
Derivation of the JFK Protocol

Anupam Datta, John Mitchell and Dusko Pavlovic

Abstract

We introduce a basic framework for deriving security

protocols from simple components, like proofs are derived

from axioms. As an initial case study, we derive the re-

cently proposed key agreement protocol JFK (Just Fast Key-

ing), starting from the basic Diffie-Hellman exchange, and

the generic challenge-response scheme, and refining them

by the other required security features, formalized in our

derivation system by suitable refinement and transforma-

tion rules.

1. Introduction

JFK [1] is a protocol recently proposed to replace IKE

[2] as the standard key exchange protocol for the IPSec pro-

tocol suite. It has been recognized that IKE suffers from a

number of deficiencies, the three most important being that

the number of rounds is high, that it is vulnerable to denial-

of-service attacks, and the complexity of its specification.

Besides providing a means for authenticated key exchange,

JFK has been engineered with the specific design goal of

removing these deficiencies.

In this paper, we present a formal analysis of the JFK

protocol. The goal has been to verify whether JFK satisfies

all its stated design goals. Towards this end, we have devel-

oped a “rational reconstruction” of the core JFK protocol.

The Diffie-Hellman key exchange protocol [14] and a sim-

plified version of the standard challenge-response authenti-

cation protocol [15] constitute the starting point of the re-

construction. We compose these two protocols to obtain the

first approximation of an authenticated key exchange pro-

tocol. This protocol is then systematically transformed into

one that provides DoS protection. We then progressively re-

fine the obtained protocol by adding message components,

finally culminating in a protocol that is a close approxima-

tion of the actual JFK protocol. At each refinement step,

we clearly explain what purpose is served by that message

component and/or what attack would arise if it were not exe-

cuted. We believe that this reconstruction provides a natural

way to understand how the message components of the pro-

tocol serve to meet the stated design goals: security, identity

protection, DoS protection, etc.

The remainder of this paper is structured as follows. Sec-

tion 2 describes the the design goals of the JFK protocol.

Section 3 discusses the protocol itself and the role served by

the different message components. In Section 4, we present

a systematic reconstruction of the core JFK protocol using

compositions, refinements and transformations. Section 5
presents a protocol transformation technique which adds

DoS protection to the base protocol. Concluding remarks

and directions for future work appear in Section 6.

2. Design Goals

The JFK protocol was designed to meet the following

requirements:

• Security: The resulting key should be cryptographi-

cally secure, according to standard measures of cryp-

tographic security for key-exchange.

• Simplicity: It must be as simple as possible.

• Memory-DoS: It must resist memory exhaustion at-

tacks on the responder.

• Computation-DoS: It must resist CPU exhaustion at-

tacks on the responder.

• Privacy: It must preserve the privacy of the initiator.

• Efficiency: It must be efficient with respect to compu-

tation, bandwidth, and number of rounds.

• Non-Negotiated: It must avoid complex negotiations

over capabilities.

• PFS: It must approach perfect forward secrecy.

The Security property is obvious enough; the rest, how-

ever, require some discussion.

The Simplicity property is motivated by several factors.

Efficiency is one; increased likelihood of correctness is an-

other. But the main motivation is to avoid the complexity of

IKE. This complexity has led to interoperability problems,

so much so that, several years after its initial adoption by

1

the IETF, there are still completely non-interoperating im-

plementations.

The Memory-DoS and Computation-DoS properties

have become more important in the context of recent In-

ternet denial-of-service attacks. Photuris [21] was the

first published key management protocol for which DoS-

resistance was a design consideration. Photuris first intro-

duced the concept of cookies to counter “blind” denial of

service attacks. Although the concept of the cookie was

adopted by IKE, its use in that protocol did not follow the

guidelines established by Photuris and left it open to DoS

attacks.

The Privacy property means that the protocol does not

reveal the identities of the parties to an attacker. There are

several variants here: First, the protection can cover the ini-

tiator, or the responder or both. Second, the protection can

be valid either against active attackers or alternatively only

against passive eavesdroppers. The basic JFK protocol pro-

vides identity protection for the initiator against active at-

tacks, and no protection for the responder.

