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Abstract

This paper continues the program initiated in [5], towards a derivation system for security protocols.
The general idea is that complex protocols can be formally derived, starting from basic security compo-
nents, using a sequence of refinements and transformations, just like logical proofs are derived starting
from axioms, using proof rules and transformations. The claim is that in practice, many protocols are
already derived in such a way, but informally. Capturing this practice in a suitable formalism turns out
to be a considerable task.

The present paper proposes rules for composing security protocols from given security components.
In general, security protocols are, of course, not compositional: information revealed by one may in-
terfere with the security of the other. However, annotating protocol steps by pre- and post-conditions,
allows secure sequential composition. Establishing that protocol components satisfy each other’s invari-
ants allows more general forms of composition, ensuring that the individually secure sub-protocols will
not interact insecurely in the composite protocol. The applicability of the method is demonstrated on
modular derivations of two standard protocols, together with their simple security properties.

1 Introduction

Modularity is a central problem in computer security and a proven challenge to many investigators (including
[20, 21, 22, 23, 24]). In this paper, we explore modular construction of network protocols and present a
system for reasoning about compound protocols from their parts. In general terms, we address two basic
problems in modular security. The first may be called additive combination — we wish to combine protocol
components in a way that accumulates security properties. For example, we may wish to combine a basic key
exchange protocol with an authentication mechanism to produce a protocol for authenticated key exchange.
The second basic problem is ensuring nondestructive combination. If two mechanisms are combined, each
serving a separate purpose, then it is important to be sure that neither one degrades the security properties
of the other. For example, if we add an alternative mode of operation to a protocol, then some party may
initiate a session in one mode and simultaneously respond to another session in another mode, using the
same public key or long-term key in both. Unless the modes are designed not to interfere, there may be
an attack on the multi-mode protocol that would not arise if only one mode were possible. An interesting
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illustration of the significants of nondestructive combination is the construction in [16] which shows that for
every security protocol there is another protocol that interacts with it insecurely.

Recognizing that many common network protocols are built using an accepted set of standard concepts,
we have identified a set of basic components, protocol composition operations, protocol refinements, and
protocol transformations for authentication and key exchange protocols. In [5], we characterize the structure
of a family of key exchange protocols that includes Station-To-Station (STS), ISO-9798-3, Just Fast Keying
(JFK) and related protocols, showing how all the protocols in this family may be derived systematically. (In
order to make this submission more self-contained, a very cursory overview is contained in Appendix E.)
We have also constructed systematic derivations of other families of protocols, in each case showing how
a simple starting protocol may be extended, incrementally adding properties or optimizing performance in
each step. While the derivation system seems a useful tool for developing and understanding protocols, we
have not yet been able to prove that each derivation step is sound for all protocols where it could be applied.
In this paper, we show how to prove correctness of additive and nondestructive combinations of protocol
components.

Intuitively, additive combination is captured by a before-after formalism for reasoning about steps in
protocol execution. Suppose P is a sequence of protocol steps, and ¢ and ¢ are formulas asserting secrecy
of some data, past actions of other principals, or other facts about a run of a protocol. The triple ¢[P] 4%
means that if ¢ is true before principal A does actions P, then « will be true afterwards. For example, the
precondition might assert that A knows B’s public key, the actions P allow A to receive a signed message
and verify B’s signature, and the postcondition may say that B sent the signed message that A received. The
importance of before-after assertions is that we can combine assertions about individual protocol steps to
derive properties of a sequence of steps: if ¢[P] 4t and ¢)[P’] 46, then ¢[PP’] 46. For example, an assertion
assuming that keys have been successfully distributed can be combined with steps that do key distribution
to prove properties of a protocol that distributes keys and uses them.

We ensure nondestructive combination, which is useful for reasoning about running older versions of a
protocol concurrently with current versions (e.g., SSL 2.0 and SSL 3.0) and for verifying protocols like IKE
[13] which contain a large number of sub-protocols, using invariance assertions. The central assertion in our
reasoning system, I' = ¢[P] 41, says that in any protocol satisfying the invariant T, the before-after assertion
¢[P] 4% holds in any run (regardless of any actions by any dishonest attacker). Typically, our invariants are
statements about principals that follow the rules of a protocol, as are the final conclusions. For example, an
invariant may state that every honest principal maintains secrecy of its keys, where “honest” means simply
that the principal only performs actions that are given by the protocol. A conclusion in such a protocol may
be that if Bob is honest (so no one else knows his key), then after Alice sends and receives certain messages,
Alice knows that she has communicated with Bob. Under the specific conditions described in this paper,
nondestructive combination occurs when two protocols are combined and neither violates the invariants of
the other.

As informally described, “additive combination” and “nondestructive combination” may seem like over-
lapping concepts, at least to the degree that additive combination assumes that the added steps do not destroy
any security properties. In our logic, we factor the two concepts into two separate notions, one for adding
steps to a protocol under some assumed invariants, and another for showing that a combination of protocol
steps preserves a set of invariants. More specifically, if we want to add an authentication step to a protocol,
we first show that the additional step preserves the same needed invariants. Then, under the assumption that
invariants are preserved, we combine properties guaranteed by separate steps. There is some synergy in this
approach, since the logical principles used to prove an invariant are the same as those used to prove protocol
properties from a given set of invariants.
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Figure 1. 1SO-9798-3 as arrows-and-messages

To show the utility of our logic for practical protocols, we present three examples. Example 6.1 is a for-
mal correctness proof of 1SO-9798-3 , constructed by composing proofs of two parts, a standard signature-
based challenge response protocol [28], and a Diffie-Hellman key exchange protocol [6]. Example 6.2
proves correctness of a protocol that exchanges certificates to establish public keys, and then uses public-
key cryptography and nonces to establish a shared secret. Example 6.3 combines the two, showing that
running any number of instances of 1SO-9798-3 and the Needham-Schroeder public-key protocol in parallel
preserves the security properties of both. While the formal proofs are somewhat lengthy when written out
in full detail, as in any formal proof system, the proof structure takes advantage of composition ideas and
illustrates the power of a modular approach. Although the assertions we prove only mention steps of the
protocol, the logic is sound in a stronger sense: each provable assertion about an action or sequence of
actions holds in any run of the protocol that contains the given actions and arbitrary additional actions by
any number of additional principals and malicious attacker(s). This “implicit attacker” method lets us prove
security properties of protocols under attack, while reasoning only about the sequence of actions taken by
honest parties in the protocol.

It is well known that many natural security properties (e.g., noninterference) are not preserved either
under composition or under refinement. This has been extensively explored using trace-based modeling
techniques [20, 21, 22, 23, 24], using properties that are not first-order predicates over traces, but second-
order predicates over sets of traces that may not have closure properties corresponding to composition and
refinement. In contrast, our security properties are safety properties over sets of traces that satisfy safety
invariants, thus avoiding negative results about composability.

The rest of the paper is organized as follows. Section 2 discusses the process calculus that we use for
defining the steps of a protocol. The syntax and semantics of the core protocol logic is presented in Section
3. The proof system is presented in Section 4. Section 5 describes the extensions to the core proof system
used to reason about protocol composition. In Section 6, we illustrate applications of the logic. In Section
7, we describe previous work on protocol composition [4, 11, 12, 14, 16, 18, 27, 36] and discuss how our
formalization can be used to explain some of those results. Finally, in Section 8, we present our conclusions
and propose some themes for future work.

