
An Encapsulated Authentication Logic
for Reasoning About Key Distribution Protocols∗

Iliano Cervesato
Tulane University

iliano@math.tulane.edu

Catherine Meadows
Naval Research Laboratory
meadows@itd.nrl.navy.mil

Dusko Pavlovic
Kestrel Institute

dusko@kestrel.edu

Abstract

Authentication and secrecy properties are proved by very
different methods: the former by local reasoning, leading
to matching knowledge of all principals about the order of
their actions, the latter by global reasoning towards the im-
possibility of knowledge of some data. Hence, proofs con-
ceptually decompose in two parts, each encapsulating the
other as an assumption. From this observation, we develop
a simple logic of authentication that encapsulates secrecy
requirements as assumptions. We apply it within the deriva-
tional framework to derive a large class of key distribution
protocols based on the authentication properties of their
components.

1 Introduction

Secrecy and authentication are the two main proper-
ties guaranteed by cryptographic protocols. Since they are
highly dependent upon each other, they are commonly in-
tertwined in protocol analysis. Indeed, early attempts to
develop logics that reason only about authentication, such
as BAN logic [2], were believed to be doomed to failure
because the need to draw unverifiable conclusions about
secrecy from authentication guarantees led to confusion
and misunderstanding. It caused such problems as Lowe’s
attack [9] on the Needham-Schroeder public key proto-
col [12], which BAN had proved secure.

On the other hand, restricting one’s reasoning to authen-
tication alone has many benefits, if only it can be achieved.
Authenticity properties specify conditions about the order
of actions [7, 10]: if a particular action occurs, then some
other set of actions must have occurred before it, and in a
particular (partial) order. Thus, it is conceivable that a use-
ful logic for protocol analysis could be developed that al-
lows using a minimal set of primitives describing principal

∗Supported by ONR and NSF.

actions (e.g., sending and receiving messages and generat-
ing nonce, etc.) and reasoning about their order.

In this paper we present a logic that does just that. Unlike
BAN logic, we do not avoid reasoning about secrecy en-
tirely. Rather, we encapsulate the secrecy properties needed
as proof obligations that can be proved by other means (we
are developing a companion logic of secrecy to do just that).
Our authentication logic reasons about the partial order of
actions, Lamport-style. When a consequence of secrecy is
needed, we include an assumption that defines a proof obli-
gation which can be thought of as a system call to another
verification method.

The logic has much in common with the compositional
logic described in [5, 8]. Like that logic, it supports de-
riving complex protocols from simple ones using composi-
tion, refinement, and transformation. However, unlike that
logic, in which predicates are defined as they are needed,
the new logic relies on just three built-in predicates describ-
ing the ordering of events. It allows inferring the actions
of other principals and their order based on one’s local ob-
servations only: a fairly simple deductive process, even in
our setting. It does not establish secrecy results, which use
an entirely different flavor of logical inference: a form of
inductive reasoning over the global knowledge of all prin-
cipals. The clean separation of authentication proofs and
secrecy proofs results in simple and elegant analyses.

We have applied an earlier version of this logic to the
Group Domain of Interpretation (GDOI) Protocol [11]. Its
simplicity turned out to be quite helpful in allowing us to
identify a security flaw that careful reviews and another for-
mal analysis had previously missed. The simplicity of the
proof system allowed us to identify a key assumption be-
ing made that was not consistent with the protocol design.
When the assumption was removed, the flaw was revealed.

We apply this logic to study the general mechanism of
key distribution from an authentication perspective. Key
distribution protocols feature complex interaction of se-
crecy and authentication requirements, and are therefore
a prime target for our methodology. We start from an

abstract two-party key distribution protocol and, through
refinements and transformations, we systematically derive
the skeleton of such well-known protocols as shared-key
Needham-Schroeder (NSSK) [12, 13], Denning-Sacco [6],
and Kerberos 4 and 5 [14, 15]. An overview of the resulting
taxonomy is displayed in Figure 1.

The main contribution of this work is twofold: (1) We
formally separate the reasoning about authenticity from the
reasoning about secrecy, and develop a simple logic of par-
tial orders that supports the former. The secrecy inferences
present in every proof of authentication are encapsulated as
assumptions. (2) We use this logic within the derivational
framework [5, 8] to perform a systematic analysis of an im-
portant branch of the family of key distribution protocols.
This yields a novel classification of these protocols based
on the mechanisms used to construct them and the proper-
ties they support. This promotes a deeper understanding of
these fundamental protocols than individual analyses, and
is readily extensible as new members are proposed.

This work is organized as follows: in Section 2 we ex-
plain our authentication logic. We use it to express the ba-
sic key distribution mechanism in Section 3. We extend
it in the direction of NSSK in Section 4 with nonce-based
recency and key confirmation. We extend it in a different
direction with timestamp-based recency in section 5 obtain-
ing the Denning-Sacco protocol as well as Kerberos 4 and
5. Section 6 concludes with statements of future work.

2 A Logic of Pure Authentication

As a principalA executes a protocolP , the events she
observes locally (receiving a messages, comparing a com-
ponent with an expected value, etc) allow her to make de-
ductions about the actions of the principals she is interacting
with. This implicitly identifies a classQA of possible runs,
each of which intersperses her own actions with compati-
ble actions by the other participants. As an authentication
propertyProp also identifies a classQProp of legal runs for
P , the verification task traditionally reduces to showing that
QA is contained inQProp, and similarly for the other parties
in the protocol. Every run inQA but not inQProp is an at-
tack onA with respect toProp.

We take a different approach: rather than comparingQA

with the legal runs of a given authentication property, we
synthesize a logical expressionΦ describingQA. This ex-
plicit representation is carefully engineered to be composi-
tional: we dissectA’s observations into elementary com-
ponents and give a logical representation of the property
they each realize (theirraison d’̂etre in a protocol). We
similarly give a logical justification of the various mecha-
nisms that allow combining components into bigger proto-
col fragments, and in particular of what properties emerge
from the properties of the parts. By iterating this process all

the way toA’s original observations, we derive a formula,
Φ, that in a strong sense describestheauthentication prop-
erties ofQA. Indeed, this constructions provides us with a
clear view of the properties contributed by each component
and whether they propagate toΦ. We often restrict our at-
tention to interesting scenarios by assuming, for example,
that other principals behave honestly, or that a certain key
has not been compromised. These assumptions are elective.

Rather than checking that a protocol satisfies a given
propertyProp, our approach enumerates the properties sup-
ported by a protocol based on its construction. Whenever an
expected property is not manifested, we can rapidly point to
a missing component or a composition mechanism failing to
propagate it, and produce a counterexample, as done in [11].
We can also scrutinize the formulaΦ summarizing the pos-
sible runs of each principalA in the light of a well-known
authentication property, such as matching histories [7] or
agreement [10].

2.1 Specifying Protocols

We begin by presenting a syntax to describe security pro-
tocols and enough of its execution semantics to define the
notion of observation, a central concept in this work. The
interested reader will find further details, as well as a se-
mantics of protocol execution, in [4].