The Efficiency property is worth discussing. In many

protocols, key setup must be performed frequently enough

that it can become a bottleneck to communication. The key

exchange protocol must minimize both computation as well

total bandwidth and round trips. Round trips can be an es-

pecially important factor over unreliable media.

The Non-Negotiation property is necessary for several

reasons. The first, of course, is as a corollary to Simplicity

and Efficiency. Negotiations create complexity and round

trips, and hence should be avoided. Denial of service re-

sistance is also relevant here; a partially-negotiated security

association is consuming resources.

Perfect Forward Secrecy (PFS) is treated differently

from other protocols. The amount of forward secrecy is

treated as an engineering parameter that can be traded off

against other necessary functions, such as resistance to

denial-of-service attacks. JFK has the concept of a “for-

ward secrecy interval”; associations are protected against

compromises that occur outside of that interval.

3. The JFK Protocol

3.1 Notation

The following notation is used in describing the protocol.

A→ B Message from A to B

EK(M) Encryption of M with symmetric key K

HMACK(M) Keyed hash (HMAC) of M using key K

SIGx(M) Signature of x on message M

gx Diffie-Hellman (DH) exponentials

Nx Random nonce

sa Initiator desired Security Association

sa′ Responder’s IPSec SPI

HKr Responder’s transient private hash key

Ke Encryption key: HMACgir (Ni, Nr, 1)
Kir Session key: HMACgir (Ni, Nr, 0)
IDx Public key certificate of x

GRPINFOr Responder supported DH groups

3.2 Protocol Description

The JFK protocol is shown in Figure 1. Message 1 is

straightforward; note that it assumes that the Initiator al-

ready knows a group and generator that is acceptable to the

Responder. The Initiator can reuse a gi value in multiple in-

stances of the protocol with the Responder or other respon-

ders that accept the same group, for as long as she wishes

her forward secrecy interval to be. This message also con-

tains an indication as to which ID the Initiator would like

the Responder to use to authenticate.

Message 2 is more complex. Assuming that the Respon-

der accepts the Diffie-Hellman group in the Initiator’s mes-

sage, he replies with a signed copy of his own exponential

(in the same group), information on what secret key algo-

rithms are acceptable for the next message, a random nonce,

his identity (certificates or a bit-string identifying his pub-

lic key), and an authenticator calculated from a secret, HKr,

known to the Responder; the authenticator is computed over

the two exponentials and nonces, and the Initiator’s network

address. The authenticator key is changed at least as often

as gr, thus preventing replays of stale data. The Respon-

der’s exponential may also be reused; again, it is regener-

ated according to the Responder’s forward secrecy interval.

The signature on the exponential needs to be calculated at

the same rate as the Responder’s forward secrecy interval

(when the exponential itself changes). Finally, note that the

Responder does not need to generate any state at this point,

and the only “expensive” operation is a MAC calculation.

This is meant to ensure that the Responder is not open to

denial-service attacks.

Message 3 echoes back the data sent by the Respon-

der, including the authenticator. The authenticator is used

by the Responder to verify the authenticity of the returned

data. The authenticator also confirms that the sender of

Message 3 uses the same address as in Message 1: this can

be used to detect and counter a “cookie jar” DDoS attack.

The message also includes the Initiator’s identity and ser-

vice request, and a signature computed over the nonces, the

I → R : Ni, g
i, IDr′

R → I : Ni, Nr, g
r, GRPINFOr, IDr, SIGr (g

r, GRPINFOr), HMACHKr(Ni, Nr, g
i, gr, IPi)

I → R : Ni, Nr, g
i, gr, HMACHKr (Ni, Nr, g

i, gr, IPi), EKe
(IDi, sa, SIGi(Ni, Nr, g

i, gr, IDr, sa))

R → I : EKe
(SIGr(Ni, Nr, g

i, gr, IDi, sa, sa
′), sa′)

Figure 1. JFK Protocol

Responder’s identity, and the two exponentials. This lat-

ter information is all encrypted under a key derived from

the Diffie-Hellman computation and the nonces Ni and Nr.

