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Abstract. As a part of a continued effort towards a logical framework
for incremental reasoning about security, we attempted a derivational
reconstruction of GDOI, the protocol proposed in IETF RFC 3547 for
authenticated key agreement in group communication over IPsec. The
difficulties encountered in deriving one of its authentication properties
led us to derive an attack that had not surfaced in the previous extensive
analyses of this protocol. The derivational techniques turned out to be
helpful not only for constructing, analyzing and modifying protocols, but
also attacks on them. We believe that the presented results demonstrate
the point the derivational approach, which tracks and formalizes the
way protocols are designed informally: by refining and composing basic
protocol components.

After a brief overview of the simple authentication logic, we outline a
derivation of GDOI, which displays its valid security properties, and the
derivations of two attacks on it, which display its undesired properties.
We also discuss some modifications that eliminate these vulnerabilities.
Their derivations suggest proofs of the desired authentication. At the
time of writing, we are working together with the Msec Working Group
to develop a solution to this problem.

1 Introduction

A key feature needed to support the integration of formal methods into crypto-
graphic protocol design is composability. Most of the design of a working crypto-
graphic protocol is incremental in nature. One starts with a simple pattern that
gives the basic skeleton of the protocol. One then adds the particular function-
ality needed for the particular application in mind. Some of the added functions
may be optional, leading to different versions of the protocol. Finally, if some of
the added features require interaction between the principals, it may be neces-
sary to compose the protocol with some other protocol or protocols. For example,
if one wants a key distribution protocol to enforce perfect forward secrecy, one
may want to compose it with the Diffie-Hellman protocol by using Diffie-Hellman
generated keying material as input into the key.
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In a situation like this it would be ideal if one could verify as well as design
incrementally. It should be possible to identify situations in which properties
that have been proven to be true remained true even after the protocol was
modified in certain constrained ways. Unfortunately, this is in general a very
hard problem in formal methods. In the general case, even minor changes can
fail to preserve properties that had previously held.

A solution, of course, is to restrict oneself to properties and transformations
that can be reasoned about incrementally; and more generally, to develop tech-
niques to recognize conditions under which the security properties of interest
are preserved under refinement, composition, or transformations at large. One
such technique, in the framework of protocol derivations, has been studied in
[8]. In the context of general theory of protocols, the issue of compositionality
has been widely investigated, in various abstract process models. Some of the
recent references are [6,2,15]. While the general problem of compositionality
and monotonicity of security properties remains open, particular applications
do allow useful deployment of incremental methods, informally used in many
protocol development efforts and publications. We believe that such practices
can and should be formalized.

With this in mind, we have been developing a monotone epistemic logic that
provides a straightforward way of composing derivations of properties. In this
logic, all statements express agents’ knowledge about concrete situations and
events such as the possession of keys and the sending and receipt of messages.
These statements can then be composed to prove the desired conclusions about
the sequences of events that must occur in a protocol. The current version,
addressing only authenticity, however, does not involve composition of knowl-
edge modalities, so that the epistemic nature of this logic remains on a rather
rudimentary level. While it resembles BAN logic [5] in this restriction to authen-
tication, the present logic is much simpler, with the order of actions as its only
non-logical primitive.

Most importantly, the logic proceeds in much the same way as a protocol
is designed. One starts with some simple patterns, for which some basic prop-
erties are established in advance. These patterns are then composed into the
basic protocol. The properties add up in so far as they preserve each other’s
assumptions [8]. The next step is to add specific features that the protocol must
provide: these would include, for example, the actual data that the protocol is
intended to distribute securely. At this step, the protocol can also be composed
with other, auxiliary, patterns.

An interesting and useful feature of the logic is that the same approach can
be used to derive attacks on insecure protocols as to prove security properties
of sound ones. This is often done by lifting a simple attack on a simple protocol
component to a more subtle attack on a more complex protocol. The attack on
a component C' is expressed as a process on its own, say C, corresponding to a
logical statement of an undesired property. If the protocol P has been derived
by using C in a derivation A, then replacing C' by C' in A will yield a derivation
A of an attack P on P, whenever the relevant undesired property is preserved.



The result is that we are able to take advantage of our knowledge of C to derive
the attack P.

Other attacks on protocols, of course, may not arise from attacks on their
components, but may emerge, e.g., from insecure composition of secure compo-
nents. Such attacks can still be derived, just like counterexamples are derived in
logic, by changing the derivation goals. Since attacks, like protocols, are often
based on simple patterns, attack derivations have the potential to be a useful
feature for parlaying knowledge about basic attacks, and about propagating in-
securities, into understanding of the vulnerabilities of complex protocols, just
like protocol derivations parlay knowledge about basic protocols and their of
security properties.