We use the lettersA, B, and S to denote theprinci-
pals participating in a given protocol.X, Y , . . . will be
variables ranging over principals. Principals exchangemes-
sages. This is modeled as an abstract term algebraT over
a set of variables, constants and operators. Principals are
a subclass of terms, and so are standard classes in crypto-
protocols such as nonces, keys and timestamps. We write
m for generic message, but usek, n, andt, for keys, nonces
and timestamps. The lettersx, y, z, . . . denote term vari-
ables. In this work, we will make use of two operators:
(m,m′) for the concatenation ofm andm′, and(k m) for
the encryption ofm with shared keyk. T may contain ad-
ditional constructors, but we will not need them here.

Principals participate in a protocol by performing atomic
actions. The actions we will rely on are summarized in the
following table:

Action Form Informal meaning

send 〈m : A � B〉 The termm is sent, purport-
edly fromA to B

receive (x : Y � Z) Term, source and destination
are received intox, Y andZ

match (m/p(~x)) Term m is matched against
termp(~x), binding~x

new (ν x) A fresh value is created and
stored in variablex

now (τ x) The system time is read and
stored in variablex

KD0
2

Discharge
initiator/responder

��
KD1

2

Bind principals

��
KD2

2
Concatenated
relay

}}zz
zz

zz
zz

z Embedded
relay

((QQQQQQQQQQQQQQQQQQ

KD3
2

Key
confirmation

��

KD4
2

Timestamps

||yy
yy

yy
yy

y Initiator challenge-
response

))RRRRRRRRRRRRRRRRR

DS

Key
confirmation

��

NSSK0
Responder challenge-

response

$$IIIIIIIIII

Key confir-
mation

��

NSSKfix0

Key
confirmation

��
K5core0

Repeated
authentication

��

K4core0

Repeated
authentication

��

NSSK1

Repeated
authentication

��

NSSKfix1

Repeated
authentication

��
K5core K4core NSSK NSSKfix

Figure 1. Overview of the Derivation of Key-Distribution Protocols

The variablesx, Y, Z in receive, ~x in match, andx in new
andnow are binding occurrences: any subsequent mention
in an expression involving actions are interpreted as bound
by them. The semantics of actions is formalized in [4]. We
will often use partial descriptions of actions, and elide e.g.,
the source and the destination, as in〈m〉 or (y), and merge
a reception and subsequent matches, writing(m).

A role is the complete code that a principal executes on
her host to engage in a given protocol. We model a role
as a collection of actions performed by a principal. We al-
low actions to be composed either sequentially (using “;”
as a role constructor) or concurrently (using “⊗”). The free
variables of a role are its parameters, and should be instanti-
ated prior to execution. The principal executing the role is a
distinguished parameter. Aprotocol is a collection of roles.
For example, the Denning-Sacco protocol [6] is specified as
follows:

DS server[S] = (A,B : A � S) ; (ν k ⊗ τ t) ;
〈KAS(B, k, t,KBS(A, k, t)) : S � A〉

DS init[A;S, B] = (KAS(B, k, t,M) : S � A) ;
〈A,B : A � S〉 ; 〈M : A � B〉

DS resp[B;S] = (KBS(A, k, t) : A � B)

We will come back to this protocol in Section 5.

We will be primarily interested in the trace orrun of a
(possibly partial) execution, i.e., the set of actions executed
by each principal and their relative ordering. For example
the expected run of the Denning Sacco protocol is given as
follows:

A S B

◦ A,B // ◦
νk
τ t��

◦
��

◦
KAS(B,k,t,KBS(A,k,t))oo

◦
KBS(A,k,t) // ◦

where we have liberally compacted our notation for suc-
cinctness. A run is a partial order over the set ofeventsof
the formaA, wherea is an action andA is the principal who
has executed it. Avalid run is subject to two conditions: (1)
every receive event is preceded by a send in the partial or-
der; (2) every match is successful. Given a valid runQ, the
local observationof a principalA, denotedQA, is the re-
striction ofQ to just the actions performed byA, and their
relative order.

2.2 Reasoning about Authentication

We now set up a logic to draw inferences about valid
runs. It will allow us to reconstruct the runs compatible
with a principal’s observations, often under assumptions.

We consider an instance of first-order logic with just
three predicate forms:

a Eventa has occurred
a < b Eventa has occurred before eventb
a = b a andb are the same event

A formula combines these atomic predicates by means
of the traditional connectives and quantifiers of first-order
logic. Within an event, we omit the intended sender and
recipient in a send or receive action when unimportant or
easily reconstructible from the context. Additional abbrevi-
ations will make our discussion more clear and succinct:

This abbreviates . . .

(p)A (x)A < (x/p)A

((p))A (x)A < (x/p′)A for p subterm ofp′

〈〈m〉〉A 〈m′〉A for m subterm ofm′

〈m〉A< ∃a = 〈m〉A ∧ ∀b = 〈〈m〉〉B . a ≤ b
〈〈m〉〉A< ∃a = 〈〈m〉〉A ∧ ∀b = 〈〈m〉〉B . a ≤ b
a ≺ b b ⇒ a < b

A valid runQ is immediately described by a formulaΦQ

consisting of a conjunction of the first two types of predi-
cates above. An observationQA is similarly mapped to a
formula ΦA. Dually, an arbitrary formulaΦ can be vali-
dated against a runQ, realizing a form of model checking
[4].

In the sequel, we will define logical tools to complete
the local observationQA of a principalA into a compatible
run Q (which may or may not be the expected run). We
will do so by building a tautologyΦA ⇒ ΦQ which we
abbreviate asA : ΦQ. Interesting completions will often
require making assumptionsΨ, so that the general form of
our statements will beA : Ψ ⇒ ΦQ.

2.3 Honesty and Secrecy Assumptions

We will often need a principalA deducingA : Φ to as-
sume that another principalB is honestin order to draw
interesting conclusions. By this, we mean thatB does not
deviate from his assigned role: ifA ascertains thatB has ex-
ecuted any actionaB in his role, she can be assured that he
has executed all the actions preceedinga, or concurrent with
it. The honesty assumptionof the server of the Denning-
Sacco protocol is as follows:

(A,B)S ≺
[
(ν k)S

(τ t)S

]
≺ 〈KAS(B, k, t,KBS(k,A, t))〉S

We abbreviate it ashonest S. We have extensively studied
this notion in previous work [5, 11].

The secrecy assumptionis novel: it allows specifying
that certain keys have not been compromised. A shared key
k is uncompromised for a groupG of agents if the only
principals that can perform an encryption or a decryption
usingk are the members ofG. In symbols,

uncomp(k,G) , 〈〈k m〉〉X< ⇒ X ∈ G
∧ (x/k y)X ⇒ X ∈ G

Notice that the body of this definition expresses the seman-
tics of shared-key cryptography: the first line says that only
members ofG can produce an encryption usingk and send
it in a message, the second says that only these principals
can use the pattern(k y) to access the contents of a term
encrypted withk. Notice also that this expression defines
the binding between a key and the principals who can use
it.

uncomp acts as an interface between the logic of pure au-
thentication developed in this paper, and the logic of secrecy
which will be the subject of a sequel to this work. Here, we
use it only as anassumption. There, we will be able toprove
formulas of the formuncomp(k, G), which will permit dis-
charging the assumptionuncomp(k,G). This combination
of logics will be particularly useful for studying staged pro-
tocols such as Kerberos, where a key is distributed for the
purpose to protecting another key.