2 Cord Calculus

Cords [9] are the formalism we use to represent protocols and their parts. They form an action calculus [29,
30, 33], based on r-calculus [31], and related to spi-calculus [1]. The cords formalism is also similar to the
approach of the Chemical Abstract Machine formalism [3], in that the communication actions can be viewed
as reactions between “molecules”. Cord calculus serves as a simple “protocol programming language”
which supports our Floyd-Hoare style logical annotations, and verifications in an axiomatic semantics. Cord
calculus is presented in [9]. In order to make this paper self-contained, a brief summary is included in
Appendix A.
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Figure 2: 1SO-9798-3 as a cord space

In this section, we illustrate with an example how protocols are represented in cord calculus. Figure 1
shows the 1SO-9798-3 protocol [15] in the informal arrows-and-messages notation which is commonly used
to describe security protocols. The same protocol is written out in the language of cord calculus in Figure 2.
The common point between the two is that a protocol is described by listing out the sequence of actions that
honest parties would execute in a run. In this example, the protocol consists of two roles, the initiator role
and the responder role. The sequence of actions in the initiator role are given by the cord A in Figure 2. In
words, the actions are: generate a fresh random number; send a message with the Diffie-Hellman exponential
of that number to the peer, B; receive a message with source address B; verify that the message contains
Brs signature over data in the expected format; and finally, send another message to B with the initiator’s
signature over the Diffie-Hellman exponential that she sent in the first message, the data she received from
B (which should be a Diffie-Hellman exponential generated by B) and B’s identity. The notations (vz),
(t), (z) refer respectively to the actions of nonce generation, sending a term and receiving a message. Here,
a message is assumed to be of the form: (source, destination, content). Detailed syntax of cord calculus is
presented in Appendix A.

3 A Protocol Logic
3.1 Syntax

The formulas of the logic are given by the grammar in Table 1, where p may be any role, written using the
notation of cord calculus. Here, ¢ and P denote a term and a process respectively. We use the word process
to refer to a principal executing an instance of a role, e.g., Alice taking part in a session of a protocol in the
initiator role. As a notational convention, we use X to refer to a process belonging to principal X. We use ¢
and ) to indicate predicate formulas, and m to indicate a generic term we call a “message”. m is of the form
(source, destination, protocol-identifier, content), i.e., each message has source and destination fields and a
unique protocol identifier besides the contents. Note that the source field of a message may not be the same as
the actual sender of the message since the intruder can spoof the source address. Also, the principal identified
by the destination field may not receive the message since the intruder can intercept messages. The source
and destination fields in the message are useful while proving authentication properties of protocols. When
an honest principal sends out a message, the source field identifies her and the destination field identifies the
intended recipient. Our formalization of authentication is based on the notion of matching records of runs
[7] which requires that whenever A and B accept each other’s identities at the end of a run, their records
of the run should match, i.e., each message that A sent was received by B and vice versa, each send event
happened before the corresponding receive event, and moreover the messages sent by each principal (A or
B) appear in the same order in both the records. Including the source and destination fields in the message
allows us to match up send-receive actions. Since in this paper, we reason about correctness of a protocol in

4



an environment in which other protocols may be executing concurrently, it is important that when A and B
accept each other’s identities, they also agree on which protocol they have successfully completed with the
other. One way to extend the matching histories characterization to capture this requirement is by adding
protocol identifiers to messages. Now if A and B have matching histories at the end of a run, not only do
they agree on the source, destination and content of each message, but also on which protocol this run is an
instance of.

Most protocol proofs use formulas of the form 6[P] x ¢, which means that after actions P are executed
in process X, starting from a state where formula 6 is true, formula ¢ is true about the resulting state of
X. Here are the informal interpretations of the predicates, with the basis for defining precise semantics
discussed in the next section.

The formula Has(X, x) means that principal X possesses information z in the process X. This is
“possesses” in the limited sense of having either generated the data or received it in the clear or received it
under encryption where the decryption key is known. The formula Send(X, m) means that the last action in
a run of the protocol corresponds to principal X sending message m in in the process X. Receive(X,m),
New(X,t), Decrypt(X,t), and Verify(X,t) are similarly associated with the receive, new, decrypt and
signature verification actions of a protocol. Fresh(X,t) means that the term ¢ generated in X is “fresh” in
the sense that no one else has seen any term containing ¢ as a subterm. Typically, a fresh term will be a nonce
and freshness will be used to reason about the temporal ordering of actions in runs of a protocol. This form
of reasoning is useful in proving authentication properties of protocols. The formula Honest(X) means that
the actions of principal X in the current run are precisely an interleaving of initial segments of traces of a set
of roles of the protocol. In other words, X assumes some set of roles and does exactly the actions prescribed
by them. Contains(t1,t2) means that ¢ is a subterm of ¢;. This predicate helps us identify the components
of a message. The two temporal operators < and © have the same meaning as in Linear Temporal Logic
[19]. Since we view a run as a linear sequence of states, < ¢ means that in some state in the past ¢ holds,
whereas (5 ¢ means that in the previous state ¢ holds. The predicate After(a1, ap) means that the action as
happened after the action a1 in a run. In this paper, we restrict attention to protocol roles in which all actions
are unique. In particular, a principal executing a role of a protocol does not send the same message twice.
This seems like a reasonable assumption since even if she did send two messages with the same content,
she would probably distinguish the two by using message sequence numbers or a similar mechanism. The
technical benefit of this assumption is that After becomes a transitive relation for actions executed by honest
principals.

We note here that the temporal operator < and some of the predicates (Send, Receive) bear semblance
to those used in NPATRL [35], the temporal requirements language for the NRL Protocol Analyzer [25,
26]. However, while NPATRL is used for specifying protocol requirements, our logic is also used to infer
properties of protocols. This leads to essential semantical differences.

3.2 Semantics

A formula may be true or false at a run of a protocol. More precisely, the main semantic relation, Q, R = ¢,
may be read, “formula ¢ holds for run R of protocol Q.” In this relation, R may be a complete run, with
all sessions that are started in the run completed, or an incomplete run with some principals waiting for
additional messages to complete one or more sessions. If Q is a protocol, then let O be the set of all initial
configurations of protocol Q, each including a possible intruder cord. Let Runs( Q) be the set of all runs of
protocol Q with intruder, each a sequence of reaction steps within a cord space. If ¢ has free variables, then
Q, R E ¢ if we have Q, R = o¢ for all substitutions o that eliminate all the free variables in ¢. We write

QE¢if QR ¢forall R € Runs(Q).



Action formulas

a == Send(P,m)|Receive(P,m)|New(P,t)|Decrypt(P,t)| Verify(P,t)

Formulas

¢ == a|Has(P,t)|Fresh(P,t)|Honest(N)|Contains(ti,t2) | Ao | | Tz | SP| O ¢
Modal forms

U = polopg
After(a,b) = & (b AOS a)
Table 1: Syntax of the logic

AAl1  Qlalx & (anO9)

AN1  ¢[(vn)]x Has(X,n)

AN2  ¢[(vn)]x Has(Y,n) D (Y = X)
AN3  ¢[(vn)]x Fresh(X,n)

AR1  ¢[(m)|x Has(X,m)

Table 2: Axioms for protocol actions

The inductive definition of @, R = ¢ is given in Appendix B. The main idea is to view a run as a
sequence of reaction steps within a cord space. Each reaction step corresponds to a principal executing an
action. It therefore becomes possible to assert whether a particular action occurred in a given run and also
to make assertions about the temporal ordering of the actions. An alternative view, similar to the execution
model used in defining Linear Temporal Logic (LTL) semantics, is to think of a run as a linear sequence of
states. Transition from one state to the next is effected by an action carried out by some principal in some
role. Associating that action with the state that the system ends up in as a consequence, allows us to use the
well-understood terminology of LTL in our logic. A formula is true in a run if it is true in the last state of
that run. An action formula a is therefore true in a run if it is the last action in that run. On the other hand,
a past formula < a is true if in the past the action formula a was true in some state, i.e., if the action had
occurred in the past.