The logic used in our derivations draws upon the ideas of earlier derivational
formalisms, developed in [10,7]. The crucial difference is again that the state-
ments of the new logic are couched entirely in terms of partial orders (distributed
traces) of actions, as observed by each agent, or derived from her observations
and the common axioms. One consequence of this is that we are now less likely
to encounter some of the problems that epistemic logics at large have had in the
past, where it was sometimes difficult to determine from the conclusions of an
analysis what actual behavior was expected of a protocol, e.g., what sequence of
events was actually supposed to occur. Another consequence is that our deriva-
tion system has a smaller syntax and simpler semantics than its predecessors.
Nevertheless, a logic capturing the distributed reasoning in dynamic protocol in-
teractions remains a challenge, not only conceptual, but even notational: writing
down the views of the principals in a sequence does not display the essence. Un-
derstanding protocols requires new semantics, deriving them also requires new
interfaces, and very much depends on the available tools. The current system
suggests some of the notational forms, supported by a tool developed at Kestrel
Institute. The space permits only a broad overview of a fragment; the goal is to
show it at work on GDOL.

The Group Domain of Interpretation (GDOI) [3] protocol, developed by the
Internet Engineering Task Force (IETF), is not only of great practical interest,
because of its wide applications in secure multicast, and in secure group commu-
nication at large [3, sec. 1.1], but also of particular conceptual interest, because
of the previous detailed analyses using the NRL Protocol Analyzer (NPA) [16].
The NPA is a model checker that, like the logic described in this paper, can be
used to both provide security proofs and discover attacks, but does not support
incremental or compositional verification. Interestingly, a failed composition in-
volving a portion of the protocol called the ”Proof of Possession” pointed up a
potential problem with an optional means for providing authorization, which,
because of a misunderstanding of the requirement, had been missed in the NPA
analysis. The attack presented in this paper has arisen from an attempt to derive
the GDOI protocol with the Proof of Possession option: the analysis of the step
composing the core GDOI with the subprotocol underlying Proof of Possession
has shown that the insufficient binding between the two components allowed
deriving attacks, rather than the desired security property.



The rest of the paper is organized as follows. In section 2 we describe the
GDOI protocol. In sec. 3 we give a brief overview of the logic. In sec. 4 we describe
the derivation of the Core GDOI protocol. In sec. 5 we describe the derivation
of the Proof of Possession protocol and its composition with the core GDOI
protocol. In sec. 6 we discuss the derivation of the attack and some suggestions
for fixing the protocol. In sec. 7 we compare our results with the earlier NPA
analysis and conclude the paper.

2 The GDOI Protocol

GDOI actually consists of two main protocols: the GROUPKEY-PULL protocol,
which is used when a new member joins the group, and the GROUPKEY-PUSH
datagram, which is used to distribute keys to current members. In this paper we
are concerned with the GROUPKEY-PULL protocol.

The GROUPKEY-PULL protocol takes place between a Group Controller/Key
Server (GCKS) and a member who wants to join the group. Authentication and
secrecy are provided by a key that was previously exchanged using the Internet
Key Exchange (IKE) protocol [13]. The purpose of IKE is to provide secure key
distribution between two principals. Keys are distributed by IKE in two phases:
long term Phase 1 keys, which in turn are used to distribute shorter-term Phase
2 keys. GDOI makes use of IKE Phase 1 only; GDOI can be thought of as taking
the place of IKE Phase 2 for groups.

The GROUPKEY-PULL protocol serves two purposes: one is to distribute
the current group key to the member, the other to provide mutual authentica-
tion and authorization between the member and GCKS. Furthermore, the latter
purpose can be realized in two ways:

(i) by using the Phase 1 key for authentication, and storing the authorization
information with principal’s Phase 1 identity, where it can be readily looked
up,

(ii) by storing the authorization information in a certificate that contains prin-
cipal’s public key, allowing it to be authenticated by a signature with the
corresponding private key.

In the latter case, known as the Proof of Possession (PoP), it is not the purpose
of a certificate, as usual, to allow the verification of a signature, but rather it is
the purpose of the signature to authenticate the certificate. A principal uses the
PoP to prove that he possesses the key in the certificate by using it to sign the
other principal’s nonce.

An interesting feature of the above options, specified in the GDOI RFC [3]
is that the identity, contained in the certificate in (ii), can be, and is expected to
be, different from the Phase 1 identity, used in (i).! Allowing multiple identities
can be useful for security associations, has been used in the recent versions of
IKE, envisioned for Phase 1 of GDOI, and is not insecure in itself. In this case,
however, it does cause problems, as we shall soon see.

! This is explicit for the group member, and left open for the GCKS.



The GDOI message flows, relevant for our analysis, are given below. The
messages are passed along a secure channel where authentication and secrecy
are provided by the key passed in Phase 1 IKE, and which is identified by an
IKE header and Message ID. Since in this paper we are considering authentica-
tion issues alone, we do not specify the encryption and identification functions
explicitly. We also leave off an optional Diffie-Hellman exchange, since it is not
relevant to our analysis of authentication properties of the protocol.

