Process fusion®

D. Pavlovic
Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
E-mail: dusko@kestrel.edu

Abstract

The technique of build fusion, also known as deforestation, removes
intermediate results in a composition involving the “build” of an initial
(inductive, finite) data structure, followed by its consumption. Here
we show that it is analogously possible to do process fusion, remov-
ing intermediate final (coinductive, potentially infinite) data passing
between a producer and a consumer.

The key observation leading to our results is the fact that the
Curry-Howard isomorphism, relating types to propositions, programs
to proofs and program composition to cut, extends to the correspon-
dence of fusion to cut elimination. This simple idea gives us logical
interpretations of the basic methods of generic and transformational
programming. In the present paper, we provide a logical analysis of
the general form of build fusion over the inductive data types, regular
or nested. The analysis is based on a novel logical interpretation of
parametricity in terms of the paranatural transformations, introduced
in the paper. We extend it to cover process fusion on coinductive data
types.

The results obtained are truly generic (in the sense of applying
to all coinductive (final) data types, including nested ones) and allow
a far wider range of optimizations than previously possible. By the
standard embedding of initial into final data types, it also applies to
arbitrary initial-final mixtures (e.g., infinitely unfolding trees of finite
lists). Future work will explore mechanization of the technique and
its application to realistic problems.

*This work was supported by the DARPA ITO PCES program.

1 Introduction

1.1 The need for process fusion

An important challenge is to provide automated support for the composition
of programs for embedded systems, yielding the efficient high-performance
code required for real-time embedded software.

We believe that the best — perhaps only — hope for meeting this ob-
jective is to synthesize such systems from high-level, abstract specifications
expressing the system requirements while decomposing them into the sim-
plest units possible — expressing the many aspects entering into the total
design — and obtain code from further specifications expressing their com-
position, using both general and domain-specific design theories. This is the
philosophy underlying Kestrel’s synthesis technology, which has paid off in
other application domains.

Here we focus on one small aspect: “optimizing away” the data pass-
ing between process components. Simple-minded code generation schemas
will tend to translate high-level process composition homomorphically into
low-level data passing. While entirely correct as a translation, a successful
requirements decomposition might then be penalized by giving rise to rela-
tively inefficient low-level code. We show below how this can be overcome;
in fact, the higher the initial abstraction level, the easier it is to analyze the
specifications for optimization opportunities and exploit them in synthesis.
In other application domains, Kestrel’s synthesis technology has obtained
efficiency improvements that are beyond the scope of the fiercest attempts
at hand-crafted code optimization, simply because the analysis involved is
too complicated to be carried out manually for each system generation. The
hope is to achieve similar gains here.

The viewpoint of an embedded system as a collection of communicating
processes is appropriate. This makes it possible to abstract from imple-
mentation details, such as whether processes are sharing a thread or are
multi-threaded, or even run on separate processors. These details should be
introduced in the synthesis phase, working towards low-level code, and the
best data passing paradigm can be chosen given various other aspects of the
requirements, such as timing. Below we model data passing as asynchronous

message passing between process components. This leaves an implementa-
tion freedom for many low-level schemas from which the most appropriate
one can be chosen. The possibilities range from buffered interprocess com-
munication via direct or remote method invocation to shared memory. Here,
we are not concerned with these details, because we center on the elimination
of data passing.

1.2 Fusion and cut

The Curry-Howard isomorphism is one of the conceptual building blocks of
type theory, built deep into the foundation of computer science and functional
programming [6, ch. 3]. The fact that it is an isomorphism means that
the type and the term constructors on one side obey the same laws as the
logical connectives, and the logical derivation ruleson the other side. For
instance, the products and the sums of types correspond, respectively, to the
conjunction and the disjunction, because the respective introduction rules

AFBy AF B s AoFB A FB

A \Zi
Al_B[]/\B] AO\/All_B

extended by the labels for proofs, yield the type formation rules
f()ZA—>B0 f1214—>B1 golAg—)B g]ZA]—)B
(fo. f1) + A— By x B, (90, 1] : Ag+ Ay — B

In a sense, the pairing constructors (—, —) and [—, —] record on the terms
the applications of the rules AI and VI, as the proof constructors.

