
Proving Authentication Properties
in the Protocol Derivation Assistant

Matthias Anlauff,1 Dusko Pavlovic,1

Richard Waldinger,2 and Stephen Westfold1

1 Kestrel Institute, Palo Alto, California, USA,
{ma,dusko,westfold}@kestrel.edu

2 SRI International, Menlo Park, California, USA,
waldinger@ai.sri.com

Abstract. We present a formal framework for incremental reasoning
about authentication protocols, supported by the Protocol Derivation
Assistant (Pda). A salient feature of our derivational approach is that
proofs of properties of complex protocols are factored into simpler proofs
of properties of their components, combined with proofs that the relevant
refinement and composition operations preserve the proven properties or
transform them in the desired way.

In the present paper, we introduce an axiomatic theory of authenti-
cation suitable for the automatic proof of authentication properties. We
describe a proof of the authentication property of a simple protocol, as
derived in Pda, for which the the proof obligations have been automat-
ically generated and discharged. Producing the proof forced us to spell
out previously unrecognized assumptions, on which the correctness of
the protocol depends.

Pda has support for collaboration and tool integration. It can be freely
downloaded from [5].
Keywords: Protocol Derivation, Authentication, Incremental Proof, Se-
curity Reasoning.

1 Introduction

Background: Reasoning about security. The research area of security has
generated a surprisingly wide range of models and approaches. Even the basic
paradigm of security comes in three different flavors: computational (initiated by
Diffie and Hellman [16]), information-theoretic (based on Shannon’s work [39]),
and symbolic (due to Dolev and Yao [17]). Interestingly, the most abstract (and
hence the least precise) model is the most recent, and efforts to relate the three
paradigms are of an even later date [2, 28].

Even within the area of symbolic modeling, one encounters a remarkable
diversity of logics [8, 13, 15], models [1, 10, 21, 38], and tools [7, 27, 29, 32, 33] 3,
combining generic and domain-specific methods in various ways. As we are about

3 The references are selected only to illustrate the diversity, with no attempt to reflect
the field, or even the authors’ own taste.



2

to propose yet another framework for reasoning about security protocols, this
invites the questions Why such diversity? Why is security so hard to pin down?
And what will be added by our work?

The answers arise from a new, as yet unexplicated, paradigm of computation
that is the driving force behind a conceptual upsurge of security research.

Problem and objective: Protocols as computation. Since its inception,
computer science has been preoccupied with such state machines as Turing ma-
chines and automata. Consequently, computations were defined as possible exe-
cutions, i.e., sequences of actions, and reasoning about computation has been in
terms of predicates over such sequences. A succinct expression of this approach
is the slogan “Programs are predicates” [23], which means that “Each program is
interpreted as the strongest [predicate] describing its observable behavior on all
its possible executions” [24]. Program correctness is then established by proving
that, for all possible executions, “bad things” will not happen and “good things”
will happen, which is guaranteed, respectively, by the safety and liveness prop-
erties of the program in question [26, 3].

With the advent of the Internet, and of computer networks in general, this
simple paradigm of computation becomes insufficient. The interesting compu-
tational processes nowadays do not occur within a state machine, but are dis-
tributed through interactions of many state systems, which may or may not be
observable. Such interactions are specified by protocols. Protocol computation
thus consists of the information flows that connect local executions, i.e., of in-
formation flows and information boundaries. In order to program and control
such computation, we need to be able to construct sound derivations of global
properties from local observations. This is where fundamentally new problems
in security engineering begin.

The semantic distinction between reasoning about protocol security and more
traditional program correctness is that security properties are not predicates over
the possible executions, but over the possible information flows. Like correctness
properties, they can be factored into the statements that bad things will not hap-
pen and good things will happen. Indeed, secrecy (privacy, anonymity. . . ) says,
roughly, that undesired information flows do not happen, whereas authenticity
(integrity, non-repudiation. . . ) says, roughly, that the desired information flows
do happen. The novelty here is that the positive and the negative properties
dynamically depend on each other: every secret needs to be authenticated, and
all authentications are based on (broadly construed) secrets. Information flows
are assured by information boundaries, and vice versa.4

The problem arising from protocol computation is that traditional logical sys-
tems are not made to support distributed reasoning, which is its very essence.
Our objective is to develop modeling and logical methodologies, tools, and inter-
faces to facilitate interaction with the novel and unintuitive logical situations of
distributed reasoning. Such tools and interfaces can perhaps be construed as ex-
tensions of our natural abilities for centralized reasoning, just as the dashboards

4 Encapsulating secrecy and authenticity reasoning into separate logical modules [11,
34] brings this logical interplay to the surface.



3

and controls of cars and airplanes can be viewed as extensions of our senses and
motor functions, allowing us to move at speeds and altitudes for which we are
not naturally equipped.

Background and approach: Protocol derivations. To describe a protocol,
one usually specifies (i) its process model, (ii) its logical properties, and (iii) its
incremental development: conceptual components, versions, predecessors, and
descendants. The Protocol Derivation System (Pds) and the Protocol Derivation
Assistant (Pda) extend over these three dimensions as well.

The idea to analyze protocols in the space spanned by their process models
and their logical properties goes back to [19, 18], where Protocol Composition
Logic (PCL) was used to attach Floyd-Hoare-style annotations to process ex-
pressions describing protocol roles. The idea that this should be done incremen-
tally, beginning with simple protocol components and simple security properties,
which are then refined and composed towards more complex structures, has been
developed in [14, 12, 13]. The general approach to analyzing complex computa-
tional interactions, by refining and composing process descriptions together with
their logical annotations, was based on earlier work on evolving specifications,
where annotations were attached to code of adaptable software modules [35, 4,
36]. The Protocol Derivation Assistant inherits not only the basic design prin-
ciples, but also a part of the code base from an earlier tool prototype, built to
support evolving specifications.

However, the incremental approach to security imposes essential new chal-
lenges, not tackled in software development at large, as explained e.g. in [13,
30]. Even if factored into small incremental steps, the complexity of reasoning,
and even of the notations, can very quickly grow out of proportion. One source
of complexity can be subtle semantical interactions of the process model and
the logical formalism within the derivational formalism. Soundness becomes a
difficult problem. Mechanizing complex derivational rules even harder.

One way to mitigate this problem has been to choose a process model closely
tied to a convenient logical signature. The Protocol Derivation System [30, 11] is
a result of an effort in that direction. Since authentication proofs largely consist
of reasoning about the order of actions, using a process model based on partially
ordered multisets (pomsets) [37], rather than a reaction-based process calculus,
turns out to dramatically simplify many authenticity proofs. Moreover, choosing
a logical signature (as presented below) that directly reflects the features of this
model reduces the soundness of the rules and axioms to a matter of inspection. A
further simplification is achieved by separating the authenticity proofs, realized
through positive conclusions about the order of actions, from the secrecy proofs,
deferred and encapsulated into open assumptions [11], to be discharged in a
separate logical module, through negative conclusions about computability of
terms [34].