Let A be a group member and B a GCKS.

(i) A= B: HAB(m,id),m,id

Here, m is A’s nonce, id is the ID of the group, and HB4 denotes computa-
tion of a hash using the Phase 1 key shared between A and B.

(ii) B — A: HB4(n,m, sa),n, sa
Here n is B’s nonce and sa stands for the security association associated with
the key. Note that the keyed hash here is denoted HB4 instead of HAE. This
is to reflect the requirement that the input to the hashes be formatted in such
a way that a message from an initiator be distinguishable from a message
from a responder. This is not an issue for this specification, but will become
so later for various partial specifications of the protocol.

(iii) A — B: HAB(n,m,C4,S4 (n,m)),C4", 84 (n,m).
Here C4' denotes a certificate pertaining to A’s new identity, A’. This certifi-
cate contains a public key, and S4" denotes a signature by the corresponding
private key.

(iV) B—A: HBA(”J m, CBI » 84, ka SB, (TL, m))a 84, k: SBI (na m)
Here k is the actual keying material, and sq is a sequence number indicating
the current GROUPKEY-PUSH message.

Irrelevant information is omitted wherever the confusion seems unlikely. For
example, responder’s nonce will be left out of the final hash in GDOI, since it
plays no role in the analysis. For similar reasons, keying material and sequence
numbers passed to the group member will also be omitted.

3 Brief Overview of Challenge Response Logic

The logic describes actions performed by agents. Actions consist of sending,
receiving, and rewriting data, and generating random values. Agents constitute
processes in the underlying process calculus; in this case, they can be construed as
strands [17], or as cords [11]. Roles and principals can then be modeled as classes
of agents, sharing data or information: keys and names in the case of principals,
or actions in the case of roles. The other way around, an agent may be thought of
as a special instance of a role, or of a principal. We will concentrate on conclusions
that can be derived from participation in challenge-response protocols, and use
challenge-response as building blocks for more complex protocols.

The logic is built out of simple axioms describing the conclusions that a
principal can draw from her observations of protocol actions, using the known
axioms. These axioms are usually of the form: “If an agent performs certain



sequence of actions, then she can conclude that some other sequence of actions
by other parties also occurred”. For instance, if A receives a message, then she
can conclude that someone must have sent that message; if that message contains
a term that only B can form, then she knows that B must have been on the
path of the message.

The notational conventions are as follows. A language of terms ¢, which can
be sent in messages, is assumed to be given. It includes variables for unknown
terms or agents, and sufficient typing. The expressions (t) 4, resp. (t)4, denote
the statements that the agent A has sent, resp. received the term ¢. The expres-
sions ((t))a resp. ((t)) 4, denote the statements that A has sent, resp. received
a message containing t. An agent asserting such a containment statement may
not be able to extract ¢, but must be able to establish its presence (e.g., as in the
case of hashing). When the source and the destination of a message are relevant,
we use the verbose forms ((t : A — B))c and ((t : A — B))c, where A and B
are respectively the purported source and destination fields. Like the the ”To”
and the ”From” fields, they can be spoofed, whereas the subscripts C' name the
agent who actually performs the action. A further convenient abbreviation is
{{t))c <, which means that C is the originator of the first message containing t.2
In general, ¢ may contain subterms generated by others, yet ({t))c< asserts that
no one before C' had sent ¢t itself. The expression (vm) describes the generation
of a fresh nonce m. As usually in process calculus, it binds m to the right.

Atomic statements are generated over actions in one of the following forms:

— a — “the action a has occurred”,
— a < b— “the action a has occurred before b”, and
— a="b— “the actions a and b are identical”.

The conditional precedance in the form ”7if b occurs, then a must have occurred
before” is often used, so we abbreviate it asa <b <= b= a <b.

When authenticating each other, agents reason from partial descriptions and
unknown order of actions, towards total descriptions and order. The names a
and b thus usually denote only partially determined actions. Thus, for instance

— {t)a < (x)y — means that some action in the form (t) 4 precedes some
action in the form (z)y,

— a = (t)4 — means that the action denoted by a must be in the form (t) 4;
note that in the same session there may be b # a with b = () 4;

— (U®#))a = {(V(t))B, where U(t) and V(t) are undetermined messages con-
taining ¢ — means that U(t) = V(t) and A = B.

The state of each agent consists of what she has seen and recorded. In prin-
ciple, she only sees her own actions. She can thus record (some of) the terms
that she has sent, received, or computed, and the order of actions that she has
performed. At each new state, an agent can draw new conclusions, applying the
axioms, which constitute common knowledge, to the data seen or recorded. Each
such derivation thus consists of three fields:

2 Formally, ({t))c< abbreviates Ic. c = ({t))c AVb. b= {({t))s =>b< c.



— “A sees:...” — displaying A’s state,

— “A knows:...” — displaying axioms and the previously derived facts,
— “A concludes:...” — displaying the new conclusions, following from the
above.