Extending this line of thought a step further, one notices that the term
reductions also mirror the proof transformations. E.g., the transformation

AyFB A FB AyFB BFC A B BEREC
AVAIEFB BEC »» Ay FC A HC
Ao VA FHC Ay VA HC

corresponds to the rewrite

h(fo, fi] »» [h-fo, h-fi] (1)

where fy and f; are the labels of the proofs Ay = B and A; - B, whereas h is
the label of B = C'. The point of such transformations is that the applications
of the cut rule
AFB BFC
(2)
AFC

get pushed up the proof tree, as to be eliminated, by iterating such moves.
On the side of terms and programs, the cut, of course, corresponds to the
composition

ftA—->B h:B—=C 3)
3
h-f:A—=C
Just like the presence of a cut in a proof means that an intermediary propo-
sition has been created, and then cut out, the presence of the composition in

a program means that the thread of computation leads through an interme-
diary type, used to pass data between the components, and then discarded.

While the programs decomposed into simple parts are easier to write and
understand, passing the data and control between the components incurs a
computational overhead. For instance, running the composite ssum - zipW of

zipW : [Nat] x [Nat] -> [NatxNat]
zipW (x::xs,y::ys) = (x,y) :: zip XS ys
zipW (xs, ys) (1

and

ssum : [NatxNat] -> Nat
ssum [] 0
ssum (x,y)::2zs = x + y + sum zs

is clearly less efficient than running the fusion

sumzip : [Nat] x [Nat] -> Nat
sumzip (x::xs,y::ys) = x + y + sumzip (xs,ys)
sumzip (xs, ys) = 0

where the intermediary lists [NatxNat] are eliminated. In practice, the
data structures passed between the components tend to be very large, and

the gain by eliminating them can be significant. On the other hand, the
efficient, monolythic code, obtained by fusion, tends to be more complex,
and thus harder to understand and maintain.

To get both efficiency and compositionality, to allow the programmers
to write simple, modular code, and optimize it in compilation, the program
fusions need to be sufficiently well understood to be automated. Our first
point is that the Curry-Howard isomorphism maps this task onto the well
ploughed ground of logic.

1.3 Build fusion

The general form of the build fusion that we shall study corresponds, in the
inductive case, to the “cut rule”

Fio
I c
A=y]\L ((l; (4)
'C(Te
PR

eliminating the inductive data type My, which is the initial algebra of the
type constructor F. In practice and literature, F' is usually a list- or a
tree-like constructor, and the type A is is often required to be inductive
itself; but we shall see that the above scheme is valid in its full general-
ity. The sumzip-example from the preceding section can be obtained as
an instance of this scheme, taking FFX = 14 Nat x Nat x X, and thus
Mp = |[Nat x Nat]. The function ssum is the catamorphism (fold) of the
map [0,1] : 1 + Nat x Nat x Nat —> Nat where f maps (i, j, k) to i + j + k.

The dual scheme
Fla)

A

C

allows eliminating the coinductive type Np, the final F-coalgebra.

Clearly, the essence of both of the above fusion schemes lies in the terms
f" and ¢'. Where do they come from? The idea is to represent the fixpoints
Mp and Np in their “logical form”

Mp = VX. (FX=X)=X (5)
Nrp =2 3X. X x (X = FX) (6)
The parametric families
f'X : (FX=X)— (A= X) (7)
JX : X=FX) — (X=0) (8)

are then obtained by extending f : A — Mp and g : Np — C along
isomorphisms (5) and (6), and rearranging the arguments. The equations

l&)-f = fore) (9)
g-[a] = gA(Ta") (10)

can be proved using logical relations, or their convenient derivative, Wadler’s
“theorems for free” [8]. This was indeed done already in [5] for (9).

Mapped along the Curry-Howard isomorphism, equations (9-10) become
statements about the equivalence of proofs. The fact that all logical relations
on all Henkin models must relate the terms involved in these equations does
not seem to offer a clue for understanding their equivalence.

