
Deriving secrecy in key establishment protocols

Dusko Pavlovic1 and Catherine Meadows2

1 Kestrel Institute, Palo Alto, CA 94304
dusko@kestrel.edu

2 Naval Research Laboratory, Washington, DC 20375
meadows@itd.nrl.navy.mil

Abstract. Secrecy and authenticity properties of protocols are mutu-
ally dependent: every authentication is based on some secrets, and ev-
ery secret must be authenticated. This interdependency is a significant
source of complexity in reasoning about security. We describe a method
to simplify it, by encapsulating the authenticity assumptions needed in
the proofs of secrecy. This complements the method for encapsulating
the secrecy assumptions in proofs of authenticity, presented in [1]. While
logically straightforward, this idea of encapsulation in general, and the
present treatment of secrecy in particular, allow formulating scalable
and reusable reasoning patterns about the families of protocols of prac-
tical interest. The approach evolved as a design strategy in the Proto-
col Derivation Assistant (Pda), a semantically based environment and
toolkit for derivational approach to security [2, 3].

1 Introduction

All secure communication on public networks begins with key establishment.
Many diverse key distribution and key agreement schemes have evolved, with
subtle, complex, and sometimes unclear security properties Since they are critical
for the functioning of the networks, it is desirable to establish their provable,
rather than just empirical security.

1.1 Derivational approach to security

Practical methods for proving security evolve slowly. While most branches of
engineering largely consist of methodologies for building complex systems from
simple components, formulating the incremental and compositional methods for
security engineering has been a challenging task: in general, security properties
are not preserved under composition.

Although not straightforward, the progress towards methods for the incre-
mental design and analysis of security protocols has been steady. The present
work is a part of a continued effort towards capturing and formalizing a sound
part of the incremental practices of security engineering, and supporting it in a
semantically based integrated development environment for secure systems [2,
3]. The logic of [4, 5] is a protocol analysis logic which incorporates incremental

practices of security engineering such as refinement and composition. In [6] we
developed a streamlined and simplified version of the authentication fragment of
the logic in [4, 5], that was still sufficient to uncover a flaw an IETF standardized
protocol, that had already undergone extensive formal analysis. This led us to
the idea, presented in [1], that many authentication proofs can be simplified,
by encapsulating the needed secrecy requirements, and leaving them as open
assumptions, to be discharged in separate proof modules. In the present work
we present a secrecy logic, intended to support these separate proofs of secrecy
properties. This time, the authentication assumptions, needed for secrets, are
encapsulated, and left as open assumptions.

1.2 Encapsulation trick

An important source of complexity in reasoning about security is the mutual de-
pendancy of secrecy and authenticity: every secret must be authenticated, and
every authentication must be based on a secret. This feedback loop of positive
and negative knowledge statements, logical weaving and interleaving of authen-
tication and secrecy, often generates confusion. The method of encapsulation
allows us to untie some such knots, and to make some general patterns of formal
reasoning actually and unexpectedly simpler then the informal counterparts,
which were their source.

In previous work [1], we simplified authenticity proofs by encapsulating the
secrecy assumptions on which they depended: e.g., an assumption that a key,
used for authentication, was uncompromised, was simply left open, to be dis-
charged in a separate proof module. A more common approach would have been
to unfold the proof that the key remains secret within the given protocol. This
proof would require an assumption that the key was authenticated — and this
assumption would then usually be left open, as an assumption about the in-
frastructure. The authentication performed in the analyzed protocol would thus
be reduced to another authentication, performed in the preceding key estab-
lishment protocol. While this approach is reasonable, unfolding a secrecy proof
within each authenticity proof, and vice versa, does seem to complicate things,
and does not seem necessary. In some cases, reducing authentications to the rele-
vant secrecy assumptions, that encapsulate their own authenticity assumptions,
often allows considerably simpler, and more insightful proofs.

Outline of the paper. We present a method to derive secrecy properties of key
establishment protocols, while assuming, and encapsulating for later implemen-
tation, the needed authentication properties of their components. Section 2 opens
the exposition with an informal overview of the counterpart of this approach,
where the authentication properties are derived, while the secrecy properties are
assumed and encapsulated. An outline of the general framework used in proto-
col derivations is in the Appendix. Section 3 introduces the relations needed for
modeling secrecy, and the derivation rules needed for proving it. Section 4 pro-
vides a method for proving a family of inductive statements to which the crucial

rule reduces the secrecy statements. Section 5 presents the basic derivation tem-
plates for two key establishment patterns: key distribution and key agreement.
Section 6 concludes the paper with a summary of its contributions.

2 Overview of authentication with encapsulated secrecy

The goal of an authentication protocol Q for a group G is to realize the authen-
tication predicate

AuthQ(G) = ∀XY ∈ G. L
Q
X ≈ L

Q
Y

where L
Q
X is the complete view of the principal X at the final state of the

protocol Q. The relation ≈ requires the views to be equal, except for the last
send-receive pair, which the sender cannot ascertain. The predicate AuthQ(G)
thus formalizes entity authentication through “matching histories”, introduced
in [7] and formalized in [8]. Message authentication can be captured in a similar
way, by requiring that principals’ records match when restricted to the actions
containing the relevant term:

AuthQ(t;G) = ∀XY ∈ G.
(
L
Q
X � t

)
≈

(
L
Q
Y � t

)
To represent, say, a freshly generated value, we take t to be a variable x bound
by an action (νx) in Q. Its propagation is tracked through the send, receive and
assign actions in the various runs, and its authenticity means that the various
principals’ views of this coincide at the final state of each run. For a set of terms
Θ, we abbreviate Auth(Θ;G) =

∧
t∈Θ Auth(t;G).

In general, the complete view L
σ

X of the principal X at the state σ is ob-
tained by applying the available authentication axioms and logical rules to the
(incomplete) view Lσ

X , which consists of the actions observed by X up to σ. The
views grow as the runs progress. Each principal directly observes only her own
actions (and the actions of her subprincipals); but the authentication axioms
allow her to draw conclusions about the actions of others, roughly in the form:
“If I am receiving this message, someone must have sent it.”