The encryption and authentication use algorithms specified

in GRPINFOr. The Responder keeps a copy of recently-

received Message 3’s, and their corresponding Message 4.

Receiving a duplicate (or replayed) Message 3 causes the

Responder to simply retransmit the corresponding Message

4, without creating new state or invoking IPsec. This cache

of messages can be reset as soon as gr or HKr are changed.

The Responder’s exponential (gr) is re-sent by the Initiator

because the Responder may be generating a new gr for ev-

ery new JFK protocol run (e.g., if the arrival rate of requests

is below some threshold).

Note that the signature is protected by the encryption.

This is necessary, since everything signed is public except

the sa, and that is often guessable. An attacker could verify

guesses at identities, were it not encrypted.

Message 4 contains application-specific information

(such as the Responder’s IPsec SPI), and a signature on both

nonces, both exponentials, and the Initiator’s identity. Ev-

erything is encrypted by Ke, which is derived from Ni, Nr,

and gir (the result of the Diffie-Hellman computation).

4. Reconstructing JFK

In this section, we reconstruct JFK by applying refine-

ments and transformations to a protocol obtained by com-

posing the Diffie-Hellman key exchange protocol with the

standard challenge-response based authentication protocol.

A refinement replaces every instance of a message compo-

nent used in the protocol by another. In this sense, it is a

local operation, somewhat like the find-and-replace opera-

tion in a text editor which substitutes every instance of a

given pattern by another. On the other hand, a transforma-

tion involves a series of steps and operates on the protocol

as a whole. In particular, we describe a transformation that

adds “cookies” to the base protocol to make it resistant to

DoS attacks. This reconstruction provides a natural way

to understand how the message components of the proto-

col serve to meet the stated design goals: security, identity

protection, DoS protection, etc.

1. Components:

(a) Diffie-Hellman key exchange: The basic Diffie-

Hellman protocol [14] is shown below. It pro-

vides a way for two parties to set up a shared

key (gir) which a passive eavesdropper cannot

recover. The security of the key depends on the

computational hardness of the discrete logarithm

problem.

I → R : gi

R → I : gr

(b) Challenge-response: The signature-based

challenge-response protocol shown below is

a standard mechanism for providing mutual

authentication (see Section 10.3.3 of [15]).

I → R : m

R → I : n, SIGr (n, m)

I → R : SIGi(m, n)

2. Transformations:

(a) The “cookie transformation” is discussed in de-

tail in the next section. At the cost of adding an

extra message to the base protocol, it guarantees

that the Responder does not have to create state or

perform expensive computation before a round-

trip communication is established with the Initia-

tor. This helps protect the Responder against both

Computation-DoS and Memory-DoS attacks.

(b) The second transformation rule allows a field t of

message msgi to be moved to an earlier message

msgj (j < i) with the same sender and receiver,

provided t does not contain any data freshly gen-

erated between the two messages. Additional

side conditions could be imposed to ensure se-

crecy requirements on t.

3. Refinements:

In what follows, we use a =⇒ b to denote that b should

replace every instance of a in the protocol once that

refinement is applied.

(a) SIGX(m) =⇒ E(SIGX(m)), where E de-

notes encryption under some shared key. This

refinement is necessary for identity protection.

Since everything signed is public except the sa,

and that is often guessable, an attacker could ver-

ify guesses at identities if the signature was not

encrypted. In JFK, a shared key derived from the

Diffie-Hellman secret and the two nonces is used

for encryption.

(b) SIGX(m) =⇒ SIGX(m), IDX , where IDX

denotes the public-key certificate of X . Since

the other party may not possess the signature-

verification key, it is necessary to include the cer-

tificate along with the signature.