With these simplifications, we took up the the task of providing automated
support for protocol derivations through the Protocol Derivation Assistant. Note
that the essence of this tool is not to automate theorem proving about security
properties, nor to support graphic specifications of protocols. Its essence is to



4

support incremental specifications of protocols, annotated with their security
properties.

Reuseable Taxonomy of Protocols and Properties. Pda allows abstract
protocols to be defined and then refined and combined to derive a taxonomy of
protocols. Each refinement step or Pda rule application can use the authentic-
ity theorems of its input protocols to help prove authenticity for the resulting
protocol. This incremental approach provides natural structure to proving au-
thenticity for protocols. The derivation trees of protocols in Pda effectively pro-
vides a structured library of protocols and authenticity theorems for the protocol
designer to reuse when designing new protocols and proving authenticity.

Pda provides tool support for the derivational approach to protocols pre-
sented in this paper. We will give here just a brief overview of the capabilities
of Pda; a full description of its functionality is beyond the scope of this paper.
For further information please see [5]. The design of Pda reflects the basic ideas
of the derivational approach to protocol design by providing (i) a rich, graphical
user interface for entering protocol derivations, (ii) support for refining models
that correspond to these protocols, and (iii) automated support for incrementally
proving security properties of the protocols and their models.

Pda provides a rich set of features that support the developers in their tasks
of creating and manipulating protocols and protocol derivations. From abstract
protocol definitions Pda users can derive more concrete protocols using instance
creation, where function parameters are instantiated with more concrete func-
tions. In parallel with the (graphical) protocol derivations, Pda supports the
specifications and refinement of protocol models. In order to make use of the
model refinement support in Pda the user specifies the semantics of functions
used in the protocol alongside with basic axioms in the spec-part of the protocol,
which is accessible from the graphical user interface. Using this and the process
graph defined for the protocol, Pda generates proof obligations for authenticity
properties. These proof obligations can be discharged (or not) from within the
Pda-GUI using prove commands. When the proof goes through, the correspond-
ing conjecture is transformed into a theorem for refinements of the protocol for
which it has been proven. This concept manifests the power of the incremental
approach, because in subsequent derivation steps these proofs do not need to be
repeated, and thus decrease the complexity of the correctness proofs to a level
where they are manageable and in most cases comprehensible.

Outline of the paper. The presented derivation is a detailed elaboration of a
part of the analysis of the GDOI protocol presented in [30]. Section 2 goes into
more detail about support functionality and architecture of Pda. We give an
overview of the derivation in section 3, showing how the proof of authentication
of the final protocol is built up from proofs at each derivation step. In section
4 we present the authentication theory we have developed in Specware for ex-
pressing the protocol obligations, so that they can be proved using the Snark
theorem prover. In section 5 we describe the authenticity obligations that arise
in the derivation in terms of this theory, presenting in detail the proof of how
the abstract challenge response protocol can be realized using a hash function.



5

This includes a description of how authenticity obligations are generated auto-
matically for a protocol, and a discussion of theorem proving issues that arise in
this work. Finally, we present conclusions and discuss future work.

2 Pda– The Protocol Derivation Assistant

The Protocol Derivation Assistant (Pda) provides tool support for the deriva-
tional approach to protocols presented in this paper. This section gives a brief
overview of the capabilities of Pda; a full description of its functionality is be-
yond the scope of this paper. For further information please see [5].

2.1 Support Functionality

As already mentioned in the previous section, the design of Pda reflects the
basic ideas of the derivational approach to protocol design by providing (i) a
rich, graphical user interface for entering protocol derivations, (ii) support for
refining models that correspond to these protocols, and (iii) automated support
for incrementally proving security properties of the protocols and their models.
We will briefly sketch these three aspects in the following.

Protocol Derivations. Being implemented as an application on top of the
Eclipse platform and its Graphical Editing Framework (GEF) [20, 22], Pda pro-
vides a rich set of features that support the developers in their tasks of creating
and manipulating protocols and protocol derivations. Protocols are specified us-
ing a graphical editing pane by drawing the desired run of the protocol similar
to the representation of protocols found in academic research articles. Figure 1

Fig. 1. Specifying a protocol in Pda using desired-run notation

shows the basic challenge-response protocol: protocol definition given as label



6

“CR[A,B](c,r)” specifies the two roles initiator (A) and responder (B) as well
as the generic challenge and response functions (c and r, respectively). From
protocol definitions like this Pda users can derive more concrete protocols using
instance creation, where function parameters (e.g., c and r in Figure 1) are in-
stantiated with more concrete functions. Pda then automatically generates the
protocol graphics with the values for the functions substituted in messages and
internal actions. For more sophisticated transformations, Pda offers the concept
of rules, which can be used to specify arbitrary transformations and/or composi-
tions of protocols in order to construct a refined protocol out of already derived
or defined ones. This concept of rules is very powerful and has already allowed
for expressing crucial transformation steps in the derivations of popular security
protocols like GDOI [30], MQV[31], etc. Pda also provides means to keep the
protocol derivations organized by allowing the user to split larger derivations
into multiple files and by defining a specialized derivation browser that displays
the structure of the derivations regardless of their division into multiple dia-
grams. In addition, the user can define filters called working sets on top of files
and folders; this allows for different derivations living in the same workspace and
possibly sharing partial derivations.

Model Refinement and Automated Support. In parallel with the (graph-
ical) protocol derivations, Pda supports the specifications and refinement of
protocol models. In order to not dictate a specific logic and interpretation of
the protocols, the core Pda system defines interfaces for plugging in arbitrary
specification frameworks. In its current, version Pda is shipped with a plugin
for Kestrel’s Specware specification language [25], which provides powerful func-
tionality to support model refinement. The Specware-plugin uses the builtin
S-expression generator that transforms the protocol graphics into S-expression
text.5 In order to make use of the model refinement support in Pda the user
specifies the semantics of functions used in the protocol alongside with basic
axioms in the spec-part of the protocol, which is accessible from the graphical
user interface. Using this and the process graph defined for the protocol, the
Specware-plugin generates proof obligations for authenticity properties. These
proof obligations can be discharged (or not) from within the Pda-GUI using
prove commands, which trigger calls to the Snark theorem prover [40] inte-
grated into the Specware system. When the proof succeeds, the corresponding
conjecture will be transformed into a theorem for refinements of the protocol.
Figure 2 shows a screenshot involving the use of the theorem prover in a protocol
derivation.

2.2 The Architecture of Pda

Figure 3 sketches the architecture of the Pda tool. The user enters protocol
definitions and derivations in the graphical editor, which has a rich set of fea-
tures to ensure the scalability of the approach. Most prominently, the graphical
nodes representing protocols, agents, rules, etc. can be collapsed and expanded as

5 The format of the S-expression generated by Pda is the result of an effort to integrate
with several other security related tools from Mitre, SRI, and others.