The authentication axioms are subsumed under the authentication template

A : ∀x. Φ(x) ∧ ((fABx))A =⇒ Ψ(x) ∧ 〈〈fABx〉〉B< < ((fABx))A (au)

instantiated to particular formulas Φ and Ψ . Here ((t))A means “A receives a
message containing t”, and 〈〈t〉〉A(<) means “A sends (originates) a message
containing t” [6]. The prefix “A :” means that the schema is used in A’s local
reasoning. The most important instance of this schema is the challenge-response
axiom

A : (νx)A

(
〈〈cABx〉〉A < ((rABx))A

=⇒ 〈〈cABx〉〉A < ((cABx))B < 〈〈rABx〉〉B< < ((rABx))A

)
(cr)

obtained by setting

fABx = rABx

Φ(x) = New(x) ∧ 〈〈cABx〉〉A < ((rABx))A

Ψ(x) = ((cABx))B < 〈〈rABx〉〉B

in (au), and abbreviating “∀x. New(x) ⇒” to “(νx)”. This axiom allows a prin-
cipal A, who can only observe her own actions, to draw conclusions about B’s
actions, using the assumption that no one but B could have transformed cABx
to rABx. Axiom (cr) should thus be construed as a specification of the prop-
erty of the challenge-response functions c and r, required for the authentication.
This property is simply asserted (postulated) for the abstract challenge-response
protocol, but the task is to refine this protocol, and implement c and r as more
concrete cryptographic functions, which come with their own axioms, from which
(cr) can then be derived as a theorem [6, 1]. This is where the encapsulated se-
crecy assumptions enter scene. For instance, when the challenge-response func-
tions are implemented as

cABx = x

rABx = SB(A, x)

where SB is B’s signature, then axiom (cr) is implied by the statement that this
signature is B’s secret, i.e. that only he can generate it:

A : 〈〈SBx〉〉X< =⇒ X = B

And this, furthermore, can only be true if the session where B’s signature is
established has been authenticated, so that no other principal can come in pos-
session of his signature. And that authentication depended on some previous
secrets, and so on.

In general, given a protocol refinement Q(f) −→ Q(F/f), where an abstract
function f is implemented as a more concrete function F , refining the authenti-
cation proof often requires an additional assumption that the function F , used
to authenticate group G, is G’s secret

AuthQ(f)(G) ∧ SecrQ(F/f)(F ;G) =⇒ AuthQ(F/f)(G)

For instance, when the abstract response function rAB is refined to signature
SB , axiom (cr) will be satisfied because SB is B’s secret, and no one else could
generate his signed response.

Similarly, in order to derive a secrecy property of a refinement F of an ab-
stract operation f in a protocol Q, we shall often need the authenticity assump-
tion, in the form

SecrQ(f)(f ;G) ∧ AuthQ(F/f)(F ;G) =⇒ SecrQ(F/f)(F ;G)

The goal of the rest of the paper is to make this precise.

3 Modeling secrecy

In this section we introduce the conceptual and notational infrastructure needed
for the formal definition of secrecy and the rules for deriving it. There are several
layers of structure, and the tempo is brisk: the details must be left for the
subsequent sections.

3.1 Order and security

The simplest process model suitable for capturing the various aspects of security
seems to be the based on partial orders, or more precisely partially ordered
multisets (pomsets) [9]. It extends the trace based models, such as strand spaces
[10], and simplifies the process-calculus based models.

While authenticity is achieved through partial ordering of actions, secrecy
is concerned with the computability relation between terms, as they propagate
through communication. The abstract pomset model, used for deriving authen-
ticity, is now extended by an abstract computability relation. This will suffice
for secrecy derivations. The model (outlined in the Appendix) consisted of:

– partial order of terms and subterms (T ,v),
– partial order of principals and subprincipals (W,b),
– set of actions A generated over the terms,
– processes as partially ordered multisets of actions [9], i.e. maps L L−→ A×W,

where L is a partial order, and
– runs, which extend processes by assigning to each receive action a unique

send action

Now we add:

– partial order Γ ` Θ between finite sets Γ,Θ ⊆ T , meaning that each term
t ∈ Θ can be computed from a tuple3 of terms g ∈ Γ .

In the present paper, we study the useful symbolic interpretations of com-
putability relation.

3.2 Symbolic computability

In general, the computability relation among the terms used in a protocol can
be given by rewrite rules, e.g.

x, y ` 〈x, y〉 〈x, y〉 ` x, y k, x ` Ekx k, Ekx ` x

where 〈x, y〉 represents a pairing operation, and Ekx the encryption of x by
k. Abadi and Rogaway [11] use such computability relation. Paulson’s analz
operator [12] corresponds to the closure Γ` = {t ∈ T | Γ ` t} for the special case
of the theory of encryption and tupling. More generally, given an algebraic theory
3 We often abbreviate g1, g2, . . . , gn to g.

T with a signature ΣT , and the set of derived operations ΣT , the computability
relation can be defined by

Γ ` Θ ⇐⇒ ∀t ∈ Θ∃g ∈ Γ∃ϕ ∈ ΣT . T |= (t = ϕg)

In words, for every element t ∈ Θ we can find a tuple g ∈ Γ and an alge-
braic operation ϕ, such that the equation t = ϕg can be proven in algebra T .
The rewrite rules given above are obtained for the algebraic theory T over the
signature ΣT =

{
〈−,−〉, π1, π2, E, D

}
and the equations

π1〈x, y〉 = x π2〈x, y〉 = y Dk(Ekx) = x

where we make the restriction that πi is applied only to the result of concate-
nation and Dk is applied only to the result of applying Ek. 4.Note that the
encryption E and decryption D are presented as curried binary operations on
keys and messages. This will simplify notation in the sequel: e.g. the encryption
and decryption by a key k become unary operations
Notation. It is convenient to extend the computability relation from the ele-
ments of T to functions f : T −→ T , as follows:

Γ ` f = ∀x. Γ, x ` fx

Γ ` f−1 = ∀x. Γ, fx ` x

Γ, f ` t = ∀Ξ. Γ, Ξ ` f ⇒ Γ,Ξ ` t

Γ, f−1 ` t = ∀Ξ. Γ, Ξ ` f−1 ⇒ Γ,Ξ ` t

This extends to sets of functions in the obvious way. E.g., if EG = {EX : T →
T |X ∈ G} is a family of public key encryptions for the principals from some
group G ⊆ W, then Γ ` E−1

G means that the keys to decrypt the messages
encrypted by any of EX ∈ EG can be computed from Γ .