(c) SIGX(m) =⇒ SIGX(m,Y), where Y is the

peer’s identity. A side condition here is that X

possesses the requisite identifying information

for Y , e.g., Y ′s public key certificate, before the

protocol is executed. This condition can be re-

moved if X receives Y ′s identity in an earlier

message of the protocol. In public-key based

challenge-response protocols, the authenticator

should identify both the sender and the intended

recipient. Otherwise, the protocol is susceptible

to a person-in-the-middle-attack. Here, the sig-

nature identifies the sender and the identity inside

the signature identifies the intended recipient. In

an encryption-based challenge-response protocol

(e.g., Needham-Schroeder [23]), since the pub-

lic encryption key identifies the intended recipi-

ent, the sender’s identity needs to be included in-

side the encryption. The original protocol did not

do so and the bug was discovered nearly twenty

years later by Lowe [24].

(d) gx =⇒ gx, Nx, where Nx is a random nonce

generated by the same entity which generated gx.

The nonce is a fresh random value and allows

Diffie-Hellman exponentials to be reused across

multiple protocol runs.

Note that refinements (b) and (c) are included as part of

the base challenge-response protocol in [15] (Section

10.3.3). We present them separately here in order to

clearly explain their significance.

We will now present a step-by-step reconstruction of the

core JFK protocol using these components, transformations

and refinements.

• Step 1: Compose components 1(a) and 1(b) above by

substituting gi form and gr for n in 1(b). The resulting

protocol is shown below.

I → R : gi

R → I : gr, SIGr (g
r, gi)

I → R : SIGi(g
i, gr)

• Step 2: Apply the “cookie transformation” to the pro-

tocol obtained from Step 1.

I → R : gi

R → I : gr, HMACHKr(g
i, gr)

I → R : gi, gr, HMACHKr(g
i, gr), SIGi (g

i, gr)

R → I : SIGr (g
r, gi)

• Step 3: Apply refinement 3(a) to the protocol obtained

from Step 2 using Ke as the encryption key.

I → R : gi

R → I : gr, HMACHKr(g
i, gr)

I → R : gi, gr, HMACHKr(g
i, gr)

EKe
(SIGi (g

i, gr))

R → I : EKe
(SIGr (g

r, gi))

• Step 4: Apply refinement 3(b) to the protocol obtained

from Step 3.

I → R : gi

R → I : gr, HMACHKr(g
i, gr)

I → R : gi, gr, HMACHKr(g
i, gr)

EKe
(SIGi (g

i, gr), IDi)

R → I : EKe
(SIGr (g

r, gi), IDr)

• Step 5: Apply transformation 2(b) to move the field

IDr from message 4 to message 2.

I → R : gi

R → I : gr, HMACHKr(g
i, gr), IDr

I → R : gi, gr, HMACHKr(g
i, gr)

EKe
(SIGi (g

i, gr), IDi)

R → I : EKe
(SIGr (g

r, gi))

• Step 6: Apply refinement 3(c) to messages 3 and 4 of

the protocol obtained from Step 4. Note that the side

condition for applying this rule to message 3, whereby

I needs to know peer’s identity IDr before she signs

it, is satisfied after step 5. The side condition for ap-

plying it to message 4 is also satisfied, because IDi is

introduced in message 4.

I → R : gi

R → I : gr, HMACHKr(g
i, gr), IDr

I → R : gi, gr, HMACHKr(g
i, gr)

EKe
(SIGi (g

i, gr, IDr), IDi)

R → I : EKe
(SIGr (g

r, gi, IDi))

• Step 7: Apply refinement 3(d) to the protocol obtained

from Step 6.

I → R : gi, Ni

R → I : gr, Nr, HMACHKr(g
i, Ni, g

r, Nr), IDr

I → R : gi, Ni, g
r, Nr, HMACHKr(g

i, Ni, g
r, Nr)

EKe
(SIGi (g

i, Ni, g
r, Nr, IDr), IDi)

R → I : EKe
(SIGr (g

r, Nr, g
i, Ni, IDi))

The protocol obtained from Step 7 represents the core

JFK protocol. For ease of exposition, we have ignored some

message components, viz. IDr′ , GRPINFOr, sa, sa
′,

IPi. This version has the following desirable properties:

security, identity protection (for initiator against passive at-

tackers only), computation DoS protection, memory DoS

protection, and ”almost” perfect forward secrecy. Since

SIGr(g
r) is not included in message 2, this protocol does

not provide identity protection for the initiator against ac-

tive attackers. Extending the composition-refinement based

framework to obtain a reconstruction of the complete JFK

protocol would be an interesting challenge.