7

Fig. 2. Running Pda session involving theorem prover invocation

needed, which greatly improves the readability of complex derivation diagrams.
While drawing the nodes and edges that make up protocols or derivations, the
user gets some live feedback that prevents him/her from adding nodes and edges
that are not permitted. For instance, if one side of a send/receive edge has been
attached to a state in an agent node, then the user interface makes it impossible
to attach the other end of the edge to a state within the same agent. The labels
attached to protocols, internal actions, send/receive term, agents and other ele-
ments of the derivation are subject to corresponding syntax and semantics rules
that are implemented in the parser and static analyzer. If the user makes an er-
ror on one of these labels, the graphical editor displays a visual feedback next to
the place where the error has been detected. The derivation engine is responsible
for performing instantiations and transformation operations, and for providing
the result of these operations to the user as new nodes in the graphical editor
pane. For example,for an instantiation, the user only enters the definition term
for the refined protocol, the process graph of the instance is created automati-
cally by the derivation engine component. All objects involved in the protocol
derivations are stored in a database in order to allow for efficient access and



8

update operations. In its current version, the database is built into Pda, but
future versions will provide the possibility to use server-based databases.

Fig. 3. Pda architecture

Pda is also designed to be an integration platform for security-protocol re-
lated tools.Pda provides an API that allows Java developers to write plugins for
Pda. The API gives access to the internal data structures of the protocols spec-
ified by the user and/or loaded into the Pda-database. In order to make Pda
also available for extension on a non-Java basis, Pda comes with an S-expression
generator that translates the graphics of the protocols and the attached spec-
ifications into an S-expression format. The Specware-plugin mentioned earlier
makes use of this interface and provides itself a user interface that allows the
user to attach model descriptions to protocols. Other code generators can be
defined as needed, for instance one for generating executable agent code from
the protocol descriptions. Other tools can plug into Pda by either using one of
the code generators or by directly using the Java API.



9

3 Derivation of a Mutual Authentication Protocol

The derivation of the example mutual authentication protocol in Pda is shown
in Figure 4.6 We begin with an abstract one-way challenge-response protocol
(CR), in which agentA (Alice) authenticates agentB (Bob). This is then instan-
tiated to use a hash-based response function (CRH). A copy of this protocol is
made with switched roles, so that Bob authenticates Alice (CRH op). These two
one-way authentification protocols are then composed sequentially using the rule
CompSeq to obtain a mutual authentication protocol SEQ. The resulting proto-
col is simplified by merging the last step of the first protocol with the first step of
the second protocol using the rule Glu. Finally, a simple protocol transformation
is made to bind the two one-way authentications, introducing Bob’s challenge
into the hash so that Alice can be sure the challenge is from Bob (CRHH).

Each protocol has an associated specification (spec) that characterizes the
functions in the protocol. In protocol CR there is an axiom that gives the prop-
erty that the challenge function c and response function r must obey for the
authentication obligation to be satisfied. When we instantiate a protocol we give
a translation for one or more of the function symbols of the parent protocol. This
translation defines an interpretation between the spec of the parent and the spec
of the instance. Such interpretations between a source and target specs have the
property that if the axioms of the source spec are theorems when translated into
the target spec, then all theorems of the source spec are theorems when trans-
lated to the target [9]. This is a key property of the Specware system we use for
writing these specs [25], and it allows us to factor the proof of authenticity. In
particular, after an authentication conjecture has been proved in a protocol, its
translation is true in an instance protocol provided the translated axioms are
proven true. For example, having proven that authenticity in CR follows from
the axioms of its spec, we only need to show that the translation of the axioms
in CRH follow from the properties of the hash function, and then we know that
the authenticity property holds in CRH.

Pda rules restructure protocols so that authentication properties are not,
in general, preserved. However, typically, structure from the inputs appears in
the outputs, so there is opportunity to use authenticity properties of the inputs
to help prove authenticity in the output. To increase the applicability of au-
thenticity theorems proved, we make them self-contained, with all assumptions
explicit in the premise, so they can be safely applied in different contexts, and
we generalize them to increase their applicability.

4 A Machine-Oriented Theory of Authentication

We have endeavored to develop a theory rich enough to express the concepts
of the Pda system yet restricted enough to allow efficient automatic treatment
of the proof obligations the system generates. The theory is expressed in the
logical language of Specware, and proofs are discovered by the theorem prover
Snark[40], which is invoked through Specware’s theorem-prover interface. We

6 We use A, B, c, r and H for agentA, agentB, challenge, response and hash for brevity
in the figure.



10

Fig. 4. Screenshot of derivation of example mutual authentication protocol in Pda

intend ultimately to use the same theory to automatically construct attacks on
vulnerable protocols.

We found the mechanization effort instructive in that it forced us to spell out
assumptions that escape notice in hand verification, however formal. The fact
that the proofs are checked quickly and automatically gives us the freedom to
explore alternative formulations without fear of losing the authentication prop-
erties.



11

4.1 The Theory

The theory defines the sending and receiving of messages, the temporal rela-
tionship between these actions, and the properties of nonces and cryptographic
hashing. We present it here anecdotally, introducing the sorts, the fundamental
relations and functions, and samples of axiomatization. The full theory, in the
Specware notation, is on display at
http://www.kestrel.edu/software/pda/APWW06/. In some cases, the formulas
in the theory have been altered to simplify the explanation.

4.2 Sorts

Our theory discriminates among three fundamental sorts of entities.

• Agents: The human or mechanical entities that send or receive messages.
They include the principals of the protocol and also potential intruders.

• Actions: The sending and receiving of messages. We distinguish between
different sendings or receivings of the same message by the same participant.

• Terms: The content of messages including text, nonces, and hashed text.

4.3 Basic Constructs

Here are the basic functions and relations on which the theory is based.

The pair function. The pair function 〈term1,term2〉 combines two terms; for
any terms t1 and t2, 〈t1,t2〉 is another term. We assume that the pair function
is one-to-one in both of its arguments; in other words, we have the axiom

∀(t1,t2,tt1,tt2) 〈t1,t2〉 = 〈tt1,tt2〉 ⇒ t1 = tt1 ∧ t2 = tt2.

The inside relation. The relation term1 inside term2 holds if term1 is a part
of term2. It is not assumed that terms are strings or that inside is precisely the
substring relation; for instance, we will assert that a term is inside its hashing,
even though the hashing may be smaller than the term. If a term is inside
another, we shall also say that the latter term includes the former.

The inside relation is a reflexive ordering; a term is inside itself. The pair of
two terms includes both component terms; in other words, we have the axiom

∀(t1,t2) t1 inside 〈t1,t2〉 ∧ t2 inside 〈t1,t2〉.

The precedes relation. We say action1 precedes action2 if action1 occurs
strictly earlier than action2. This relation is not assumed to be total; in other
words, there can be two actions whose temporal order is indeterminate or un-
specified. If one action precedes another, we shall also say that the latter relation
follows the former. And we shall say that the former relation occurs before the
latter, and that the latter occurs after the former.