4 Proof System

41 Axiomsfor Protocol Actions

The axioms about protocol actions are listed in Table 2. All the axioms state properties that hold in the state
reached by executing one of the actions in a state in which formula ¢ holds. Note that the a in axiom AA1
is any one of the 5 actions and a is the corresponding predicate in the logic. A A1 states that if a principal



Axioms Capturing Dolev-Yao Model:

DEC & Decrypt(X, {nl}x) D Has(X,n)
PROJ Has(X, (z,y)) D Has(X,z) A Has(X, y)
SEC  Honest(X) A & Decrypt(Y, {n}x) > (Y = X)

VER  Honest(X) A & Verify(Y, {{n[}%) D
3X.3Im.(& Send (X, m) A Contains(m, {|n[} %))

Axioms Capturing Uniqueness of Nonces:

N1 S New(X,n)ASNew(Y,n) D (X =Y)
N2 & New(X,p) D =S New(Y,gP)
F1  &Fresh(X,n) A SFresh(Y,n) D (X =Y)

Axiom Capturing Subterm Relationship:

CON  Contains((z,y),z) A Contains((z,y),y)

Table 3: Relationship between properties

has executed an action in some role, then the corresponding predicate asserting that the action had occurred
in the past is true. Also, in the previous state, ¢ is true. If process X generates a new value n and does no
further actions, then axiom AN1 says that X knows n, AN2 says that no one else knows n, and AN3 says
that n is fresh. AR1 says that if X has received a message m, then she knows m.

4.2 Axiomsrelating Atomic Predicates

Table 3 lists axioms relating various propositional properties, most of which follow naturally from the se-
mantics of propositional formulas. For example, DEC states that if X decrypts {|n|} x, then X knows n
because that is the result of the decryption, and PROJ states that if a process knows a tuple z, 3 then he also
knows z and y. VER and SEC respectively refer to the unforgeability of signatures and the need to possess
the private key in order to decrypt a message encrypted with the corresponding public key. The additional
condition requiring principal X to be honest guarantees that the intruder is not in possession of the private
keys. The above described four axioms together provide an abstraction of the standard Dolev-Yao intruder
model [8]. An important axiom is N1 which states that if a process X has generated a value n, then that
value is distinct from all other values generated in all other roles. N2 states that freshly generated values are
distinct from Diffie-Hellman exponentials. F'1 states that fresh values generated in different processes are
distinct. N1, N2, and F1 together capture the intuition that fresh nonces and Diffie-Hellman exponentials
are unique. Finally, CON states that the tuple x, y contains = and y as subterms.



Generic Rules:

0[P|x¢ H[P]wal O[Plx¢ 6 D0 ¢D¢’G2 o r.¢(2) s
O[P]xop AN 0'[P]x¢' O[P]x ¢(co)

Preservation Axioms: (For Persist € {Has, & ¢},)

P1 Persist(X,t)[a] xPersist(X,t)

P2 Fresh(X,t)[a|xFresh(X,t), where (t Z a) V (a # (m))

P3 HasAlone(X,t)[a] xHasAlone(X,t), where (t Z, a) V (a # (m))
Freshness Loss Axiom:

F  Fresh(X,t)[(m)]x—Fresh(X,t), where (t C m)

Table 4: Generic Rules, Preservation and Freshness Loss Axioms

4.3 Inference Rules, Preservation and Freshness L oss Axioms

Table 4 collects the inference rules and some additional axioms. The generic inference rules follow naturally
from the semantics. G2 is exactly of the same form as the rule of consequence in Hoare Logic. It is clear that
most predicates are preserved by additional actions. For example, if in some state Has(X, n) holds, then it
continues to hold, when X executes additional actions. Intuitively, if a process possesses some information
at a point in a run, then she remembers it for the rest of the run. Note, however, that the Fresh predicate is
not preserved if the freshly generated value n is sent out in a message (see F).

4.4 Axiomsand Rulesfor Temporal Ordering

In order to prove mutual authentication, we need to reason about the temporal ordering of actions carried
out by different processes. For this purpose, we use a fragment of the proof system for Propositional Lin-
ear Temporal Logic, PLTL (Table 5). See [34] for a complete axiomatization of PLTL. The axioms and
rules specific to the temporal ordering of actions are presented in Table 5. The first two rules are fairly
straightforward. AF1 orders the actions within a role. This is consistent with the way we view a role as an
ordered sequence of actions. AF2 states that the After relation is transitive on actions executed by honest
participants. It makes sense since we assume that in a role of a protocol, an honest principal does not send
the same message twice. AF3 and AF4 use the freshness of nonces to reason about the ordering of actions
carried out by different processes. Intuitively, AF3 states that if a process X creates a fresh value n and
then sends out a message containing it as a subterm, then any action carried out by any other process which
involves n (e.g. if Y receives a message containing n inside a signature), happens after the send action.
AF4 is similar except for the fact that the roles of X and Y are reversed.



PLTL Axioms:

T1 S @AY D (S oA Y)
T2 S @VY)D(OoVOY)
T3 ©O~¢ <00

Temporal Generalization Rule:

TGEN

- _\¢
Temporal Ordering of actions:

AF1 Olay ...an)x After(az,az) A ... A After(ap—1,an)

AF2 Honest(X') A Honest(Y") A Honest(Z) O
(After(ai(X),a2(Y)) A After(az(Y),a3(Z)) D After(a1(X),a3(2)))

Fresh(X,n)[(m)P]x (¢ D ©ax(Y))
Fresh(X,n)[(m)P]x (¢ D After(Send(X,m),az))

(X £2Y)A(n Cm,ap)

O[Pas]x (¢ D & (Send(Y, m) A OFresh(Y,n)))
O[Pas]x (¢ D After(Send(Y,m),az))

AF4a (X #Y)A(n Cm,ap)

Table 5: Axioms and rules for temporal ordering




45 TheHonesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a protocol. It is
similar to the basic invariance rule of LTL [19]. The honesty rule is used to combine facts about one role
with inferred actions of other roles. For example, suppose Alice receives a response from a message sent to
Bobh. Alice may wish to use properties of Bob’s role to reason about how Bob generated his reply. In order to
do so, Alice may assume that Bob is honest and derive consequences from this assumption. Since honesty,
by definition in our framework, means “following one or more roles of the protocol,” honest principals must
satisfy every property that is a provable invariant of the protocol roles.

Recall that a protocol Q is a set of roles, @ = {p1,p2,...,pr}. If p € Qs arole of protocol Q, we
write PeB.S(p) if P is a continuous segment of the actions of role p such that (a) P is the empty sequence;
or (b) P starts at the beginning of p and goes upto the first receive ; or (c) P starts from a receive action and
goes upto the next receive action; or (d) P starts from the last receive action and continues till the end of the
role. We call such a P a basic sequence of role p. The reason for only considering segments starting from a
read and continuing till the next read is that if a role contains a send, the send may be done asynchronously
without waiting for another role to receive. Therefore, we can assume without loss of generality that the
only “pausing” states of a principal are those where the role is waiting for input. If a role calls for a message
to be sent, then we dictate that the principal following this role must complete the send before pausing.