5. The “Cookie” Transformation

In this section, we describe the “cookie transformation”:

a mechanism that makes a protocol resistant to DoS attacks.

The goal is to describe a transformation that systematically

transforms the protocol in Step 1 of the previous section into

the protocol obtained in Step 2. We will do this in 3 stages.

First we describe two transformations which separately pro-

vide protection against computation DoS and memory DoS

attacks. We then compose these to obtain the desired trans-

formation.

5.1 Protocol Description Notation

We use an extension of the strand space notation [25],

inspired by [4] to explicitly denote what constitutes a com-

putation DoS/ memory DoS attack. Here, we explain the

notation with a simple example. Consider the following 3-

step protocol from Step 1 of the previous section:

I → R : gi

R → I : gr, SIGr (g
r, gi)

I → R : SIGi(g
i, gr)

The representation of this protocol in the extended strand

space notation is shown in Figure 2. The horizontal arrows

denote messages exchanged during the protocol. The views

of both the participants are explicitly shown. For example,

in the first message, since I generates gi, it is shown as such

in I’s view. But as far as R is concerned, it is just a random

number. R has no way of verifying that it is of the form gi

since that would involve computing discrete logarithm. So,

it is denoted by x. A similar reasoning applies to gi and

u in the second message. Since I knows that the second

component of message 2 is R’s signature and can verify it,

it is explicitly shown as a signature. Similarly, signatures

are shown as such in message 3.

Vertical arrows are used to denote state changes upon

sending and receiving messages. We distinguish between

dashed vertical arrows (which denote internal computation

involved in processing a received message) and solid verti-

cal arrows (which denote waiting-for-message phases). Be-

side a solid vertical arrow, we specify the parameters saved

in the local state at that point. For example, after sending

message 2, R saves x, r in its local state till it receives mes-

sage 3. The dashed vertical arrows denote possible sites for

Computational DoS attacks while the solid vertical arrows

denote possible sites for Memory DoS attacks. We label a

single vertical arrow E∗ if it requires the participant to per-

form computationally expensive operations.

❜

I R

gi x

u, SIGr(u, g
i) gr, SIGr(g

r, x)

SIGi(g
i, u) SIGi(x, g

r)

i E∗

E∗ x, r

E∗

Figure 2. Example

5.2 The Transformation

1. CDoS protection:

The idea is to establish round-trip communication with

I before performing expensive operations. R sends

some fresh data to I which can be generated without

performing expensive operations. I has to return that

piece of data back to complete the round-trip. Fresh-

ness is required for replay protection. In the notation

defined in the previous section, the first dashed vertical

arrow on R’s side should not contain E∗.

The transformation is shown in Figure 3. Here n

is the fresh data. m denotes the piece of informa-

tion using which n can be reconstructed from msg1.

Computation of n should be inexpensive. msg2(E−)
andmsg2(E+) denote respectively the components of

msg2 that do not require/require expensive operations;

here, msg2(E−) = gr (since Diffie-Hellman expo-

nentials are reused) and msg2(E+) = SIGr(g
r, x).

2. MDoS protection:

The idea is that R should not save state before round-

trip communication is established with I . Instead she

should send out an unforgeable ”token” that captures

the state and which can be used later to reconstruct the

state. I should send back this token in the next mes-

sage. For example, a keyed hash of the DH exponen-

tials serves this purpose in JFK. The transformation is

shown in Figure 4. Here C corresponds to the tuple

(gr, x). The goal here is to ensure that the first solid

vertical arrow on R’s side should not contain state in-

formation (beyond HKr which is reused across mul-

tiple sessions and need not be counted as part of local

session state).

