
A Derivation System for Security Protocols and its Logical Formalization ∗

Anupam Datta Ante Derek John C. Mitchell Dusko Pavlovic

Computer Science Dept. Kestrel Institute
Stanford University Palo Alto, CA 94304

Stanford, CA 94305-9045
{danupam,aderek,jcm}@cs.stanford.edu dusko@kestrel.edu

Abstract

Many authentication and key exchange protocols are
built using an accepted set of standard concepts such
as Diffie-Hellman key exchange, nonces to avoid replay,
certificates from an accepted authority, and encrypted or
signed messages. We introduce a basic framework for de-
riving security protocols from such simple components. As
a case study, we examine the structure of a family of key
exchange protocols that includes Station-To-Station (STS),
ISO-9798-3, Just Fast Keying (JFK), IKE and related pro-
tocols, deriving all members of the family from two ba-
sic protocols using a small set of refinements and protocol
transformations. As initial steps toward associating logical
derivations with protocol derivations, we extend a previous
security protocol logic with preconditions and temporal as-
sertions. Using this logic, we prove the security properties
of the standard signature based Challenge-Response pro-
tocol and the Diffie-Hellman key exchange protocol. The
ISO-9798-3 protocol is then proved correct by composing
the correctness proofs of these two simple protocols.

1 Introduction

While many historical authentication and secrecy proto-
cols, such as those cataloged by Clark and Jacob [7], may
be analyzed independently, modern protocols often have a
number of different subprotocols and interrelated modes.
The Internet Key Exchange (IKE) protocol [13], for ex-
ample, offers digital signature authentication, public-key
encryption-based authentication, and pre-shared key au-
thentication, each potentially used in one of several modes
(e.g., Main Mode, Aggressive Mode, Quick Mode, New
Group Mode). In both protocol design and protocol anal-

∗While preparing this paper, the authors have been partiallysupported
by ONR, under the contracts N00014-01-C-0454 and N00014-03-C-0237

ysis, it is essential to understand a complex protocol in a
systematic way, characterizing properties that are indepen-
dent of specific modes or options and clearly understanding
the security differences between different options.

Many researchers and practitioners working in the field
of protocol security recognize that common authentication
and key exchange protocols are built using an accepted set
of standard concepts. The common building blocks include
Diffie-Hellman key exchange, nonces to avoid replay, cer-
tificates from an accepted authority to validate public keys,
and encrypted or signed messages that can only be created
or read by identifiable parties. However, there is no com-
prehensive theory about how each of these protocol parts
work, and how properties of a compound protocol can be
derived from properties of its parts. As a step toward a
general theory, we examine the structure of a family of key
exchange protocols that includes Station-To-Station (STS),
ISO-9798-3, Just Fast Keying (JFK) and related protocols,
showing how all the protocols in this family may be de-
rived systematically. The protocol derivation system for
this class of protocols consists of two base protocol com-
ponents, three transformations, and seven refinements. The
two protocol components are Diffie-Hellman key exchange
[10] and a two-message signature-based challenge and re-
sponse authentication protocol. The refinements (which add
data to message fields) include extending messages by cer-
tificates in order to discharge the assumption that each par-
ticipant knows the other’s public key. The transformations
include moving data from a later message to an earlier one,
and reordering messages using a denial-of-service preven-
tion “cookie” technique.

The protocol derivation system is intended to formalize
the well established practice of presenting protocols incre-
mentally, starting from simple components, and extending
them by features and functions. Examples of this intu-
itive and appealing idea appear in [9]. Efforts to formalize
the practice, and produce modular, reusable derivations of

1

families of protocols, go back to [6]. More recently, Bel-
lare, Canetti and Krawczyk [3] have studied two interest-
ing protocol transformations, which they callauthentica-
tors, which generically add authentication to a given proto-
col scheme. We notice that, in some cases, the composition
of two protocols has the security properties of both. For
example, Diffie-Hellman key exchange provides a shared
secret, but no authentication. Conversely, signed challenge-
response provides authentication, but no shared secret. Our
composition of the two provides the advantages of both: an
authenticated shared secret. In exploring this approach, we
aim to capture the intuition that protocol designers use when
they develop new protocols by modifying existing protocols
for the purpose of adding new desired properties. Moreover,
when new protocols are presented as derivations, their anal-
ysis could be easier.

Our eventual goal is to assign to each protocol compo-
nent, refinement and transformation a logical formula, ex-
pressing its meaning, and formally tied to it by a semantical
relation in the style of [12]. Having verified soundness and
correctness of such assignments once and for all, one could
then routinely infer standard properties of protocols from
the way they are derived. As initial steps toward associat-
ing logical derivations with protocol derivations, we extend
a previous security protocol logic with preconditions and
temporal assertions and prove properties of protocols that
lie in the early branches of the family tree.

The rest of the paper is organized as follows. Section
2 describes the main ideas underlying the protocol deriva-
tion system. In Section3, we present the derivations of
the STS family of key exchange protocols. Section4 dis-
cusses the compositional logical framework using which se-
curity properties of protocols can be proved and also proto-
cols can be formally derived. To illustrate the use of this
method, the ISO-9798-3 protocol is formally derived from
two component subprotocols based on the Diffie-Hellman
key exchange protocol and the signature-based Challenge-
Response protocol. Finally, in Section5, we present our
conclusions and propose some interesting themes for future
work.

2 Derivation Framework

Our framework for deriving security protocols consists
of a set of basic building blocks calledcomponentsand a set
of operations for constructing new protocols from old ones.
These operations are of three types:composition, transfor-
mationandrefinement. Intuitively, the distinctions between
these parts are as follows:

A componentis a basic protocol step or steps, used as
a building block for larger protocols. Since the present pa-
per uses key exchange protocols as a worked example, we
take Diffie-Hellman key exchange as a basic component. A

compositionoperation takes two protocols and puts them to-
gether in some way. Sequential composition and term sub-
stitution are two examples of composition operations. A
refinementoperation acts on message components of a sin-
gle protocol. For example, replacing a plaintext nonce by
an encrypted nonce is a refinement. A refinement does not
change the number of messages or the basic structure of a
protocol. Atransformationoperates on a single protocol. It
is a general rewrite operation that can modify several steps
of a protocol by moving data from one message to another,
combining steps, or inserting one or more additional steps.
For example, moving data from one protocol message to an
earlier message (between the same parties) is a transforma-
tion.

In the next section, we examine the structure of a set of
key exchange protocols (which we call the STS family) to
illustrate the use of this method. Among the derived pro-
tocols are STS [9], standard Challenge-Response protocol
[19], JFKi, JFKr, ISO-9798-3 protocol [2], and the core of
the IKE protocol [13].

3 Derivation of the STS Family

In this section, we present a derivation of the STS pro-
tocol family. The STS family includes protocols like IKE
which are actually deployed on the internet and JFKi and
JFKr which are currently being considered by IETF as re-
placements for IKE. The security properties relevant to the
STS family of protocols include key secrecy, mutual au-
thentication, denial-of-service protection, identity protec-
tion and computational efficiency. Computational efficiency
is achieved by reusing Diffie-Hellman exponentials across
multiple sessions.

We begin by describing the basic components, and the
transformation and refinement operations used in deriving
the STS family of key exchange protocols. In order to keep
the paper within page limits, the components and transfor-
mations are presented tersely, with additional intuition and
explanation given where they are used.

In informally describing the derivation system, we use
a standard informal notation for protocol steps. However,
the reader should bear in mind that protocols actually in-
volve initial conditions, communication steps, and internal
actions used to compute data used in messages and data pro-
duced as output of the protocol for use in other operations.
When we derive a protocol, the derivation steps may act on
one or more of these aspects of a protocol.

3.1 Components

Diffie-Hellman component,C1

The basic Diffie-Hellman protocol [10] provides a way for
two parties to set up a shared key (gir) which a passive at-

tacker cannot recover. There is no authentication guaran-
tee: the secret is shared between two parties, but neither
can be sure of the identity of the other. The security of the
key depends on the computational hardness of the discrete
logarithm problem. Our componentC1 contains only the
internal computation steps of the Diffie-Hellman protocol.