For an algebraic theory T with signature ΣT , the above definition of com-
putability implies that x ` fx, i.e. ` f , holds for every f ∈ ΣT .

Finally, each order relation induces a closure operator on sets of terms:

Γ` = {t ∈ T | Γ ` t} Γw = {t ∈ T | ∃u ∈ Γ. u w t}

3.3 Guard relation

A set of sets of terms G ∈ ℘℘T is said to guard a term t with respect to a set
of terms Υ ⊆ T if every computation of t from Υ must traverse some Γ ∈ G, i.e.

G guardsΥ Θ = ∀t ∈ Θ∃Γ ∈ G∀Ξ ⊆ Υ. Ξ ` t ⇒ Ξ ` Γ

We say that G guards Θ in a process L if it guards it with respect to the set of
terms Υ = TL which become computable to all observers in any run of L.
4 We note that without such restrictions, not only are the theories not equivalent, but

as pointed out in [13], it is possible to have protocols that are secure in the rewrite
theory that are not secure in the algebraic theory

This notion is implicit in many symbolic analyses of secrecy. Since the en-
vironment Υ depends on the possible runs of L (of which there can be many!),
proving that a term is guarded can be complex. Our approach is to prove that
guardedness is satisfied if certain syntactic conditions on the runs that are easy
to verify using the authentication logic are also satisfied. This allows us to en-
capsulate the complex secrecy proofs as well. A framework for a large class of
such proofs is presented in section 4.

3.4 Secrecy predicates and rules

The information available to a principal A ∈ W at a state5 σ in a run ` of a
process L L−→ A×W is conveniently subdivided into

– a view Lσ
A : Lσ

A −→ A × WbA, which is the restriction of the run L =
〈LA, LW〉 : L` −→ A×W to the actions executed before the state σ by A’s
subprincipals, i.e. to the subposet Lσ

A = {ξ ∈ L` | ξ ≤ Hσ ∧ LWξ b A}, and
– an environment Γ σ

A, which consists of the fresh variables from σ2
A and the

terms which occur in σ3
A, which together capture all terms that A has gen-

erated, received or computed up to the state σ.

Secrecy of a set of terms Θ for a group G ⊆ W at a state σ is then defined6

Haveσ(Θ;G) = ∀X ∈ G. Γ σ
X ` Θ

Onlyσ(Θ;G) = ∀X ∈ W∀t ∈ Θ. Γσ
X ` t =⇒ X ∈ G

Secrσ(Θ;G) = Haveσ(Θ;G) ∧ Onlyσ(Θ;G)
= ∀X ∈ W∀t ∈ Θ. Γσ

X ` t ⇐⇒ X ∈ G

Lemma 1. (a) For Φ ∈ {Have,Only,Secr} holds

Φ(Θ1;G) ∧ Φ(Θ2;G) ⇐⇒ Φ(Θ1 ∪Θ2;G)

and therefore

Θ1 ⊇ Θ2 =⇒ Φ(Θ1;G) ⇒ Φ(Θ2;G)

(b) Furthermore

Have(Θ;G1) ∧ Have(Θ;G2) ⇐⇒ Have(Θ;G1 ∪G2)
Only(Θ;G1) ∧ Only(Θ;G2) ⇐⇒ Only(Θ;G1 ∩G2)

and therefore

G1 ⊇ G2 =⇒ Have(Θ;G1) ⇒ Have(Θ;G2) ∧ Only(Θ;G2) ⇒ Only(Θ;G1)

5 The definitions are in the Appendix.
6 Note that Only(Θ; G) is logically equivalent to ∀X ∈ W(∃t ∈ Θ. Γ σ

X ` t) =⇒ X ∈ G.

Notation. It will be convenient to introduce the relation of relative computabil-
ity

Ξ `σ
A Θ = Ξ,Γ σ

A ` Θ

We write Ξ `QA Θ and Ξ `A Θ for computability in all runs of a protocol Q. We
also elide the empty set, and write `σ

A Θ instead of ∅ `σ
A Θ. For a group G ⊆ W,

we write

Ξ `G Θ = ∀X ∈ G. Ξ `X Θ

Rules. The basic steps in the derivations of secrecy will be

Haveσ(Ξ;G) Ξ `σ
G Θ

(have)
Haveσ(Θ;G)

Onlyσ(Ξi;Gi)
∣∣n
i=1

{Ξi}n
i=1 guards Θ

(only)
Onlyσ(Θ;

n
∪

i=1
Gi)

Secrσ(Ξi;Gi)
∣∣n
i=1

Ξi `σ
Gi

Θ
∣∣n
i=1

{Ξi}n
i=1 guards Θ

(secr)
Secrσ(Θ;

n
∪

i=1
Gi)

4 Proving guards

In this section, we explore the ways in which the guarding assumptions of (only)
and (secr) can often be proved.

In practice, guards are often realized using functions which are hard to invert,
or functions which are easy to invert with a key, but hard to invert without it.
In modern cryptography, such functions are developed as one-way functions,
and as trapdoor functions respectively [14, 2.4]. Very roughly, the idea is that
the output of a one-way function does not contribute to computations that may
yield its input

Γ, Fk ` k =⇒ Γ ` k

whereas a trapdoor function allows computing a part m of its input only if
another part k, called trapdoor, is also computable

Γ,Ekm ` m =⇒ Γ ` k ∨ Γ ` m

However, these formulations abstract away the fact that a function may not be
invertible on its own, but may become invertible in a context, via equations like
Dk(Ekx) = x. The definitions that we propose below capture this fact, but re-
main an algebraic approximation, inevitably crude, of concepts that essentially
involve probabilistic computation. However, this initial simplification seems nec-
essary for incremental proofs of secrecy, and open for refinements to more precise
models.