We omit “sees”, “knows”, and “concludes” whenever confusion seems unlikely.
There are two basic axioms that express semantics of actions. All principals
are assumed to know them.

t)=3a.a={t) ANa < (t) (rev)

(vm)ar = Yaa. (a = ((m)) Va=((m)) = (wm)<a A
A# M= (vm)y < (fm)u < (m)a <ax)  (new)

The (rcv) axiom says that if a message is received, it must have been sent. The
(new) axiom says that, if a fresh value is generated, then any action involving
that fresh value must occur after its generation; moreover, if some principal
other than the originator receives a message containing the fresh value, then the
originator of the value must have sent a message containing it.

Axiom (cr) supports the reasoning of the initiator of a challenge-response
protocol. It is formalized as follows:

As (rm)a (P m)a < ((r*Pm))a

= (("Pm)a < (¢*Pm)p < ((rPm))p< < ((TABm))A) (cr)
The expression ¢ABm denotes a challenge function applied to m, while the ex-
pression r4Bm denotes a response function applied to m. The axiom can be
viewed as a specification of the requirement defining these two functions. It tells
that A can be sure that if she issues a message containing a challenge cABm,
and receives response containing r“Zm, then B must be the originator of that
response. In other words, B is the only agent who could have transformed ¢48%m
to r4Bm, given the A’s own observed actions. This is the basic logical building
block of authentications. The same idea is captured by Woo-Lam’s correspon-
dence statements [18], or by Guttman and Thayer’s authentication tests [12].

In the various instances of axiom (cr), functions ¢ and r satisfying the above
specification, can be implemented in various ways, e.g. taking B’s signature as
the response, or B’s public key encryption as the challenge. In each case, it
will need to be proved that the particular implementation satisfies the specified
requirement.

The logic also contains axioms for composing, refining and transforming pro-
tocols. A transformation or refinement usually adds a new property or function-
ality to the protocol, in which case it comes annotated with an axiom, leading
to new conclusions. In authentication protocols, such axioms may expand prin-
cipal’s knowledge about the events in the run of the protocol that he is partici-
pating. For example, in the basic challenge-response axiom there is no indication



that B intended its message as a response to A’s particular challenge. This would
need to be supplied by some refinement introducing a specific integrity token,
such as computing a MAC.

While many formal details of our logical derivation of GDOI will have to be
omitted, the axioms and the derivation steps do yield to a simple diagrammatic
presentation without an essential loss of precision or insight. As usually, messages
are represented by horizontal arrows from one principal to another. A vertical
line corresponds to principal’s internal change of state. If the principal creates a
new value m, this is represented by putting vm next to the appropriate vertical
line. Below, we describe a derivation of a simple challenge and response protocol,
which we use to form the core of GDOL.

There are several properties of protocols that will be of interest here. One,
known as matching histories, due to Diffie, van Oorschot, and Wiener [9], says
that after two principals complete a protocol successfully, then they both should
have the same history of messages sent. Another, due to Lowe [14], known as
agreement, says that the principals should agree not only about the message
histories, but also about the source and destination of each message.

Assumptions. A principal can be honest, and follow the protocol, or dishonest,
and perform arbitrary actions. However, it is assumed that no principal, honest
or dishonest, can compromise the private data used to authenticate him: they
are securely bound to his identity, outside the considered protocols.? protocol
cannot be to possession of authenticating We also tacitly assume strong typing.
If a principal, for example, attempts to use a key in the place of a nonce, the
message will be rejected. These assumptions are a matter of convenience, and
can be discharged in a more detailed treatment. This is, indeed, needed when
it comes, e.g., to perfect forward secrecy, which is of interest in GDOI, and
describes the behavior of the protocol after a master key is compromised.

4 Deriving Core GDOI

In this section we derive the conclusions the principals can draw as a result
of participating in Core GDOI, without Proof of Possession. This is done by
first constructing a mutual hash-based challenge-response protocol, and then
inserting key distribution. For reasons of space, we will only give a detailed
presentation of the derivation of A’s conclusions as the result of participating in
the Hash-based Challenge-Response, while giving a broad overview of the rest.
We hope that this is enough to give a flavor of the logic.

4.1 Hash-based Challenge-Response

The derivation of GDOI begins with the basic protocol functionality, which is
mutual authentication through hash-based challenge-response. It is obtained by

3 The authentication data that cannot be denied or delegated are sometimes called
fingerprints.



composing and binding two copies of the challenge-response protocol described
above, with the challenge and response functions instantiated:

ABm =m and r48m = HBm

Here, the hash H4P is axiomatized by

HABs = HABt — s=t (hash1)
(HAPt)x« = X=AVX=B (hash2)
HABt=HB4 — A=B (hash3)

The idea is that HABm = hoq(aAB ,A, B, m), where h is a given pseudorandom
function, 048 a secret shared by A and B, and ¢ a convenient projection, perhaps
eliminating one of the identifiers. The axioms capture enough of this intended
meaning, to ensure that the above instantiation of ¢4? and r4® validates axiom
(cr), so that we can prove

A (vm)a((m))a < (HP4m))a

= ((m)a < (m))s < (HE4m)) pe < (HAPm)a)  (crh)

where T denotes a term containing? m. The proof makes use of (rcv) to conclude,
if the message HPA?theri was received, it must have been sent by somebody,
and (hash2) to conclude that the sender must have been B. It then makes use of
(new) to conclude that m must have been created and sent by A and received
by B previous to B’s sending the hash.