3. CDoS and MDoS protection:

We compose the transformations of Figure 3 and Fig-

ure 4 by applying the following rules:

(a) Set n = C, HMACHKr(C) and m =HKr.

(b) Take union of components of corresponding mes-

sages.

(c) Preserve computation constraints on dashed ver-

tical arrows.

(d) Preserve message ordering for each participant.

(e) Do not repeat message components which are al-

ready known.

The resulting 5-message protocol is shown in Figure 5.

Components in square brackets denote parameters that

are reused across multiple sessions and hence need not

be counted as part of local session state. Note that this

✘
✘
✘
❳

❳
❳

I R

msg1

msg2

E∗

E∗

m

I R

n,msg2(E−)

msg1

msg1, n

msg2(E+)

Figure 3. CDoS Protection Transformation

✘
✘
✘
❳

❳
❳

I R

x, r

msg2

msg3

I R

msg2, { C, HMACHKr(C)}

msg3, { C, HMACHKr(C)}

HKr

Figure 4. MDoS Protection Transformation

❤

I R

gi x

u, v gr, HMACHKr(g
r, x)

gi, u, v x, gr, HMACHKr(g
r, x)

[i]

E∗ [HKr, r]

SIGr(u, g
i) SIGr(g

r, x)

SIGi(g
i, u) SIGi(x, g

r)

[i], u

E∗

E∗

x, [HKr, r]

E∗

Figure 5. DoS Protection Transformation

protocol is resistant to both blind computation DoS and

memory DoS attacks. It is possible to reduce the num-

ber of messages by applying the following rule. Start

from the last message. If all components are com-

putable when the previous message was sent by this

participant, then move these components to the previ-

ous message, eliminate this message and iterate. (It

is necessary to check that computation constraints are

not violated before performing this step.) This is es-

sentially the same rule as transformation 2(b) in the

previous section. We can apply this rule to the proto-

col of Figure 5 to eliminate message 5 and move the

signature to message 3. Further iteration cannot pro-

ceed because of the computation constraint on the first

vertical arrow of R. The resulting protocol is shown in

Figure 6. It is identical to the one obtained from Step

2 in the previous section.

6. Conclusions and Future Work

We have presented a formal analysis of the JFK proto-

col. The goal has been to verify whether JFK satisfies all its

stated design goals. Towards this end, we have developed

a “rational reconstruction” of the core JFK protocol. Start-

ing from the Diffie-Hellman key exchange protocol [14] and

a simplified version of the standard challenge-response au-

thentication protocol [15], we systematically reconstructed

a close approximation of the JFK protocol using a series of

protocol compositions, transformations and refinements. At

each refinement step, we have clearly explained what pur-

pose is served by that message component and/or what at-

tack would arise if it were not executed. We believe that this

reconstruction provides a natural way to understand how the

message components of the protocol serve to meet the stated

design goals. Also, the general problem of composing se-

curity protocols in such a way that the security properties

of both the constituent protocols are retained, has been rec-

ognized as quite a difficult one. The method for compos-

ing Diffie-Hellman key exchange with challenge-response

as well as the composition technique for combining CDoS

protection with MDoS protection, although special cases,

do provide some indication that a general framework for

composing security protocols may be achievable.

References

[1] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J.

Ioannidis, A.D. Keromytis, O. Reingold. Just Fast

Keying (JFK). Internet Draft, November 2001.

[2] D. Harkins, D. Carrel. The Internet Key Exchange

(IKE). RFC 2409, November 1998.

[3] D. Dill. The Murϕ Verification System. In Proc. 8th

International Conference on Computer Aided Verifi-

cation, pages 390-393, 1996.

[4] N. Durgin, J. Mitchell and D. Pavlovic. A Compo-

sitional Logic for Protocol Correctness. In Proc. of

CSFW 2001, pages 241-255, IEEE 2001.