In order to acquire some insight into the logical grounds of program fu-
sion, and equivalence, we introduce paranatural transformations. As a first
application, we characterize the parametricity of families (7) and (8) by an
intrinsic commutativity property, with no recourse to models or external
structures. The upshot is that we obtain slightly stronger results, suitable
for generalizing beyond the scope of the current applications of build fusion.

The paranaturality condition is a variation on the theme of functorial and
structural polymorphism [4, 3]. But while the dinatural transformations of [4]
allow too many terms, the structor morphisms of [3] precisely correspond to
the polymorphic terms, but do not stipulate which of many possible choices
of structors should be used to interpret the particular polytypes. We fill this
gap, presently just enough to analyze the programs to the initial and from
the final data types as parametric/paranatural families. This is the contents

6

of proposition 3.1. The results obtained eliminate the extensionality and
well-pointedness restrictions of the work based on logical relations. More
importantly, the logical insights about fusion and parametricity, gained by
chasing diagrams in categorical proof theory [7], allow extending the methods
of fusion beyond their current scope. Some evidence of this, severely limited
by the available space, is offered in the final section.

2 Paranatural transformations

As it has been well known at least since Freyd’s work on recursive types in
algebraically compact categories [2], separating the covariant and the con-
travariant occurrences of X in a polytype 7 (X) yields a polynomial functor
T :C? x C— C. On the other hand, by simple structural induction, one
easily proves that

Proposition 2.1 For every polynomial functor T : CP? x C — C over a
cartesian closed category C, there are polynomial functors W : C? xC — C
andV . C — C, unique up to isomorphism, such that

T =2 W=V

This motivates the following

Definition 2.2 Let C be a category and W : C?P xC — C andV : C — C
functors on it.

A paranatural transformation ¢ : W — V is a family of C-arrows
9X : WXX — VX, such that for every arrow u : X — Y in C, the
external pentagon in the following diagram

wxx —2X VX
y lWX’u,
Z WXY g Vu
x TWuY
WYY —————VY

commutes whenever the triangle on the left commutes, for all Z, zq and z

in C.

The class of the paranatural transformations from W to V is written

Para(W, V).

Remark. When C supports calculus of relations, the triangle and the quan-
tifier over Z, 2z and z; can be omitted: the condition just means that the
rest if the diagram commutes up to C.

Proposition 2.3 Let £ be a polymorphic A-calculus, and C, the cartesian
closed category generated by its closed types and terms. For every type con-
structor T, definable in L, there is a bijective correspondence

Ce (A, VX.T(X)) = Para(Ax W,V)

natural in A.

3 Characterizing fixpoints

Proposition 3.1 Let C be a cartesian closed category, and F' a strong endo-
functor on it. Whenever the initial F-algebra My, resp. the final F-coalgebra
Npr exist, then the following correspondences

C(A,Mp) = Para(Ax (FX = X), X) (11)
C(Np,B) = Para(X x (X = FX), B) (12)

hold naturally in A, resp. B.

In well-pointed categories and strongly extensional A-calculi, this propos-
itoion boils down to the following “Yoneda” lemmas.

Notation. Given h: Ax B — C and b : 1 — B, we write h(b) for the
result of partially evaluating h on b

id, by
by Ax B

lh
h(b)
C

A

where by denotes the composite A 15 B

Lemma 3.2 For paranatural transformations

oy @ AX(FX=X) — X
Yy @ Yx(Y=FY) — B

hold the equations

px(Tz7) = (z) - om, (1) (13)
Yy (Ty) = Yne (V) - [v) (14)

forallx: FX — X andy:Y — FY.
While (13) follows from

Ax FMy = My —MF

(id,"py)

Mp

lAXFMF:qu

A AX FMp = X C (z)
e TAXFWD:‘X

AxFX =X

X

(14) is obtained by chasing

Y xY = FY oY

l[y)}xY:FKy)}

Y NF XY = FNF C id
Ky)}l () o Tpr[y)}:xFNF
7 X Np = FNp

(id,"y™)

B

NF< Np

id, ")

In well-pointed categories, px : A x (FX = X) — X is completely
determined by its values px("27) : A — C on all x : FX — X. Similarly,
vy Y x (Y = FY) — B is completely determined by its values on
y:Y — FY.