I: generates random valuei and computesgi (for
previously agreed baseb)
R: generates random valuer and computesgr

(for previously agreed baseb)

In this component no messages are sent; the exponentials
are considered to be the output of this protocol fragment.

Signature-based authenticator,C2

The signature-based challenge-response protocol shown be-
low is a standard mechanism for one-way authentication
(see Section 10.3.3 of [19])

I → R : m
R→ I : SIGR(m)

It is assumed thatm is a fresh value or nonce and that the
initiator,I, possesses the public key certificate of responder,
R, and can therefore verify the signature.

3.2 Transformations

Message component move,T1

This transformation moves a fieldt of a messagem to an
earlier messagem′, wherem andm′ have the same sender
and receiver, and ift does not contain any data freshly gen-
erated or received between the two messages. One reason
for using this transformation is to reduce the total number
of messages in the protocol.

Binding, T2

Binding transformations generally add information from
one part of a protocol to another in order to “bind” the two
parts in some meaningful way. The specific instance of this
general concept that we use in this paper adds a nonce from
an earlier message into the signed portion of a later mes-
sage, as illustrated in Figure 1.

We can understand the value of this transformation
by considering the signature-based authenticator,C2, de-
scribed above. ProtocolC2 provides one-sided authentica-
tion: after executing the protocol,I is assured that the sec-
ond message was generated byR in response to the first
message. However,R does not know the identity ofI.
Since the goal of a mutual authentication protocol is to pro-
vide the authentication guarantee to both parties, it seems

I → R : m I → R : m
R→ I : n, SIGR(m) =⇒ R → I : n, SIGR(n,m)
I → R : SIGI(n) I → R : SIGI(m,n)

Figure 1. An example of a binding transfor-
mation

likely that we can construct a mutual authentication proto-
col from two instances (executed in opposite directions) of
C2. However, the sequential composition of two runs ofC2

does not quite do the job, since neither party can be sure
that the other participated in one of the runs. If we apply a
transformation to obtain the protocol on the left side of Fig-
ure 1, and then apply the binding transformation to obtain
the one on the right, we obtain a protocol with both nonces
inside the signature, thus assuring thatm andn belong to
the same session.

We note, however, that the protocol on the right side of
Figure 1 does not guarantee mutual authentication in the
conventional sense. Specifically, afterI completes a session
with R, initiator I cannot be sure thatR knows she has
completed the same session withI. The stronger guarantee
may be achieved by including the peer’s identity inside the
signatures, as discussed further in Section 3.4.

Cookie,T3

The purpose of the cookie transformation is to make a
protocol resistant to blind Denial-of-Service (DoS) attacks.
Under certain assumptions, it guarantees that the responder
does not have to create state or perform expensive computa-
tion before a round-trip communication is established with
the initiator. The cookie transformation is described in de-
tail in [8]. Here, we only touch on the main idea.

I → R : m1 I → R : m1

R → I : m2 R → I : mc
2, HMACHKR

(m1,m
c
2)

I → R : m3 =⇒ I → R : m3,m1,m
c
2,

HMACHKR
(m1,m

c
2)

. . . R → I : me
2

. . .

Figure 2. An example of a cookie transforma-
tion

An example of a cookie transformation is shown in Fig-
ure 2. The protocol on the left hand side is a standard three
message protocol in which after receiving messagem1, R
creates state and replies with messagem2. Clearly, this pro-
tocol is vulnerable to both computation and memory DoS

attacks. Now assume that the components of messagem2

can be divided into two sets: those that can be computed
without performing any expensive operation (denoted by
mc

2) and those that require expensive operations (denoted
by me

2). In the transformed protocol, upon receiving the
first message, the responderR does not create local state
and does not perform any expensive computation. Instead,
R sends an unforgeable token (cookie) back toI which cap-
tures the local state, and resumes the protocol only after the
cookie is returned byI. Here the cookie is a keyed hash of
messagem1 andmc

2. The key used for this purpose,HKR,
is known only toR. Since expensive computation and cre-
ation of state is deferred till it is established that the initiator
can receive messages at the IP address which it claimed as
its own, the resulting protocol is resistant to blind DoS at-
tacks.

3.3 Refinements

While defining refinements, we use the notationa ⇒ b
to indicate that every instance of message componenta in
the protocol should be replaced byb. For ease of exposi-
tion, different refinements that serve the same purpose are
grouped together below.

RefinementR1 SIGX(m) ⇒ EK(SIGX(m)), where
K is a shared key with the peer. The purpose of this re-
finement is to provide identity protection against passive
attackers. In all the protocols that we consider in this pa-
per, everything signed is public. So, an attacker can verify
guesses at identities of a principal if the signature was not
encrypted.

RefinementR5 gx ⇒ gx, nx, wherenx is a fresh value.
In many Diffie-Hellman based key exchange protocols, the
Diffie-Hellman exponentials serve two purposes: (a) they
provide the material to derive secret keys; (b) they provide
the freshness guarantee for runs required in order to pre-
vent replay attacks. However, Diffie-Hellman exponentials
are expensive to compute. This refinement makes partic-
ipants exchange nonces in addition to Diffie-Hellman ex-
ponentials, thereby offloading function (b) onto the nonces.
The use of nonces enables the reuse of exponentials across
multiple sessions resulting in a more efficient protocol. On
the other hand, when exponents are reused, perfect forward
secrecy is lost. This tradeoff is offered both by JFKi and
JFKr.

RefinementR6 SIGX(m) ⇒ SIGX(m), IDX , where
IDX denotes the public key certificate ofX . Since the
other party may not possess the signature-verification key,
it is necessary to include the certificate along with the sig-
nature. Unlike refinementsR1 andR5 above which add

properties to a protocol (identity protection and efficiency
respectively), this is an example of a refinement which
discharges the assumption that the principals possess each
other’s public key certificates apriori.

Thus, two general methods of protocol derivation us-
ing refinements emerge: (i) construct a protocol with some
properties and apply a refinement to add another property to
the protocol; (ii) construct a protocol assuming some facts
and discharge those assumptions by applying a refinement.

The next four refinements are all geared towards adding
the property of mutual authentication to a protocol. We de-
scribe one of the refinements in detail here, deferring details
of the others to the point where they are used in the deriva-
tion of the STS family in the next section.

RefinementR4 SIGX(m) ⇒ SIGX(m, IDY), where
Y is the peer. An assumption here is thatX possesses
the requisite identifying information forY , e.g.,Y ′s pub-
lic key certificate, before the protocol is executed. This
assumption can be discharged ifX receivesY ′s iden-
tity in an earlier message of the protocol. In public-
key based challenge-response protocols, the authenticator
should identify both the sender and the intended recipient.
Otherwise, the protocol is susceptible to a person-in-the-
middle attack. Here, the signature identifies the sender and
the identity inside the signature identifies the intended re-
cipient. In an encryption-based challenge-response protocol
(e.g., Needham-Schroeder [23]), since the public encryp-
tion key identifies the intended recipient, the sender’s iden-
tity needs to be included inside the encryption. The original
protocol did not do so, resulting in the property discovered
nearly twenty years later by Lowe [15].

RefinementR2 SIGX(m) ⇒
SIGX(HMACK(m, IDX)), where K is a shared
key with the peer. The difference between this refinement
andR4 is that instead of signing the peer’s identity, the
principal signs a keyed hash of the message and her own
identity. This refinement is used in the derivation of IKE.

RefinementR3 SIGX(m) ⇒
SIGX(m), HMACK(m, IDX), whereK is a shared key
with the peer. This refinement is very similar toR2 and is
used to the derive the core of the JFKr protocol.

RefinementR7 EK(m) ⇒
EK(m), HMACK′(role, EK(m)), where K and K ′

are keys shared with the peer. In this approach, each party
includes a keyed hash of the encrypted signature and it’s

own role (i.e., initiator or responder). This refinement is
used in the derivation of JFKr.

3.4 The Derivation

We now use the components and operations of the
derivation system defined above to systematically derive the
protocols in the STS family. The complete derivation graph
is shown in Figure 3. In what follows, we trace the deriva-
tions of the various protocols in the graph. At each deriva-
tion step, we attempt to intuitively explain what property
that step helps achieve.

Protocol P1 Obtained by sequential composition of two
symmetric copies of componentC2.