2.4 Axioms

We now describe some of the logical tools that al-
low extending a local observation into a compatible run.
Most of these ideas have been extensively discussed else-
where [5, 11], in which case we keep the presentation brief.

Thefreshness axiom(new) describes the behavior of the
(ν n) action in logical terms:

(ν n)B ∧ aA ⇒ (n ∈ FV (a) ⇒ (ν n)B < aA

∧ (A 6= B ⇒ (ν n)B < 〈〈n〉〉B < ((n))A ≤ aA))

The first part says thatν is a binder, that is, any eventa
mentioningn necessarily occursafter (ν n). The second
line requires that if the agentB executing(ν n) and the
principalA executinga are different, thenB must have used
a send action to transmitn andA must have acquired it by
means of a receive action.

The receive axiom(rcv) says that everything that is re-
ceived must have been originated by someone:

A : ((m))A ⇒ ∃X. 〈〈m〉〉X< < ((m))A

The extensively studiedchallenge-response axiom
schema(cr) [5, 11] abstractly describes the central concept
of nonce-based challenge-response:

A : Φ′ ∧ (νn)A < 〈〈cAXn〉〉A< < ((rAXn))A

⇒ (νn)A <〈〈cAXn〉〉A< <((cAXn))X <〈〈rAXn〉〉X< <((rAXn))A

wherecAX is the challenge structure issued byA, rAX is
the corresponding response originated byX, andΦ′ repre-
sents some additional precondition, usually an honesty or
uncomp assumption.

One instance of(cr) that we will use in the sequel has
cAX be the identity (the nonce is sent in the clear), the re-
sponse the encryption of the nonce with a keyKAX shared
betweenA andX, andΦ′ requiringKAX not to be com-
promised forA andX. We obtain

A : uncomp(KAX , [A, X]) ∧ (νn)A < 〈〈n〉〉A< < ((KAXn))A

⇒ (νn)A < 〈〈n〉〉A< < ((n))X < 〈〈KAX n〉〉X< < ((KAX n))A

A proof of this instance of(cr) goes as follows: starting
from A’s own observations (the first line above), axiom
(rcv) entails that some agentY has originated〈〈KAX n〉〉.
By theuncomp assumption,Y must be eitherX or A; the
latter possibility is excluded since no such actions occurs
amongA’s observations. Axiom(new) completes the sec-
ond line by sandwichingX ’s reception ofn betweenA’s
transmission of the nonce andX ’s issuing of〈〈KAX n〉〉.

The noveltimestamp axiom(ts) describes the semantics
of timestamps.

A : honest X ∧ 〈〈t〉〉X< < ((t))A

⇒ (τ t)A < (τt)X < 〈〈t〉〉X< < ((t))A < (τ t)A

The antecedent of this formula assumes thatA receives a
message containing an acceptable timestampt, and she has
the certainty that an honestX has originated〈〈t〉〉. Given
these hypotheses, she can deduce thatX had indeed looked
up t and sent it out, and that these actions took place within
what she regards as the window of validity of this time-
stamp. Here,(τ t)A is the earliest point in time whereA
would acceptt as valid, and(τ t)A is the dual upperbound.
They are events internal toA representing time points cal-
culated fromt by considering what she deems as acceptable
clock skews and network delays. What is important here is
that they boundX ’s actions by events underA’s control. In
the sequel, we will discharge the assumption thatA is cer-
tain thatX has sent this timestamp whenever the message
is authenticated.

Except for(new), all the axioms in this section are in-
stances of thesend-receive axiom schema(sr):

A : ∃X.∀~y. ((fAX(~y)))A ∧ Φ(X, ~y)
⇒ 〈〈fAX(~y)〉〉X< < ((fAX(~y)))A ∧ Ψ(X, ~y)

It says thatA knows that, for some principalX, the mes-
sage structurefAX assures that, if she receives a message
containingfAX(~y), whereX and~y satisfy some precondi-
tion Φ, thenX must have originatedfAX(~y), and thatX
and~y satisfy some postconditionΨ.

2.5 The Derivational Approach

Axioms suffice to extend a local observation into all of
its compatible runs. Adopting a technique developed in pre-

vious work [5, 11], a more effective way to study a large
protocol is to decompose it into elementary exchanges such
as challenge-response and basic key distribution (see Sec-
tion 3), derive the runs compatible with observations for
these parts, and then reassemble them into formulas de-
scribing the compatible runs of the overall protocol. The
logical tools that permit doing this are called refinements
and transformations. Arefinementreflects changes within
one or more messages in a protocol into the formulas de-
scribing the runs compatible with an upgraded observation.
For example, inserting a timestamp in a message has the
effect of strengthening the recipient’s guarantees. Atrans-
formationis similar but supports alterations to the exchange
pattern of the protocol. For example, extending a protocol
with an additional round of challenge-response is a trans-
formation.

Besides the appeal of a divide-and-conquer methodol-
ogy, thederivational approach, as this technique is known,
supports reusing component-formulas pairs whenever they
occur in another protocols. Moreover, the application of
refinements and transformations can be made systematic,
which gives rise to protocol taxonomies [5]: a rational clas-
sification of protocols that not only aids our understanding
of these complex objects, but also helps choosing or devis-
ing a protocol based on desired features and properties. A
tool is under development that will assist us building tax-
onomies that are much larger than what we have so far been
able to construct by hand [1].

A detailed discussion of refinements, transformations
and the derivational approach in general would be rather
lengthy and technical. The reader is better served by con-
sulting the existing literature [5]. Therefore, we will intro-
duce these powerful tools only informally as we need them
in the sequel. Section 5.1 gives some details of a new re-
finement.

3 Basic Key Distribution

In this section, we use the above logic to study the gen-
eral mechanism of key distribution from an authentication
perspective. Key distribution protocols feature complex in-
teraction of secrecy and authentication requirements, and
are therefore a prime target for our methodology. Indeed,
their general goal is to authenticate two principalsA andB
to each other through communications with a serverS along
pre-established channels protected by secret keys. The dis-
tributed key protects future communications betweenA and
B. We analyze the authentication aspects of such proto-
cols, assuming that the keys to the server are not compro-
mised. Proving that the distributed key is secret pertains to
our forthcoming logic of secrecy, and is not addressed here.

For reasons of space, we give a complete proof of only
the first derivation in this paper. The other proofs are anal-

ogous. Other proofs and more detail may be found in [4].
We start with an abstract form of two-party key distri-

bution, which we analyze from scratch, relying on axioms
only. Then, through a series of refinements and transforma-
tions, we derive the skeleton of several well-known proto-
cols, which we will further build up in the next sections.