4.1 Guarding by one-way functions

Fix a term algebra T , given with a subterm relation @, a set of function symbols
Σ, and a computability relation `.

If f ∈ Σ is a function symbol of arity n and i ≤ n, we call a pair 〈f, i〉 a
position, and denote by f(σ)i a term in the form fs1s2 . . . si−1σsi+1 . . . sn, i.e.
where σ occurs as i-th argument of f .

Definition 1. Given sets Υ,Θ ⊆ T of terms and a set Π ⊆ Σ ×N of positions,
we extract the Υ -terms which occur in Θ just in the Π-positions by the operator

parΥ (Θ, Π) =
˘
σ ∈ Υ \Θ | ∀t ∈ Θ∀s v t∀f ∈ Σ∀i ∈ N. s = f(σ)i ⇒ 〈f, i〉 ∈ Π

¯
The context Υ is often all of the term algebra T , or the set T wL of the subterms

from the set TL of the terms that may be sent in runs of the process L. We write
parL(Θ,Π) = parT wL

(Θ,Π), and par(Θ,Π) = parT (Θ,Π).

Definition 2. A term σ is purged from a position 〈f, i〉 in the terms of Θ by
replacing in every t ∈ Θ, all occurrences of σ as i-th argument of f by a fresh
variable x, not occurring in Θ. Formally,

purσ(Θ, 〈f, i〉) =
{
t[f(x)i] | t[f(σ)i] ∈ Θ

}
where t[f(σ)i] displays all the occurrences of f(σ)i in t. Then purΥ (Θ,Π) is
obtained by sequentially purging all σ ∈ Υ the @-maximal ones first.

Note that, if σ never occurs in a position from Π, then purΥ (Θ,Π) = ∅.

Lemma 2. The operation purΥ (Θ,Π) is well defined: the order of purges of the
individual terms σ ∈ Θ does not matter, as long as the maximal terms are purged
first.

Proof. This follows from the fact that two terms are either disjoint, or one is
entirely contained in another.

Definition 3. A position set Π is said to be one-way if it satisfies

Onwy(Π) = ∀Θ ∀σ ∈ par(Θ,Π). Θ ` σ =⇒ purσ(Θ, Π) ` σ

We write Onwy(f, i) instead of Onwy({〈f, i〉}), and we write Onwy(f) instead of
Onwy({〈f, 1〉, . . . , 〈f, n〉}), where f is an n-ary function symbol.

Lemma 3. For the function E, with the computability relation as defined in sec.
3.2, holds Onwy(E, 1) ∧ ¬Onwy(E, 2).

Proof. The second conjunct is a consequence of the rewrite k, Ekm ` m. For
the proof of the first, let D = Γ1 ` . . . ` Γn ` σ ∈ par(Θ, 〈E, 1〉) where Γ1 ⊆ Θ
and each `-step consists of a single application of a rewrite rule. We want to
show that if D is a derivation, then so is the result of applying the purge function
to each term in D. The proof will be by induction on the length of D. The result
clearly holds when the length of D is one. Suppose the result holds for length
less than n. Suppose purσ(Θ,Π) 6` σ. Then one of the steps Γi in D must be of
the form S ∪ {σ,Eσy} ` S ∪ {σ,Eσ, y} or S ∪ {σ, y} ` S ∪ {σ, y, Eσy}. Then
Γ1 ` . . . ` Γi is a derivation of σ, and we are done.

Definition 4. We say that t is only sent under one-way functions in the runs
of a process L if there is a one-way position set Π such that t ∈ par(TL,Π),
where TL is the set of terms of L.

A term t is protected in L if it is only sent under one-way functions, or not
at all. The set of the terms protected in L is thus

protL(Θ, Π) = parL(TL,Π) ∪ (T \ T wL)

Proposition 1. If a term t is only sent under one-way functions in the runs of
a process L, then t cannot be derived by the observers of these runs. Formally,

Onwy(Π) ∧ t ∈ parL(ΓX ,Π) =⇒ ΓX 6` t

Proof. Suppose that t is derivable from the terms Θ in a run. By the definition
of Onwy, purt(Θ, Π) ` t. But by assumption, t does not appear in purt(Θ,Π).
Since t is an atomic term, that means that t cannot be derived from purt(Θ,Π),
and so it cannot be derived from Θ.

Corollary 1. If a term t is protected in a process L, and in the initial envi-
ronments of all principals, then no run of L will make it computable for any
principal for which it was not computable initially, before any runs of L, i.e.

Onwy(Π) ∧ t ∈ protL(TL,Π) ∧ ∀X ∈ W. t ∈ protL(Γ ι
X ,Π) =⇒ Only(t;Gt)

where Gt = {X ∈ W | Γ ι
X ` t}.

Proposition 2. Let L be a process, and let k be an atomic term which only
appears as the first argument of E in any term in the runs of L. Then, k cannot
be derived by the observers of these runs.

Proof. Since k is atomic, and the ` relation introduces no new variables on the
right-hand side, the fact that k does not appear in any element of purk(TL, 〈E, 1〉)
implies purk(TL, 〈E, 1〉) 6` k. Since 〈E, 1〉 is one-way (by lemma 3), definition 3
yields Θ 6` k.

Remark. If Θ = {E(Fkm)n}, and Onwy(E, 1), then Θ 6` Fkm. Note, however
that this does not imply Θ 6` k, since the algebraic theory may include, e.g. the
equation E(Fxy)z = x. However, if Onwy{〈E, 1〉, 〈F, 1〉}, then Θ 6` k can indeed
be proven.

4.2 Guarding by trapdoor functions

Definition 5. Given sets Υ, Θ ⊆ T and Ψ ⊆ Σ × N × N, with the projections
Ψ0 = {〈f, i〉 | ∃k. 〈f, i, k〉 ∈ Ψ} and Ψ1 = {〈f, k〉 | ∃i. 〈f, i, k〉 ∈ Ψ}, then the
operator

padΥ (Θ,Ψ) =
{
〈σ, κ〉 ∈ Υ 2 \Θ2 | ∀t ∈ Θ∀s v t∀f ∈ Σ∀i ∈ N.