We now use (crh) to derive A’s conclusions.

A sees : (vm)g4 < (m)a < (HBAm) 4
knows (crh) : (vm)a (<<m))A < (HBAm)) A

= ((m))a < (M) < ((HP4m))p< < ((HBAm))A)

concludes :  (vm)a < (m)a < ((m))p < (HP4m))p< < (HB4m) 4

So keyed hash can be used for ping authentication. But furthermore, it turns out
that composing and binding two copies of such hash-based authentication allows
both principals to derive the exact order of all of their joint actions, and thus
arrive at matching records of the conversation. To derive this, we begin from the
simple hash-based challenge response, the first diagram in fig. 1. The responder
B learns little (only that someone has sent a message), but A learns that B
received her challenge and responded to it. The second diagram is obtained by
sequential composition of two copies of the first one. We only display the first
copy- The second one is symmetric, with B as the initiator and A as responder.

4 Like before, the agent asserting containment may not be able to extract m, but must
be able to verify its presence.



A B A B A B
o o o
vmy m vmy m vmy m
O— >0 O — >0 O ——> 0
yvn yvn
O=<—0 O=<——0 O=<——-—"-—0
HBA, n,HBAm n,HBA(m,n)
O ——>20 O — >0
HAB’I’L HAB’n,

Fig. 1. Hash-based Challenge-Response: from one-way to mutual authentication

The conclusions that A and B can draw are the union of the conclusions that
they could draw as initiator and responder of two independent protocols: A
knows that it receives a response to B, and B knows that it received a response
from A, but they are not able to derive much more than that. The reasoning for
A is as follows:

Asees: (vm)a < {m)a < (n, HBAmM) 4 < (HABn) 4
(crh)  (vm)a (((m))a < (HP4m))4
= ((m))a < ((m))s < ((HP*m))p< < ((HBAm))A)
(rev) (1) = Ja.a={#t)ANa<(t)

A o (vm)a < (m)a < ((m))p < ((HP*m))p< < (n, HPAm) 4 < (H*Bn) 4
A FY. {({n:B— A)y < (n,HB4m : B — A)4

The third protocol is obtained by binding the two one-way authentications by
a simple protocol transformation, introducing responder’s challenge into his re-
sponse. In the logic, this is accompanied by the protocol specific definition of
B’s honesty:

A : B honest < (z)B < (vy)B < (y,HBA(:U,y))B < (HABy)B

where A is an agent from the initiator role. This statement tells that, if A
knows that any of the above events have occurred, then A knows that all of the
preceding events must have occurred as well, in the described order — provided
that B is honest, and acts according to the protocol. The reasoning now proceeds
as follows.

Asees: (vm)a < (m)a < (n,H(m,n))a < (Hn)a
(crh)  (vm)a({fmd)a < ((Hm))a

= ((m))a < ((m))p < ((HM))B< < ((Hm))A)
(rev) t) = Ja.a=({t)Aa<(t)

A B honest <= (z)p < (vy)B < (v, H(z,y))B < (HY)B



Just as in the one-way authentications, the conclusion is
A (i) : (vm)a < (m)a < ((m))p < ((H(m,n)))p< < (n, H(m,n))a
On the other hand, from the honesty assumption
A (ii) : B honest A ((HZ))p = (2)B < (vy)B << (Y, H(z,y))B< = {((HM))B

where, as we recall, T denotes a term containing z. Instantiating x = m and T =
(m,n), we get the antecedens that ((H(m,n)))p has occurred. The consequens
now tells that the action ((H (m,n))) < of (i) must be (y, H(m,y)) s of (ii), with
y fresh. From axiom (hashl), A derives that n = y and thus

A : Bhonest = (vm)a < {m)a <
(m)B < (Vn)B < <naHBA(man)>B < (naHBA(man))A < <HABn>A

By similar reasoning, B reaches the same conclusion, just extended by (H4Bn)p
at the end. The hash-based challenge-response thus yields the matching conver-
sations authentication.

In fact, with the same assumptions, A can derive essentially more: not only
that B has indeed sent the response that she has received, and generated the
challenge that she has responded to — but also that B has intended his response
and his challenge for her. More precisely, the above conclusion of A’s can be
extended by the desired source and destination of each message, A — B, or
B — A. Indeed, assuming that B is honest,

— he must have received (m : A — B) g, because he would never form HB4(m .. .)
otherwise, and then

— he must have generated fresh n and sent (n, HP4(m,n) : B — A)g, again
because the protocol and his honesty say so.