In our first and most abstract protocol,KD0
2, a serverS

spontaneously generates a keyk and distributes it to known
principalsA and B encrypted with keysKAS and KBS

he shares with each of them. The protocol is given by the
following roles. The actions ofA andB are symmetric at
this stage (onlyA’s role is shown).

KD0
2 server[S;A;B] = ν k ; 〈KAS k : S → A〉

⊗ 〈KBS k : S → B〉
KD0

2 client[A;S, B] = (KAS k : S → A)

The key server and the clients are given everybody’s name
as parameters to their respective roles. The expected run
provides a clearer view of this exchange:

A S B

◦
νk��

◦ ◦KAS koo KBS k // ◦

We will now take the point of view of each principal and
infer a formula representing the runs that are compatible
with its observations. We start withA (B is symmetric).
The only event she observes is(KAS k : S → A). Under
the assumptions thatKAS is shared only byA andS and
the honesty ofS (derived from his role),A can reconstruct
the expected run. The formal derivation is as follows:

Obs : (KAS k : S → A)A

(rcv) : 〈〈KAS k〉〉X< < (KAS k : S → A)A

uncomp : X = A or X = S
Obs : X 6= A

honest S : (νk)S ≺
[
〈KASk : S → A〉S<

〈KBSk : S → B〉S<

]
(νk)S <

[
〈KASk : S → A〉S<

〈KBSk : S → B〉S<

]
<(KASk)A

All the proofs in this paper have a similarly simple form.
We will omit them for brevity. A compact representation of
the overall formula follows:

A : uncomp(KAS , [A,S]) ∧ honest S ∧ (KAS k)A

⇒ (ν k)S <

[
〈KAS k : S → A〉S<

〈KBS k : S → B〉S<

]
< (KAS k)A

The serverS does not conclude more than he observes
since he is the recipient of no message.

In this protocol, each principal knows the identity of ev-
ery other party ahead of time. This is not how typical key

distribution protocols work: instead, one client, sayA, takes
the role ofinitiator by sending a message to the server say-
ing she wants to communicate withB (theresponder). This
alteration is formalized by means of thedischarging trans-
formation, which replaces a parameter in a role with a re-
ceived value.

We apply this transformation twice to protocolKD2
0, dis-

chargingA andB as parameters toS’s role. Before present-
ing the roles of the resulting protocol,KD2

1, a glimpse at its
expected run will help visualize what we have achieved:

A S B

◦ A,B // ◦
νk��

◦ ◦KAS koo KBS k // ◦

The roles ofKD2
1 clearly show thatS does not haveA and

B as parameters any more:

KD1
2 server[S] = (A,B : A → S) ; ν k ;

〈KAS k : S→A〉 ⊗ 〈KBS k : S→B〉
KD1

2 init[A;S, B] = 〈A,B : A → S〉 ; (KAS k : S → A)

KD1
2 rsp[B;S, A] = (KBS k : S → B)

Observe that the roles ofA andB are not symmetric any
more. Note also that it would make little difference ifA
transmitted just “B” as her first message since her name is
present in the “from” field of this action.

The properties characterizingA’s and B’s views are
summarized next.

A : uncomp(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS k)A

⇒

 〈A,B〉A
(A,X)S < (ν k)S <

[
〈KAS k〉S<

〈KXS k〉S<

]< (KAS k)A

B : uncomp(KBS , [B,S]) ∧ honest S ∧ (KBS k)B

⇒ (X, B)S < (ν k)S <

[
〈KXS k〉S<

〈KBS k〉S<

]
< (KBS k)B

Observe thatA has no way to determine whetherS trans-
mitted the keyk to B or to some other partyX. She can
only infer thatS received a request for a key involving her-
self and someX, not necessarilyB. By a similar argument,
B cannot ascertain to whomk was distributed even ifA
appears among the parameters of his role.

This problem is traditionally solved by havingS include
B’s name into the message directed toA, andA’s name into
B’s message. Thebinding refinementof [5] achieves pre-
cisely this effect: it modifies a submessagek m (encrypted
with an uncompromised keyk) into the termk (m,m′)
thereby cryptographically authenticatingm′ to any party
able to access the ciphertext. By applying this refinement

twice (once forA and once forB), S can informA andB
of whom it createdk for. This also allows us to dischargeA
as a parameter inB’s role. LetKD2

2 be the resulting proto-
col. Its expected run is given by the following diagram:

A S B

◦ A,B // ◦
νk��

◦ ◦
KAS (B,k)oo KBS (A,k) // ◦

(We stop showing roles for space reasons.)A andB can
derive the following properties, respectively:

A : uncomp(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k))A

⇒

 〈A,B〉A
(A,B)S < (ν k)S <

[
〈KAS (B, k)〉S<

〈KBS (A, k)〉S<

]
< (KAS (B, k))A

B : uncomp(KBS , [B,S]) ∧ honest S ∧ (KBS (A, k))B

⇒ (A,B)S <(ν k)S <

[
〈KAS(B, k)〉S<

〈KBS(A, k)〉S<

]
<(KBS(A, k))B

While these formulas are similar to what we derived for pro-
tocolKD1

2, A andB now know that the keyk is intended for
the two of them to communicate, not a third party (assum-
ing, of course thatS is honest and that the keysKAS and
KBS are not compromised). This correction becomes cru-
cially important whenA andB attempt to usek.

While KD2
2 achieves a minimal form of key distribution,

few actual protocols have this message structure. Indeed,
with the exception of recent group protocols [11], nearly
all key distribution protocols based on shared keys have the
server send both componentsKAS (B, k) andKBS (A, k)
to one principal, who then forwards the part he does not un-
derstand to the other. This intuition is logically harnessed
by means of therelay transformationwhich yields the fol-
lowing exchange structure:

A S B

◦ A,B // ◦
νk��

◦
��

◦
KAS (B,k), KBS (A,k)oo

◦
KBS (A,k) // ◦

In the corresponding protocol, which we will callKD3
2, S

concatenatesKAS (B, k) andKBS (A, k), and sends the
resulting message toA, who then forwardsKBS (A, k) to
B. Several protocols, e.g., Kerberos 5, follow this pattern.
Note that the componentKBS (A, k) is opaque toA, so her
role mentions a generic messageM .

Applying the relay transformation to the formula charac-
terizingA’s view in KD2

2 yields the following expression:

A : uncomp(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k), M)A < 〈M〉A

⇒

[
〈A,B〉A

(A,B)S <(ν k)S <〈KAS (B, k), KBS (A, k) 〉S<

]
≤

≤ 〈KAS (B, k), M 〉X< <(KAS (B, k), M)A <〈M〉A

Compared to the analogous property ofKD2
2, A’s receive

action contains a genericM , and the server sends a concate-
nated message rather than the two components separately.
This has two implications, highlighted in the boxes:

1. While, by the honesty assumption,A knows thatS
has sentKAS (B, k),KBS (A, k), she cannot ascer-
tain that the generic messageM she receives is indeed
KBS (A, k).