(
s = f(σ)i

⇒ ∃k ∈ N. 〈f, i, k〉 ∈ Ψ ∧ s = f(κ)k

)}
extracts just those pairs of terms 〈σ, κ〉 ∈ Υ 2 where σ only occurs in a Ψ0-position,
if κ occurs in a Ψ1-position within the same subterm.

Like before, pad(Θ,Ψ) stands for padT (Θ,Ψ). We further define

msgΥ (Θ,Ψ) = parΥ (Θ,Ψ0) keyΥ (Θ,Ψ)σ = {κ | 〈σ, κ〉 ∈ padΥ (Θ,Ψ)
}

Definition 6. We say that Ψ ⊆ Σ×N×N is a trapdoor set if for every 〈f, i, j〉 ∈
Ψ holds that whenever an 〈f, i〉-subterm σ can be extracted from f(σ)i, then some
〈f, j〉-subterm κ must also be computable. Formally,

Trap(Ψ) = ∀Θ ∀σ ∈ msg(Θ,Ψ). Θ ` σ =⇒ ∃κ ∈ key(Θ,Ψ)σ. Θ ` κ

We abbreviate Trap({〈f, i, k〉}) to Trap(f, i, k), and for n-ary f write Trap(f, k)
instead of Trap({〈f, 1, k〉, . . . , 〈f, n, k〉}).

Proposition 3. The function E from sec. 3.2 satisfies Trap(E, 2, 1).

Proof. Let Θ be a set of terms, Π = 〈E, 1〉, and σ ∈ msg(Θ,Ψ) such that Θ ` σ
but Θ 6` g for any g ∈ key(Θ,Ψ). Let T be a sequence T1 ` . . . ` Tn ` σ where
T1 ⊆ Θ and each ` step consists of a single application of a rewrite rule. Then
some Ti must be of the form S ∪{k, Eky} ` S ∪{k, Eky, y} where σ v y. Hence
Θ ` k and k ∈ key(Θ,Ψ), contradicting our assumption.

The following three results follow directly from the definitions, so we omit
their proofs.

Lemma 4. For every Θ and a trapdoor set Ψ holds{
key(Θ,Ψ)σ | σ ∈ msg(Θ,Ψ)

}
guardsΘ msg(Θ,Ψ)

Proposition 4. If a term σ is only sent under trapdoor functions in the runs of
a process L, then every computation leading to σ must pass through a trapdoor
κ. Formally,

Trap(Ψ) ∧ σ ∈ msg(T , Ψ) =⇒ key(T , Ψ)σ 6= ∅.

Corollary 2. If a term σ is only sent under trapdoor functions in the runs of
a process L, and if all of its trapdoors are contained in Γ , then σ is guarded by
Γ , i.e.

Trap(Ψ) ∧ σ ∈ msg(TL, Ψ) ∧ key(TL, Ψ)σ ⊆ Γ =⇒ {Γ} guardsL σ

Remark. One-way functions implement a simple form of guarding, where s is
guarded by the function symbol f in the term fs. Trapdoor functions implement
guarding where s can be extracted from a term fst only if t is known. Equations
between terms lead to more complicated forms of guarding. E.g., if g∧(−) is a
one-way function satisfying (g∧y)∧z = (g∧z)∧y, then z cannot be extracted from
(g∧y)∧z, but this term can be computed without knowing z, from {g∧z, y}.

5 Secrecy derivations

5.1 Key distribution

Consider the abstract key distribution protocol KD[A,B, S]

A S B

◦
A,B // ◦

νx

��
◦ ◦

gSAxoo gSBx // ◦

The principal A here requests a key to communicate with B and the server S
generates a fresh key and distributes it, guarded by the functions gSA and gSB .
The desired secrecy property is that at the final state of KD, only A,B and S
have x, provided that they are honest.

To assure this, we impose the following axioms

∀Y ∈ W. Secrι(gSY , g−1
SY ;S, Y) (sg)

AuthKD(gSA, g−1
SA, gSB , g−1

SB ;A,B, S) (ag)

AuthKD(x;A,B, S) (ax)

which say (sg) that at the initial state ι, only S and Y can construct and remove
gSY , and (ag,ax) that A,B and S can each ascertain that there are no undesired
flows involving g’s and x. The desired secrecy property is now obtained using
the secrecy rule

(sg) ∧ (ag)
=====================
SecrKD(g−1

SY ; S, Y)
˛̨
Y ∈{A,B}

gSY x ∈ Γ KD
S,Y

˛̨
Y ∈{A,B}

g−1
SX `S,Y x

˛̨
Y ∈{A,B}

(ax) ∧ H(A, B, S)
====================˘
{g−1

SA}, {g
−1
SB}

¯
guards x

SecrKD(x; A, B, S)

where H(A,B, S) is the usual honesty assumption, that principals act according
to the protocol. To see how (ax)∧H(A,B, S) implies that

{
{g−1

SA}, {g
−1
SB}

}
guards

x, recall that Auth(x;A,B, S) means that
(
LA � x

)
≈

(
LS � x

)
≈

(
LB � x

)
, at

the final state of KD. In other words, all three principals A,B and S can in each
run of KD establish the same complete view of all of their actions with the terms
containing x. Of course, each of them observes only her own actions, but the
assumption Auth(x;A,B, S) asserts that this suffices to allow each of them to
also prove the exact order of actions of the other two. In particular, A and B
can both prove that S has only sent gSAx and gSBx, and nothing else.

In this reasoning, the authentication assumptions are encapsulated in axioms
(ag) and (ax), which postulate that there are no runs viewed differently by dif-
ferent principals. This means that neither of them can be proven, nor needs to
be proven, for the abstract protocol. They just specify requirements which the
implementations of the abstract protocol need to satisfy. This is analogous to

the derivational approach to authentication, where the axiom (cr) specifies the
required property of the challenge-response functions c and r, as an implemen-
tation task. The task here is to implement the guard function g, and discharge
the open authenticity assumption. The abstract secrecy property of KD, proven
above, must be preserved and realized through such implementations.

