
Pro
ess fusion�D. Pavlovi
Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304E-mail: dusko�kestrel.eduAbstra
tThe te
hnique of build fusion, also known as deforestation, removesintermediate results in a
omposition involving the \build" of an initial(indu
tive, �nite) data stru
ture, followed by its
onsumption. Herewe show that it is analogously possible to do pro
ess fusion, remov-ing intermediate �nal (
oindu
tive, potentially in�nite) data passingbetween a produ
er and a
onsumer.The key observation leading to our results is the fa
t that theCurry-Howard isomorphism, relating types to propositions, programsto proofs and program
omposition to
ut, extends to the
orrespon-den
e of fusion to
ut elimination. This simple idea gives us logi
alinterpretations of the basi
 methods of generi
 and transformationalprogramming. In the present paper, we provide a logi
al analysis ofthe general form of build fusion over the indu
tive data types, regularor nested. The analysis is based on a novel logi
al interpretation ofparametri
ity in terms of the paranatural transformations, introdu
edin the paper. We extend it to
over pro
ess fusion on
oindu
tive datatypes.The results obtained are truly generi
 (in the sense of applyingto all
oindu
tive (�nal) data types, in
luding nested ones) and allowa far wider range of optimizations than previously possible. By thestandard embedding of initial into �nal data types, it also applies toarbitrary initial-�nal mixtures (e.g., in�nitely unfolding trees of �nitelists). Future work will explore me
hanization of the te
hnique andits appli
ation to realisti
 problems.�This work was supported by the DARPA ITO PCES program.1

1 Introdu
tion1.1 The need for pro
ess fusionAn important
hallenge is to provide automated support for the
ompositionof programs for embedded systems, yielding the eÆ
ient high-performan
e
ode required for real-time embedded software.We believe that the best | perhaps only | hope for meeting this ob-je
tive is to synthesize su
h systems from high-level, abstra
t spe
i�
ationsexpressing the system requirements while de
omposing them into the sim-plest units possible | expressing the many aspe
ts entering into the totaldesign | and obtain
ode from further spe
i�
ations expressing their
om-position, using both general and domain-spe
i�
 design theories. This is thephilosophy underlying Kestrel's synthesis te
hnology, whi
h has paid o� inother appli
ation domains.Here we fo
us on one small aspe
t: \optimizing away" the data pass-ing between pro
ess
omponents. Simple-minded
ode generation s
hemaswill tend to translate high-level pro
ess
omposition homomorphi
ally intolow-level data passing. While entirely
orre
t as a translation, a su

essfulrequirements de
omposition might then be penalized by giving rise to rela-tively ineÆ
ient low-level
ode. We show below how this
an be over
ome;in fa
t, the higher the initial abstra
tion level, the easier it is to analyze thespe
i�
ations for optimization opportunities and exploit them in synthesis.In other appli
ation domains, Kestrel's synthesis te
hnology has obtainedeÆ
ien
y improvements that are beyond the s
ope of the �er
est attemptsat hand-
rafted
ode optimization, simply be
ause the analysis involved istoo
ompli
ated to be
arried out manually for ea
h system generation. Thehope is to a
hieve similar gains here.The viewpoint of an embedded system as a
olle
tion of
ommuni
atingpro
esses is appropriate. This makes it possible to abstra
t from imple-mentation details, su
h as whether pro
esses are sharing a thread or aremulti-threaded, or even run on separate pro
essors. These details should beintrodu
ed in the synthesis phase, working towards low-level
ode, and thebest data passing paradigm
an be
hosen given various other aspe
ts of therequirements, su
h as timing. Below we model data passing as asyn
hronous2

message passing between pro
ess
omponents. This leaves an implementa-tion freedom for many low-level s
hemas from whi
h the most appropriateone
an be
hosen. The possibilities range from bu�ered interpro
ess
om-muni
ation via dire
t or remote method invo
ation to shared memory. Here,we are not
on
erned with these details, be
ause we
enter on the eliminationof data passing.1.2 Fusion and
utThe Curry-Howard isomorphism is one of the
on
eptual building blo
ks oftype theory, built deep into the foundation of
omputer s
ien
e and fun
tionalprogramming [6,
h. 3℄. The fa
t that it is an isomorphism means thatthe type and the term
onstru
tors on one side obey the same laws as thelogi
al
onne
tives, and the logi
al derivation ruleson the other side. Forinstan
e, the produ
ts and the sums of types
orrespond, respe
tively, to the
onjun
tion and the disjun
tion, be
ause the respe
tive introdu
tion rulesA ` B0 A ` B1 ^IA ` B0 ^B1 A0 ` B A1 ` B _IA0 _ A1 ` Bextended by the labels for proofs, yield the type formation rulesf0 : A! B0 f1 : A! B1hf0; f1i : A! B0 � B1 g0 : A0 ! B g1 : A1 ! B[g0; g1℄ : A0 + A1 ! BIn a sense, the pairing
onstru
tors h�;�i and [�;�℄ re
ord on the termsthe appli
ations of the rules ^I and _I, as the proof
onstru
tors.Extending this line of thought a step further, one noti
es that the termredu
tions also mirror the proof transformations. E.g., the transformationA0 ` B A1 ` BA0 _ A1 ` B B ` CA0 _ A1 ` C II A0 ` B B ` CA0 ` C A1 ` B B ` CA1 ` CA0 _ A1 ` C
orresponds to the rewriteh � [f0; f1℄ II [h � f0 ; h � f1℄ (1)3