The precedes relation is a strict well-founded ordering. In other words, an
action does not precede itself and it is impossible to have an infinite sequence of
actions that go backwards in time; there is no sequence action0, action1, action2,
. . . such that action0 follows action1, action1 follows action2, and so on, each
action temporally following the next one in the sequence.



12

The send and receive relations.

send(action,agent,term)

holds if action is a sending of a message term by agent. Similarly,

receive(action,agent,term)

holds if action is a receiving of the message term by agent. It is assumed that
term is the entire message. The relations are one-to-one, in the sense that each
sending and receiving has a unique agent (the sender or receiver) and a unique
term, the text of the message.

At this stage in the development of the theory, we ignore the alleged sender
and the intended recipient of a message. We imagine that when a message is
sent, all agents can see it and none can be sure who sent it.

The send and receive actions are assumed to obey the following axiom Rcv,
which asserts that if a message is received, the message was previously sent.

∀(receiving,receiver,term)
receive(receiving,receiver,term)

⇒ ∃(sending,sender)
send(sending,sender,term) ∧ sending precedes receiving

The axiom does not assert (and the theory has no vocabulary to say) that
the receiving of the message was the result of this sending, only that at least one
sending precedes the receiving.

The sendIn and receiveIn relations. The relations send and receive apply
to terms that comprise the entire message being sent. It is also useful to discuss
sending and receiving of terms that are included properly inside the message;
this is done with the relations sendIn and receiveIn.

The relation

sendIn(action,agent,term)

holds if action is the sending by agent of a message that includes term. Similarly,
the relation

receiveIn(action,agent,term)

holds if action is a receiving by agent of a message that includes term.
The following axiom defines the relation sendIn.

∀(sending,sender,t0)
sendIn(sending,sender,t0)

⇔ ∃(t1) send(sending,sender,t1) ∧ t0 inside t1

A similar axiom defines the relation receiveIn. We can then establish a the-
orem that is analogous to the axiom Rcv.

∀(receiving,receiver,t)
receiveIn(receiving,receiver,t)

⇒ ∃(sending,sender,t)
sendIn(sending,sender,t) ∧ sending precedes receiving.



13

Henceforth, when we talk about a sending or receiving of a term, we shall
actually mean the sending or receiving of any message that includes that term.

minSending and firstSending. An important concept for us will be the ear-
liest sending of a term. Recall that the precedes relation is not total; this means
we can distinguish between a first sending of the message, one which precedes
all others, and a minimal sending, one which is not preceded by any other. Two
sendings of the same term which are not temporally ordered may both be mini-
mal, but neither will be first.

Here is the definition of firstSendIn:

∀(sending,sender,t)
firstSendin(sending,sender,t)

⇔ sendIn(sending,sender,t)
∧ (∀(sending1,sender1)

sendIn(sending1,sender1,t)
⇒ (sending precedes sending1 ∨ sending = sending0))

The definition of minSendIn is analogous:

∀(sending,sender,t)
minSendIn(sending,sender,t)

⇔ sendIn(sending,sender,t)
∧ (∀(sending1,sender1)

sendIn(sending1,sender1,t) ⇒ ¬(sending1 precedes sending)).

It follows that a first sending will also be minimal, but not necessarily vice
versa.

A basic property of minimal sendings is that any sending of a term is either
a minimal sending itself or preceded by a minimal sending.

∀(sending,sender,t)
sendIn(sending,sender,t)

⇒ ∃(sending0,sender0)
minSendIn(sending0,sender0,t)

∧ (sending0 precedes sending ∨ sending0 = sending).

This follows directly from the well-foundedness of the precedes relation; rather
than treating well-foundedness, we take it as an axiom in the theory.

It follows that any receiving of a term is preceded (strictly) by a minimal
sending of that term, because any receiving is preceded by a sending:

∀(sending,sender,t)
receiveIn(receiving,receiver,t)

⇒ ∃(sending0,sender0)
minSendIn(sending0,sender0,t) ∧ sending0 precedes receiving.

4.4 Nonces

Nonces are special terms that have a unique origin. Each nonce that is sent or
received has a creator and a unique first sending. This is not taken to be true



14

of other terms; a phrase such as “now is the time for all good men” may have
come from many senders, none of them first.

Nonce is declared to be the sort of all terms t that satisfy a relation nonce?(t).
We define an agent creator(nonce) and an action

firstSending(sending,sender,nonce)

by the following axiom:

∀(sending,sender,nonce)
sendIn(sending,sender,nonce)

⇒ firstSendIn(firstSending(sending,sender,nonce), creator(nonce), nonce).

In other words, if a nonce is sent, it has a first sending by its creator. Fur-
thermore, if a nonce is sent by anyone other than its creator, that agent must
have previously received the nonce subsequent to its first sending.

∀(sending,sender,nonce)
sendIn(sending,sender,nonce)

∧ sender 6= creator(nonce)
⇒ ∃(receiving)

receiveIn(receiving,sender,nonce)
∧ receiving precedes sending
∧ firstSending(sending,sender,nonce) precedes receiving

From these axioms, it follows that any sending of a nonce that is not itself a first
sending is preceded by a first sending; also any receiving of a nonce is preceded
by its first sending.

4.5 Keyed Hashing

A keyed hashing of a term is a summary of that term that is marked crypto-
graphically by either of two principals in such a way that either of them can
produce such a hash but no one else can. Furthermore, it is observable by either
of the principals that one of them has produced and sent it. While is not as-
sumed that the term itself is recoverable from the hash, we do regard the term
as being inside its hash. Furthermore, it is assumed (idealistically) that no other
term will yield the same hash.

These facts are expressed in the following axioms:

∀(sending,sender,agentA,agentB,term)
minSendIn(sending,sender,hash(agentA,agentB,t))

⇒ (sender = agentA ∨ sender = agentB)

In other words, a minimal sender of a hashed term must be one of its two
principals. This is not true of every sender; after all, anyone can receive a hashed
term and resend it.

∀(agentA,agentB,t) t inside hash(agentA,agentB,t)

An additional axiom asserts that the hash function is one-to-one in all three
of its arguments.

The theory we have outlined is sufficient to establish the authentication prop-
erties of the CRHH protocol.



15

5 Example Authenticity Proof

In this section we present the three stages of proof that together show mutual
authenticity of the CRHH protocol. We first describe Alice’s authenticity obli-
gation and it’s informal proof. We next describe how obligations such as this
are generated automatically by Pda. Then we describe the incremental proof
process, starting with the abstract CR protocol, for which proving one-way au-
thenticity is trivial. The CR protocol is instantiated to CRH, by using identity
for the challenge function and a hash function as the response function. The au-
thenticity obligation for CRH follows from proving that this instantiation gives
an interpretation. Finally, we use the theorem corresponding to the authenticity
obligation for CRH to simplify the proof of the mutual authentication protocol
CRHH.

5.1 The CRHH Protocol

In this protocol, agentA (Alice) and agentB (Bob) establish that they are in
contact with each other. The protocol is illustrated in Figure 4.

Alice creates and sends a new nonce, nonceA:

agentA = creator(nonceA)
∧ firstSendIn(sendingM,agentA,nonceA).