2. SinceKAS is uncompromised,A knows thatS has
originatedKAS (B, k), but she cannot be sure of who
originated the messageKAS (B, k),M she received:
hence the variableX for its originator, and the≤ rela-
tion, a result of applying axiomrcv. Indeed an attacker
could have replacedKBS (A, k) with an arbitrary mes-
sage in an undetectable way. Such a behavior has been
documented for Kerberos 5 [3].

Additionally, observe thatA’s last send has little bearing on
the overall property and could be dropped.

For similar reasons,B has no way to know who for-
warded the message he receives.

B : uncomp(KBS , [B,S]) ∧ honest S ∧ (KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k), KBS (A, k)〉S< <
< 〈KBS (A, k)〉X< < (KBS (A, k))B

Note that ifB were able to infer thatX is indeedA, he
could also conclude thatA knows the keyk.

We conclude this section by deriving a variant ofKD3
2,

in which B’s component is embedded inA’s rather than
concatenated with it. Protocols that follow this approach
include NSSK, Denning-Sacco and Kerberos 4.

This is formally achieved through a variant of the bind-
ing refinement used earlier. Applying it toKD3

2 yields pro-
tocolKD4

2, which has the following expected run:

A S B

◦ A,B // ◦
νk��

◦
��

◦
KAS (B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

A’s resulting property enhances what she could deduce
from KD3

2 with the certainty that the opaque submessage
M she receives isKBS (A, k):

A : uncomp(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS (B, k, M))A < 〈M〉A

⇒
[

〈A,B〉A
(A,B)S <(ν k)S <〈KAS (B, k, KBS (A, k))〉S<

]
<

<(KAS (B, k, KBS (A, k))A = (KAS (B, k, M))AOO
=

OO

At first sight, B’s view does not significantly differ from
what he could infer inKD3

2:

B : uncomp(KBS , [B,S]) ∧ honest S ∧
(KBS (A, k))B

⇒ (A,B)S <(ν k)S <〈KAS(B, k, KBS(A, k))〉S< <
<〈KBS (A, k)〉X< <(KBS (A, k))B

AssumingS honest andKBS uncompromised,B can de-
duce thatS did its part in the protocol, and that some prin-
cipal X forwardedKBS (A, k) to him. Under the addi-
tional assumption thatKAS is not compromised either,B
can infer that it isA who forwarded this message to him. In
particular, this tellsB thatA knowsk.

B : uncomp(KBS , [B,S]) ∧ honest S ∧
uncomp(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (A,B)S < (ν k)S < 〈KAS (B, k, KBS (A, k))〉S< <
< 〈KBS (A, k)〉A< < (KBS (A, k))B

Note that the assumption ofuncomp(KAS , [A,S]) would
be irrelevant in any ofB’s previous inferences. Note also
that the assumption thatKAS is uncompromised does not
mean thatA is bound to be honest: she could indeed de-
viate substantially from the protocol, passing information
(but notKAS) to arbitrary parties, but she certainly has de-
cryptedS’s message and certainly sent outKBS (A, k) (al-
though not necessarily toB).

While most academic and industrial key distribution pro-
tocols based on shared keys are derived from eitherKD3

2 or
KD4

2, these fragments lack two important guarantees:re-
cencyandkey confirmation. Both KD3

2 andKD4
2 give the

clientsA andB assurance that the keyk has been generated
by the server for their exclusive communication needs, but
they provide no verifiable guarantee thatk was generated
recently: an oldk is more likely to have been compromised
than one produced within a short time frame. None of the
properties in this section binds the generation ofk by any
event controlled by the client receiving it. Key confirma-
tion is about a client having some reason to believe that his
counterpart has knowledge ofk as well: onlyKD4

2’s B is
able to gather this type of evidence (under assumptions). In

the next sections, we will follow the development of two
known families of protocols and observe how they address
these issues.

4 Derivations of NSSK

This section extends the results we just obtained in the
direction of the Needham-Schroeder shared-key protocol
(NSSK) [12]. In Section 4.1, we describe how a challenge-
response exchange is used to guarantee the recency of the
key, but also point out how a partial application of this
technique leads to Denning and Sacco’s classical attack on
NSSK [6]. We then show how Needham and Schroeder’s
subsequent fix to the original NSSK [13] completes the ap-
plication of nonce-based recency in Section 4.2. Finally, we
address key confirmation in Section 4.3.

4.1 Guaranteeing Recency with Nonces

The core key distribution protocols in Section 3 do not
guarantee to the clients that the server has generated the key
recently. Indeed, none of the derived client formulas bounds
the actions of an honest server: the key could have been pro-
duced at an arbitrary moment in the past, and now replayed.
A client can assure key recency by bracketing its generation
between two events whose occurrence it can guarantee. One
approach to doing so is using the challenge-response mech-
anism: the client issues a challenge at the time she sends
the key distribution request to the server. The server cryp-
tographically binds the response to the challenge to the key
distribution request. We dedicate this section to examining
one concrete realization of this idea, adopted in NSSK and
other protocols. A different approach, using time-stamps,
will be examined in Section 5 when analyzing the Kerberos
family.

We use the specific instance of the(cr) axiom shown
in Section 2.2, which sends the challenge in the clear (the
challenge function is the identity) and returns the response
encrypted with an uncompromised shared key. Pictorially:

A S

◦
ν n ��
◦ n // ◦

��
◦ ◦KAS noo

This challenge-response is composed with protocolKD4
2

by means of themerging transformationexhaustively stud-
ied in [11]. It embeds these messages within the exchange
betweenA andS in this protocol. The overall process is de-

A S

◦
ν n ��
◦ n // ◦

��
◦ ◦KAS noo

A S B

◦

◦ A,B // ◦
νk��

◦
��

◦
KAS (B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

Overlay transformation
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦
KAS n,KAS (B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

Merging transformation
◦

ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦
KAS (n,B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

Figure 2. Derivation of NSSK0

picted in Figure 2. The following diagram reports its effect:

A S B

◦
ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦
KAS (n,B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

The resulting protocol,NSSK0, includes the first three steps
of NSSK (the addition of key-confirmation will complete it
in Section 4.3).B’s role does not change at all fromKD4

2;
the server’s is modified to return the noncen; most changes
occur inA’s role.

It is interesting to compare how the properties derivable
to A andB change from what we obtained forKD4

2. Be-
causeA created the noncen fresh and it is returned cryp-
tographically authenticated together with the keyk, A can
be certain that the server has generatedk after her request.
Thus, NSSK ensures the recency of the key toA.