Formalizing this, A can first prove that the above definition of B’s honesty is
equivalent to a stronger formula:

A:Bhonest < (z: A— B)g < (vy)B <
(y, HP4(z,y) : B— A)p < (H*Py: A= B)p

and then strengthen the rest of her reasoning. Mutatis mutandis, the same holds
for B. The principals thus agree not only about the order of their joint actions,
but also about the intended sources and destinations of their messages, and about
each other’s identity. This stronger form of authentication is called agreement in
Lowe’s hierarchy [14]. While matching conversations authentication suffices for
some purposes, we shall see in the sequel how it can lead to misidentification
even in combination with agreement.

4.2 Towards GDOI: Hash-based authenticated key distribution

Towards authenticated key distribution, the hash-based mutual authentication
protocol should now be composed with the hash-based key distribution proto-
col, identifying initiator’s nonces used in the two components. The argument
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Fig. 2. Composition with hash-based key distribution

is essentially the same as that for hash-based challenge-response, so we omit it
here. In the first diagram in fig. 2, we start with a protocol pattern in which
hash-based challenge-response is used to guarantee authentication of a key (or
any other piece of data). As a result of this protocol, A can conclude that B
sent the key in response to her challenge. In the second diagram, we compose
the key distribution with the challenge-response diagram from fig. 1. Now A can
conclude that B has responded to her challenge with challenge of his own, and
later with a key. B can conclude that A was still participating in the protocol at
the time he received the challenge (that is, that the first message that it received
from A was not a replay). The last diagram in fig. 2 is a simple refinement that
authenticates the initial challenge®. This step is independent, and can been in-
troduced at any point in the derivation. In any case, it is not hard to prove that
the authenticity properties, achieved in the hash-based challenge response, are
preserved under the last two derivation steps. The same messages that appear in
the hash-based challenge response also appear in the hash-based key distribution
in the same order. So the same proof strategy works again.

Since the distributed key is also authenticated by hash, the resulting protocol
— the core of GDOI — thus realizes the agreement authentication again. This
means that each principal can exactly derive the order of all actions (except that
the sender of the very last message cannot know that it is received) — including
the correct source and the intended destination of each message.

5 Adding second authentication

In this section we describe the second way of authorizing group membership and
leadership. This is done by passing a signed public key certificate with a new
identity and additional authorizations. This can be done for either the group

® Omitting this would expose B to a denial-of-service.



member, or the GCKS, or both. A principal is intended to prove possession
of the private key corresponding to the public key contained in the certificate
by using it to sign the two nonces. Thus we can think of GDOI with proof-of-
possession (PoP) as the composition of two protocols: the core GDOI protocol
and the PoP protocol.

5.1 Towards PoP: Signature-based Challenge-Response

The PoP protocol is another implementation of the abstract challenge response
template (cr), this time using signatures. The challenge is again just cA8m = m,

but the response is r48m = CP,SBm, where SP is B’s signature, axiomatized
by

SPt=58y = t=u (sigl)

(SPthx< = X=B (sig2)

VBy,t) <= y=25Pt (sig3)

whereas C2 is B’s certificate, with her identity bound to the signature verifi-
cation algorithm V2, and possibly containing additional authorization payload,
used in GDOI. As usually, the integrity of this binding is assured by certifying
authority. The derivation proceeds similarly as for the hash-based authentica-

A B A B A B
(o) (o)
o vm m vmy m
W O —>0 O —>20
vn
Oéo ° n Xyn ° n i”n
B B
| A4 <A
0 28" | o4, s4n l o4, s4(m,n)
(o) o O — >0
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cB, sBm CcB, SB(m,n)

Fig. 3. Signature-based Challenge-Response: from one-way to mutual authentication

tion. The difference is that the second diagram in fig. 3 is a nested composition
of two copies of the first, rather than a sequential composition, as in fig. 1. We
only display the inner copy, while the outer one is symmetric, with A as the
initiator, and B as responder. Like before, the third diagram is obtained by
binding transformations, i.e. introducing each principal’s own challenge into his
response. The result is what we call the PoP protocol.

Properties and attacks. The proof of the matching conversation authenticity
for the signature-based challenge response protocol closely follows the proof for



the hash-based protocol, presented in sec. 4.1. However, while the latter proof
readily extends to a proof of agreement, by extending the messages by A — B
and B — A, the former does not.