Since the honesty rule depends on the protocol, we write Q + 6[P]¢ if 8] P]¢ is provable using the
honesty rule for @ and the other axioms and proof rules. Using the notation just introduced, the honesty rule
may be written as follows.

[lx¢  Vp€ QVPeBS(p). ¢ [Plx ¢ no free variable in ¢
N HON  except X bound in
Q - Honest(X) D ¢ [Py

In words, if ¢ holds at the beginning of every role of Q and is preserved by all its basic sequences, then
every honest principal executing protocol Q must satisfy ¢. The side condition prevents free variables in the

conclusion Honest(XX') D ¢ from becoming bound in any hypothesis. Intuitively, since ¢ holds in the initial
state and is preserved by all basic sequences, it holds at all pausing states of any run.

5 Formalizing Protocol Composition

Until this point, protocols have been analyzed in isolation. In this section, we extend the deductive system
to reason about protocol composition. In doing so, we address the two ways in which composition problems
can arise in security protocol analysis. Both arise out of complexity. In one case, we wish to gain control
of complexity by building up a proof of correctness of a complex protocol from proofs of correctness of its
component sub-protocols. In the other, we want to avoid insecure interactions between different protocols
or different versions of the same protocol that may be operating over the same network.

The protocol composition rules are collected in Table 6. I" denotes a set of formulas which we refer to
as environment invariants. The idea is to capture, using these formulas, the constraints that the environment
must satisfy in order to enable a specific protocol to retain its security property. Typically, these constraints
will impose restrictions on the actions of the honest principals, i.e., the principals who are faithfully exe-
cuting one or more of the protocols running in the environment. We write I' - ¢ if ¢ is provable using the
formulas in I" and the axioms and proof rules of the deductive system. The semantic entailment, T" = ¢, is
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Table 6: Composition Rules

defined in Appendix B. Essentially, it says, that in any run in which the invariants in I" hold, the formula ¢
is true.

The weakening rule, W, states that a formula ¢ which is provable from a set of hypotheses, I", remains
provable if additional formulas are added to the set of hypotheses. The protocol composition rule C1
gives us a way of sequentially composing two roles P and P’ when the logical formula guaranteed by the
execution of P, i.e., the post-condition of P, matches the pre-condition required in order to ensure that P’
achieves some property. As before, I" denotes a set of hypotheses which are used in proving the properties of
the protocols. This form of reasoning allows a proof of correctness of a protocol to be built up incrementally
from a proof of its component sub-protocols. The other composition rule C2 states that if the environment
invariants hold for two protocols, Q and Q’, then the invariants also hold for their composition. This rule
is sound if the formulas in I" capture trace-based invariants, which are proved using the honesty rule in our
deductive system. Soundness proofs of the rules in Table 6 are presented in Appendix C.

If Q and Q' are protocols, then we define Q o Q' to be any protocol such that every role p in Q o Q'
is a concatenation of basic sequences of roles in @ or Q'. Therefore, every p € Q o Q' can be written as
p = p1p2 ... pn Where every p; is a basic sequence of a role in Q or Q’. Note that sequential and parallel
composition arise as special cases of this general composition operation.

Our general methodology for proving protocol composition results involves the following steps:

1. Prove separately the security properties of protocols Q and Q’.

2. ldentify the set of environment invariants used in the two proofs, I" and I'’. The formulas included in
these sets will typically be the formulas in the two proofs, which were proved using the honesty rule.

3. Apply the weakening rule so that ' U T represents the set of environment invariants that will be used
while applying the composition rules C1 and C2. This step is required in case of sequential compo-
sition or if we want to prove that the properties of both Q and Q’ are preserved by the composition
process. However, if the goal is to just prove that the properties of O are preserved, then the set of
environment invariants that will be used while applying C1 and C2 will simply be T'.

4. When the post-condition of a role of Q matches the pre-condition of the corresponding role of Q’,
sequentially compose the two roles by applying rule C1. This step is required only in the case of
sequential composition.

5. Prove that the environment invariants used in proving the properties of the protocols, I" U T, hold for
both the protocols. Since O + I' was already proved in Step 1, in this step, it is sufficient to show that
Q I I and similarly that Q' - T". If Step 3 was skipped, then it is sufficient to just show that Q' - T".
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Note that in proving a composition result (whether sequential or parallel), we always prove that the
two protocols under consideration respect each other’s invariants (Step 5), i.e., that they do not interact
insecurely. In addition, while proving that two protocols can be sequentially composed, we require that the
post-condition of the first matches the pre-condition of the second (Step 4). Thus, in proving a sequential
composition result, we address the two central problems of compositional protocol analysis mentioned in
the beginning of the section.

6 Examplesof Protocol Composition

In this section, we illustrate the use of the methodology outlined in the previous section, by presenting
modular proofs of two standard protocols, 1SO-9798-3 [15] and NSL [32, 17]. The parallel composition of
these two protocols is also proved secure. Due to space constraints, we only present the the proof of 1SO-
9798-3 in its entirety, and sketch an outline of the NSL proof and the proof of correctness of their parallel
composition.

Example 6.1 The 1SO-9798-3 Protocol

The 1SO-9798-3 protocol is constructed by a sequential composition of a protocol based on the Diffie-
Hellman key exchange protocol and the standard signature-based challenge-response protocol. Here, we
prove the key secrecy property of the Diffie-Hellman protocol and the mutual authentication property of
the challenge-response protocol. We then prove that the 1SO-9798-3 protocol can be used to establish an
authenticated shared secret by composing the correctness proofs of these two protocols.

Challenge Response Protocol, CR: Our formulation of authentication is based on the concept of match-
ing conversations [2] and is similar to the idea of proving authentication using correspondence assertions
[37]. The same basic idea is also presented in [7] where it is referred to as matching records of runs. Simply
put, it requires that whenever A and B accept each other’s identities at the end of a run, their records of
the run match, i.e., each message that A sent was received by B and vice versa, each send event happened
before the corresponding receive event, and moreover the messages sent by each principal (A or B) appear
in the same order in both the records.

A complete proof of the mutual authentication property guaranteed by executing the C' R protocol is
presented in Table 10 in Appendix D. The final property proved about the initiator role (referred as ¢ qu:n
henceforth) is of the form: precondition [actions] postcondition, where:

precondition = Fresh(A,m)
actions = (A, B,m)(B, A,n,{m,n, A}5/B, Ay, 2)
(z/{m, y, Al B)(A, B, {{m.y, Bl )]
postcondition = Honest(B) D ActionsInOrder(
Send(A, {4, B,m}),
Receive(B, {A, B,m}),
Send(Bv {B7 ‘Av {nv {|m, n, A’}E}})7
Receive(A, {B, A, {n, {{m,n, A}5}}))

Here, the predicate ActionsIinOrder(ay, as, ..., a,) means that the actions a1, ao, ..., a,, were executed in
that order. Intuitively, this formula means that after executing the actions in the initiator role purportedly
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DH1 Has(X,a) A Has(X, ¢%) D Has(X, g%)

DH2 Has(X,¢%) D Has(X, ¢*)

DH3 Has(X, gab) D (Has(X, a) A Has(X, gb)) vV
(Has(X, b) A Has(X, ¢g%))

DH4 Fresh(X,a) D Fresh(X, g%)

Table 7: Rules for Diffie-Hellman key exchange

with B, A is guaranteed that her record of the run matches that of B, provided that B is honest. The set of
environmental invariants used in this proof, I", contains only one formula (line (9) of Table 10), i.e.,

I' = { Honest(B) D (
( @Send(B,AmoA) A Contains(mo, {Im,n, A}5) A =S Fresh(B,m) ) D (
mo = {Bv A, {7}7 {‘Am7 n, A’}E}}{\
& (Send (B, {B, A, {n,{m, n, AA‘}P}}) A OFresh (B, p))/\ A
. }ActionslnOrder(Receive(B, {A,B,m}),Send(B,{B, A, {n,{m,n, Al}5}}))

Intuitively, this invariant states that whenever honest B signs a term which is a triple with the third compo-
nent A, and the first component was not freshly generated by B, then it is the case that this signature was
sent as part of the second message of the C'R protocol. (Note that each message sent and received has the
protocol-id in it. We omit these to improve readability).