I → R : m
R→ I : SIGR(m)
R→ I : n
I → R : SIGI(n)

This is the first step in constructing a mutual authentication
protocol from two instances of an unilateral authentication
protocol. Here, it is assumed thatm andn are fresh values
and thatI andR possess each other’s public key certificates
and so can verify the signatures.

Protocol P2 Obtained from protocolP1 by using trans-
formationT1: the component of message3 is moved up to
message2.

I → R : m
R → I : n, SIGR(m)
I → R : SIGI(n)

This refinement serves to reduce the number of messages
in the protocol from4 to 3.

Protocol P3 Obtained from protocolP2 by using the
binding transformation,T2.

I → R : m
R → I : n, SIGR(n,m)
I → R : SIGI(m,n)

After executing this protocol,I is assured thatR gener-
ated the second message and moreover that the message was
freshly generated. However, as elaborated below, it would
be incorrect ofI to conclude thatR believes that she was
talking toI. The source of the problem is that the authen-
ticator does not indicate who the message was meant for.
One way to get around it is by applying refinementR4 men-
tioned in the previous section. There are other ways too as
we will see while proceeding with the derivation.

C1
(Diffie-Hellman)

C2
(Signature-based Authenticator)

C2;C2

��

P1

T1

��

P2

T2

��

C1;P3

��

P3

R4

��

P5 P4

C1;P4

{�

R1

��

R2

��

R3

��

R4

��

P6
(STS)

R5

��

P7
(IKE-core)

R5

��

P8
(JFKr-core)

P9
(ISO-9798)

P10
(STS+nonces)

R6

��

P11
(IKE-core+nonces)

P12
(STS+nonces+IDs)

T3

��

P13
(JFKi/JFKr-core+cookies)

R7

��

T1

��
P14
(JFKr)

P15

R4

��

P16
(JFKi)

Figure 3. Derivation graph of the STS protocol
family

The following attack describes a scenario in whichR and
I hold different beliefs about who they completed the ses-
sion with. AttackerM intercepts and then forwards the first
two messages, obtaining noncesm andn. ThenM blocks
the final message fromI and substitutesSIGM (m,n). Af-
ter these steps,I believes noncesm andn were exchanged
with R, butR believes the noncem was generated by im-
posterM .

ProtocolP5 Obtained by composing componentC1 with
protocolP3.

I → R : gi

R → I : gr, SIGR(gr, gi)
I → R : SIGI(g

i, gr)

The noncesm andn were instantiated to Diffie-Hellman
exponentsgi andgr. The assumption thatm andn are fresh
values is still valid as long asi andr are fresh. This is an ex-
ample of composition by term substitution. Intuitively, the
actions that any principal carries out inP5 is the sequential
composition of the actions that she carries out inC1 and
in P3, except that instead of sending and receiving nonces,
she sends and receives Diffie-Hellman exponentials. That
is why it makes sense to regard term substitution as a com-
position operation. ProtocolP5 possesses all the properties
of protocolP3. In addition, wheneverI completes a session
supposedly withR, then ifR is honest, thenI andR share a
secret,gir. Note that since the person-in-the-middle attack
described above is still possible,R may not believe that she
has a shared secret withI.

After protocolP5, four different derivation paths can be
seen in Figure 3. The first path includes STS, JFKi and
JFKr; the second path includes the core of IKE; the third
path includes a protocol that forms the core of IKE-sigma
[14] and JFKr; the fourth path includes the ISO-9798-3 pro-
tocol. We describe the first derivation path in detail here.
The refinements and transformations used in the other paths
can be seen in Figure 3. The details are omitted due to space
constraints. Also included is a derivation of theISO-9798-3
protocol. The properties of the protocols in this derivation
are formally proved in the next section.

Path 1: STS, JFKi and JFKr

ProtocolP6 Obtained by applying refinementR1 to pro-
tocolP5, whereK is a key derived from the Diffie-Hellman
secret. This is the STS protocol.

I → R : gi

R → I : gr, EK

(

SIGR(gr, gi)
)

I → R : EK

(

SIGI(g
i, gr)

)

In addition to the properties ofP5, P6 provides identity
protection against passive attackers. As mentioned before,
refinementR1 is geared towards adding this property to the
protocol on which it is applied.P6 also provides a mutu-
ally authenticated shared secret. The person-in-the-middle
attack described while presenting protocolP3 (and which is
applicable to protocolP5 too) does not work anymore since
an attacker cannot compute the encryption key,K, which
depends on the Diffie-Hellman secret,gir, and hence can-
not replaceI ’s signature in the third message by her own.
However, Lowe describes another attack on this protocol in
[16]. It is not quite clear whether that attack breaks mutual
authentication.

ProtocolP10 Obtained by applying refinementR5 to pro-
tocolP6.

I → R : gi, ni

R→ I : gr, nr, EK

(

SIGR(gr, nr, g
i, ni)

)

I → R : EK

(

SIGI(g
i, ni, g

r, nr)
)

P10 retains all the properties ofP6 except perfect forward
secrecy. As mentioned while describing refinementR5, the
use of fresh nonces enables the reuse of Diffie-Hellman ex-
ponentials across multiple sessions resulting in a more com-
putationally efficient protocol.

ProtocolP12 Obtained by applying refinementR6 to pro-
tocolP10.

I → R : gi, ni

R → I : gr, nr,
EK

(

SIGR(gr, nr, g
i, ni), IDR

)

I → R : EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

By applying refinementR6 to P10, no new properties are
introduced. Instead, the assumption that the protocol prin-
cipals possessed each other’s public key certificates apriori
is discharged by explicitly exchanging certificates alongside
the signatures.

Protocol P13 Obtained by applying the cookie transfor-
mation,T3, to protocolP12.

I → R : gi, ni

R → I : gr, nr, HMACHKR
(gr, nr, g

i, ni)
I → R : gi, ni, g

r, nr, HMACHKR
(gr, nr, g

i, ni),
EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

R → I : EK

(

SIGR(gr, nr, g
i, ni), IDR

)

The cookie transformation ensures that in addition to the
properties of protocolP12, this protocol also possesses the
additional property of resistance to blind Denial-of-Service
attacks.

At this point, we have derived a protocol that provides
key secrecy, mutual authentication, identity protection (for
initiator against passive attackers and for responder against
active attackers), DoS protection and computational effi-
ciency, i.e., all the stated security properties for this family
of protocols. Both JFKi and JFKr are obtained fromP13

and only differ in the form of identity protection that they
offer.

Path 1.1: JFKr

ProtocolP14 Obtained by applying refinementR7 toP13.
This is essentially JFKr. We ignore some of the message
fields (e.g., the security association and the group identify-
ing information) which can be added using two more refine-
ments.

I → R : gi, ni

R → I : gr, nr, HMACHKR
(gr, nr, g

i, ni)
I → R : gi, ni, g

r, nr, HMACHKR
(gr, nr, g

i, ni),
EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

,
HMACK′

(

I, EK

(

SIGI(g
i, ni, g

r, nr), IDI

))

R → I : EK

(

SIGR(gr, nr, g
i, ni), IDR

)

,
HMACK′

(

R,EK

(

SIGR(gr, nr, g
i, ni), IDR

))

P14 retains all the properties ofP13. The keyed hash of
the encrypted signature appears to serve the same purpose
as the encryption of the signature in protocolP6. It guar-
antees that since the computation of the keysK andK ′

requires knowledge ofgir, the adversary cannot launch the
person-in-the-middleattack described while presenting pro-
tocolP3, since she cannot compute the encrypted signature
and the keyed hash. Also, Lowe’s attack [16] doesn’t work
against this protocol.

Path 1.2: JFKi

Protocol P15 Obtained by applying transformationT1 to
protocolP13.

I → R : gi, ni

R→ I : gr, nr, IDR, HMACHKR
(gr, nr, g

i, ni)
I → R : gi, ni, g

r, nr, HMACHKR
(gr, nr, g

i, ni),
EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

R→ I : EK

(

SIGR(gr, nr, g
i, ni)

)

The message componentIDR is moved from message4 in
P13 to message2 here. The reason for applying this trans-
formation becomes clear in the next step when the princi-
pals include the peer’s identity inside the signatures. Since
I ’s signature is part of the third message of the protocol, she
must possessR’s identity before she sends out that message.
This protocol retains all the properties ofP13 except for the
fact that the form of identity protection is different. Unlike
P13, here the responder’s identity is not protected. The ini-
tiator’s identity is still protected against active attackers.

ProtocolP16 Obtained by applying refinementR4 to pro-
tocolP15. This is JFKi (except for one additional signature
in the second message which can be added using one more
transformation). As with JFKr, some of the message fields
which do not contribute to the core security property are
ignored.

I → R : gi, ni

R → I : gr, nr, IDR, HMACHKR
(gr, nr, g

i, ni)
I → R : gi, ni, g

r, nr, HMACHKR
(gr, nr, g

i, ni),
EK

(

SIGI(g
i, ni, g

r, nr, IDR), IDI

)

R → I : EK

(

SIGR(gr, nr, g
i, ni, IDI)

)

The refinement added the peer’s identities inside the sig-
natures.IDR andIDI are added insideI ’s andR’s signa-
tures in message3 and message4 respectively. Including
the identities inside the signatures obviates the attack de-
scribed while presenting protocolP3 and Lowe’s attack on
STS [16].P16 retains all the properties ofP15.

Derivation of the ISO-9798-3 Protocol

Now we present a derivation of protocolP9, ISO-9798-3.

ProtocolP4 Obtained by applying refinementR4 to pro-
tocolP3. This is the standard challenge-response protocol.

I → R : m
R → I : n, SIGR(n,m, IDI)
I → R : SIGI(m,n, IDR)

P3 is refined so that the peer’s identity is included inside
the signatures. Consequently, the person-in-the-middle at-
tack onP3 doesn’t succeed againstP4. P4 therefore pro-
vides mutual authentication. ProtocolP9 is now derived by
composing componentC1 with protocolP4 in exactly the
same way thatP5 was derived.

3.5 Other Issues

3.5.1 Commutativity of Rules

As suggested by protocolP9 above, many protocols have
several different derivations, obtained by applying compo-
sitions, refinements and transformations in different orders.
Suchcommutativitiesof the derivation steps are usually jus-
tified by the fact that the properties that they realize are log-
ically independent. For instance, the refinementsR1 (en-
crypting the signatures) andR5 (adjoining nonces to the
exponentials) commute, because the corresponding proper-
ties - identity protection and reusability of exponentials-
are logically independent.

3.5.2 Generalization of Refinements

In this introductory presentation, we often selected the re-
finements leading to the desired properties by a shortest
path. Building a library of reusable derivations of a wider
family of protocols would justify more general rules. For
example, refinementR1 is a special case of a general re-
finement:m ⇒ EK(m), wherem is any term andK is
a shared key. The purpose of this refinement would be to
remove the termm from the set of publicly known values.

4 Logical Formalization

The protocol derivations presented in the previous sec-
tion show how security properties accumulate as complex
protocols are constructed from simple components through
refinement, composition and transformation operations.

In this section, we present a formal system for describ-
ing security protocols and for reasoning about their prop-
erties. TheISO-9798-3protocol is then formally derived
in this system from the signature-based challenge-response
protocol and the standard Diffie-Hellman key exchange pro-
tocol. The derivation involves: (a) construction of theISO-
9798-3protocol by composition of the Diffie-Hellman and
challenge-response protocols; and (b) proof of correctness
of the composed protocol from proofs of correctness of its
components. Note that this corresponds to the step in the
derivation tree for the STS family whereC1 andP4 are
composed to yieldP9. It therefore provides some evidence
that a complete formalization of the derivation system pre-
sented in the previous section may be achievable.

The formal logic we use is based on earlier work [12].
It consists of two parts: a language called cord calculus
for representing protocols, and a logic for reasoning about
properties of protocols. In order to derive protocols, we
need a formal language to describe them. Cord calculus is
our language of choice for this purpose. While we use cord
calculus in its original form, the protocol logic has been ex-
tended in order to allow reasoning about a broader range
of security protocols. Due to space constraints, we only
sketch the extensions here, deferring the full technical de-
velopment to another paper. The most significant extension
is a rule for composing protocols. This rule plays a key
role in the derivation of theISO-9798-3protocol. Other ex-
tensions include a set of rules which allow reasoning about
the temporal ordering of actions carried out by the different
principals during the execution of a protocol. This form of
reasoning is required in order to formalize the notion of au-
thentication. While the order in which the actions within a
single process are carried out is easily determined, inferring
the ordering of actions carried out by different processes re-
quires some thought. Our formalization is based on the idea
that if a fresh valuen is generated and sent out for the first

time as a subterm of messagem, then any action carried out
by any other principal which involvesnmust have occurred
after the send action.

4.1 Cord Calculus and Security Protocols

Cords [12] are the formalism we use to represent pro-
tocols and their parts. They form an action calculus
[20, 21, 24], related toπ-calculus [22] andspi-calculus
[1]. The cords formalism is also similar to the approach of
the Chemical Abstract Machine formalism [5], in that the
communication actions can be viewed as reactions between
“molecules”. Cord calculus serves as a simple “protocol
programming language” which supports our Floyd-Hoare
style logical annotations, and verifications in an axiomatic
semantics. Cord calculus is presented in [12]; a brief sum-
mary is included in Appendix A.

4.2 A Logic for Protocol Analysis and Derivation

4.2.1 Syntax

The formulas of the logic are given by the grammar in Ta-
ble 1, whereρmay be any role, written using the notation of
cord calculus. Here,t andN are terms and names. We use
φ andψ to indicate predicate formulas, andm to indicate
a generic term we call a “message”. Each message has the
form (source, destination, content), providing source and
destination fields in addition to the contents. Note that the
source field of a message may not be the same as the ac-
tual sender of the message since the intruder can spoof the
source address. Also, the principal identified by the desti-
nation field may not receive the message since the intruder
can intercept messages. However, the source and destina-
tion fields in the message are useful while proving authen-
tication properties of protocols. When an honest princi-
pal sends out a message, the source field identifies her and
the destination field identifies the intended recipient. Our
formalization of authentication is based on the notion of
matching records of runs [9] which requires that whenever
A andB accept each other’s identities at the end of a run,
their records of the run should match. Including the source
and destination fields in the message allows us to match up
send-receive actions.

The role instance identifier,η, in the predicate formulas
serves to identify the specific instance of a role in which that
predicate is true. For example, a principalA could simul-
taneously engage in two sessions in the initiator role. It is
necessary to distinguish between the predicates that are true
in the two role instances. Most protocol proofs use formu-
las of the form[P]X,ηφ, which means that afterX executes
actionsP in the role instance identified byη, formulaφ is
true about the resulting state ofX in η. Here are the in-

formal interpretations of the predicates, with the basis for
defining precise semantics discussed in the next section:

The formulaHas(X,x, η) means that principalX pos-
sesses informationx in the role identified byη. This is
“possesses” in the limited sense of having either gener-
ated the data or received it in the clear or received it un-
der encryption where the decryption key is known. The
formulaSend(X,m, η) means that the last action in a run
of the protocol corresponds to principalX sending mes-
sagem. Receive(X,m, η), New(X, t, η), Decrypt(X, t, η),
andVerify(X, t, η) are similarly associated with the receive,
new, decrypt and signature verification actions of a proto-
col.

�
a means that in the past, actiona was carried out.

As the name suggests,After(a, a) means that the second
action happened after the first action in runs of a proto-
col. Fresh(X, t, η) means that the termt generated byX
is “fresh” in the sense that no one else has seen any term
containingt as a subterm. Typically, a fresh term will be a
nonce and freshness will be used to reason about the tem-
poral ordering of actions in runs of a protocol. This form of
reasoning is useful in proving authentication properties of
protocols. Finally, the formulaHonest(X) means that the
actions of principalX in the current run are precisely an
interleaving of initial segments of traces of a set of roles of
the protocol. In other words,X assumes some set of roles
and does exactly the actions prescribed by them. We note
here that the temporal operator

�
and some of the predi-

cates (e.g.,Send, Receive) bear semblance to those used in
NPATRL [25], the temporal requirements language for the
NRL Protocol Analyzer [17, 18]. While NPATRL is used
for specifying protocol requirements, our logic is also used
to infer properties of protocols.