Bob receives the nonce nonceA:

receiveIn(receivingM,agentB,nonceA).

Bob then generates his own nonce, nonceB. He hashes the pair of the two
nonces, and sends a larger pair that includes his nonce and the hashed pair:

agentB = creator(nonceB)
∧ firstSendIn(sendingPair,agentB,

〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉))

Alice receives this larger pair:

receiveIn(receivingPair,agentA,
〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)〉)

She then hashes Bob’s nonce and resends it:

sendIn(sendingN,agentA,hash(agentA,agentB,nonceB)).

Bob receives his hashed nonce:

receiveIn(receivingN,agentB,hash(agentA,agentB,nonceB)).

We assume that these events occur in the given order.

5.2 Authentication Conclusions

Each of the above facts is apparent to one of the principals but not the other.
For instance, Alice initially knows that she has created and sent her nonce,
nonceA, but not that Bob has received it. Similarly, Bob knows that he has
received a message, but not that it includes a nonce created by Alice. However,



16

based on what they observe, their knowledge of the properties of messages,
nonces, and hashing, and some assumptions about the behavior of each other
(and themselves) as participants in this protocol, they will be able to draw a
number of conclusions.

Alice will be able to conclude that Bob has received her nonce; i.e., for some
receivingB,

receiveIn(receivingB,agentB,nonceA).

Also, Alice will be able to conclude that nonceB is a nonce, that Bob has
created it, and that Bob is the first sender of the larger pair:

nonce?(nonceB)
∧ agentB = creator(nonceB)
∧ firstSendIn(sendingPair,agentB,

〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)).

Also, Alice will be able to conclude that the events have occurred in the
expected order; e.g, Bob has received her nonce after she has sent it.

Similarly, Bob will be able to conclude that nonceA is a nonce that was
created and first sent by Alice:

nonce?(nonceA)
∧ agentA = creator(nonceA)
∧ firstSendIn(sendingA,agentA,nonceA).

Also, Bob will be able to conclude that Alice has received his larger pair.
Again, Bob will be able to deduce that the sequence of events has occurred in
the expected order.

5.3 Honesty Assumptions

The reasoning that establishes these events depends on a number of so-called
honesty assumptions, which assert that the two principals engaging in this pro-
tocol will behave in the expected manner. These conditions are not axioms; they
are subformulas of the authentication conjectures that are proof obligations for
the derivation of the protocol. Their variables are given meaning in those con-
jectures.

Alice’s reasoning will depend on the assumption that Alice herself will not
impersonate Bob and send out the same hashing of the pair of nonces,

hash(agentB,agentA, 〈nonceA,nonceB〉)
that she expects Bob to send out. This is expressed by the condition

¬(∃(sillySending)
minSendIn(sillySending,agentA,

hash(agentB,agentA,〈nonceA,nonceB〉))).
This might be called a rationality assumption rather than an honesty as-

sumption, because if she does send it out and later receives the same term, she
will have no way of knowing that Bob has received it; anyone could have sent
it. (We need only forbid minimal sendings, because once the hash has been re-



17

leased there is no harm in sending it again.) The condition seems so obvious that
we were unable to prove earlier formulations of Alice’s authentication because
we neglected to mention it. We had included Alice’s assumptions about Bob’s
behavior but not her own.

Another assumption Alice must make is that Bob will not initially send out
the hashed pair of nonces except in the context of his first sending of the larger
pair. This is expressed by the condition

∀(honestSending)
minSendIn(honestSending,agentB,

hash(agentB,agentA,〈nonceA,nonceB〉))
⇒ nonce?(nonceB)
∧ agentB = creator(nonceB)
∧ firstSendIn(honestSending,agentB,

〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)〉).

We shall call this the appropriateness condition.

5.4 Alice’s Reasoning

Let us reproduce the informal reasoning that Alice performs to conclude that
Bob is the first sender of the larger pair, i.e.,

firstSendIn(sendingPair,agentB,
〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)).

By hypothesis, we know that Alice has received the larger pair, i.e.,

receiveIn(receivingPair,agentA,
〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)〉)

Hence, by the definition of receiveIn, because the components of a pair are
inside the pair, Alice has received the second component of the pair, i.e.,

receiveIn(receivingPair,agentA,
hash(agentB,agentA,〈nonceA,nonceB〉)).

Recall that any receiving of a term is preceded by a minimal sending of that
term. Consequently, there are an action and an agent, called sendingPair and
senderPair, respectively, such that

minSendIn(sendingPair,senderPair,
hash(agentB,agentA,〈nonceA,nonceB〉)).

Because the minimal sender of a hashed term must be one of its two princi-
pals, this means that

senderPair = agentB ∨ senderPair = agentA.

By the rationality assumption for Alice, we know that Alice would not herself
send out the hash she expects Bob to send as confirmation. Hence

senderPair = agentB,



18

and

minSendIn(sendingPair,agentB,
hash(agentB,agentA,〈nonceA,nonceB〉)).

But now, by the appropriateness condition, Bob would not send out the
hashed pair of nonces except in the context of the first sending of the larger
pair. That is,

firstSendIn(sendingPair,agentB,
〈nonceB,
hash(agentB,agentA,〈nonceA,nonceB〉)〉,

which is part of the authentication conclusion for Alice.
This is an informal rendition of part of the formal proof found by Snark;

other parts of the proof establish that Bob has received Alice’s nonce, nonceA,
and that the required actions of the protocol have occurred in the expected
order. The full, automatically constructed proof may be viewed at
http://www.kestrel.edu/software/pda/APWW06/.

5.5 Automatic Generation of Authentication Obligations

In the previous sections, we have described how the facts concerning the CRHH
protocol are derived from its desired run as specified in its PDA protocol dia-
gram, and how they are divided into what each of the agents knows and what
they must prove to ensure authentication. In general, the authentication obliga-
tions follow easily from the PDA specification of the desired run for a protocol,
so we have automated their production. For each agent we generate a spec of
what the agent knows from its own actions, and an authentication obligation
that posits the existence of actions by the other agents performing roles in the
protocol.

Generation of Knowledge Specs At the end of a protocol run, the agent
knows the sends and receives it has performed and their order as specified in the
protocol diagram. The spec for this knowledge consists of an action identifier
for each send and receive and, for each send and receive, an axiom describing it,
and an axiom for each nonce created by the agent describing that fact.

The axiom for a send by agent agent of term whose action identifier is sending
is

sendIn(sending,agent,term)

except when the term includes a newly-generated nonce, where we generate the
stronger axiom

firstSendIn(sending,agent,term).

Note that this use of a stronger axiom does not mean we assume that the
agent only sends term once, but we know that there must be a first sending, and
it follows that any receiving of term must be preceded by this first sending.

The axiom for a receive by agent agent of term whose action identifier is
receiving is

receiveIn(receiving,agent,term)



19

Finally, the knowledge spec contains precedence statements for the action
identifiers which are read from the precedence arrows in the protocol diagram.