Base Diffie Hellman Protocol, DHy: The DHj protocol involves generating a fresh random number and
computing its Diffie-Hellman exponential. It is therefore the initial part of the standard Diffie-Hellman key
exchange protocol. In order to reason about the security property of this protocol, the term language and
the protocol logic have to be enriched to allow reasoning about Diffie-Hellman computation. The terms
g(a) and h(a,b), respectively representing the Diffie-Hellman exponential g* mod p and the Diffie-Hellman
secret ¢®® mod p, are added to the term language. To improve readability, we will use ¢g® and g° instead of
g(a) and h(a,b). Table 7 presents the rules specific to the way that Diffie-Hellman secrets are computed.
DH1 captures the way that a Diffie-Hellman secret is computed from an exponent and an exponential. DH2
captures the commutativity of exponentiation. DHS3 captures the hardness of the discrete log problem by
stating that in order to compute the Diffie-Hellman secret, at least one exponent and the other exponential
needs to be known. DHA4 captures the intuition that if a is fresh at some point of a run, then ¢¢ is also fresh
at that point.
The property of the initiator role of the D Hq protocol is given by the formula below.

[(va)] , HasAlone(A, a) A Fresh(A, g%)

This formula follows easily from the axioms and rules of the logic. It states that after carrying out the
initiator role of D H, A possesses a fresh Diffie-Hellman exponential g and is the only one who possesses
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the exponent a. This property will be useful in proving the secrecy condition of the 1SO-9798-3 protocol.
The set of environmental invariants used in this proof, I, is empty.

Composing the Protocols:  We now prove the security properties of the 1ISO-9798-3 protocol by compos-
ing the correctness proofs of DHy and C'R. In doing so, we follow the general methodology for proving
composition results outlined in Section 5. Let us go back and look at the form of the logical formulas
characterizing the initiator roles of DH, and CR:

DHy : T’ F [Initpg,] 4 Fresh(4, g%)
CR : Tt Fresh(A, m) [Initcr] 4 Gauth

At this point, steps 1 and 2 of the general methodology have already been carried out. We now apply the
weakening rule to both the formulas above (step 3). Since I'" is empty, I' U I is simply I". Note that the
post-condition of D Hy matches the pre-condition of C'R. We can therefore compose the two formulas by
applying the composition rule C1 (step 4). The resulting formula is:

1ISO-9798-3 (auth.) :I'F [InitDHO;InitCR]A Dauth

The result of composing the two roles is that the freshly generated Diffie-Hellman exponential is substituted
for the nonce in the challenge-response cord. The resulting role is precisely the initiator role of the 1SO-
9798-3 protocol. The formula above states that the mutual authentication property of C'R is preserved
by the composition process assuming that the environmental invariants in I" are still satisfied. Finally,
using the honesty rule, it is easily proved that D H| respects the environmental invariants in I (step 5).
Therefore, by applying the composition rule C2, we conclude that the sequential composition of DH and
C R, which is ISO-9798-3 , respects the invariants in I'. This completes the composition proof for the mutual
authentication property.

The other main step involves proving that the secrecy property of DHy is preserved by C'R, since the
C R protocol does not reveal the Diffie-Hellman exponents.

DH : + [Initpgy,] 4, HasAlone(A, a)
CR’ : F HasAlone(A4, a) [Initcr/] 4 HasAlone(A4, a)

Here, C R’ is the same protocol as C'R except that g is substituted for the nonce m. Therefore, by applying
the composition rule C1 again, we have the secrecy condition for the 1ISO-9798-3 protocol:

ISO-9798-3 (secrecy) :
F [Initpw,; Initcr] 4 HasAlone(A, a)

Since the set of environment invariants is empty, steps 3 and 5 follow trivially. The rest of the proof uses
properties of the Diffie-Hellman method of secret computation to prove the following logical formula:

ISO-9798-3 (shared-secret) : [Initpr,; Initcr] 4 Honest(B) D
(n = g A Has(A, g?°) A (Has(X, g?%0) >
(X =AVX=RB))

Intuitively, the property proved is that if B is honest, then A and B are the only people who know the
Diffie-Hellman secret ¢. In other words, the 1ISO-9798-3 protocol can be used to compute an authenticated
shared secret. The complete proof is presented in Table 11 in Appendix D. It requires another invariant (line
(3)) capturing the intuition that the honest agents sign Diffie-Hellman exponentials only.
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Example 6.2 The NSL Protocol

The 7 message NSL protocol can be proved correct by sequential composition of two protocols, which we
refer to as NSL-init and NSL-base . By running NSL-init , a principal obtains the public key certificate of
a peer from the server. If a principal possesses a peer’s public key certificate, she can run NSL-base with
him and set up an authenticated shared secret. In our formalism, the postcondition of NSL-init is that the
principal knows a peer’s public key certificate. Also, with a precondition capturing the same property, NSL-
base has a postcondition stating that the two principals possess a shared secret. Thus, the two protocols can
be composed using the composition rule C1. The resulting protocol is NSL . Moreover, it can be proved
that the two protocols respect each other’s invariants, allowing us to conclude that the NSL protocol can be
used to set up a shared secret. A part of this proof appears in [9].

Example 6.3 Parallel Composition of ISO-9798-3 and NSL

Since 1S0-9798-3 and NSL respect each other’s invariants, their parallel composition can also be proved
secure using our formalism. The main insight from this proof is that if the authenticators of two proto-
cols (which are individually secure) cannot be confused with each other, then their composition is secure.
Disjoint encryption, which has been suggested as a design principle to avoid insecure interaction between
protocols [4, 12], appears to be a special case of this more general principle.

7 Reated Work

Early work on the protocol composition problem concentrated on designing protocols that would be guar-
anteed to compose with any other protocol. This led to rather stringent constraints on protocols: in essence,
they required the fail-stop property [11] or something very similar to it [14]. Since real-world protocols are
not designed in this manner, these approaches did not have much practical application. More recent work
has therefore focussed on reducing the amount of work that is required to show that protocols are compos-
able. Meadows, in her analysis of the IKE protocol suite using the NRL Protocol Analyzer [27], proved that
the different sub-protocols did not interact insecurely with each other by restricting attention to only those
parts of the sub-protocols, which had a chance of subverting each other’s security goals. Independently,
Thayer, Herzog and Guttman used a similar insight to develop a technique for proving composition results
using their strand space model [36]. Their technique consisted in showing that a set of terms generated
by one protocol can never be accepted by principals executing the other protocol. The techniques used for
choosing the set of terms, however, is specific to the protocols in [10]. A somewhat different approach
is used by Lynch [18] to prove that the composition of a simple shared key communication protocol and
the Diffie-Hellman key distribution protocol is secure. Her model uses I/O automata and the protocols are
shown to compose if adversaries are only passive eavesdroppers.