where f0 and f1 are the labels of the proofs A0 ` B and A1 ` B, whereas h isthe label of B ` C. The point of su
h transformations is that the appli
ationsof the
ut rule A ` B B ` CA ` C (2)get pushed up the proof tree, as to be eliminated, by iterating su
h moves.On the side of terms and programs, the
ut, of
ourse,
orresponds to the
omposition f : A! B h : B ! Ch � f : A! C (3)Just like the presen
e of a
ut in a proof means that an intermediary propo-sition has been
reated, and then
ut out, the presen
e of the
omposition ina program means that the thread of
omputation leads through an interme-diary type, used to pass data between the
omponents, and then dis
arded.While the programs de
omposed into simple parts are easier to write andunderstand, passing the data and
ontrol between the
omponents in
urs a
omputational overhead. For instan
e, running the
omposite ssum � zipW ofzipW : [Nat℄�[Nat℄ -> [Nat�Nat℄zipW (x::xs,y::ys) = (x,y) :: zip xs yszipW (xs, ys) = [℄and ssum : [Nat�Nat℄ -> Natssum [℄ = 0ssum (x,y)::zs = x + y + sum zsis
learly less eÆ
ient than running the fusionsumzip : [Nat℄�[Nat℄ -> Natsumzip (x::xs,y::ys) = x + y + sumzip (xs,ys)sumzip (xs, ys) = 0where the intermediary lists [Nat�Nat℄ are eliminated. In pra
ti
e, thedata stru
tures passed between the
omponents tend to be very large, and4

the gain by eliminating them
an be signi�
ant. On the other hand, theeÆ
ient, monolythi

ode, obtained by fusion, tends to be more
omplex,and thus harder to understand and maintain.To get both eÆ
ien
y and
ompositionality, to allow the programmersto write simple, modular
ode, and optimize it in
ompilation, the programfusions need to be suÆ
iently well understood to be automated. Our �rstpoint is that the Curry-Howard isomorphism maps this task onto the wellploughed ground of logi
.1.3 Build fusionThe general form of the build fusion that we shall study
orresponds, in theindu
tive
ase, to the \
ut rule"A f //MF FMF F L
M//�
��

FC

��MF L
M //CA f 0C(p
q) //C (4)eliminating the indu
tive data type MF , whi
h is the initial algebra of thetype
onstru
tor F . In pra
ti
e and literature, F is usually a list- or atree-like
onstru
tor, and the type A is is often required to be indu
tiveitself; but we shall see that the above s
heme is valid in its full general-ity. The sumzip-example from the pre
eding se
tion
an be obtained asan instan
e of this s
heme, taking FX = 1 + Nat � Nat � X, and thusMF = [Nat� Nat℄. The fun
tion ssum is the
atamorphism (fold) of themap [0; z℄ : 1 + Nat� Nat� Nat �! Nat where z maps hi; j; ki to i + j + k.The dual s
heme FA F [(a)℄ // FNFAa OO [(a)℄ // NF�OO NF g // CA g0A(paq) // Callows eliminating the
oindu
tive type NF , the �nal F -
oalgebra.5

Clearly, the essen
e of both of the above fusion s
hemes lies in the termsf 0 and g0. Where do they
ome from? The idea is to represent the �xpointsMF and NF in their \logi
al form"MF �= 8X: (FX) X)) X (5)NF �= 9X: X � (X) FX) (6)The parametri
 familiesf 0X : (FX) X) �! (A) X) (7)g0X : (X) FX) �! (X) C) (8)are then obtained by extending f : A �! MF and g : NF �! C alongisomorphisms (5) and (6), and rearranging the arguments. The equationsL
M � f = f 0C(p
q) (9)g � [(a)℄ = g0A(paq) (10)
an be proved using logi
al relations, or their
onvenient derivative, Wadler's\theorems for free" [8℄. This was indeed done already in [5℄ for (9).Mapped along the Curry-Howard isomorphism, equations (9{10) be
omestatements about the equivalen
e of proofs. The fa
t that all logi
al relationson all Henkin models must relate the terms involved in these equations doesnot seem to o�er a
lue for understanding their equivalen
e.In order to a
quire some insight into the logi
al grounds of program fu-sion, and equivalen
e, we introdu
e paranatural transformations. As a �rstappli
ation, we
hara
terize the parametri
ity of families (7) and (8) by anintrinsi

ommutativity property, with no re
ourse to models or externalstru
tures. The upshot is that we obtain slightly stronger results, suitablefor generalizing beyond the s
ope of the
urrent appli
ations of build fusion.The paranaturality
ondition is a variation on the theme of fun
torial andstru
tural polymorphism [4, 3℄. But while the dinatural transformations of [4℄allow too many terms, the stru
tor morphisms of [3℄ pre
isely
orrespond tothe polymorphi
 terms, but do not stipulate whi
h of many possible
hoi
esof stru
tors should be used to interpret the parti
ular polytypes. We �ll thisgap, presently just enough to analyze the programs to the initial and fromthe �nal data types as parametri
/paranatural families. This is the
ontents6

of proposition 3.1. The results obtained eliminate the extensionality andwell-pointedness restri
tions of the work based on logi
al relations. