)

| x Knows(X, key(X))

z... )] ]x Knows(X, z)

() (y/{ml k)] x Decrypts(X, {im[; k)

(
(
(vm)]x Source(m, X,{ })
(
(
(

[P]xSource(m,Y, M)

S1

mCm’

[P(m')] xSource(m,Y, MU {m'})

Table 3. Axioms and rule for protocol actions

DEC1 Decrypts(X, {{m[} k) D Knows(X, {|{m[} i)
DEC2 Decrypts(X, {{m[} k) D Knows(X,m)
SEC Honest(X) A Decrypts(Y, {{m[}x}) D (Y = X)
SRC Source(m, X, {{m[}x}) A Knows(Z,m)ANZ # X D
3Y.Decrypts(Y, {im[ k)
CR1 Knows(X, y) A Knows(X, K) A Sent(X, {ly} k) D
Created(X, {ly} k)
CR2 Created(X, {m[} k) D Knows(X,m)
CR3 Created(X, {{m[} k) D Knows(X, K)
K1 Knows(X, (y,x)) D Knows(X, y) A Knows(X, x)
CSent(X,m) = Created(X,m) A Sent(X,m)

Table 4. Relationships between properties

is that a bid provides a signal to the other player, and the
exact meaning of the signal is determined by the bidding
conventions that the partners have established. In the same
way, a message may imply something specific if the prin-
cipal sending the message is following the protocol. But if
the principal has revealed his private key to the attacker, for
example, then receipt of that message does not provide the

same information about the principal.

The honesty rule is essentially an invariance rule for
proving properties of all roles of a protocol. Since honesty,
by definition in our framework, means “following one or
more roles of the protocol,” honest principals must satisfy
every property that is a provable invariant of the protocol
roles.



Generic Rules:

[Plo [Pl
[Plo Ay
[Plo

Preservation Rules: (For Persist € {Knows, Sent, Decrypts, Created})

[P] aPersist(X, t)

[P] aPersist(X, t)

[P{m)] aPersist(X,t) o [P(z)] aPersist(X, t) o
[P] APersist(X, t)
P3
[P(vz)] aPersist(X,t)
[P]aSource(m,Y, M) [P]aSource(m,Y, M)
(mZN) P4 P5
[P{m)] aSource(m,Y, M) [P(z)]aSource(m,Y, M)
[P]aSource(m,Y, M)
P6

[P(vx)]aSource(m, Y, M)

Table 5. Inference Rules

(ve) X, zly) ({2, Y, yltx) Qylhy)]x ¢(X)

P (X Y)[(vz){X, z}v)]x ¢(X)
PH(XY

P (X)[]x ¢(X)

P (XY, zfx) (vy){lz, X, yly)]x o(X)
P X

{Y, 2l x)(vy) {2, X, ylv) (lylx)]x #(X)

HON

P I Honest(X) D ¢(X)

Table 6. Honesty rule for NSL

Recall that a protocol Q is a set of roles, @ =
{R1,Ra,...,R;}. Typically the roles may be initiator,
responder and possibly a server, or the protocol may have
some other form. If R € Q is arole of protocol Q, we write
P C R if P is an initial segment of the actions of role R
such that the next action of R after P is a receive, or P is
a complete execution of the role. The reason for only con-
sidering initial segments up to reads is that if a role contains
a send, for example, the send may be done asynchronously
without waiting for another role to receive. Therefore, we
can assume without loss of generality that the only “paus-
ing” states of a principal are those where the role is waiting
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for input. If a role calls for a message to be sent, then we
dictate that the principal following this role must complete
the send before pausing.

Since the honesty rule depends on the protocol, we write
Q F [P]¢ if [P]¢ is provable using the honesty rule for Q
and the other axioms and proof rules.

Using the notation just introduced, the honesty rule may
be written

no free variable
in ¢ bound in
(2)[P]x

VR € QVpcr.QF (2)[Plx ¢
Q F Honest(X) D ¢

HON



Where (Z)[P]x is the initial steps P of role R with static
variables (Z), and no free variable in ¢ other than X is
bound by (Z)[P]x. In words, if every role of Q, run ei-
ther to completion or to a receiving state, satisfies ¢, then
every honest principal executing protocol @ must satisfy ¢.
The side condition prevents free variables in the conclusion
Honest(X) D ¢ from becoming bound in any hypothesis.

More concretely, the honesty rule for the NSL protocol
is shown in Table 6. Here, the antecedents of the rule enu-
merate the intermediate “waiting for input” states and final
completed states of each of the roles of the protocol. I1f some
formula ¢ expressible in our logic holds in these five local
traces, then ¢ will hold for any honest principal executing
this protocol.