The reason is that the messages in the hash-based protocol carry enough
information to ensure that an honest principal, say A, will send the messages
to the correct destination B —whereas in the signature-based protocol they do
not. More concretely, in the hash-based protocol, the assertion that A is honest
and sends and receives the messages in correct order implies, as we have seen,
that the sources and the destinations of the messages are also correct. In the
simplest signature-based challenge response protocol, B’s assumption that A
is honest, B : A honest <= (n)4 < {({(C*4,54n))4 cannot be extended to
(C4,58%n : A — B)4. While the response H4Pn must be for B if A is honest,
the response C4, S4n does not tell who A may have intended it for, honestly or
not.

The signature-based challenge response protocols thus realize matching con-
versations authentication, but they do not realize agreement, and do allow iden-
tity confusion. Indeed, by spoofing the source of B’s challenge, and the destina-
tion of A’s response, an intruder I can convince B that he has authenticated a,
while A believes that she has been authenticated by I, and knows nothing of B.
This is illustrated in in the first diagram in fig. 4. The attack validates e.g. the
following statement

B : Ahonest = (vn)p < {n)p < (n)a < (C4,S%n)s < (C4,5%n)p
/\—1(B : A honest = (C4,54n : A—)B)A)

which shows that it cannot validate agreement authentication. Now recall the
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Fig. 4. Attacks Against Signature-Based Challenge-Response



derivation pattern displayed in fig. 3, used to derive a mutual authentication
protocol by nested composition and binding of two copies of one way authen-
tication. Applying this derivation pattern not to the one way authentication
protocol itself, but to the attack on it — yields a similar attack on the resulting
mutual authentication protocol. This attack is illustrated in the second diagram
of fig. 4. A formula contradicting the agreement authentication, but asserting
the matching conversation can be extracted just as above.

To remove the attacks, one would need to provide grounds for the reasoning
pattern that led to establishing the agreement authentication in sec. 4.1. Like
there, the response function should thus be extended by peer’s information,
which would allow the extending honesty assertion by the source and destination
fields. When anonymity of the initiator is not required, this can be achieved by
taking r4Bm = CB,SB(A, m)

5.2 Composing core GDOI with the PoP option

We are now ready to compose core GDOI, derived in sec. 4, with the PoP
protocol, derived above. This is shown in fig. 5, where we abbreviate X =
SX(m,n).

In the first diagram, we compose the hash-based protocol from sec. 4.2 with
the signature-based protocol from sec. 5.1, identifying the fresh data. In the sec-
ond diagram, we bind the two components using hashes. Note that the principal
A claims both A and A’ as her identities: one as the source field of her message,
the other through the certificate, which she proves as hers by the signature. The
principal B similarly claims both B and B'.

A B A B
[e] o

vm vm
\L m,HABm:A—)B \L m,HABm: A—B

vn

O=<— o0
N
3

O <—

| n,HBA(m,n):BA)A | n,HBA(m,n): B—A
[o] [o] o] o]
I I 7 I I 7
HABy, cA' »A'. AoB J/uk HAB (n,CA oA ),CA oA A-B ¢Uk
[o] [o] [o] [o]
I I i 7 7 i
k,HBA(m,k), 0B, »B'. B A k,HBA (m,k,CB , »B ) ¢B' 5B .4

Fig. 5. Composition of Core GDOI with PoP



6 Attacks on GDOI with PoP and its defenses

When we attempted to prove the security of the composition of the core GDOI
and POP, we found that the proofs derived for GDOI and for POP could not
be composed, because the two components used two different identities. At a
closer examination, it turned out that this fact not only preempted a proof of
security of the composite protocol, but also allowed a derivation of an attack
on it. A further attempt to prove security of an amended version then led to a
derivation of an additional, more subtle attack. Defending the protocol against
this attack, we arrived at the version supporting the agreement authentication.
We shall now discuss these attacks and the defenses against them.

The first attack on the composite protocol is obtained by composing attack
on the PoP component with the GDOI protocol. It can be specified by compos-
ing the vulnerability statement about PoP from sec. 5.1, with the statements
derived about GDOI. The composition turns out to preserve the vulnerability.
The second attack emerges from the interaction of the components, even after
the attack on the PoP component has been eliminated.

6.1 Lifting the attack from PoP

The attack on the PoP, presented in sec. 5.1, leaves the responder confused about
who the initiator is actually trying to initiate contact with. To lift this attack
to GDOI, we compose it with the core GDOI, as derived in sec. 4. This is step
done in the same way as the PoP protocol itself was composed with core GDOI
in sec. 5.2, to yield GDOI. The derivation of this attack on GDOI thus parallels
the derivation of GDOI itself, up to the last step, when it introduces the attack
on the PoP component, instead of the PoP itself. This is illustrated in fig. 6.
We compose two copies of the GDOI protocol, one between A as initiator and I
as responder, and the other between I as initiator and B as responder, with a
copy of the attack on the signature protocol in sec. 5.1, in which I claims to B
that A’ is his identity, and proves this by certificate and signature. The notation
X 4 refers to the fact that the agent X claims the identity of A’ (in this case by
proving possession of the certificate belonging with this identity). The upshot of
this attack is that a rogue GCKS I, who does not have the credentials to join
the group managed by GCKS B, could hijack the credentials belonging to A
under identity A’ that she presents to I when joining I’s group.