Refining KD Suppose that we are given an encryption algorithm E, with the
decryption algorithm D, and a symmetric key kSY shared by the server S with
every Y ∈ W. Assume that these data satisfy the following axioms7

Onwy〈E, 1〉 (oE)

Trap〈E, 2, 1〉 (tE)

∀Y ∈ W.Secrι(kSY ;S, Y) (sk)

First try. Setting gSY x = EkSY x, one can easily derive (sg) from (sk), and the
secrecy of kSY follows from (sk), (oE), and AuthKD(kSY ;Y, S). However, (ag)8

and (ax) are not satisfied, because gSY = EkSY allows runs which may leave
each principal with a different view, e.g.

A S C

◦
A,B // ◦

��
◦

νx

��

◦
A,Coo

◦ ◦
EkSAxoo EkSCx // ◦

Here S does not know that A wanted to speak to B, A does not know that C
participates the run, and B does not know that anything happened at all.

Second try. The principal A needs to prove (ax) that S has only sent x in the two
tokens, intended for A and B, guarded by gSA or gSB ; and (ag) that the guards
have not been compromised. Since A does not have g−1

SB , she cannot check (ax)
directly. So she must check it indirectly, relying for the authentications (ag) and
(ax) on the information received from S. This idea is realized by adding peer’s
identity in the term gSAx, constructed by S for A. Ditto for gSBx.

Proposition 5. The protocol KD, with axioms (sg,ag,ax), can be refined by set-
ting

gSAx = EkSABx gSBx = EkSBAx

7 For simplicity, the term algebra is here untyped, and any term can be used as a key;
typing can be introduced as needed.

8 Note that Trap〈E, 2, 1〉 implies Auth(Ek, Ek−1) ⇐⇒ Auth(k).

provided that (oE) Onwy〈E, 1〉, (tE) Trap〈E, 2, 1〉, and (sk) Secrι(kSY ;S, Y), Y ∈
{A,B} are satisfied. Under these assumptions, the proof of KD’s secrecy property
specializes to its refinement.

The validity of (sg) follows as in the first try. The validity of (ag) and (ax)
follows from the honesty assumption: if A receives EkSABx, then the presence
of B in that message means the only other token that the honest server S would
send is EkSBAx.

5.2 Key agreement

The generic key agreement protocol KA is based on abstract public key infras-
tructure: each principal X ∈ W is given a long term private key aX , correspond-
ing to a public key pX , as well as an “address book” {(Y, pY)}Y ∈W of public
keys of all principals. This means that the view Γ σ

X for every σ and X con-
tains {aX , (Y, pY) | Y ∈ W}. But the participants of the abstract key agreement
protocol KA[A0, A1] only need to know each other’s public key, so it becomes

A0[a0, (A1, p1)] A1[a1, (A0, p0)]

◦
νx0

��
◦

m1:=Fa0x0 // ◦
νx1

��
◦ ◦

m0:=Fa1x1oo

K0a0x0m0 K1a1x1m1

Besides the displayed secret data, the operations F and Ki may also depend on
the public data (but this clutters notation and plays no role in the reasoning).
The following axioms are imposed:

Onwy(F) (oF)

∀X ∈ W. Secrι(aX ;X) (sa)

AuthKA(a0, x0, a1, x1;A0, A1) (aax)
K0a0x0(Fa1x1) = K1a1x1(Fa0x0) (agr){

{a0, x0}, {a1, x1}
}

guards {K0a0x0m0,K1a1x1m1} (gua)

The secrecy rule now gives

(oF) ∧ (sa) ∧ (aax) ∧ H(A0, A1)
========================

SecrKA(ai, xi;Ai)
∣∣
i∈{0,1}

mi ∈ ΓKA
Ai

∣∣
i∈{0,1}

ai, xi `Ai
Kiaiximi

∣∣
i∈{0,1} (gua)

SecrKA(K0a0x0m0,K1a1x1m1;A0, A1)

It further follows from (aax) that the messages Fa0x0 and Fa1x1 are exchanged
as desired and assigned to m1 and m0 respectively. Axiom (agr) then implies

that at the final state of KA, the secret keys K0a0x0m0 and K1a1x1m1 agree,
and yield the key k = K0a0x0m0 = K0a1x1m1. This is the desired outcome of
the protocol.

Refining KA The abstract KA-scheme subsumes the large family of protocols
arising from Diffie and Hellman’s paradigm [15]. It includes the MTI family
and their descendants, UM, KEA, MQV and others. In combination with other
security components, they are used in several widely used protocol suites [16,
17].

The minimal algebraic structure needed for the DH-style key agreement is a
multiplicative group G with a binary operation (−∧−) : G×G −→ G, satisfying

x∧1 = x (eq1)

(x∧y)∧z = (x∧z)∧y (eq2)

Onwy(x∧) (dl){
{x∧y, z}, {x∧z, y}

}
guardsKA

{
(x∧y)∧z, (x∧z)∧y

}
(cdh)

Axiom (dl) is the abstract version of the Discrete Logarithm (DL) assumption,
and (cdh) is related to the Computational Diffie-Hellman (CDH) assumption.

Besides the group G, the assumed infrastructure includes a chosen element
g ∈ G, intended to generate a large subgroup of G. For each principal X ∈ W,
the public key pX , corresponding to the long-term private key aX is now specified
in the form pX = g∧aX . So for all X and σ, the view Γ σ

X now contains aX , g
and {(Y, g∧aY)}Y ∈W .

The DH-style key agreement protocols now fall into two subfamilies, depend-
ing on whether the key derivation functions K0 and K1 are the same or not.

Asymmetric key derivation. Given functions H0 and H1, that satisfy

H0a0x0(Fa1x1) = H1a1x1(Fa0x0) (agrH){
{a0, x0}, {a1, x1}

}
guards {H0a0x0(Fa1x1),H1a1x1(Fa0x0)} (guaH)

setting

K0axm = J(H0axm)(H1axm) K1axm = J(H1axm)(H0axm)

validates (agr) and (gua). This subsumes the general scheme of the first two MTI
protocols [18]

protocol Fax Jxy H0axm H1axm

MTI/A(f) g∧(fax) x · y p∧(fax) m∧a
MTI/B(f) p∧(fax) x · y g∧(fax) m∧(1/a)

The variable p still denotes peer’s public key. When proving (agr), substitute
each pi by g∧ai. The original MTI protocols are obtained by setting fxy = xi ·y.