The knowledge spec for Alice in CRHH is

op x0: Nonce
op x1: Nonce
op ASendingN: Action
op AReceivingP: Action
op ASendingH: Action
axiom

agentA = creator(x0)
∧ firstSendIn(ASendingN, agentA, x0)
∧ receiveIn(AReceivingP, agentA, 〈x1, hash(agentB, agentA, 〈x0, x1〉)〉)
∧ send(ASendingH, agentA, hash(agentA, agentB, x1))
∧ ASendingN precedes AReceivingP
∧ AReceivingP precedes ASendingH.

Generating Obligations The authenticity obligation for an agent is essen-
tially that the actions of the other agents in the desired run of the protocol can
be inferred. This ideal has to be relaxed in practice because of the nature of
distributed computing. An important property of the logic presented above is
that we can only infer prior actions. For example. if the last action of an agent is
to send a message, then it is impossible for the agent to infer that the message
was received. Therefore, the authenticity obligation we generate for an agent
only considers actions prior to its last receive action.

The form of the generated obligation is an existential statement with variables
for actions of the other agents, and a conjunction of the required properties. The
form of the conjunct generated for each action is in most cases the same as that
generated for the knowledge spec. The algorithm for generating the obligation
starts from the last receive of an agent, following temporal links backwards in
the diagram until there are no more. For each send or receive action visited, if it
is by a different agent, an existential variable is created for it and an obligation
conjunct added of the same form as for the knowledge spec. In addition, precedes
obligations for each pair of actions are collected.

The authenticity obligation for Alice in CRHH is

∃(BReceivingC,BSendingP)
receiveIn(BReceivingC, agentB, x0)

∧ sendIn(BSendingP, agentB, 〈x1, hash(agentB, agentA, 〈x0, x1〉)〉)
∧ ASendingN precedes BReceivingC
∧ BReceivingC precedes BSendingP
∧ BSendingP precedes AReceivingP.

Generating Honesty Assumptions Some of the honesty assumptions can
be generated automatically. Not all authentication protocols require honesty as-
sumptions so generation is a user-specified option, and some honesty assumptions
are domain-specific so there is an option for the user to supply them explicitly.



20

Honesty of the other agent means that the agent is following the protocol
properly. What this amounts to is that, if we can determine that the other agent
performed one of the actions in the protocol we can assume earlier ones were
performed in the specified order. In particular, if the last send of the other agent
can be determined to have occurred, then we can assume the earlier actions were
performed. This condition turns out to be too stringent in practice, because,
unless this last message sent is very simple, we can’t infer that it was sent in the
form specified in the desired run. For example, if the message is a pair, then even
though we receive the pair, it is always possible that the other agent sent the
two elements of the pair separately and a third agent bundled them together.
Therefore, the condition for the honesty action is that the other agent sent one
or both of the elements of the pair. We use a heuristic to avoid elements that we
could not infer came from the other agent, but we allow for the user to override
the heuristic choice.

In the CRHH example above, Bob’s last send is

sendIn(honestSending,agentB,
〈nonceB, hash(agentB,agentA,〈nonceA,nonceB〉)〉).

The first element of the pair is a nonce that Alice cannot determine was
sent by Bob without using the second element of the pair, so the sending of the
second element is chosen as the condition. Moreover, if it is not the first send of
this term, then anyone could have sent it, so the full condition generated is:

∀(honestSending)
firstSendIn(honestSending,agentB,

hash(agentB,agentA,〈nonceA,nonceB〉))
⇒ ∃(receivingB)

receiveIn(receivingB,agentB,nonceA)
∧ receivingB precedes honestSending
∧ nonce?(nonceB)
∧ agentB = creator(nonceB)
∧ firstSendIn(honestSending,agentB,

〈nonceB, hash(agentB,agentA,〈nonceA,nonceB〉)〉) .

This is actually stronger than the hand-generated appropriateness condition
used for the proof of the earlier section.

We have not yet attempted to generate the rationality condition automati-
cally. Generating this condition requires reasoning that Alice should not reveal
secrets prematurely.

5.6 The Abstract CR Protocol

In the basic CR protocol, agentA (Alice) authenticates agentB (Bob). The pro-
tocol is illustrated at the top of Figure 4. It has abstract functions challenge (c)
and response (r) that satisfy the necessary condition for Alice to authenticate
Bob.

Alice creates a new nonce, nonceA, so we know

agentA = creator(nonceA),



21

and sends a challenge

challenge(agentA,agentB,nonceA).

In the abstract theory, we do not specify what that challenge is. Thus we have
an action sendingC such that

minSendIn(sendingC,agentA,challenge(agentA,agentB,nonceA)).

Alice then receives the corresponding response; i.e, there is an action receivingR
such that

receiveIn(receivingC,agentA,response(agentA,agentB,nonceA)).

We assume that these events occur in order, i.e.,

sendingC precedes receivingC.

We include an honesty assumption, called the rationality assumption, that
Alice does not herself send out the response she expects from Bob; otherwise,
she will have no way of determining if the response she receives comes from Bob
or is a copy of her own message:

¬∃(sillysending)
sendIn(sillysending,agentA,response(agentA,agentB,nonceA)).

For simplicity, we assume Alice and Bob are distinct agents, i.e.,

agentA 6= agentB.

In fact, if we didn’t assume this, we would be able to deduce it, because we will
show that Bob sends the response and we assume, in the rationality assumption,
that Alice does not; but the proofs are a bit shorter and clearer if we assume
the agents are distinct.

The challenge and response functions must be such that, from the above
assumptions, we are able to draw the following conclusions:

Bob has received the challenge, i.e., there is an action receivingC such that

receiveIn(receivingC,agentB,challenge(agentA,agentB,nonceA)).

Bob has then sent out the corresponding response; i.e., there exists an action
sendingC such that

minSendIn(sendingR,agentB,response(agentA,agentB,nonceA)).

These events all occur in the appropriate order, i.e.

sendingC precedes receivingC precedes sendingR precedes receivingR.

The expression of the above property as a logical sentence is called the
Challenge-Response axiom.

5.7 Proof of an Image of the Abstract Challenge-Response Axiom

The protocol CRH is defined as an instance of the abstract protocol CR, so to
show authenticity we need to prove the interpretation from the CR spec to the
theory of hashing, in which the challenge function is simply the nonce itself and
the response is the hash function:

{challenge(agentA,agentB,nonceA) 7→ nonceA,



22

response(agentA,agentB,nonceA) 7→ hash(agentA,agentB,nonceA)}.
Hence we assume the antecedents of the Challenge-Response axiom, instan-

tiated under the interpretation, and prove that the corresponding consequents
follow. We shall consider only the instance of the consequent

minSendIn(sendingR,agentB,response(agentA,agentB,nonceA));

that is, we want to prove

minSendIn(sendingR,agentB,hash(agentA,agentB,nonceA)),

for some action sendingR.
We know the instance of the antecedent, that Alice has received the hashed

version of her nonce

receiveIn(receivingR,agentA,hash(agentA,agentB,nonceA)).