A : uncomp(KAS , [A,S]) ∧ honest S ∧
(ν n)A <〈n, A,B〉A < (KAS(n, B, k,M))A

⇒ (ν n)A < 〈n, A,B〉A < (n, A,B)S <
<(ν k)S < 〈KAS(n, B, k,KBS(A, k))〉S< <
< (KAS(n, B, k,KBS(A, k))A

The guarantees derivable toB are however much the
same as inKD4

2: B gets to deduce that some noncen has

been exchanged fromS’s honesty. However, no event con-
trolled byB necessarily precedes the generation ofk:

B : uncomp(KBS , [B,S]) ∧ honest S ∧
uncomp(KAS , [A,S]) ∧ (KBS (A, k))B

⇒ (n, A,B)S <(ν k)S <〈KAS(n, B, k,KBS(A, k))〉S< <
< 〈KBS(A, k)〉A< <(KBS(A, k) : X → B)B

Therefore, NSSK does not ensures the recency of the key
to B. This is the essence of Denning and Sacco’s attack on
NSSK [6].

4.2 NSSK-fix

A few years after Denning and Sacco pointed out the ab-
sence of recency guarantees for the responder [6], Needham
and Schroeder came forth with a “fix” for their original pro-
tocol [13]. This adjustment inserts an additional challenge
response betweenB and the server.

B’s challenge differs fromA’s in order to avoid confu-
sion. B generates a noncenB (for symmetry we rename
A’s noncenA), sendsKBS(A,nB) and expects it back as
KBS nB . One can then verify that the properties of this
exchange satisfy the challenge-response schema.

Some preliminary work is needed in order to com-
poseNSSK0 with this exchange. We first need to apply
two instances of the relay transformation to the challenge-
response in order to put it in the right “shape” for the merg-
ing transformation. Finally, we apply the discharging trans-

A S B

◦
ν nA ��

◦ nA,A,B // ◦
νk��

◦
��

◦
KAS (nA,B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

A S B

◦
ν nB��

◦
��

◦
KBS(A,nB)oo

◦ KBS nB // ◦
2 Relay transformations

◦
ν nB��

◦
��

◦
KBS(A,nB)oo

◦
KBS(A,nB) // ◦

��
◦
��

◦KBS nBoo

◦ KBS nB // ◦
Overlay and merging transformations

◦
ν nB��

◦
ν nA ��

◦
KBS(A,nB)oo

◦
nA,A,B,KBS(A,nB) // ◦

νk��
◦
��

◦
KAS (nA,B,k,KBS (A,k,nB))oo

◦
KBS (A,k,nB) // ◦

Discharging transformation

◦ A // ◦
ν nB��

◦
ν nA ��

◦
KBS(A,nB)oo

◦
nA,A,B,KBS(A,nB) // ◦

νk��
◦
��

◦
KAS (nA,B,k,KBS (A,k,nB))oo

◦
KBS (A,k,nB) // ◦

Figure 3. Derivation of NSSKfix0

formation to maintainA as the initiator of the resulting pro-
tocol. This is summarized in Figure 3. We call this protocol
NSSKfix0. Its expected run is as follows:

A S B

◦ A // ◦
ν nB��

◦
ν nA ��

◦
KBS(A,nB)oo

◦
nA,A,B,KBS(A,nB) // ◦

νk��
◦
��

◦
KAS (nA,B,k,KBS (A,k,nB))oo

◦
KBS (A,k,nB) // ◦

This protocol differs from NSSK-fix only by the absence
of the final key-confirmation steps. They will be added in
Section 4.3. Like many other authors, we cannot avoid not-
ing the complexity of this protocol, compared to NSSK or

Denning-Sacco.

The lengthy formula characterizing the runs compati-
ble withA’s observations does not substantially change the
properties available to this principal: ifS is honest and
KAS is uncompromised, she can still deduce thatS has
generatedk and that he has done so recently.

The interesting changes occur fromB’s perspective. As
in A’s case inNSSK0, B’s nonce is cryptographically bound
to the keyk he receives by protocol’s end. Since an hon-
est server will construct this key only after retrieving this
nonce fromB’s encrypted message, the generation of the
key is sandwiched between two events underB’s control,
hence ensuring its recency. The rest of this property allows
him to draw similar conclusions as inNSSK0, namely that
S produced the key, forwarded it toA who learned it and
forwarded it toB. This is summarized in the following

property.

B : uncomp(KBS , [B,S]) ∧ honest S ∧
uncomp(KAS , [A,S]) ∧

(A)B <(ν nB)B <〈KBS(A,nB)〉B <(KBS(A, k, nB))B

⇒ (A)B <(ν nB)B <〈KBS(A,nB)〉B <
< (nA, A, B, KBS (A,nB))S <(ν k)S <
< 〈KAS (nA, B, k,KBS (A, k, nB))〉S< <
< 〈KBS (A, k, nB)〉A< <(KBS (A, k, nB))B

As in NSSK0, dropping the assumption thatKAS is uncom-
promised implies thatB does not know who has originated
the messageKBS (A, k, nB) and that he cannot be certain
thatA knowsk.

4.3 Key Confirmation

The previous two sections have shown how to extend the
core key distribution protocolKD4

2 with the recency guar-
antees of NSSK(-fix). The remaining issue, addressed in
this section, is ensuring to both recipients that their counter-
part also knows the new shared key. So far, onlyB has this
guarantee.

The simplest way to achieve this is by havingB send
A a pre-agreed messagem (e.g., (A,B)) encrypted with
k. Post-composingNSSK0 with this transmission yields the
protocolNSSK1, which has the following expected run:

A S B

◦
ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦
KAS (n,B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

��
◦ ◦

k (A,B)oo

A’s observations lead her to conclude:

A : uncomp(KAS , [A,S]) ∧ honest S ∧
uncomp(k, [A,B, S]) ∧ (ν n)A <〈n, A,B〉A <

<(KAS(n, B, k,M))A < 〈M〉A <(k(A,B))A

⇒ (ν n)A <〈n, A,B〉A < (n, A,B)S <(ν k)S <
< 〈KAS(n, B, k,KBS (A, k))〉S< <
< (KAS(n, B, k,KBS(A, k))A <

<
〈KBS(A, k)〉A <(KBS(A, k))B <
<〈k(A,B)〉B< <(k(A,B))A

We have highlighted the additions with respect toNSSK0

(see Section 4.1). We had omitted the then trailing〈M〉A
and〈KBS (A, k)〉A since they did not add substantial infor-
mation. Now they clearly do, as they allowA to infer that
B has received this message and originatedk (A,B).

The last addition,uncomp(k, [A,B, S]), deserves some
discussion. Clearly, we need to know thatk is uncompro-
mised to infer anything useful involving it. However, most
formal systems wouldderive this fact rather thanassume
it. This may be where the strict separation between authen-
tication and secrecy is most evident in this work. Recall
that our logical system is just powerful enough to reason
about the order of actions, the structure underlying authen-
tication. In particular it does not embed the logical princi-
ples to derive thatk must indeed be secret. The assumption
uncomp(k, [A,B, S]) is an interface to a secrecy logic.

Applying the above extension toNSSKfix0 yields
NSSKfix1. This protocol has then the typical properties of
a key distribution protocol: both clients receive assurance
that the key has been generated by the expected server, that
this key is controllably recent, and that they both know the
key. However, the actual NSSK-fix is different:B encrypts
a new nonce withk and sends it toA, and expects this same
nonce back fromA, transformed in a predictable way. We
will now discuss what additional properties are achieved
by doing so. For the sake of succinctness, we operate on
NSSK1, which differs from the original NSSK in precisely
the same way asNSSKfix1 is different from NSSK-fix. Here
is the expected run of NSSK:

A S B

◦
ν n ��
◦ n,A,B // ◦

νk��
◦
��

◦
KAS (n,B,k,KBS (A,k))oo

◦
KBS (A,k) // ◦

ν n′��
◦
��

◦k n′
oo

◦
k (n′+1) // ◦

First, notice that havingA send something encrypted with
k back toB does not produce any new knowledge (besides
the obvious, i.e., that a new message has been transmit-
ted). From the point of view ofB, the last two messages of
NSSK implement a challenge-response exchange:B gen-
erates the noncen′, sends it toA encrypted (withk), and
expects it back from her transformed.B thus ascertains that
A in alive at this particular point of the protocol. Note that
B could repeat this same exchange an arbitrary number of
times (each with a new nonce) and obtain the same guar-
antee: thatA was recently alive. De facto, this implements
a crude single-authentication, repeated-request client-server
mechanism, with the initiator acting as the server and the re-
sponder as the client.

In summary, our analysis shows that NSSK-fix achieves
key distribution with recency guarantees and key confirma-
tion for both parties. NSSK provides recency assurance

only to the initiator. Our work also shows that the same
guarantees are also supported by simpler protocols that drop
the last message and rely on any pre-arranged message in-
stead of the final nonce.

5 Derivations of Kerberos

Kerberos [14, 15] is a complex and versatile protocol that
has been the subject of intense scrutiny over the years. In
this section, we will apply the methods outlined above to
derive the core authentication functionalities of versions 4
and 5 of this protocol. We concentrate on the basic key
distribution exchange of which each version contains two
instances. As a preparatory step, we formalize the use of ti-
mestamps for authentication and derive the Denning-Sacco
protocol, a core component of Kerberos 4.

5.1 Guaranteeing Recency with Timestamps

Timestamps have a number of applications in crypto-
graphic protocols. In this section, we examine and formal-
ize their use for the purpose of guaranteeing the recency of
an already authenticated message. Consider a principalA
receiving a messageKAS m from an honest agentS: if
the key is uncompromised,A can only deduce thatS origi-
nated this message in the (possibly distant) past; if however
S includes a timestampt within the encryption and sends
KAS(m, t), A can assess the age of the message and reject
it if it falls outside of her window of validity. This assess-
ment takes into considerations clock skews between hosts,
typical network delays, etc.

We formalize this intuition as a new variant of the bind-
ing refinement [5] used in Section 3 in which the bound term
is a timestamp. We call it thetimestamping refinementand
denote itTR. It transform the exchange on the left below
into the exchange on the right:

A S

◦

◦ ◦
KAS(m)oo

TR _ *4
A S

◦
τ t��

◦ ◦
KAS(m,t)oo

This refinement allows upgrading the logical guarantees
that each principal can deduce. Given the particular format
of this transformation (S does not receive a message back),
we concentrate on the formulas derivable byA. Schemati-

cally:

A : uncomp(KAS , [A,S])∧((KAS m))A

⇒ 〈〈KAS m〉〉S< <((KAS m))Awww�TR

A : uncomp(KAS , [A,S])∧honest S∧((KAS(m, t)))A

⇒ (τ t)A <(τ t)S <〈〈KAS(m, t)〉〉S< <((KAS(m, t)))A

The top formula describes howA can extend her knowl-
edge after receivingKAS m whenever the original proto-
col guarantees the authenticity ofm: note that, as long as
KAS is not compromised,S is not required to be honest.
The bottom lines show the upgraded formula. Recall that
(τ t) represents the earliest point inA’s local time where
she will accept the timet as valid. It is now important that
S is believed to be honest: without this,S could guess an
appropriate value fort rather than looking it up on its clock.

We obtain this formula by homomorphically replacing
KAS m with KAS(m, t) in the derivation of the top for-
mula. The atom(τ t)S comes from the upgraded honesty
axiom and is justified by axiom(ts).

5.2 The Denning-Sacco Protocol

The Denning-Sacco protocol [6] applies the timestamp-
ing refinement to the basic key distribution protocol with
nested encryptionKD4

2 where the authenticated message (m
above) is(k, X), wherek is the newly generated key andX
is eitherA or B. S applies this refinement twice, adding the
same timestamp next to each key distribution submessage.
As a consequence, by the completion of the protocol, each
principal has the certainty thatS has generatedk recently.
As in KD4

2, because of the nested encryption,B addition-
ally knows thatA has seenk (but A cannot be certain that
B ever receivesk). We have shown the resulting protocol
in Section 2. Its expected run is as follows:

A S B

◦ A,B // ◦
νk
τ t��

◦
��

◦
KAS(B,k,t,KBS(A,k,t))oo

◦
KBS(A,k,t) // ◦

From the sole observation of her actions and the honesty
of the server,A can reconstruct the whole protocol, save for
B’s reception of her last message:

A : uncomp(KAS , [A,S]) ∧ honest S ∧
〈A,B〉A < (KAS(B, k, t,M))A

⇒
[
〈A,B〉A < (A,B)S

(τ t)A

]
<

[
(ν k)S

(τ t)S

]
<

< 〈KAS(B, k, t,KBS(A, k, t))〉S<

< (KAS(B, k, t,KBS(A, k, t)))A

We have elidedA’s final send action as it does not contribute
added knowledge. Note thatS’s generation ofk is now
bounded byτ t, which is under the control ofA.

B’s conclusions merge the recency assurance provided
by timestamps with what he could infer by means ofKD4

2,
i.e., thatS has generatedk and thatA has seen it in order to
forward the message he receives:

B : honest S ∧ uncomp(KBS , [B,S]) ∧
∧ uncomp(KAS , [A,S]) ∧ (KBS(A, k, t))B

⇒
[
(A,B)S

(τ t)B

]
<

[
(ν k)S

(τ t)S

]
<

< 〈KAS(B, k, t,KBS(A, k, t))〉S< <
< 〈KBS(A, k, t)〉A< < (KBS(A, k, t))B

Denning and Sacco prominently pointed out in their
original paper [6] that this protocol provides full recency
guarantees with a minimum number of messages.

5.3 Kerberos 4

The core authentication functionalities of Kerberos
4 [14] are obtained by simply extending the Denning-Sacco
protocol by means of a key confirmation exchange similar
to the way we obtained NSSK(-fix) in Section 4.3.

Adding key confirmation We extendDS by having B
sendA some (recognizable) messagem encrypted withk.
The resulting run is as follows:

A S B

◦ A,B // ◦
νk
τ t��

◦
��

◦
KAS(B,k,t,KBS(A,k,t))oo

◦
KBS(A,k,t) // ◦

��
◦ ◦k moo

The formula characterizing the runs compatible with each
principal’s observations is extended as in Section 4.3 [4].