For i = 1, replacing the function Jxy = xy in MTI/A by Jxy = x+y and extend-
ing the group axioms with ring axioms yields the core of the KEA protocol; taking
Jxy to append and then hash x and y yields the core of the “Unified Model”
protocol (UM). The security properties gained by these variations, discussed in
[19, 17], are beyond the scope of our current axioms, but can be captured in
refinements.

Symmetric key derivation. Given a function K, satisfying

Ka0x0(Fa1x1) = Ka1x1(Fa0x0) (agrK){
{a0, x0}, {a1, x1}

}
guards {Ka0x0(Fa1x1),Ka1x1(Fa0x0)} (guaK)

can, of course, implement both K0 and K1 in the protocol KA. This subsumes
the third MTI protocol, and the scheme which we denote MQV/D.

protocol Fax Kaxm

MTI/C(f) p∧(fax)
(
m∧(1/a)

)∧(fax)
MQV/D(f) g∧(fax) (Rpm)∧

(
ra(fax)

)
where R and r are required to satisfy

x∧(ryz) = R(x∧y)(x∧z) (agrR)

{a, x} guards ra(fax) (guar)

Instantiating to Rxy = (x∧y) · y and rxy = x · (g∧y) + y validates these axioms
and gives the MQV protocol [20, 21], but there are other interesting choices.
Instantiating Rxy = rxy = fxy = y yields the DH protocol, which, of course,
does not validate (guar).

Proposition 6. The protocol KA, with axioms (oF,sa,aax,agr,gua), can be re-
fined as above, using the asymmetric key derivation functions H0,H1, or the
symmetric key derivation scheme K, provided that axioms (oF,sa,aax,agrX,guaX)
hold for X ∈ {H,K}.

Using the algebraic structure satisfying (eq1,eq2,cdh,dl), the protocols MTI/A,
MTI/B,UM and KEA can be obtained as further refinements of the asymmetric
scheme, whereas the protocols MTI/C and MQV/D are further refinements of the
symmetric scheme, assuming, in the latter case, also (agrR,guar).

The generic secrecy property, proven for the protocol KD, is inherited by all
of its refinements.

6 Conclusions

The main contribution of this work is an extension of the framework for compos-
ing and refining security protocols, that allows proofs of the secrecy properties
realized by the protocols. The secrecy concepts are defined in terms of the ab-
stract computability relation, and the secrecy derivations are built from the rules

derivable from the minimal assumptions about this relation. The secrecy prop-
erties are derived from the axioms attached to the basic protocol components.
The axioms specify the requirements/assumptions that need to be discharged
through refinement and implementation of abstract operations. Some axioms
encapsulate the authenticity assumptions. Since they embody a different, logi-
cally dual concern from secrecy, these assumptions are cumbersome to realize
concurrently with it. Encapsulating them in some cases significantly simplifies
the secrecy proofs. The genericity of the approach allows reusable treatment of
broad families of related protocols. All derivations are stored, and were originally
constructed, in the prototype version of a software tool, which is freely available
for download [3]. The structure of the presented modeling methodology is very
much influenced by its role of the semantical underpinning of this tool.

There are also interesting further directions to be explored. Although our
initial explorations in this area are based on a symbolic model, there is no need
to limit ourselves in this direction. Indeed, we could develop different secrecy
logics with different semantics based on, for example, information-theoretic or
computational aspects of cryptography, depending on the types of cryptosystems
being used. The ability to derive and employ different secrecy logics would allow
us to develop a pluggable semantics for cryptographic protocol analysis that
would allow us to reason over multiple domains.

Acknowledgements. We thank Carolyn Talcott for careful reading and many
useful comments.

References

1. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for
reasoning about key distribution protocols. In Guttman, J., ed.: Proceedings of
CSFW 2005, IEEE (2005) 48–61

2. Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving authentication
properties in the Protocol Derivation Assistant. In: Proceedings of ARSPA 2006.
Lecture Notes in Computer Science, IEEE (2006) to appear.

3. Anlauff, M., Pavlovic, D.: Pda download web site.
http://www.kestrel.edu/software/pda (2003–6)

4. Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security
properties of protocols. J. of Comp. Security 11(4) (2004) 677–721

5. Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: A derivation system and compo-
sitional logic for security protocols. J. of Comp. Security 13 (2005) 423–482

6. Meadows, C., Pavlovic, D.: Deriving, attacking and defending the GDOI protocol.
In Ryan, P., Samarati, P., Gollmann, D., Molva, R., eds.: Proc. ESORICS 2004.
Volume 3193 of Lecture Notes in Computer Science., Springer Verlag (2004) 53–72

7. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated
Key Exchanges. Designs, Codes, and Cryptography 2 (1992) 107–125

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Proc.
CRYPTO ’93, Springer-Verlag (1994) 232–249

9. Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel Pro-
gramming 15 (1987) 33–71

10. Fabrega, F.J.T., Herzog, J., Guttman, J.: Strand spaces: What makes a security
protocol correct? Journal of Computer Security 7 (1999) 191–230

11. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. of Cryptology 15(2) (2002) 103–127

12. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6 (1998) 85–128

13. Millen, J.: On the freedom of decryption. Information Processing Letters 86(6)
(2003) 329–333

14. Goldreich, O.: Foundations of Cryptography. Volume I: Basic Tools. Cambridge
University Press (2000)

15. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6) (1976) 644–654

16. Kaufman, C., Perlman, R., Speciner, M.: Network Security. Private Communica-
tion in a Public World. 2 edn. Computer Networking and Distributed System.
Prentice Hall PTR (2002)

17. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Information Security and Cryptography. Springer-Verlag (2003)

18. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key distribution
systems. Transactions of the IECE (Japan) 69 (1986) 99–106

19. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman key agreement pro-
tocols. In: SAC ’98: Proceedings of the Selected Areas in Cryptography, London,
UK, Springer-Verlag (1999) 339–361

20. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: SAC ’95: Proceedings of the Selected Areas in
Cryptography, London, UK, Springer-Verlag (1995) 22–32

21. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Technical Report CORR 98-05, University of
Waterloo (1998) also in [?].