By a theorem of our basic theory of messages, any receiving of a message is
preceded by a minimal sending of that message. Hence, there exists an earlier
action sendingR and an agent senderR such that

minSendIn(sendingR,senderR,hash(agentA,agentB,nonceA)).

We know that a minimal sender of a hashed term must be one of its two
principals; hence

senderR = agentA ∨ senderR = agentB.

But, by the rationality assumption, Alice would not send out the same mes-
sage she is expecting Bob to send as part of the authentication process; hence
Alice is not the sender, and

senderR = agentB.

It follows that Bob is the minimal sender, i.e.,

minSendIn(sendingR,agentB,hash(agentA,agentB,nonceA)),

as we wanted to show.
This is just part of the proof. The full proof, as discovered by the theorem

prover Snark, appears in http://www.kestrel.edu/software/pda/APWW06/ along
with other proofs from this paper.

The protocol CRH op is just the instance of CRH with Alice and Bob re-
versed, so that Bob can authenticate Alice.

5.8 Proving Mutual Authentication in CRHH

Our goal is to prove the above authenticity obligation for Alice using the au-
thenticity theorem for CR that was generalized and instantiated in CRH to give:

∀(x: Nonce, sendingC, receivingR)
agentA = creator(x)

∧ firstSendIn(sendingC, agentA, x)
∧ receiveIn(receivingR, agentA, hash(agentB, agentA, x))
∧ sendingC precedes receivingR
∧ ¬∃(sillysending) sendIn(sillysending,agentA,hash(agentB,agentA,x))
⇒ ∃(receivingC, sendingR)



23

receiveIn(receivingC, agentB, x)
∧ sendIn(sendingR, agentB, hash(agentB, agentA, x))
∧ sendingC precedes receivingC
∧ receivingC precedes sendingR
∧ sendingR precedes receivingR

However, one of the preconditions of this theorem,

receiveIn(receivingR, agentA, hash(agentB, agentA, x))

does not match the knowledge spec fact

receiveIn(AReceivingP, agentA, 〈x1, hash(B, agentA, 〈x0, x1〉)〉)
because the latter is hashing a pair of nonces rather than a single nonce. To
make the proof go through we need to generalize the precondition to

receiveIn(receivingR, agentA, hash(agentB, agentA, y))
∧ x inside y.

This generalization step is currently done by hand and proved from the spec
of CR. We could automate such generalizations but we do not have sufficient
experience to know when it is desirable.

Proving the authenticity obligation for Bob is similar to that for Alice, al-
though in this case the extra generalization step is unncecessary. Both proofs
take less than a second. For comparison we also proved these obligations di-
rectly from the properties of hash and the proofs took about 20 and 10 seconds,
respectively for Alice’s and Bob’s obligations.

5.9 Theorem Proving Issues

As we have mentioned, the proof obligations were established by the theo-
rem prover Snark, a general-purpose first-order theorem prover that employs
machine-oriented inference rules, including resolution (for general reasoning) and
paramodulation (for equality reasoning). Automatic theorem provers are en-
tirely domain-independent, but may have difficulty finding complex proofs unless
equipped with domain-specific strategic controls. To achieve reasonable running
times, we introduced a number of measures, most prominently a strategic or-
dering on the symbols in the authentication theory. The effect of this ordering
is to ensure that symbols higher in the ordering are replaced by lower symbols,
rather than the reverse.

Commonly, when a symbol is defined in term of another, we declare it to be
higher in the ordering, so that the axioms that define the symbol can be used to
unfold the definition. For instance, because minimal sending is defined in terms
of sending, we declare that minSendIn is higher than sendIn. Other orderings
are determined experimentally with a test suite.

With or without the ordering, most of the conjectures are proved in fractions
of a second. The ordering, however, has a dramatic effect on the time to prove
the authentication proof obligations. Without the ordering, the authentication
conjectures are not proved, even if we allow the theorem prover to run for ten
minutes.



24

While automatic validation of this kind does not convey an absolute correct-
ness guarantee, it can uncover bugs in a protocol and increase our confidence in
its correctness. The authentication of the protocols depends on the correctness
of the axioms in our theory. The validation of these axioms has been an informal
and gradual process. We see whether conjectures we expected to be true are
proved. When they are not, we correct the axiom or the conjecture, accordingly.
Most commonly, failed proofs have been the fault of missing assumptions in the
conjecture, not errors in axioms.

Periodically we have reasoned forward from the axioms in an attempt to de-
tect inconsistencies. These proof searches are permitted to run overnight. So far,
no inconsistencies have been detected. We do not attempt to verify consistency
by mapping our theory into another that is believed to be consistent. That would
be a labor-intensive effort of limited value: a consistent theory can still be wrong.

Comparison to other Authenticity Verification Work. The theorem prov-
ing component of this work bears comparison to some other work in the field,
e.g., Paulson’s [33]. Our work was done using SNARK, a first-order, automatic
theorem prover with no support for inductive reasoning; Paulson’s was done us-
ing Isabelle, a higher order, interactive system that relies strongly on induction.
Some of our axioms could actually have been proved by well-founded induction
over the precedes relation, if we were using an inductive theorem prover. Paulson
used induction on traces rather than well-founded induction. He was able to de-
velop tactics that automated much of the theorem-proving process, fortunately:
some Isabelle commands expanded to thousands of proof steps.

By relying on the factoring of the theory, we were able to decompose the
authentication proofs into lemmas, none of which required more than 100 proof
steps, or 1 second, to discover. Once the settings and orderings for the theory are
decided on, the proofs require no interaction at all. While the protocols we dealt
with were relatively simple, we believe factoring the theory will allow the treat-
ment of more complex protocols without straining the theorem prover. Also, we
believe the use of an automatic theorem prover will allow the derivation of proto-
cols by security researchers who are not interested in the proof-discovery process.
On the other hand, we are working on interfaces to other theorem provers from
Specware, including Isabelle, so that theorem-proving experts can use other sys-
tems to perform the authenticity proofs.

6 Conclusions and Future Work

The goal of this work, and the guiding principle in designing Pda, has been to
contribute to a methodology for incremental reasoning about security. The main
problem in security engineering is that it begins where static reasoning about the
environment ends; an active, adversarial environment is its subject, hampering
any attempt at a straightforward component-based approach.

Pds formalizes a framework for protocol derivations and incremental rea-
soning about security [11, 13, 30, 34]. Pda provides automated support. Scalable
reasoning about computational systems requires computational support to man-
age complexity and scope. Scalable reasoning about distributed computational



25

systems also requires computational support for representation of and interaction
with the system. Pda supports the user by automatically generating authenti-
cation obligations for protocols, allowing for automatic proving of theorems with
prover parameters specialized for the authentication theory presented here, and
propagating theorems through the protocol derivation structure.