Adding repeated authentication Kerberos was designed
as arepeatedauthentication protocol: each timeA presents
the ticket KBS(A, k, t), B will provide some predeter-
mined service (up to an end-date that we can abstractly
think of as a function oft). The protocol we just derived
is clearly inadequate for this purpose as anybody can replay
the ticketKBS(A, k, t). B needs to authenticate that a sub-
sequent request comes fromA, and assess that it was made
recently enough. Kerberos 4 realizes these two goals by
havingA generate a timestamptA just prior to issuing a new
request, and embedding into it anauthenticatork (A, tA)
(any message mentioningtA and encrypted withk would

do). The intended run of the resulting protocol is as fol-
lows:

A S B

◦ A,B // ◦
νk
τ t��

◦
τ tA ��

◦
KAS(B,k,t,KBS(A,k,t))oo

◦
KBS(A,k,t),k(A,tA) // ◦

��
◦ ◦

k m[tA]oo

where the last message is made dependent ontA (although
Kerberos does not always enforce this).

Observe that, differently from NSSK(-fix), it is the ini-
tiator of the protocol (the client,A) that requests the service
provided by the responder (B). Indeed,A generates the ti-
mestamptA that is included in the authenticator.

Kerberos 4 [14] extends this core protocol with numer-
ous fields primarily meant to negotiate parameters of the
resulting authentication: added timestamps, options and
flags, access control information, etc. For maximum flex-
ibility, Kerberos chains two instances of the core protocol,
by which a client (A) first obtains a master ticket (TGT)
which simplifies the issuance of tickets for individual ser-
vices.

5.4 Kerberos 5

As far as authentication is concerned, Kerberos 5, the
most recent version of this protocol [14, 15], differs from
Kerberos 4 only by the form of the basic key distribution
mechanism it relies on: while version 4 was built up from
the nested variantKD4

2 , Kerberos 5 starts with the concate-
nated variantKD3

2. Given this different starting point, the
core protocol is however derived by applying the exact same
steps as for Kerberos 4. It is interesting to examine them as
the conclusions available to the various principals are not
the same throughout.

The concatenated variant of the Denning-Sacco protocol
has the following expected run:

A S B

◦ A,B // ◦
νk
τ t��

◦
��

◦
KAS(B,k,t),KBS(A,k,t)oo

◦
KBS(A,k,t) // ◦

The knowledge derivable byA is similar to the Denning-
Sacco protocol, except that she can never be certain that the
encrypted component she receives corresponds to whatS
has sent. More interesting is the knowledge inferable by
B: differently from the Denning-Sacco protocol,B can-
not reach any conclusion on whetherA ever saw the keyk:

indeed, the assumptionuncomp(KAS , [A,S]) becomes ir-
relevant.B knows that the server sent the appropriate mes-
sages and that some principalX forwarded the correct com-
ponent to him. This makesB’s knowledge very similar to
A’s.

With both A and B unaware of whether its counter-
part has seenk, each party needs to inform the other of
its knowledge ofk. We rely on the device already used
in Kerberos 4 to accomplish this:A will concatenate the
component(k A) as she forwardsKBS(A, k, t) to B. As in
version 4,B will confirm k with a responsek m for some
recognizablem. We obtain the following exchange:

A S B

◦ A,B // ◦
νk
τ t��

◦
��

◦
KAS(B,k,t),KBS(A,k,t)oo

◦
KBS(A,k,t),k A // ◦

��
◦ ◦k moo

This protocol fragment is extended to allow repeated au-
thentication usingk exactly as for Kerberos 4:A generates
a timestamptA and includes it in her authenticator;B op-
tionally returnstA in the last message.

This is the authentication core of Kerberos 5. As in its
predecessor, two instances of this fragment are chained to-
gether, and numerous fields add a great deal of flexibil-
ity [14, 15]. It should be noted that, in Kerberos 5, the
timestamp-based recency assessment (usingt) is supple-
mented with a nonce-based guarantee by whichA sendsS
a noncen with her initial request and expects it back within
KAS(B, k, t).

6 Conclusions

We have proposed a simple logic of partial order to an-
alyze the authentication properties of security protocols. It
encapsulates necessary secrecy guarantees as assumptions
to be proved in a different formalism. This clean separa-
tion was motivated by the observation that secrecy and au-
thentication properties rely on very different proof methods,
often intertwined in complex analyses. We use this logic to
drive the derivational approach in organizing a large class of
authentication protocols into a taxonomy cataloged by the
authentication properties of their components and how they
are combined.

In a natural continuation of this work, we are developing
a logic of pure secrecy that encapsulates authentication re-
quirements as assumptions. The authentication logic is be-
ing incorporated into the Protocol Derivation Assistant [1].
We are also currently investigating the automation of the
process by which a principal’s observation is completed into

the set of compatible runs. Efforts in this direction touch
the question of the decidability of verifying authentication
(with encapsulated secrecy assumptions).

References

[1] M. Anlauff and D. Pavlovic. The Protocol Derivation
Assistant (version 1.8.20). Available electronically at
http://www.kestrel.edu/software/pda , Dec.
2004.

[2] M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, 8(1):18–
36, 1990.

[3] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A
Formal Analysis of Some Properties of Kerberos 5 using
MSR. In Proc. CSFW-02, pages 175–190. IEEE Computer
Society Press, 2002.

[4] I. Cervesato, C. Meadows, and D. Pavlovic. Deriving key
distribution protocols and their security properties. Avail-
able upon request to the program chair, 2005.

[5] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A deriva-
tion system and compositional logic for security protocols.
Journal of Computer Security, 2004. To appear.

[6] D. E. Denning and G. M. Sacco. Timestamps in key distri-
bution protocols.Communications of the ACM, 24(8):533–
536, 1981.

[7] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentica-
tion and authenticated key exchanges.Designs, Codes, and
Cryptography, 2:107–125, 1992.

[8] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional
logic for proving security properties of protocols.Journal of
Computer Security, 11(4):667–721, 2003.

[9] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR.Software - Concepts and
Tools, 17:93–102, 1996.

[10] G. Lowe. A herarchy of authentication specifications. In
Proc. 10th IEEE Computer Security Foundations Workshop,
pages 31–43. IEEE Computer Society Press, 1997.

[11] C. Meadows and D. Pavlovic. Deriving, attacking and de-
fending the GDOI protocol. InProc. ESORICS 2004, pages
33–53. Springer-Verlag LNCS 3193, 2004.

[12] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers.Communica-
tions of the ACM, 21(12):993–999, 1978.

[13] R. M. Needham and M. D. Schroeder. Authentication revis-
ited. ACM Operating Systems Review, 21(1):7, 1987.

[14] B. C. Neuman and T. Ts’o. Kerberos: An Authentication
Service for Computer Networks.IEEE Communications,
32(9):33–38, 1994.

[15] C. Neuman, J. Kohl, T. Ts’o, T. Yu, S. Hartman, and K. Rae-
burn. The Kerberos Network Authentication Service (V5),
September 7 2004. Internet draft, expires 7 March 2005.