However, in order to show that ¢y, (1) is generic for ¢ and ¢y, (v) for ¢
without the well-pointedness assumption, one needs to set up slightly differ-
ent constructions.

Proof of 3.1. (11) We define maps
(—) : C(A,Mp) — Para(A x (FX = X), X)
build : Para(A x (FX = X), X) — C(A, My)

and show that they are inverse to each other.

Given f: A — Mp, the X-th component of f’ will be

fi : Ax(FX=X) % Mpx (Mp = X)
— X
where k : (FX = X) — (Mp = X) maps the algebra structures z :
FX — X to the catamorphisms (z) : Mr — X. Formally, k is obtained

by transposing the catamorphism (k) : Mp — (FX = X) = X for the
F-algebra k on (FX = X) = X, obtained by transposing the composite

(FX=X)XxF(FX=X)=X) —

Dy (FX = X)x (FX = X)x F((FX = X) = X)

D (FX = X)x F((FX = X) x (FX = X) = X)

W (FX = X) x FX
W x

where arrow (i) is derived from the diagonal on FX = X, (ii) from the
strength, while (iii) and (iv) are just evaluations.

Towards the definition of build, for a paranatural ¢ : A x (FX =
X) — X take

build(p) : A L' A x (FMp = My)
oMy g

Composing the above two definitions, one gets the commutative square
AXTu™

A————A X (FMp = My)

build(f’) o Fxk
F

Mr MFX(MF:>MF)

€

10

Since k- "' = "idy, ', the path around the square reduces to f, and yields
build(f') = f.
The converse build(y)’ = ¢ is the point-free version of lemma 3.2. Tt

amounts to proving that the paranaturality of ¢ implies (indeed, it is equiv-
alent) to the commutativity of

A VU A x (FMp = My)
X pMp
(FX = X) = X Mg

(%)

where X is the transpose of . X. Showing this is an exercise in cartesian
closed structure. On the other hand, the path around the square is easily
seen to be build(yp)’y.

Towards a proof of (12), we internalize (14) similarly like we did (13)
above. The natural correspondences
(=) : C(Np,B) — Para(X x (X = FX), B)
process : Para(X x (X = FX), B) — C(Ny, B)

are defined
dv + X x (X = FX) 2§ X x (X = Np)
-5 Ng
2 B
and
process(vy) : Npg N N x (Np = FNp)
YNe g

forg: Np — B and ¢ : X x (X = FX) — B. The arrow ¢/ : (X =
FX) — (X = FX) maps the coalgebra structures = : X — FX to the
anamorphisms [z] : X — Np. O

11

4 Applications

4.1 Zip

Using correspondence (11), i.e. the maps realizing it, we can now, first of all,
provide the rational reconstruction of the simple fusion from the introduc-
tion. The abstract form of the function zipW, leaving the type parameter X
implicit, will be

zipW’ : ((1+NatxNatxX)->X) -> ([Nat]x [Nat]->X)
zipW’ [m,c] (x::xs,y::ys) = c(x, y, zipW’ [m,c] (xs,ys))
zipW’ [m,c] (xs, ys) =m

While zipW can be recovered as the instance zipW’> [[1,(::)], i.e. zipW =
build(zipW’), the fusion is obtained as

sumzip = =zipW’ [0,1]
But what is zipW, if it is not a catamorphism? How come that it still has a

recursive definition?