Factoring of a reasoning task into incremental steps often makes the difference
between a feasible and an unfeasible task. A direct proof of a complex property
of a complex protocol may be unfeasible; factoring it as a composite proof of
simpler properties of simpler protocols may make it feasible. In the current work
we have shown how factoring the proof of authenticity in a mutual authenticity
protocol reduces the proof time by an order of magnitude. We intend to apply
the approach to larger protocol derivations and expect larger gains.

The factorization of proofs in Pda matches the derivation structure of proto-
cols. For protocol instantiations our formulation gives us the factoring inherent
in spec interpretations. For Pda rules, which allow for restructuring we have
shown the utility of generalization of authenticity theorems. In future work we
will look at exploiting the structure of the individual rules. In addition, we in-
tend to extend the scope of the reasoning in Pda to include secrecy properties
along the lines of our work in [11, 34].

References

1. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols. Inf.
Comput., 148(1):1–70, 1999.

2. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). J. Cryptol., 15(2):103–127, 2002.

3. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

4. Matthias Anlauf and Dusko Pavlovic. On specification carrying software, its re-
finement and composition. In H. Ehrig, B.J. Kr/”amer, and A. Ertas, editors,
Proceedings of IDPT 2002. Society for Design and Process Science, 2002.

5. Matthias Anlauff and Dusko Pavlovic. The protocol derivation assistant, 2005.
http://www.kestrel.edu/software/pda.

6. Matthias Anlauff, Dusko Pavlovic, and Asuman Suenbuel. Deriving secure net-
work protocols for enterprise services architectures. In Proceedings of the IEEE
International Conference on Communications (ICC 2006), Istanbul, Piscataway,
NJ, USA, June 2006. IEEE Press.

7. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.C. Hem, O. Kouchnarenko, J. Mantovani, S. Mdersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigan, and L. Vigneron. The
Avispa tool for the automated validation of internet security protocols and appli-
cations. In CAV 2005: Computer Aided Verification, volume 3576 of Lecture Notes
in Computer Science, New York, NY, USA, 2005. Springer-Verlag New York, Inc.

8. Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication,
from proceedings of the royal society, volume 426, number 1871, 1989. In William
Stallings, editor, Practical Cryptography for Data Internetworks. IEEE Computer
Society Press, 1996.

9. R. M. Burstall and J. A. Goguen. Putting theories together to make specifications.
In IJCAI5, pages 1045–1058, Cambridge, MA, August 22–25, 1977. IJCAI.



26

10. Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre
Scedrov. A meta-notation for protocol analysis. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, pages 55–69, 1999.

11. Iliano Cervesato, Catherine Meadows, and Dusko Pavlovic. An encapsulated
authentication logic for reasoning about key distribution protocols. In Joshua
Guttman, editor, Proceedings of the 18th IEEE Computer Security Foundations
Workshop, pages 48–61. IEEE, 2005.

12. Anupam Datta, Ante Derek, John Mitchell, and Dusko Pavlovic. Secure protocol
composition. E. Notes in Theor. Comp. Sci., page 27 pp, 2003.

13. Anupam Datta, Ante Derek, John Mitchell, and Dusko Pavlovic. A derivation
system and compositional logic for security protocols. J. of Comp. Security, 13:423–
482, 2005.

14. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation
system for security protocols and its logical formalization. In Dennis Volpano,
editor, Proceedings of CSFW 2003, pages 109–125. IEEE, 2003.

15. G. Denker, J. Millen, and H. Ruess. The CAPSL integrated protocol environment.
Technical Report SRI-CSL-2000-02, SRI International, October 2000.

16. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

17. Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(2):198–208, 1983.

18. Nancy Durgin, John Mitchell, and Dusko Pavlovic. A compositional logic for
proving security properties of protocols. J. of Comp. Security, 11(4):677–721,
2004.

19. Nancy Durgin, John C. Mitchell, and Dusko Pavlovic. A compositional logic for
protocol correctness. In Steve Schneider, editor, Proceedings of CSFW 2001, pages
241–255. IEEE, 2001.

20. Eclipse-Team. Eclipse, 2005. http://www.eclipse.org.
21. F. Javier Thayer Fabrega, Jonathan Herzog, and Joshua Guttman. Strand spaces:

What makes a security protocol correct? Journal of Computer Security, 7:191–230,
1999.

22. GEF-Team. The Graphical Editing Framework (GEF), 2005.
http://www.eclipse.org/projects/gef.

23. C. A. R. Hoare. Programs are predicates. In Proc. of a discussion meeting of the
Royal Society of London on Mathematical logic and programming languages, pages
141–155, Upper Saddle River, NJ, USA, 1985. Prentice-Hall, Inc.

24. C.A.R. Hoare. Assertions: A personal perspective. IEEE Annals of the History of
Computing, 25(2):14–25, 2003.

25. Kestrel Institute. Specware System and Documentation, 2004.
http://www.specware.org/.

26. Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

27. Gavin Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

28. Ueli Maurer. Information-theoretic cryptography. In Michael Wiener, editor, Ad-
vances in Cryptology — CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 47–64. Springer-Verlag, August 1999.

29. Catherine Meadows. A model of computation for the nrl protocol analyzer. In
Proceedings of the 7th IEEE Computer Security Foundations Workshop, pages 84–
89, 1994.



27

30. Catherine Meadows and Dusko Pavlovic. Deriving, attacking and defending the
GDOI protocol. In Peter Ryan, Pierangela Samarati, Dieter Gollmann, and Refik
Molva, editors, Proceedings of ESORICS 2004, volume 3193 of Lecture Notes in
Computer Science, pages 53–72. Springer Verlag, 2004.

31. A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols providing
mutual implicit authentication. In SAC ’95: Proceedings of the Selected Areas in
Cryptography, pages 22–32, London, UK, 1995. Springer-Verlag.

32. J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murφ. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 141–151, 1997.

33. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

34. Dusko Pavlovic and Catherine Meadows. Deriving secrecy properties in key estab-
lishment protocols. In Dieter Gollmann and Andrei Sabelfeld, editors, Proceedings
of ESORICS 2006, Lecture Notes in Computer Science. Springer Verlag, 2006. to
appear.

35. Dusko Pavlovic and Douglas R. Smith. Composition and refinement of behavioral
specifications. In Automated Software Engineering 2001. The Sixteenth Interna-
tional Conference on Automated Software Engineering. IEEE, 2001.

36. Dusko Pavlovic and Douglas R. Smith. Guarded transitions in evolving specifi-
cations. In H. Kirchner and C. Ringeissen, editors, Proceedings of AMAST 2002,
volume 2422 of Lecture Notes in Computer Science, pages 411–425. Springer Ver-
lag, 2002.

37. Vaughan Pratt. Modelling concurrency with partial orders. Internat. J. Parallel
Programming, 15:33–71, 1987.

38. Steve Schneider. Verifying authentication protocols in CSP. IEEE Trans. Softw.
Eng., 24(9):741–758, 1998.

39. Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech.
J., 28:656–715, 1949.

40. M. Stickel, R. Waldinger, and V. Chaudhri. A guide to SNARK. SRI International,
2000. http://www.ai.sri.com/snark/tutorial.html.