A solution? The simplest way to eliminate this composition is to eliminate
the attack in fig. 4, i.e. to strengthen the signature-based authentication from
matching conversations to agreement. As pointed out in sec. 5.1, this can be
done by introducing the peer’s identity under the signature, responding to the
challenge, i.e. to replace £4" by 4, = 4 (B',m,n) We do the same for £7".
However, eliminating the attack on the component is in this case not enough to
solve the problem.
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Fig. 6. Lifted attack on GDOI with PoP

6.2 Emergent attack

Even if the PoP protocol is modified as recommended, an attack can still emerges
in composition. To see this, consider the modified version of GDOI with PoP,
where 4’ is replaced by Eg:, and B’ by Ef,'. In order to allow A’ to introduce
the identity B’ under her signature in the third message, this transformation
must be enabled by moving the certificate CPB' from the last message to the sec-
ond one. The attack that nevertheless arises is presented in fig. 7. The attack still
allows a correct hash-based mutual authentication between A and I (obtained
by removing certificates and signatures), and a correct signature-based mutual
authentication between A’ and B’ (obtained by removing hashes) yet putting
these two authentications together leaves A believing that the identifiers I and
B’ belong to the same principal, and B believing that the identifiers I and A’
belong to the same principal.

Suggested solution. A solution currently under discussion with the designers
of GDOI is to introduce the shared secret o4 under the signatures, i.e. to replace
ZA = 84 (m,n) in fig. 5 by ¥4, = S4 (648, m,n), and symmetrically 8" by
I8 Alternatively, instead of 042, one could use other identifying information,
such as A’s Phase 1 identity, could be used in place of o4E.

The responder’s security argument now boils down to proving that, if either
A or A’ is honest, then A = A’. If A’ is honest, then she will only sign the o8
belonging to her, so B can conclude that A’ = A. On the other hand, if A is
honest, then, since 2;‘1‘33 appears in a hash computed with A’s key 04® | B can
conclude that A must have included the signature, which she only would have
done if she herself had produced it using A"’s private key. Therefore, B can again
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conclude that A = A’. A similar proof works for A’s conclusions about B and
B

One thing that the responder B cannot conclude is that A = A’ if both
A and A’ are dishonest. Even if A and A’ do not share their long-term keys,
we can produce a counterexample, albeit with a refined definition of digital
signature. Note that the axiomitization in section 5.1 disallows message recovery.
The recommended implementation of this uses a one-way hash of signed data. If
this is captured in the axioms, then we can show that A can still pass the hash
of (648, m,n) to A', without revealing its long-term key. After A’ computes the
signature, she can pass Zﬁsg = 54 (648, m,n) to A, who can then include it
in her hashed message. Avoiding this collusion by signatures without hashing
is cryptographically unsound, and opens up even more risks. So the problem of
collusion remains open.

7 Conclusion

The presented results illustrate some of the features of a compositional protocol
logic, and in particular the fragment for distributed reasoning in authentication
protocols. The claim is that such logic not only supports incremental protocol
design and analysis, but also facilitates the attack construction. The discovery of
the compositional flaw in the GDOI group key exchange protocol, and the anal-
yses of the various ways in which the protocol could be fixed and proven correct,
provide evidence for this. The derivation system has not only been instrumental
not only in protocol analysis and attack construction, but was also useful tool
for communicating the issues to the GDOI authors and the Msec working group.

One might ask, how could this problem happen in the first place, since GDOI
had already undergone a formal analysis with another tool, the NRL Protocol



Analyzer? Indeed, the flaw that we found is very much of the type that the NPA
can find. The answer is that the fact that certificate identities could be different
from Phase 1 identities was missed by the authors of [16] when they were eliciting
requirements. But, even if it had been caught, it would have not been trivial to
go back and reverify the protocol with the NPA. With the derivational approach,
we are able to verify only the parts that had changed.

Indeed, we note also that the approach of this logic addresses a growing prob-
lem in the design of cryptographic protocols: the problem of securely composing
two or more different protocols. As Asokan et al. point out in [1], deploying a
new protocol is expensive, and there is considerable pressure to reuse security
protocols and security context databases by composing them with other proto-
cols. However, the problem of securely reusing these protocols in new contexts
is not well understood. Indeed, a man-in-the-middle attack of the sort described
in [1] was found on the IETF’s Extendible Authentication Protocol [4], and has
much in common with the attack we found on Proof of Possession.

In conclusion, we believe that our approach offers the possibility of greatly
facilitating the formal methods to cryptographic protocol analysis. Not only
should it be possible to provide a complete verification of a protocol at one stage
of its life, but to reverify the protocol as modifications are suggested and incor-
porated. Moreover, it facilitates the study of the growing problem of composition
of protocols and protocol reuse.
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