In a recent paper [4], Canetti, Meadows and Syverson, revisit the protocol composition problem. They
show how the interaction between a protocol and its environment can have a major effect on the security
properties of the protocol. In particular, they demonstrate a number of attacks on published and widely
used protocols that are not feasible against the protocol running in isolation but become feasible in some
environments. The main question that this study leaves open is: how should the environment be constrained
so that it does not subvert the security goals of a protocol? The authors put forward some rules of thumb that
could be useful in answering this question. Of these, at least two can be justified using our formalization. The
first of these states that the environment should not use keys or other secrets in unaltered form. Specifically,
the protocol under consideration should not encrypt messages with a key used to encrypt messages by any
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protocol in its environment. The reason this makes sense is that if two protocols use a particular form
of encrypted message as a test to authenticate a peer, then the attacker might be able to make a principal
running the first protocol accept a message which actually originated in a run of the second protocol. In
our formalism, the environmental invariant for the protocol under consideration would fail to hold in such
an environment, and the composition proof would therefore not go through. We note that this principle
has been followed in the design of real-world protocols like IKE [13]. Also, Guttman and Fabrega have
proved a theoretical result to the same effect in their strand space model [12]. The other rule of thumb (also
recommended by Kelsey, Schneier and Wagner in [16]), is the use of unique protocol identifiers to prevent
a message intended for use in one protocol to be mistaken for use in another protocol. This rule can also be
similarly justified.

8 Conclusions

A modular approach towards construction and analysis of systems, which is often seen in other areas of
computer science, does not seem to work very easily in computer security. The main problem is that systems
which are individually secure might lose their security when they are put together because of the way they
interact with each other. In this paper, we have presented a methodology for modular reasoning about
security protocols. While doing so, we have addressed two basic problems: (a) how do you construct a
protocol from smaller sub-protocols? (b) how do you prove that two protocols which are individually secure
are also secure while running concurrently? In our formalism, we use before-after assertions to address
the first problem and protocol invariants to address the second. The use of the methodology is illustrated
by presenting modular proofs involving practical protocols, 1SO-9798-3 and NSL . This formalism also
justifies some design principles which have been used by protocol designers in the construction of real-world
protocols (e.g. IKE) and submuses some previous work in the formal methods community on the protocol
composition problem. Future work would include a deeper investigation of the limits and applicability of
this method and its connection with other approaches for reasoning about correctness of protocols. Also, it
would be an interesting challenge to automate the proof system.
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A Cord Calculus

Cord calculus is the formalism we use to represent protocols. The main concepts are collected in this section.

A.1 Terms, Actions, Strands and Cords

The terms ¢ are built starting from the variables x and the constants ¢. Moreover, the set of basic terms
also contains the names N, which can be variables X, Y, Z, or constants A, B, C, and keys K which
can be variables y and constants £. Upon these basic sets, the term language is then generated by some
given constructors p, which always include tupling, the public key encryption {|¢[} x of the term ¢ by the
key K, and the signature {|¢[}+ over the term ¢ with the private key K. The language of actions is then
built upon the terms by further constructors. They include sending a term (t), receiving into a variable (z),
matching a term against a pattern (¢/q(x)), and creating a new value (vx). A strand is a list of actions.
The idea is that they should be the subsequent actions of a single role in a protocol. For example, the strand
[(vz)(x)] represents a role in which a principal generates = and then sends out a message containing the
freshly generated value. Since some actions of a role may be mutually independent, they can in principle
be executed in any order. Different strands can thus be semantically equivalent. A cord is an equivalence
class of behaviorally indistinguishable strands. We use the word process to refer to a principal executing an
instance of a role. Table 8 summarizes the formal definition of cords. In addition to the sequence of actions,
a cord has an input interface and an output interface. As the name suggests, the output interface represents
the output of that cord. The input interface is used to provide initial data to a cord. These input parameters
(called static parameters) can represent data known apriori (e.g. signing key) or data that becomes known
by executing another cord via its output interface.
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(names) N == X variable name
A constant name
(basic keys) Ky == k constant key
Y variable key
N name
(keys) K = Ky basic key
K, inverse key
(role id) n =S variable role-id
¢ constant role-id
(process) P == N,n§
(terms) t = x variable term
c constant term
N name
K key
n session id
t,t tuple of terms
{Itltx term encrypted with key K
{th= term signed with key K
(actions) a = € the null action
(t) send a term ¢
(z) receive term into variable x
(vz) generate new term x
(t/q(z1,...,2,)) matchterm ¢ to pattern ¢(z1,...,x,)
(basic terms) b == z|c|N|K basic terms allowed in patterns
(basic patterns) p == b,....,b tuple pattern
(patterns) q == D basic pattern
{rl% decryption pattern
{plx signature verification pattern
(strands) S = aS|a

Table 8: Syntax of terms, actions and strands
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[S(x)S @ [THT|@C > [SS(t/x)|@[TT®C (1)
S (p(t)/p(2)) S'] o> [SS'(t/z)] ® C @
1S ey /Ap(2) ) ST® C >> [SS'(t/2)] ® C @)
1S @)y /Ap(O)ly) TR C o> [SS@C 4)
[S(vx)S|®C o> [SS(m/x)|®C (5)
Where the following conditions must be satisfied:
Q) FV(E) =0
Q FV(t)=10
(3) FV(t) = () and y bound
A FV(Et)=10

(5)z ¢ FV(S)and m & FV(C)U FV(S) U FV (')

Table 9: Basic reaction steps

A.2 Cord Spacesand Runs

A cord space is a multiset of cords that may interact via communication. We use @ for multiset union and [ ]
for the empty multiset. The runs of a protocol arise as reaction sequences of cord spaces. The basic reactions
within a cord space are shown in Table 9, with the required side conditions for each reaction shown below
them. The substitution (¢/z) is assumed to act on the strand left of it, viz S’. As usual, it is assumed that
no free variable becomes bound after substitution, which can always be achieved by renaming the bound
variables. Reaction (1) is a send and receive interaction, showing the simultaneous sending of term ¢ by the
first cord, with the receiving of ¢ into variable x by the second cord. We call this an external action because
it involves an interaction between two cords. The other reactions all take place within a single cord. We call
these internal actions. Reaction (2) is a basic pattern match action, where the cord matches the pattern p(¢)
with the expected pattern p(x), and substitutes ¢ for x. Reaction (3) is a decryption pattern match action,
where the cord matches the pattern {|p(¢)[}, with the decryption pattern {p(x)[}7 and substitutes ¢ for x.
Reaction (4) is a signature verification pattern match action. Finally, reaction (5) shows the binding action
where the cord creates a new value that doesn’t appear elsewhere in the cordspace, and substitutes that value
for  in the cord to the right. The intuitive motive for the condition F'V'(t) = () should be clear: a term
cannot be sent, or tested, until all of its free variables are instantiated.

A.3 Protocols

A protocol is defined by a finite set of roles, such as initiator, responder and server, each representing the
actions of a participant in a protocol session. In representing protocol roles by cords, it is useful to identify
the principal who carries out the role. Also, since the same principal might engage in multiple sessions in
the same role (e.g., principal A might be the initiator in two sessions at the same time), associating a role-id
with the cord allows us to distinguish between the actions carried out in the different sessions. A principal
executing an instance of a role is referred to as a process.