22. P1363 Working Group: The IEEE P1363 home page. standard specifications for
public-key cryptography. http://grouper.ieee.org/groups/1363/ (2005)

23. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems
21(4) (1993) 706–734

24. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: theory and practice. ACM Trans. on Comput. Syst. 10(4) (1992) 265–310

25. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology 9(4) (2000) 410–442

26. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (1978) 558–565

Appendix: Protocol Derivation System

Syntactic categories: Conceptually, authenticity and secrecy are dual, in the
sense that authenticity says that some principals know something, while secrecy
says that that they do not know something else. Formally, though, both secrecy
and authenticity can be analyzed in terms of partial ordering: principals authen-
ticate each other by establishing the same order of their joint actions, whereas
the failures of secrecy can be viewed as connecting some data that are known,

and some that should not be known through a relation of computability, which
is transitive and reflexive. So we reason over several partially ordered syntactic
categories:

– data are represented as terms from an algebra T , given with an abstract
subterm relation v;
• to support information-theoretic security analyses, T must be given with

a frequency distribution Prob : T −→ [0, 1];
• to support computational security analyses, besides the frequency dis-

tribution, T must be given with a representation T −→ Σ∗ of terms as
strings (usually from the alphabet Σ = {0, 1}), available for processing
e.g. by turing machines;

– principals are collected in the set W ordered by the relation b, which may
be interpreted as “speaks for” [22, 23] or “acts for” [24], etc.

– actions are generated from terms and principals by the constructors including

action constructor form meaning

send T ×W2
〈〉
↪→ A 〈t : A → B〉 the term t is sent, purportedly

from A to B

receive VarT × Var2W
()
↪→ A (x : Y → Z)

a term, source and destination
are received into the variables x,
Y , and Z

match T ×ΣT × VarW
(/)
↪→ A (t/p(x))

the term t is matched with the
pattern p(x)

new VarT
(ν)
↪→ A (νx) a fresh value is created and stored

in the variable x

We often use partial descriptions, and elide e.g. the source and the destination
of a message, as in 〈t〉, or (y). For simplicity, we also omit the explicit type
structure. However, all term variables are assumed to be local to a principal,
and thus come with a map VarT −→ W; each principal is assumed to have an
infinite supply of local variables.

Execution Model: Processes are represented as partially ordered multisets
(pomsets [9]) of actions attributed to principals. More precisely, a process is an

assignment L
L // A×W such that (a) (L, <) is a well-founded partial order,

and (b) p < q implies LW(p) b LW(q) or LW(p) c LW(q). We abuse notation
and write an action p ∈ L such that LAp = a and LWp = A as aA ∈ L, or even
a, although, of course, several elements of L may correspond to the same action
by the same principal.

A run ` extends a process L by a choice of communication links, which assign
to each receive action a unique send action. Formally, a run is thus a pair

` = 〈L,
√

: recvs(L) −→ sends(L)〉 (x : Y → Z)A 7→ 〈t : S → R〉B

such that
√

(x) 6> (x). A run ` thus induces the partially ordered set L`, obtained
by extending the ordering of L by

√
(x) < (x). One can thus think of a run as

the pomset extension L ↪→ L`, where each receive action (x) from L has in L` a

chosen predecessor 〈t〉 =
√

(x). This is, of course, just another formalization of
Lamport’s ordering of actions [25]. The resulting model is also similar, and has
been influenced by strand spaces and bundles [10].

The actions in a run ` = 〈L,
√
〉 are then executed in order: each a ∈ L can be

executed only after all b < a have been executed. Executing an action changes
state. A state of a run ` is a triple σ = 〈σ1, σ2, σ3〉, where

– σ1 ⊃ L` is a poset, extending each maximal chain of L` by exactly one
element, denoted H, that marks the execution point;

– σ2 = {x1, . . . , xm} is a finite set of the variables bound to freshly generated
nonces or keys,

– σ3 = {y1 := t1, . . . yn := tn} is a finite set of the assignments, that result
from the executed actions; formally, it can be viewed as a partial map from
the variables yi to the terms ti, such that its domain {y1 . . . yn} is disjoint
from σ2 = {x1 . . . xm}.

As always, the variables are taken up to renaming (i.e. modulo α-conversion).
At the initial state ι of every run `, all the markers in ι1 are set below the

minimal elements of L`, and ι2 = ι3 = ∅.If the execution of the run ` has reached
a state σ, the transition σ −→ τ proceeds as follows9:

action if in σ1 and if then set τ3 to set τ2 to and in τ1

send H〈t〉C FV (t) ⊆ σ2 σ3 σ2 〈t〉HC
receive H(x)D

√
(x)D = 〈t〉C

∧ x 6∈ σ2 σ3 ∪ {x := t} σ2 (x)H
D

match H(t/p(x))D
t = p(u)
∧ x 6∈ σ2 σ3 ∪ {x := t} σ2 (t/p(x))H

D

new H(νx)D x 6∈ σ2 σ3 σ2 ∪ {x} (νx)H
D

The local state σA is the part of the state σ that can be observed by the
principal A. Its components are thus

– the poset σ1
A ⊆ σ1, spanned10 by the actions of A;

– the set σ2
A obtained by restricting σ2 to A’s local variables, and

– the partial map σ3
A, obtained by restricting σ3 to A’s local variables.

A protocol is a specification of a process and a nonempty set of desired
runs. The participants of a protocol are usually called roles, and are denoted
by the variables for principals. Since the pomset representing a run extends the
pomset representing a process, and the restriction of the run to the process is
usually obvious, a protocol is usually specified just by its desired runs. Such a
specification should thus be construed as a proof task: show that the principals
can prove that the run which they participated is as desired.

9 For compactness of the table, we omit the source and the destination fields, which
are just passed from the received message to the receiving variables.

10 Just like σ1 is a H-marking of L`, σ1
A is a H-marking of L`

A = {ξ ∈ L` | LWξ = A}.