4.2.2 Semantics

A formula may be true or false at a run of a protocol. More
precisely, the main semantic relation,Q, R |= φ, may be
read, “formulaφ holds for runR of protocolQ.” In this
relation,R may be a complete run, with all sessions that
are started in the run completed, or an incomplete run with
some principals waiting for additional messages to com-
plete one or more sessions.

The inductive definition ofQ,R |= φ is omitted due to
lack of space (see [12] to get a general sense of the ap-
proach). The main idea is to view a run as a sequence
of reaction steps within a cord space. Each reaction step
corresponds to a principal executing an action. It there-
fore becomes possible to assert whether a particular action
occurred in a given run and also to make assertions about
the temporal ordering of the actions. An alternative view,
consistent with the execution model used in defining Linear
Temporal Logic (LTL) semantics, is to think of a run as a
linear sequence of states. Transition from one state to the

next is effected by an action carried out by some principal
in some role. Associating that action with the state that the
system ends up in as a consequence, allows us to use the
well-understood terminology of LTL in our logic. A for-
mula is true in a run if it is true at the end of that run. An
action formulaa is therefore true in a run if it is the last
action in that run. On the other hand, a past formula

�
a

is true if in the past the action formulaa was true in some
state, i.e., if the action had occurred in the past.

4.3 Proof System

4.3.1 Axioms for Protocol Actions

The axioms about protocol actions are listed in Table 2.
Note that thea in axiomAA1 is any one of the5 actions
and a is the corresponding predicate in the logic.AA1

therefore states that if a principal has executed an action in
some role, then the corresponding predicate asserting that
the action had occurred in the past is true. If principalX
generates a new valuen and does no further actions in this
role, then axiomAN2 says thatX knowsn, AN1 says that
no one else knowsn, andAN3 says thatn is fresh.AR1

says that ifX has received a messagem, then she knows
m. Axiom AM1 is about the binding of static variables
of a protocol role. In this case thexi in (x1 . . . xn)[]X,η,
is a value determined when the roles for each participant
were assigned. Typically this will be the identity of the par-
ticipant, and possibly the identity of other participants an
initiator will try to talk to, along with shared keys, etc.

4.3.2 Axioms relating Atomic Predicates

Table 3 lists axioms relating various propositional proper-
ties, most of which follow naturally from the semantics of
propositional formulas. For example, ifX decrypts{|n|}K ,
thenX knowsn because that is the result of the decryption,
and if a principal knows a tuplex, y then he also knowsx
andy. An important axiom isN1 which states that if a prin-
cipalX has generated a valuen in some role, then that value
is distinct from all other values generated in all other roles.
N2 states that values generated by different actions within a
role are distinct.N1 andN2 together capture the intuition
that fresh nonces are unique.VER andSEC respectively
refer to the unforgeability of signatures and the need to pos-
sess the private key in order to decrypt a message encrypted
with the corresponding public key. The additional condi-
tion requiring principalX to be honest guarantees that the
intruder is not in possession of the private keys.

4.3.3 Inference Rules

Table 4 collects the other inference rules. It is clear that
most predicates are preserved by additional actions. How-

Action formulas
a ::= Send(N,m, η) |Receive(N,m, η) |New(N, t, η) |Decrypt(N, t, η) |Verify(N, t, η)

Formulas
φ ::=

�
a |Has(N, t, η) |Fresh(N, t, η) |Honest(N) |After(a, a) |φ ∧ φ | ¬φ

Modal forms
Ψ ::= ρ φ |φ ρ φ

Table 1. Syntax of the logic

AA1 [a]X,η

�
a

AN1 [(νn)]X,η Has(Y, n, η′) ⊃ (Y = X) ∧ (η′ = η)

AN2 [(νn)]X,η Has(X,n, η)

AN3 [(νn)]X,η Fresh(X,n, η)

AR1 [(m)]X,η Has(X,m, η)

AM1 (x1 . . . xn)[]X,η Has(X,x1, η) ∧ . . . ∧ Has(X,xn, η)

HasAlone(X,n, η) ≡ Has(X,n, η) ∧ (Has(Y, n, η′) ⊃ (Y = X) ∧ (η′ = η))

Table 2. Axioms for protocol actions

DEC1
�

Decrypt(X, {|n|}K , η) ⊃ Has(X, {|n|}K , η)

DEC2
�

Decrypt(X, {|n|}K , η) ⊃ Has(X,n, η)

PROJ1 Has(X, (x, y), η) ⊃ Has(X,x, η) ∧ Has(X, y, η)

N1
�

New(X,n, η) ∧
�

New(Y, n, η′) ⊃ (X = Y ∧ η = η′)

N2
�

New(X,n, η) ∧
�

New(X,n′, η) ⊃ (n 6= n′)

SEC Honest(X) ∧
�

Decrypt(Y, {|n|}X , η) ⊃ (Y = X)

VER Honest(X) ∧
�

Verify(Y, {|n|}X , η) ⊃

∃η′.∃m.
�

CSend(X,m, η′) ∧ ({|n|}X ⊆ m)

�
CSend(X, {|n|}K , η) ≡ Has(X,n, η) ∧ Has(X,K, η) ∧

�
Send(X, {|n|}K , η)

Table 3. Relationship between properties

ever, theFresh predicate is not preserved if the freshly gen-
erated valuen is sent out in a message (seeF). Perhaps, the
most interesting inference rule is the protocol composition
rule C, which was not present in [12]. It gives us a way
of sequentially composing two rolesP andP ′ when the
logical formula guaranteed by the execution ofP , i.e., the
post-condition ofP , matches the pre-condition required in
order to ensure thatP ′ achieves some property. This form
of reasoning allows a proof of correctness of a protocol to
be built up incrementally from a proof of its component sub-
protocols and parallels the way that protocols are derived in
the derivation system.

4.3.4 Axioms and Rules for Temporal Ordering

The axioms and rules specific to the temporal ordering of
actions are presented in Table 5. The first two rules are
fairly straightforward. AF1 orders the actions within a
role. This is consistent with the way we view a role as an
ordered sequence of actions.AF2 states that theAfter re-
lation is transitive. AF3 uses the freshness of nonces to
reason about the ordering of actions carried out by different
principals. Intuitively, it states that if a principalX creates a
fresh valuen and then sends out a message containing it as
a subterm, then any action carried out by any other principal
which involvesn (e.g. if Y receives a message containing
n inside a signature), happens after the send action.

4.3.5 The Honesty Rule

Intuitively, the honesty rule is used to combine facts about
one role with inferred actions of other roles. For example,
suppose Alice receives a response from a message sent to
Bob. Alice may wish to suppose that Bob is honest and use
properties of Bob’s role to reason about how Bob gener-
ated his reply. The honesty rule is essentially an invariance
rule for proving properties of all roles of a protocol. Since
honesty, by definition in our framework, means “following
one or more roles of the protocol,” honest principals must
satisfy every property that is a provable invariant of the pro-
tocol roles. The honesty rule depends on the protocol and
so we writeQ ` [P]φ if [P]φ is provable using the honesty
rule forQ and the other axioms and proof rules (see [12] for
further discussion about the honesty rule).

The honesty rule is used in the proof of correctness of the
Challenge-Response protocol that is given in full in Table 8.
One place the honesty rule is used is to prove that ifB sent
out a message with his signature over the two nonces and
A′s identity, then in the pastB must have received a mes-
sage with source fieldA and containing one of the nonces.
This property (line (10) of Table 8) is an important step in
proving that the challenge response protocol has the mutual
authentication property.

4.4 An Example of Protocol Composition

In this section, we use our logical framework to formally
derive properties of theISO-9798-3protocol from prop-
erties of its parts, the signature-based challenge-response
protocol (CR) and a protocol which forms the essence of
the standard Diffie-Hellman key exchange protocol (DH0).
The formal logical derivation is in keeping with the main
idea of the protocol derivation system presented in the pre-
vious section. It corresponds to the step in Figure 3, where
P9 is derived fromC1 andP4 (note thatP9 is actuallyISO-
9798-3andC1 andP4 areDH0 andCR respectively.)