The honesty rule is used in the proof of correctness of
NSL that is given in full in Appendix A. One place the
honesty rule is used is to prove that if B completes the re-
sponder role, and the principal A sending the final message
to B is honest, then A also sent the initial message to B.
The key part of this deduction is to prove the formula

¢(A) = ¥m,n,B.Decrypts(A, {{m, B,n[t4) D
(CSent(A, {{A,m[}5) A CSent(A, {n[}5))

holds for honest participant A. This formula is proved using
the honesty rule in line 9 of B’s deduction in Table 9.

To give some feel for how the honesty rule works in this
case, we give an informal, intuitive explanation of how the
rule yields ¢. Referring to the rule as instantiated for NSL,
we can see that the antecedent Decrypts(A, {|m, B,nf}4) is
never true for A in the responder role, so ¢ trivially holds in
those cases. To prove ¢ for the initiator role, we have two
cases. For the case where the initiator never receives a reply
to his message, Decrypts(A, {{m, B, n[} 4) is never true, so
¢ holds. For the case where the initiator receives a reply, we
look at the R(A) deduction shown in Table 7, which shows
that Decrypts(A4, {m, B,n[} 1), CSent(A4,{a,m[}5), and
CSent(A, {n[5) are all true, so ¢ holds. Since ¢ holds
for any valid sequence of steps that an honest participant A
would make, then Honest(4) D ¢(A).

45 Soundness

Theorem 4.1 (Soundness) If Q + ¢ then Q E ¢.

The proof is an induction on the structure of proofs. Sev-
eral cases are sketched in Section 4. An additional example,
the proof of AN3 is as follows:

Informally, Axiom AN3 says that if a principal X gen-
erates a new value m and takes no further actions, then after
that action the set of messages from which a principal other
than X could have learned m is empty.

By definition,

Q, R = [(vm)]x Source(m, X,{ })

11

if Q,R E Source(m,X,{ }) whenever (vm) matches
R|x. By definition of matches, (vm) matches R|x only
if (vm) is the last action of one of the roles of X in R. But
in this case X cannot have sent any messages containing m.

From the semantics of Source, there can be no events of
form

(EVENT(R,C,(m/),0,0) A (m Cm’)) D
(Fm".m Cm” Cm') Am” € M)

for any principal C # X, since we know X didn’t send any
messages containing m, and from AN1 no other principal
knows m, so the set M must be empty.

5 Sample correctness proof

We have constructed correctness proofs for a few dif-
ferent protocols, including public-key and private key pro-
tocols (with appropriate modification of the decryption
action). In addition, our attempt to prove the original
Needham-Schroeder protocol correct fails in an insightful
way, due to an inability of the responder to identify the prin-
cipal who decrypted the second message with the principal
who sent the first and third. Although we defer more elabo-
rate discussion to the full paper, a proof for Lowe’s variant
of the Needham-Schroeder public-key protocol appears in
three tables in Appendix A.

6 Conclusion

We propose a specialized protocol logic that is built
around a process language for communicating cords de-
scribing the actions of a protocol. The logic contains ax-
ioms and inference rules for each of the main protocol ac-
tions and proofs are protocol-directed, meaning that the out-
line of a proof of correctness follows the sequence of actions
in the protocol.

A central idea is that assertions associated with an action
will hold in any protocol execution that contains this action.
This gives us the power to reason about all possible runs
of a protocol, without explicitly reasoning about steps that
might be carried out by an attacker. At the same time, the
semantics of our logic is based on sets of traces of protocol
execution (possibly including an attacker), not the kind of
abstract idealization found in some previous logics. This
approach lets us prove properties of protocols that hold in
all runs, without any explicit reasoning about the potential
actions of an intruder.
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A Sample proof

Tables 7 through 9 contain a formal proof of the cor-
rectness of the Needham-Schroeder-Lowe protocol, for the
responder, in our system.

In an informal sense, Table 7 shows Alice’s understand-
ing of what has happened at the end of a successful run
of the protocol. The final formula of Table 7 is a formula
[P]4 ¢ where P is the set of actions of the initiator’s role in
the protocol, and ¢ is a formula collecting together a set of
Alice’s observations.

In the same informal sense, Table 8 shows what Bob can
observe by the end of a run of the responder’s role of the
protocol.

Informally, Table 9 shows how Bob can combine rea-
soning about Alice’s role with his own observations to con-
clude that if Alice is honest (i.e., the decryption key A1 is
not known to the attacker, and Alice has followed her role
under NSL) then he has communicated with Alice.