It isin fact an anamorphism, and ssum - zipW can be simplified by process
fusion as well. The scheme is this time

1+Nat xNat X [Nat] x [Nat] —>1+Nat xNat X [Nat XNat]

ZWT T
zipW

ssum
[Nat]x [Nat] ————————>[Nat xNat] [Nat xNat] —— Nat

ssum’ [Nat]Xx[Nat] _ zW
[Nat]x [Nat] Nat

where

zW (x::x8,y::y8)
zW (xs,ys)

(x,y,x8,ys)
One (the element of 1)

induces zipW = [zW), whereas (leaving again the type parameter implicit)

12

ssum’ : X X (X -> 1+NatxNatxX) -> Nat
ssum’ x d = case d x of

One -> 0

(n,m,y) ->n + m + ssum’ y d

Calculating the conclusion this time yields
sumzip = ssum’ _ zW

Finally, lifting proposition 3.1 to the category C® of endofunctors, we can
derive the process fusion rule for nested data types [1]. Consider, e.g., the
type constructor Nest, that can be defined as a fixpoint of the functor W :
C® — C%, mapping ¥(F) = AX.1+ X x F(X x X).

The elements of the data type Nest Nat are the lists where the i-th entry
is an element of Nat?. Abbreviating Nest Nat to {Nat}, we can now define

(x,y,fst xs,fst ys,
snd xs,snd ys)

zWN (x::xs,y::ys)

zWN (xs,ys) One

where fst and snd are the obvious projections {X x X} — {X}, and and

derive zipWh : {Nat} x {Nat} — {Nat x Nat} as [zWN] again. On the other
hand, working out the paranaturality condition in C® allows lifting

ssumN : {NatxNat} -> Nat

ssumN [] 0

ssumN (x,y)::zs = x + y + ssumN (fst zs)
+ ssumN (snd zs)

to

ssumN’ : F(Nat) x
F(X) > 1+XxXxF(XxX) -> Nat
ssumN’ F X f d = case d Nat f of
One -> 0
(n,m,g) ->m + n + ssumN’ FF X g dd

13

where FF and dd are the instances with XxX instead of X. (Here we made
the type parameters explicit, to show how the functor is transformed in the
recursion.) The fusion

sumzipN = ssumN’ NestxNest Nat _ zWN
is this time

sumzipN : {Nat}x{Nat} -> Nat
x + y + sumzipN (fst xs,fst ys) +
sumzipN (snd xs,snd ys)

sumzipN (x::xs,y::ys)

sumzipN (xs, ys) = 0

4.2 Process fusion on streams

Whenever we have two processes, a Stream Producer (SP) and a Stream
Consumer (SC), their composition can be fused into a single process, doing
away with the intermediate stream.

To apply this, there is basically one requirement: the SP has to be ex-
pressed in the form of an anamorphism. This is not so much a restriction as
a task to massage the expression denoting the SP into a suitable form.

If the SC is itself an SP (SC/P), we see the following two special patterns
of process fusion:

SP

~

SC/P (= = SP' — (15)
—{SC/P SC/P'—» = —|SC/P"\—> (16)

(The equality sign implies that, viewed as transformations, these steps are
reversible, and in program derivation temporarily going the “wrong” way
may be crucial to getting to the desired result.)

In principle, this can be cascaded, and in a pipeline of processes like

SP

~

SC

sC/p=1)

SC/P

N~

SC/P!

~
N~
~N-

14

any subsegment could be fused. (The result of fusion for patterns (15) and
(16) may not produce its result immediately in the required anamorphic form;
to what extent this is the case, and if so whether there is an automatic tech-
nique for getting it there, requires further study.) Because of the genericity,
the method is not restricted to single streams, but applies equally to multiple
(parallel) streams.

It should be clear how this applies to, for example, some issues in the
event-channel architecture. In particular, it makes precise how client filter-
ing can be moved to the (proxy) server side. Depending on the require-
ments of the application, further forms of client processing could be moved
to the server, such as data smoothing or interpolation. Likewise, queuing
high-priority events can be by-passed if they would next immediately get
dequeued.

Given the richness of the event channel model, practical application will
require a substantial amount of work. But note that the transformations
can be done already at the level of specifications; it is not necessary to have
executable source code.

We give a concrete example. We apologize for how trivial it is, but we
need a really simple example to avoid the exposition of the technique getting
drowned out by the details. We want to fuse a producer process

loop

get x

if x > 0 then put x
end-loop

(which happens to be a stream filter) with a consumer process

loop
get x
put x-1
end-loop

(which happens to be a stream map).