The approach is to assign to each protocol a logical for-
mula which captures (a) the security properties that it guar-
antees; and (b) the assumptions under which those proper-
ties hold. For example, theCR protocol guarantees mutual
authentication under the assumption that the data exchanged
by the principals are fresh nonces. The property associated
with theDH0 protocol is that the protocol principal pos-
sesses a fresh Diffie-Hellman exponential and moreover she
is the only one who knows the exponent. It therefore guar-
antees a form of secrecy: ifA’s Diffie-Hellman exponent is
a and someone else knows the Diffie-Hellman secretgab,
then that person must knowb. DH0 does not require any
additional assumptions to be made.

The properties just described can be expressed as modal
formulas in our logic where the assumptions appear as pre-
conditions and the security properties as post-conditionsto
the protocol role. If the post-condition of a protocol role
matches the pre-condition of another, then using the infer-
ence ruleC in Table 4, we can obtain properties of a bigger
protocol by composing the two. In the example that we
consider here, the post-condition ofDH0 matches the pre-
condition ofCR (DH0 furnishes the fresh data thatCR
requires). The result of applying the protocol composition
rule is theISO-9798-3protocol. In what follows, we ex-
press the properties of secrecy and authentication as logical
formulas and show how the process of composition ties to-
gether the two properties. A direct consequence is that the
ISO-9798-3protocol allows principals to compute a shared
secret. We sketch the outline of the formal derivation rele-
gating detailed proofs to Appendix B.

4.4.1 Challenge Response Protocol,CR

Our formulation of authentication is based on the concept
of matching conversations[4] and is similar to the idea
of proving authentication usingcorrespondence assertions
[26]. The same basic idea is also presented in [9] where it
is referred to asmatching records of runs. Simply put, it
requires that wheneverA andB accept each other’s identi-
ties at the end of a run, their records of the runmatch, i.e.,
each message thatA sent was received byB and vice versa,

Generic Rules:

[P]φ [P]ψ
G1

[P]φ ∧ ψ

[P]φ φ ⊃ ψ
G2

[P]ψ

φ
G3

[P]φ

Preservation Rules: (ForPersist ∈ {Has,
�

a})

[P]A,ηPersist(X, t, η′)
P1

[Pa]A,ηPersist(X, t, η′)

[P]A,ηFresh(A, n, η)
(n 6⊆a) P2

[Pa]A,ηFresh(A, n, η)

[P]X,ηHasAlone(X,n, η)
(a 6=〈m〉)P3

[Pa]X,ηHasAlone(X,n, η)

[P]X,ηHasAlone(X,n, η)
(n 6⊆vm) P4

[P 〈m〉]X,ηHasAlone(X,n, η)

Freshness Loss and Composition Rules:

[P]A,ηFresh(A, n, η)
(n⊆m) F

[P 〈m〉]A,η¬Fresh(A, n, η)

φ1[P]A,ηφ2 φ2[P
′]A,ηφ3

C

φ1[P ;P ′]A,ηφ3

Table 4. Inference Rules

AF1 [a1 . . . an]X,η After(a1, a2) ∧ . . . ∧ After(an−1, an)

AF2 After(a1, a2) ∧ After(a2, a3) ⊃ After(a1, a3)

Inter-process ordering rule:

[P]X,ηFresh(X,n, η) [Pa1]X,η¬Fresh(X,n, η) [P ′a2]Y,η′

(Y 6=X∨η 6=η′)∧(n⊆a2) AF3

After(a1, a2)

Table 5. Axioms and rule for temporal ordering of actions

each send event happened before the corresponding receive
event, and moreover the messages sent by each principal (A
or B) appear in the same order in both the records. The
formalization of authentication as used here is interesting in
its own right. However, since the focus of this paper is on
the compositional aspect of security protocols and space is
limited, we will present the details elsewhere.

The logical formula specifying the initiator role of the
CR protocol is of the form:precondition [actions] post-
condition, where:

pre = (A B m η) Fresh(A,m, η)
actions = [A,B,m〉(B,A, n, {|m,n,A|}B/B,A, y, z)

(z/{|m, y,A|}B)〈A,B, {|m, y,B|}A〉]A,η

post = Honest(B) ⊃ ∃η′.(ActionsInOrder(
Send(A, {A,B,m}, η),
Receive(B, {A,B,m}, η′),
Send(B, {B,A, {n, {|m,n,A|}B}}, η

′),
Receive(A, {B,A, {n, {|m,n,A|}B}}, η))

The predicateActionsInOrder(a1, a2, . . . ,an) means that the
actionsa1, a2, . . . ,an were executed in that order. It can be
defined in a natural away using the transitivity axiom about
theAfter predicate,AF2.

Let us try to understand the three parts of the for-
mula. Thepreconditionincludes the static parameter list
(A B m η) with the parameters identifying the initiator,
responder, the data sent out by the initiator and the role in-
stance identifier, and the predicateFresh(A,m, η) capturing
the assumptions made about the static parameters. The se-
quence ofactionscorresponds to the initiator cord (from
now on denoted byInitCR). These are the actions exe-
cuted by a principal in the initiator role. Finally, thepost-
condition(denotedφauth from now on) captures the secu-
rity property associated with the initiator role. Intuitively,
this formula states that ifA initiates a session of theCR
protocol withB with fresh datam, then after completing the
actions inInitCR, A can be assured of the security prop-
ertyφauth. Note thatφauth effectively captures the notion
of authentication discussed above. A total ordering is es-
tablished among all send and receive actions. Moreover, for
each ‘matching’ send-receive action pair, the send action
precedes the receive action.

A complete proof of the formula above is presented in
Table 8 in Appendix B.

4.4.2 Base Diffie Hellman Protocol,DH0

In this section, we take a closer look at protocolDH0 that
forms the essence of the standard Diffie-Hellman protocol.
Our goal is to assign toDH0 a logical formula charac-
terizing its security properties and making explicit any as-
sumptions. The first step is to enrich the term language and
the protocol logic to allow reasoning about Diffie-Hellman

DH1 Has(X, a, η) ∧ Has(X, gb, η) ⊃ Has(X, gab, η)

DH2 Has(X, gab, η) ⊃ Has(X, gba, η)

DH3 Has(X, gab, η) ⊃ (Has(X, a, η) ∧ Has(X, gb, η)) ∨

(Has(X, b, η) ∧ Has(X, ga, η))

DH4 Fresh(X, a, η) ⊃ Fresh(X, ga, η)

Table 6. Rules for Diffie-Hellman key ex-
change

computation. The termsg(a) andh(a, b), respectively rep-
resenting the Diffie-Hellman exponentialgamod p and the
Diffie-Hellman secretgabmod p, are added to the term lan-
guage. To improve readability, we will usega andgab in-
stead ofg(a) andh(a, b). Table 6 presents the rules specific
to the way that Diffie-Hellman secrets are computed.DH1

captures the way that a Diffie-Hellman secret is computed
from an exponent and an exponential.DH2 captures the
commutativity of exponentiation.DH3 captures the hard-
ness of the discrete log problem by stating that in order to
compute the Diffie-Hellman secret, at least one exponent
and the other exponential needs to be known.DH4 cap-
tures the intuition that ifa is fresh at some point of a run,
thenga is also fresh at that point.

TheDH0 protocol involves generating a fresh random
number and computing its Diffie-Hellman exponential. It
is therefore the initial part of the standard Diffie-Hellman
key exchange protocol. The logical formula specifying the
initiator role of theDH0 protocol is again of the formpre-
condition [actions] postconditionand is given below.

(A B η) [(νa)]A,η 〈A B ga η〉Fresh(A, ga, η)∧
HasAlone(A, a, η)

This formula follows easily from the axioms and rules of
the logic. It states that after carrying out the initiator role
of DH0, A possesses a fresh Diffie-Hellman exponential
ga and is the only one who possesses the exponenta. This
property will be useful in proving the secrecy condition of
the ISO-9798-3protocol. Note that the precondition only
includes the static parameters. No additional assumptions
are made. The postcondition includes a cord calculus con-
struct - theoutput interface〈A B ga η〉 - which we haven’t
encountered till this point. The purpose of this construct
will become clear during the composition process.

4.4.3 Composing the Protocols

The final step of the derivation is to obtain a logical for-
mula characterizing the security properties of theISO-9798-
3 protocol. We sketch an outline of the proof here.