The protocol intruder is capable of taking any of several possible actions, including receiving a message,
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decomposing it into parts, decrypting the parts if the key is known, remembering parts of messages, and
generating and sending new messages. This is the standard “Dolev-Yao model”, which appears to have
developed from positions taken by Needham and Schroeder [32] and a model presented by Dolev and Yao
[8]. A run of a protocol is a sequence of reaction steps from an initial configuration. An initial configuration
is determined by a set of principals, a subset of which are designated as honest, a cord space constructed by
assigning one or more roles to each honest principal, and an intruder cord that may use only the secret keys
of dishonest principals. A particular initial configuration may give rise to many possible runs. Intuitively,
a protocol has a property if in all runs of the protocol arising from all possible initial configurations, that
property is preserved.

B Semantics of Protocol Logic

The formulas of the logic are interpreted over runs, which are finite sequences of reaction steps from an
initial configuration. An equivalent view, consistent with the execution model used in defining Linear Tem-
poral Logic (LTL) semantics, is to think of a run as a linear sequence of states. Transition from one state to
the next is effected by an action carried out by some principal in some role. A formula is true ina run if it is
true in the last state of that run.

The main semantic relation, Q, R = ¢, may be read, “formula ¢ holds for run R of protocol Q.” If
Q is a protocol, then let Q be the set of all initial configurations of protocol Q, each including a possible
intruder cord. Let Runs(Q) be the set of all runs of protocol Q with intruder, each a sequence of reaction
steps within a cord space. If ¢ has free variables, then Q, R = ¢ if we have Q, R |= o¢ for all substitutions
o that eliminate all the free variables in ¢. We write Q = ¢ if Q, R |= ¢ for all R € Runs(Q).

In presenting the inductive definition of Q, R = ¢ below, for ¢ without free variables, we use the

following notation to describe a reaction step of cord calculus:

EVENT(R, X, P,ii, %) =
(([SPS')x ® C b [SS'(7/T)]x ® C') € R)

Inwords, EVENT (R, X, P, 1, %) means that in run R, process X executes actions P, receiving data 7 into
variables Z, where 7 and Z are the same length. We use the notation LAST (R, X, P, 7, %) to denote that
the last event of run Ris EVENT (R, X, P, 7, ¥).

Action Formulas:

o O, R = Send(A,m) if LAST(R, A, (m),0,0).

9, R |= Receive(A, m) if LAST(R, A, (x),m, x).

Q, R = New(A,m) if LAST (R, A, (vz), m,x).

Q. R = Decrypt(4, {ml}xc) if Q, R = Has(4, {ml}x)
A LAST(R, A, ({{mly i /{zl ), m, )
Note: Decrypt(A,n) is false if n # {{m[} x for some m and K.

Q, R |= Verify(A, {mli) if Q, R |= Has(A, {ml}z)
A Q, R = Has(A,m)
A Q, R = Has(A, K)
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NLAST(R, A, ({ml/{Iml ), 0,0)
Note: Verify(A,n) is false if n # {{m|} for some m and K.

Other Formulas:

e Q. R |=Has(A,m) if there exists an  such that Has;(A, m) where Has; is defined by induction on j
as follows:
(Hasg(A,m) if ((m € FV(R|A))
V EVENT (R, A, (vz), m,x)
V EVENT(R, A, (z),m,x)
and Has;1(A, m) if (Has;(A,m’)
A((m! = p®bx Am =t
A EVENT(Ra A, (m'/{|p(y) |}?)’ t, y))
V(m' =plt)Am=t
A EVENT(R, A, (m' /p(y)),t.9))))
V(Has;(A, m') A Has;(A,m")
A((m=m/m")Vv (m=m",m)))
V(Has;(A,m') AHas;(A, K)
Am = {m'[} k)
V(Has;(A, a) A Has;(A, ¢°)
Am = gab)
V(Has;(A, g*) Am = g®)
Intuitively, Hasg holds for terms that are known directly, either as a free variable of the role, or as the
direct result of receiving or generating the term. Has; 1 holds for terms that are known by applying ¢
operations (decomposing via pattern matching, composing via encryption or tupling, or by computing
a Diffie-Hellman secret) to terms known directly.

e Q RE Fresh(A,m)if Q,R = (& New(A,m)V(ES New (A4, n)Am = g(n)))A—=(S Send (A, m")A

m Cm').
e Q. R = Honest(A) if A€ HONEST(C) in initial configuration C for R.

e Q. R |= Contains(ty,tq) ifto C,, t1. to is avisible subterm of ¢4, to C,, 1, if t2 C ¢ and it is not the
case that all occurrences of ¢, in 1 are as parameters of one-way functions. For example, n Z, g(n).
The only one-way function that we consider here is the Diffie-Hellman exponentiation function, g(z).

e QRE (01 Nd2)ifQRE¢1and QR = ¢
e QRE$IfFQ R

e Q. REJz.¢if Q R = (d/z)p, for some d, where (d/x)¢ denotes the formula obtained by substi-
tuting d for z in ¢.

e QR E Soif QR E ¢, where R is a (not necessarily proper) prefix of R. Intuitively, this
formula means that in some state in the past, formula ¢ is true.

e O RE O¢if Q R E ¢ where R = R’e, for some event e. Intuitively, this formula means that
O ¢ is true in a state if ¢ is true in the previous state.
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Modal Formulas:

e Q. R ¢1[P]a¢eif R= RyRiRs, for some Ry, Ry and Ro, and either P does not match Ry |4 or
P matches Ry |4 and Q, Ry = o¢1 implies Q, RyR1 = ¢4, where o is the substitution matching P
to R1|A.

e O R E [P]a¢if R= RiRy, for some R; and Ry, and either P does not match R;|4 or P matches
Ri|4 and Q, Ry = oo, where o is the substitution matching P to R1| 4.
Note: The semantics of Q, R |= [P]a ¢ can be expressed in terms of the semantics of Q, R |=
@1 [P)a ¢2 by setting ¢4 to true and requiring that Ry be empty.

Semantic Entailment:

o I' = ¢if Q =T implies Q | ¢. ' denotes a set of formulas. Intuitively, if in every run of Q all the
formulas in I" are true, then in every run of Q, formula ¢ is also true.

C Soundness of Temporal Ordering and Composition Rules

In this section, we prove the soundness of the composition rules and some of the temporal ordering rules.
The soundness proof of the rest of the proof system is quite similar to our previous work [9].

Axiom AF3 states that if a process X creates a fresh value n and then sends out a message containing it
as a subterm, then any action carried out by any other process which involves n (e.g. if Y receives a message
containing n inside a signature), happens after the send action. Assume that X # Y, n C m, a5 and

Q | Fresh(X,n)[(m)P]x (¢ D S ax(Y)). (6)
We need to show that
Q = Fresh(X,n)[(m)P]x (¢ D After(Send(X,m),az)). (7)

Let R = RoR1R2 bearunof @ such that R, matches (m) P under substitution o and @, Ry |= Fresh(X,n).
We need to prove that
Q, RoR1 = o(¢ D After(Send(X,m),az)). 8)

When Q, RoR; = 0—¢ then 8 holds trivially. On the other hand, when Q, RoR; |= o¢, it follows from 6
that Q, RoR1 = © a2 (Y'). Inthis case 8 follows from the semantics of formulas Fresh(a, m)and S az (V).

Axiom AF4 is similar except for the fact that the roles of X and Y are reversed. Soundness of AF4
can be easily verified, using the same reasoning as in the proof of soundness for AF3.

The weakening rule W states that a formula ¢ which is provable from a set of hypotheses, I", remains
provable if additional formulas are added to the set of hypotheses. This rule is trivially sound since I = ¢
impliesT U T |= ¢.