AM2, AM1
AN2, AN3
AS1,

AR1, AR2

AS1
1,2,P3

3,6,P1,S1

7,CR1

4,8,P2,P5

9, AM3

10, DEC2

5,11,P1,P4

12,CR1

A B)[]aKnows(A, A) A Knows(A, B)

(vm)]aKnows(A, m) A Source(m, A,{ })

({l4,m[} p)]aSent(A, {4, m[} 5)

({|m7 B, n‘}A)]AKnOWS(Aa {‘ma B, n|}A) A
3X.Created(X,{m, B,n[}4)

[({Inl B)]aSent(4, {|nf}5)

(A B)[(vm)] aKnows(A, A) A Knows(A4, B) A
Knows(A, m) A Source(m, A,{ })

(A B)[(vm){{{A, m[} 5)] aKnows(A, A) A Knows(A, B) A
Knows(A4, m) A Sent(A, {4, m[}5) A
Source(m, A, {{A, mf} 5})

(4 B)[(vm) {4, m} 5)] aCSent(A, {4, ml} ) A

Source(m, A, {{|A,m[}s})

(
[
[
[

(4 B)[(vm){{{A, m[} 5)({lm, B, n[; 4)|aCSent(A, {| A, m[} 5) A

Source(m, A, {{{A,m[}s}) A
Knows(A4, {m, B,n[} 1) A 3X.Created(X, {m, B,n[} 1)

(A B)[(vm){{ A, m[} ) ({m, B, nl} a)| aCSent(A, {|4, m]}5) A

Source(m, A, {{A,m}B}) A
Decrypts(A, {{m, B,nta) A 3X .Created(X, {{m, B, n[4)

(A B)[(vm){{ A, m[} ) ({m, B, nl} a)| aCSent(A, {|4, m]} 5) A

Source(m, A, {{|A,m[}5}) A Knows(4,n) A
Decrypts(A, {{m, B,nf}a) A 3X .Created(X, {{m, B, n[4)

(A B)[(vm)({l4,m[} 5)({m, B,nlta){Inl} 5)]a
CSent(A, {|A,m[}g) A Source(m, A, {{{A,m[}5}) A

Decrypts(A, {|{m, B,nf}4) A 3X.Created(X, {m, B,nf}4) A

Knows(A4, n) A Sent(A, {|n[} 5)
(4 B)[(vm) ({4, mb 5) (Im, B, a)nl )]
CSent(A, {|A,m[}g) A CSent(A, {|n[}5) A
Source(m, A, {{A,m}B}) A
Decrypts(A, {|m, B,nta) A 3X .Created(X, {{m, B, n[}4)

Table 7. R(A) — A’s view at end of run

M)
O]
3)

(4)
(5)
(6)

()

(8)

©)

(10)

(11)

(12)

(13)
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AR1
AN3
2,81
AR1
1,3,P1,P3

4,5,P2,P5

(B)[({|A, m[} g)]| 3 X .Created(X, {|A, m[} B)
[(vn)]sSource(n, B,{ })
[(Vn)<{‘m7 B, 'I”L|}A>]BSOUI’C€(TL, B, {{‘m7 B, n|}A})
[({In]} B)] 33X .Created(X, {{n|} )
(B)[({A,m[} 5)(vn)({m, B,n[} )]s
3X.Created(X, {|A,m[}B) A
Source(n, B,{{m, B,n[}a})
B){| 4, m[5)(wn){{Im, B,n[ta)({nl} )]s
3X.Created(X, {|A,m[} ) A
Source(n, B, {{lm, B,n[}a}) A
3Y.(Created(Y, {n|} 5)

Table 8. R(B) — B’s view at end of run

1)
@
3)
(4)

()

(6)
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R(B), HON

1,2,G1

3,CR2

SRC

DEC1

5,6
4,7,G1-3
R(A), HON

8,9, G2

B){A,m}s)(vn){m, B,n}ta)({n} )5
Source(n, B, {{{m, B,n[fa}) A
3X.(Created(X, {|n[} 5)

BI{A,m}s)(vn){m, B,n}ta)({n} )5
Honest(B) D —Created (B, {|n[} 5)

(B)[({14, ml5)(vn)({m, B,nlta){n} 5)]5
Source(n, B, {{m, B,nlta}) A
3X.(Created(X, {n}}5) A (X # B))

(B){A,m}s)(vn){m, B,nl}ta)({n} )5
Source(n, B, {{{m, B,n[ta}) A
3X.(Created(X, {n[t5) A (X # B) A Knows(X, n))

Source(n, B, {{{m, B,n}}a}) A
3X.(X # B) A Knows(X,n) D
3Y.Decrypts(Y, {m, B,n[} 1)

Honest(A) A Decrypts(Y, {{m, B,n[t4) D (Y = A)

Honest(A) A Source(n, B, {{{m, B,n[}a}) A
3X.(X # B) A Knows(X,n) D
Decrypts(A, {|m, B,n[}4)

(B)[(14,mb 5) (vn){{Im, B,k a)({nl 5)] s
Honest(A) D Decrypts(A, {{m, B,n[} 4)
Honest(A4) O (Decrypts(A, {{m, B,n[}4) D
CSent(A,{A,m[}s) A CSent(A, {|n[}5))
B){A,m}s)(vn){m, B,n}ta)({n}5)l5

Honest(A) D (CSent(A, {|A,m[}5) A CSent(A, {{n[}5))

Table 9. B’s completed deduction with honesty rule

1)

()

©)

(4)

(5)

(6)

()

(8)

©)

(10)
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