Let us go back and look at the form of the logical formu-
las characterizingDH0 andCR:

DH0 : (A B η) [InitDH0
] 〈A B ga η〉Fresh(A, ga, η)

CR : (A B m η) Fresh(A,m, η) [InitCR]φauth

Note that the post-condition ofDH0 matches the pre-
condition ofCR. We can therefore compose the two for-
mulas by applying the composition ruleC. The resulting
formula is:

ISO-9798-3 (auth.): (A B η) [InitDH0
; InitCR]φauth

The composition operator ‘;’ is defined so that the output
parameters of the first cord are substituted into the input
static parameter list of the second cord. Composition there-
fore provides a method for substitution. In this specific
example, the result of composing the two roles is that the
freshly generated Diffie-Hellman exponential is substituted
for the nonce in the challenge-response cord. The resulting
role is precisely the initiator role of theISO-9798-3proto-
col. The formula above states that the mutual authentication
property ofCR is preserved by the composition process.

The other main step involves proving that the secrecy
property ofDH0 is preserved byCR, since theCR proto-
col does not reveal the Diffie-Hellman exponents.

DH0 : (A B η) [InitDH0
] 〈A B ga η〉HasAlone(A, a, η)

CR : (A B ga η) HasAlone(A, a, η) [InitCR]
HasAlone(A, a, η)

Therefore, by applying the composition ruleC again, we
have the secrecy condition for theISO-9798-3protocol:

ISO-9798-3 (secrecy):
(A B η) [InitDH0

; InitCR] HasAlone(A, a, η)

The rest of the proof uses the properties of Diffie-
Hellman secret computation to prove the following logical
formula:

ISO-9798-3 (shared-secret):
(A B η) [InitDH0

; InitCR]
Honest(B) ⊃ ∃b.∃η′.(φauth ∧ (n = g(b))∧
Has(A, gab), η) ∧ (Has(X, gab, η′′) ⊃
((X = A ∧ η′′ = η) ∨ (X = B ∧ η′′ = η′)))

Intuitively, the property proved is that ifB is honest, then
A andB are the only people who know the Diffie-Hellman
secretgab. In other words, theISO-9798-3protocol can be
used to compute a shared secret.

5 Conclusions and Future Work

We have presented a method for systematically deriv-
ing security protocols from basic components using a set of

protocol composition, refinement and transformation steps.
The goal has been to formalize the well-established practice
of presenting protocols incrementally, starting from simple
components and refining them by features and functions.
As a case study, we examined the structure of the STS fam-
ily of key exchange protocols in this system. The complete
derivation graph is shown in Figure 3. It shows how the
various security properties - secrecy, authentication, DoS
protection etc. - accumulate as the derivation proceeds. The
study of the security properties of the STS family seems to
be relevant since it includes protocols like IKE which are
actually deployed on the internet and JFKi and JFKr which
are currently being considered by IETF as replacements for
IKE.

As an initial step towards associating logical derivations
with protocol derivations, we have extended a previous pro-
tocol logic with preconditions and temporal assertions. The
ISO-9798-3protocol is then formally derived from the stan-
dard challenge response protocol and a protocol that forms
the essence of the Diffie-Hellman key exchange protocol.
The logical derivation corresponds to the step in Figure 3,
whereP9 is derived fromC1 andP4. It shows how the se-
crecy and authentication properties of Diffie-Hellman and
challenge-response are preserved by the composition pro-
cess.

There are several different directions in which this work
could be extended. One direction is to develop deriva-
tion graphs for other sets of related protocols. Another
family of protocols that might be interesting to look at
is the Needham-Schroeder protocol family. This family
will include well-known protocols like Kerberos, Otway-
Rees, etc. The connecting point between these protocols
is that they all use encryption for achieving authenticated
key exchange. Such derivation graphs can be used to de-
velop a taxonomy of security protocols. Another direction
worth exploring is protocol synthesis. Once a set of generic
components and composition, refinement and transforma-
tion operations are identified, it might be possible to auto-
matically synthesize protocols that satisfy complex security
specifications using the basic ideas of the derivation system.
Also, our initial results suggest that formal analysis of secu-
rity protocols may be easier when proofs of correctness of
complex protocols can be built from the proofs of their con-
stituent sub-protocols. It should be interesting to extendthe
logical system to allow formal reasoning about all the proto-
col refinement and transformation steps that have been pre-
sented in this paper. Finally, in the example that we worked
out, we have shown that under certain restrictions, security
properties can be preserved under composition. A formal
characterization of the conditions under which security pro-
tocols can be composed would be a significant result.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: the spi calculus.Information and Computation,
148(1):1–70, 1999. Expanded version available as SRC Re-
search Report 149 (January 1998).

[2] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis,
A.D. Keromytis, and O. Reingold. Just fast keying (JFK),
2002. Internet draft.

[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular ap-
proach to the design and analysis of authentication and key
exchange protocols. InProceedings of 30th Annual Sympo-
sium on the Theory of Computing. ACM, 1998.

[4] M. Bellare and P. Rogaway. Entity authentication and key
distribution. InAdvances in Cryprtology - Crypto ’93 Pro-
ceedings. Springer-Verlag, 1994.

[5] G. Berry and G. Boudol. The chemical abstract machine.
Theoretical Computer Science, 96:217–248, 1992.

[6] Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay
Kutten, Refik Molva, and Moti Yung. Systematic design of
a family of attack resistant authentication protocols.IEEE
Journal on Selected Areas in Communications, 1(5), June
1993.

[7] J. Clark and J. Jacob. A survey of authentication pro-
tocol literature. Web Draft Version 1.0 available from
www.cs.york.ac.uk/ j̃ac/ , 1997.

[8] Anupam Datta, John C. Mitchell, and Dusko Pavlovic.
Derivation of the JFK protocol. Technical report, Kestrel
Institute, 2002.

[9] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentica-
tion and authenticated key exchanges.Designs, Codes and
Cryptography, 2:107–125, 1992.

[10] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
IT-22(6):644–654, 1976.

[11] D. Dolev and A. Yao. On the security of public-key proto-
cols.IEEE Transactions on Information Theory, 2(29), 1983.

[12] Nancy Durgin, John C. Mitchell, and Dusko Pavlovic. A
compositional logic for protocol correctness. InProceed-
ings of 14th IEEE Computer Security Foundations Work-
shop, pages 241–255. IEEE, 2001.

[13] D. Harkins and D. Carrel. The Internet Key Exchange (IKE),
1998. RFC 2409.

[14] Hugo Krawczyk. The IKE-SIGMA protocol, 2002. Internet
draft.

[15] G. Lowe. An attack on the Needham-Schroeder public-key
protocol. Info. Proc. Letters, 56:131–133, 1995.

[16] G. Lowe. Some new attacks upon security protocols. InPro-
ceedings of 9th IEEE Computer Security Foundations Work-
shop, pages 162–169. IEEE, 1996.

[17] C. Meadows. A model of computation for the NRL proto-
col analyzer. InProceedings of 7th IEEE Computer Security
Foundations Workshop, pages 84–89. IEEE, 1994.

[18] C. Meadows. The NRL protocol analyzer: An overview.
Journal of Logic Programming, 26(2):113–131, 1996.

[19] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of Applied Cryptography. CRC Press,
1996.

[20] Robin Milner. Action structures. LFCS report ECS-LFCS-
92-249, Department of Computer Science, University of Ed-
inburgh, JCMB, The Kings Buildings, Mayfield Road, Edin-
burgh, December 1992.

[21] Robin Milner. Action calculi and the pi-calculus. InNATO
Summer School on Logic and Computation, Marktoberdorf,
November 1993.

[22] Robin Milner. Communicating and Mobile Systems: The
π-Calculus. Cambridge University Press, Cambridge, U.K,
1999.

[23] R.M. Needham and M.D. Schroeder. Using encryption for
authentication in large networks of computers.Communica-
tions of the ACM, 21(12):993–999, 1978.

[24] D. Pavlovic. Categorical logic of names and abstraction in
action calculi.Math. Structures in Comp. Sci., 7(6):619–637,
1997.

[25] P. Syverson and C. Meadows. A formal language for cryp-
tographic protocol requirements.Designs, Codes and Cryp-
tography, 7(1-2):27–59, 1996.

[26] Thomas Y. C. Woo and Simon C. Lam. A semantic model for
authentication protocols. InProceedings IEEE Symposium
on Research in Security and Privacy, 1993.

A Cord Calculus

A.1 Terms, Actions, Strands and Cords

Thetermst are built starting from the variablesx and the
constantsc. Moreover, the set of basic terms also contains
the namesN , which can be variablesX,Y, Z, or constants
A,B,C, and keysK which can be variablesy and constants
k. Upon these basic sets, the term language is then gen-
erated by some given constructorsp, which always include
tupling, the public key encryption{|t|}K of the termt by the
keyK, and the signature{|t|}K over the termt with the pri-
vate keyK. The language ofactionsis then built upon the
terms by further constructors. They include sending a term
〈t〉, receiving into a variable(x), matching a term against a
pattern(t/q(x)), and creating a new value(νx). A strand
is a list of actions. The idea is that they should be the subse-
quent actions of a single role in a protocol. For example, the
strand[(νx)〈x〉] represents a role in which a principal gen-
eratesx and then sends out a message containing the freshly
generated value. Since some actions of a role may be mu-
tually independent, they can in principle be executed in any
order. Different strands can thus be semantically equivalent.
A cord is an equivalence class of behaviorally indistinguish-
able strands. In addition to the sequence of actions, a cord

has aninput interfaceand anoutput interface. As the name
suggests, the output interface represents the output of that
cord. The input interface is used to provide initial data to a
cord. These input parameters (called static parameters) can
represent data known apriori (e.g. signing key) or data that
becomes known by executing another cord via its output in-
terface.

A.2 Cord Spaces and Runs

A cord spaceis a multiset of cords that may interact via
communication. Theruns of a protocol arise as reaction
sequences of cord spaces. The basic reactions within a cord
space are shown in Table 7, with the required side condi-
tions for each reaction shown below them. Reaction (1)
is a send and receive interaction, showing the simultaneous
sending of termt by the first cord, with the receiving oft
into variablex by the second cord. We call this anexter-
nal actionbecause it involves an interaction between two
cords. The other reactions all take place within a single
cord. We call theseinternal actions. Reaction (2) is a ba-
sic pattern match action, where the cord matches the pattern
p(t) with the expected patternp(x), and substitutest for x.
Reaction (3) is a decryption pattern match action, where the
cord matches the pattern{|p(t)|}y with the decryption pat-
tern{|p(x)|}y and substitutest for x. Reaction (4) is a signa-
ture verification pattern match action. Finally, reaction (5)
shows the binding action where the cord creates a new value
that doesn’t appear elsewhere in the cordspace, and substi-
tutes that value forx in the cord to the right. The intuitive
motive for the conditionFV (t) = ∅ should be clear: a term
cannot be sent, or tested, until all of its free variables are
instantiated.

A.3 Protocols

A protocol is defined by a finite set of roles, such as ini-
tiator, responder and server, each representing the actions
of a participant in a protocol session. In representing proto-
col roles by cords, it is useful to identify the principal who
carries out the role. Also, since the same principal might en-
gage in multiple sessions in the same role (e.g., principalA
might be the initiator in two sessions at the same time), as-
sociating arole-id with the cord allows us to distinguish be-
tween the actions carried out in the different sessions. Both
the principal name and the role-id appear as subscripts on
the square brackets delimiting a cord.

The protocol intruder is capable of taking any of several
possible actions, including receiving a message, decompos-
ing it into parts, decrypting the parts if the key is known, re-
membering parts of messages, and generating and sending
new messages. This is the standard “Dolev-Yao model”,
which appears to have developed from positions taken by

[S(x)S′] ⊗ [T 〈t〉T ′] ⊗ C .. [SS′(t/x)] ⊗ (1)

[TT ′] ⊗ C

[S (p(t)/(x))S′] ⊗ C .. [SS′(t/x)] ⊗ C (2)

[S ({|p(t)|}y/{|p(x)|}y)S
′] ⊗ C .. [SS′(t/x)] ⊗ C (3)

[S ({|p(t)|}y/{|p(t)|}y)S
′] ⊗ C .. [SS′] ⊗ C (4)

[S(νx)S′] ⊗ C .. [SS′(m/x)] ⊗ C (5)

Where the following conditions must be satisfied:
(1)FV (t) = ∅
(2)FV (t) = ∅
(3)FV (t) = ∅ andy bound
(4)FV (t) = ∅
(5) x 6∈ FV (S) andm 6∈ FV (C) ∪ FV (S) ∪

FV (S′)

Table 7. Basic reaction steps

Needham and Schroeder [23] and a model presented by
Dolev and Yao [11]. Arun of a protocolis a sequence of
reaction steps from aninitial configuration. An initial con-
figuration is determined by a set of principals, a subset of
which are designated as honest, a cord space constructed by
assigning one or more roles to each honest principal, and an
intruder cord that may use only the secret keys of dishonest
principals. A particular initial configuration may give rise
to many possible runs. Intuitively, a protocol has a property
if in all runs of the protocol, that property is preserved.

B Proof of Challenge-Response Protocol

A complete proof of the challenge-response protocol is
presented in Table 8. It is proved that after executing the
initiator role of the protocol withB, A is assured that she
did indeed communicate withB. The property associated
with the responder role of the protocol is symmetric. The
formalization of the mutual authentication property is based
on the notion of matching records of runs [9].

AM1 (A B η)[]A,η Has(A,A, η) ∧ Has(A,B, η) (1)

AN3 [(νm)]A,η Fresh(A,m, η) (2)

AA1 [〈A,B,m〉]A,η

�
Send(A, {A,B,m}, η) (3)

AA1 [(B,A, n, {|m,n,A|}B)]A,η
�

Receive(A, {B,A, n, {|m,n,A|}B}, η) (4)

AA1 [({|m,n,A|}B/{|m,n,A|}B)]A,η

�
Verify(A, {|m,n,A|}B, η) (5)

AA1 [〈A,B, {|m,n,B|}A〉]A,η

�
Send(A, {A,B, {|m,n,B|}A}, η) (6)

AF1,AF2 (A B η)[(νm)〈A,B,m〉(x)(x/B,A, n, {|m,n,A|}B)

({|m,n,A|}B/{|m,n,A|}B)〈A,B, {|m,n,B|}A〉]A,η

ActionsInOrder(Send(A, {A,B,m}, η),Receive(A, {B,A, n, {|m,n,A|}B}, η),

Send(A, {A,B, {|m,n,B|}A}, η)) (7)

N1
�

New(A,m, η) ⊃ ¬
�

New(B,m, η′) (8)

5,VER Honest(B) ∧
�

Verify(A, {|m,n,A|}B, η) ⊃

∃η′.∃m′.(
�

CSend(B,m′, η′) ∧ ({|m,n,A|}B ⊆ m′)) (9)

HON Honest(B) ⊃ (∃η′.∃m′.((
�

CSend(B,m′, η′) ∧

{|m,n,A|}B ⊆ m′ ∧ ¬
�

New(B,m, η′)) ⊃

(m′ = {B,A, {n, {|m,n,A|}B}} ∧
�

Receive(B, {A,B,m}, η′) ∧

ActionsInOrder(Receive(B, {A,B,m}, η′),New(B, n, η′),

Send(B, {B,A, {n, {|m,n,A|}B}}, η
′))))) (10)

2, 3, 11,AF3 Honest(B) ⊃ After(Send(A, {A,B,m}, η),

Receive(B, {A,B,m}, η′)) (11)

11,AF2 Honest(B) ⊃ After(Receive(B, {A,B,m}, η′),

Send(B, {B,A, {n, {|m,n,A|}B}}, η
′)) (12)

11, 4,AF3 Honest(B) ⊃ After(Send(B, {B,A, {n, {|m,n,A|}B}}, η
′),

Receive(A, {B,A, {n, {|m,n,A|}B}}, η)) (13)

10 − 13,AF2 Honest(B) ⊃ ∃η′.(ActionsInOrder(Send(A, {A,B,m}, η),

Receive(B, {A,B,m}, η′), Send(B, {B,A, {n, {|m,n,A|}B}}, η
′),

Receive(A, {B,A, {n, {|m,n,A|}B}}, η)) (14)

Table 8. Deductions of A executing Init role of CR