We do not bother to introduce the language, as it is meant to be intuitively
obvious and introduced for exposition purposes only, but it can easily be

15

extended with guards and local state. As a side remark, it is easy to see how
the data passing by the put statement of the producer may be modeled at a
low level as an invocation of a consumer method.

First we express the producer process as a stream function:

(x::f rest) if x> 0
f xs otherwise

f (x::rest)

Introducing the auxilary function £f by

ff (x::rest) = (x, rest) if x > 0
ff rest otherwise

we can transform the producer process into the coinductive pattern of an
anamorphism for the stream data type (the coinductive data type Np corre-
sponding to the functor FFX = Message x X):

f xs = (y::f ys)
where (y, ys) = ff xs

or, using the anamorphism combinator:
£f = [ff)

The consumer process, expressed as a stream function, is:
g (x::rest) = (x-1::g rest)

To make the consumption explicit, we use the function nu (i.e., the final
coalgebra morphism v : Np — F Np), functionally defined by:

nu (x::rest) = (x, rest)
Using this, we rewrite the definition of g into:

g z = (x-1::g rest)
where (x, rest) = nu z

16

Generalizing this with an embedding transformation abstracting from nu into
a g’ that is parametric as in (8) (the type parameter X is left implicit as
before),

g = g’ nu
where g’ n z = (x-1::g’ n rest)
where (x, rest) =n z

Process fusion (10) tells us now that

g-[ff] = g ff

Giving the fusion result a name, say h, we have

h =g’ ff
where g’ n z = (x-1::g’ n rest)
where (x, rest) = n z

By specialization we remove the use of g’ — the converse of the generalization
step above:

h z = (x-1::h rest)
where (x, rest) = ff z

We now remove the use of ff the converse of the step that introduced it:

(x-1::h rest) if x> 0
h xs otherwise

h (x::rest)

Compiling this into our simple process language results in:

loop

get x

if x > 0 then put x-1
end-loop

Analogously, we can fuse the producer process

17

loop
get x
put x-1
end-loop

with the consumer process

loop

get x

if x > -1 then put x
end-loop

For brevity the details are omitted, but this happens to give the identical re-
sult as before. Since the transformations are “reversible” (forms are replaced
by equivalent forms), we have also shown shown that the filter in the process
composition

loop loop
N get x | get x N
put x-1 | 7| if x > -1 then put x
end-loop end-loop

may leap-frog to the left position in modified form:

loop loop
N get x get x N
if x > 0 then put x ' put x-1
end-loop end-loop

5 Future work

Further work will explore mechanization of the technique and its application
to realistic problems. As the simple examples above have shown, manual
application will be quite laborious for non-trivial cases. Particular ques-
tions to be investigated are the automation of the transformations leading to
anamorphic forms.

18

Acknowledgements

[am indebted to Lambert Meertens for helping me carry out the detailed
transformations of Section 4.2.

References

1]

[7]

8]

R. Bird and L. Meertens. Nested datatypes. In Proceedings MFPS
98, volume 1422 of Lecture Notes in Computer Science, pages 52 67.
Springer, 1998.

P. J. Freyd. Algebraically complete categories. In A. Carboni, editor,
Proceedings of the 1990 Como Category Theory Conference, volume 1488
of Lecture Notes in Mathematics, pages 95—104. Springer, 1991.

P. J. Freyd. Structural polymorphism. Theoretical Computer Science,
115(1):107 129, 1993.

P. J. Freyd, J.-Y. Girard, A. Scedrov, and P. J. Scott. Semantic para-
metricity in polymorphic lambda calculus. In Proceedings Third Annual
Symposium on Logic in Computer Science, pages 274-279. IEEE Com-
puter Society Press, July 1988.

A. Gill, J. Launchbury, and S. Peyton-Jones. A short cut to deforestation.
In Proceedings of FPCA °93. ACM, 1993.

J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

D. Pavlovic. Maps II: Chasing diagrams in categorical proof theory. Jour-
nal of the IGPL, 4(2):1-36, 1996.

P. Wadler. Theorems for free! In Proceedings of FPCA °89. ACM, 1989.

19