[5] R. Kemmerer, C. Meadows, J. Millen. Three Sys-

tems for Cryptographic Protocol Analysis. In Journal

of Cryptography, 7(2):79-130, 1994.

[6] A.W.Roscoe. Modelling and Verifying Key Exchange

Protocols using CSP and FDR. In Proc. 8th Computer

Security Foundations Workshop, pages 98-107, 1995.

[7] C. Meadows. The NRL Protocol Analyzer:

An Overview. In Journal of Logic Programming,

26(2):113-131, 1996.

[8] D. Bolignano. Towards a mechanization of crypto-

graphic protocol verification. In Proc. 9th Interna-

tional Conference on Computer Aided Verification,

131-142, 1997.

[9] L. Paulson. The inductive approach to verifying cryp-

tographic protocols. In Journal of Computer Security,

6:85-128, 1998. 131-142, 1997.

[10] J.C. Mitchell, M. Mitchell, U. Stern . Automated

Analysis of Cryptographic Protocols Using Murϕ.

In Proc. IEEE Symposium on Security and Privacy,

pages 141-153, 1997.

[11] J.C. Mitchell, V. Shmatikov, U. Stern . Finite-State

Analysis of SSL 3.0. In Proc. 7th USENIX Security

Symposium, pages 201-216, 1998.

[12] V. Shmatikov, J.C. Mitchell. Analysis of a Fair Ex-

change Protocol. In Proc. 7th Annual Symposium on

Network and Distributed System Security, pages 119-

128, 2000.

[13] V. Shmatikov, J.C. Mitchell. Analysis of a Abuse-Free

Contract Signing Protocol. In Proc. Financial Cryp-

tography, 2000.

[14] W. Diffie, M. E. Hellman. New Directions in Cryp-

tography. IEEE Transactions on Information Theory,

22(6):644-654, 1976.

[15] A. J. Menezes, P. C. van Oorschot, S. A. Van-

stone. Handbook of Applied Cryptography. CRC

Press, 1996.

[16] W. Diffie, P. C. Van Oorschot, M. J. Wiener. Authen-

tication and Authenticated Key Exchanges. Designs,

Codes and Cryptography, 2:107-125, 1992.

❤

I R

gi x

u, v gr, HMACHKr(g
r, x)

gi, u, v, x, gr, HMACHKr(g
r, x),

[i]

E∗ [HKr, r]

SIGr(u, g
i) SIGr(g

r, x)

SIGi(g
i, u) SIGi(x, g

r)

[i], u

Figure 6. Optimized Transformed Protocol

[17] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-

Hashing for Message Authentication. RFC 2104,

February 1997.

[18] D. Dill, S. Park, A. G. Nowatzyk. Formal Specifica-

tion of Abstract Memory Models. In Symposium on

Research on Integrated Systems, pages 38-52, 1993.

[19] U. Stern, D. Dill. Automatic Verification of the SCI

Cache Coherence Protocol. In Advanced Research

Working Conference on Correct Hardware Design and

Verification Methods, pages 21-34, 1995.

[20] V. Shmatikov, U. Stern . Efficient Finite-State Anal-

ysis for Large Security Protocols. In Proc. 11th IEEE

Computer Security Foundations Workshop, pages 106-

115, 1998.

[21] P. Karn, W. Simpson. Photuris: Extended Schemes

and Attributes. RFC 2523, March 1999.

[22] H. Krawczyk. The IKE-SIGMA Protocol. Internet

Draft, November 2001.

[23] R. Needham, M. Schroeder. Using Encryption for Au-

thentication in Large Networks of Computers. Com-

munications of the ACM, 21(12): 993-9, 1978.

[24] G. Lowe. Breaking and Fixing the Needham-

Schroeder Public-Key Protocol using CSP and FDR.

In Proc. of 2nd International Workshop on Tools and

Algorithms for the Construction and Analysis of Sys-

tems, 1996.

[25] F. J. T. Fabrega, J. C. Herzog, J. D. Guttman. Strand

spaces: Proving security protocols correct. Journal of

Computer Security,7(2/3):191–230, 1999.