The protocol composition rule C1 gives us a way of sequentially composing two roles P and P’ when
post-condition of P, matches the pre-condition or P’. Assume that @ is a protocol and I' is the set of
formulas such that T |= ¢1[P]a¢2 and T' = ¢2[P'] a¢3. We need to prove that ' = ¢1[P; P’ a¢3. When
Q £ T this is trivially true. Assume that @ = T, now it has to be that Q = ¢1[P]a¢2 and Q = ¢o[P'] 4 ¢s.
Let R = RoR;1 Rs be arun of @ such that R, matches P; P’| 4 under substitution o and Q, Ry |= o¢1. Run
R can be written as R = RyR} R Ry where R} matches P|4 under o and R/ matches P’|A under o. It
follows that Q, Ry R} = o2 and therefore ¢, Ry R R = o¢s.
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The protocol composition rule C2 states that all invariants provable in both @ and @’ are provable
in their composition @ o @Q’. Remember that we are only considering invariants that are provable using
one application of the honesty rule. Suppose that the formula ¢ can proved in @ and @’ using only one
application of the honesty rule. By the definition of the honesty rule Vp € QU Q'VPeBS(p). ¢ [P]x ¢.
Every basic sequence of arole in Q o Q' is either a basing sequence P of Q U Q' or a concatenation of two
basic sequences in Q U @', in the first case it trivially follows that Q o Q' = ¢[P]x ¢, in the second case the
same follows by the application of the composition rule C1.

D Formal Correctness Proofs of Protocols

A complete proof of the authentication property for the initiator role in challenge-response protocol (Init cr)
is given in Table 10. The proof of the shared secret property of 1ISO-9798-3 is given in Table 11.

E Protocol derivation system

In [5], we have examined the structure of a family of key exchange protocols that includes Station-To-
Station (STS), 1SO-9798-3 , Just Fast Keying (JFK) and related protocols, showing how all the protocols
in this family may be derived systematically. The protocol derivation system for this class of protocols
consists of two base protocol components, three transformations, and seven refinements. The two protocol
components are Diffie-Hellman key exchange and a two-message signature-based challenge and response
authentication protocol. The refinements (which add data to message fields) include extending messages
by certificates in order to discharge the assumption that each participant knows the other’s public key. The
transformations include moving data from a later message to an earlier one, and reordering messages using
a denial-of-service prevention “cookie” technique. The derivation graph is shown in Figure 3. In this figure,
the P;’s denote protocols, and the labels on the arrows indicate the operation which when applied to the
protocol at the tail of the arrow results in the protocol at the head. The refinement operations are denoted by
R;’s, transformations by 7;’s and sequential composition by ;.

In this paper, we defined a general composition operation of which sequential composition is a spe-
cial case. We then constructed the 1SO-9798-3 protocol by composing the Diffie-Hellman and Challenge-
Response protocols and proved properties of the 1ISO-9798-3 protocol from the properties of its components.
Note that this corresponds to the step in the derivation tree for the STS family where C'; and P, are composed
to yield Py.
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AA1,T1,F
AA1,T1
AA1,T1
AA1,T1

AF1,AF2

(5),F1,P1,G2
VER

(3),(7),P1,G1 — 3

HON, G4

(6)7 (8)7 (9)7 G1-3

(10), AF3

(10), AF4,P1

(10), (11), (12), AF2

Fresh(A, m)[(A, B, m)]a —Fresh(A,m) A &Send(A,{4,B,m}) (1)

(B, A,n,{{m,n, Al5)) aReceive(A, {B, A,n, {m,n, A}5}) 2)
[({|mv n, A|}§/{|ma n, A|}B)]A @ Verify (Aa {|m’ n, A|}§) (3)
[<A7 B? {’mv n, B‘}Z”A @ Send (A7 {Av Bv {‘mv T, B‘}Z}) (4)

Fresh(A,m)[(A, B,m)(z)(z/B, A,n,{m,n, A\}E)
({m,n, Al g/{m,n, A} g)(A, B, {m,n, Bl4)]a
ActionsInOrder(
Send(A,{A, B,m}),
Receive(A4,{B, A,n,{m,n, A\}E}),

Send(A, {A, B, {im,n, Bl}4})) ®)
Fresh(A, m)[Initcr]4—<& Fresh(B, m) (6)
Honest(B) A & Verify (A, {fm,n, Al}5) D

3B.3m’.(& Send (B, m’) A Contains(m’, {fm,n, A[}5)) (7
Fresh(A, m)[Initcr]4Honest(B) D
3B.3m’.(& Send (B, m’) A Contains(m’, {fm,n, A[}5)) (8)

A

Honest(B) D (((& Send (B, mg) A
Contains(mq, {{m, n, A[}5) A =& Fresh(B,m)) D
(mo = {B, 4, {n, fm,n, Az} A
& (Send (B, {B, A, {n, {m,n, A} 5}}) A OFresh(B,n)) A
ActionsInOrder(Receive(B, { A, B, m}),
Send(B,{B, A, {n, {{m.n, A}z}}))))) ©)
Fresh(A, m)[Initcr]aHonest(B) D
& (Send(B,{B, A, {n,{{m,n, A}5}}) A OFresh(B,n)) A
After(Receive(B, {A, B,m}),Send(B,{B, A, {n, {{m,n, A}5}1})) (10)
Fresh(A, m)[Initcr]Honest(B) D
After(Send(A, {A, B,m}), Receive(B, {A, B,m})) (12)
Fresh(A, m)[Initcr]Honest(B) D
After(Send(B, {B, A, {n, {{m,n, A}5}}),
Receive(A, {B, A,n, {m,n, A}5}) (12)
Fresh(A, m)[Initcr]4Honest(B) D
ActionsInOrder(Send(A, { A, B,m}), Receive(B, {A, B,m}),
Send(B. {B. A, {n, {m.n. A} 5}})

Receive(A, {B, A n, {m,n, A\}E})) (13)

Table 10: Deductions of A executing Init role of Challenge-Response Protocol
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P3
CR

(2),(3),G4

AR1,PROJ,P1
(1),(4), (5), DH1

(1),(4),DH3

(6),(7)

HasAlone(A, a) A Fresh(A, g%)[Initcr/]4 HasAlone(A, a)
HasAlone(A, a) A Fresh(A, ¢%)[Initcgr/]4Honest(B) D
ActionsInOrder(
Send(A, {A, B, ¢*}),
Receive(B, {A, B, g°}),
Send(B, {B, A, {n, {g".n, A}}5}}),
Receive(A, {B, A,n, {g% n, Al5}))
Honest(B) A &Send (B, {B, A, {n, {g%,n, Al 5}}) D
. (n = g* A HasAlone(B, b))
HasAlone(A, a) A Fresh(A, ¢%)[Initcr/]4Honest(B) D
(n = g* A HasAlone(B, by))
HasAlone(A, a) A Fresh(A, g%)[Initcr/]aHas(4,n)
HasAlone(A, a) A Fresh(A, g%)[Initcg/] 4Honest(B) O
(n = g™ AHas(4,¢"™))
HasAlone(A, a) A Fresh(A, g%)[Initcgr/] 4Honest(B)
(n = ¢" A (Has(X,¢%) > (X = AV X = B))))
HasAlone(A, a) A Fresh(A, ¢%)[Initcgr/] 4Honest(B)
(n = ¢" A Has(A, g®%) A (Has(X, g%) >
(X =AVvX=DB))))

D
D

(1)

(2)
3)

(4)
®)
(6)

(7)

(8)

Table 11: Deductions of A executing Init role of Challenge-Response Protocol with ¢® substituted for m
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Figure 3: Derivation graph of the STS protocol family



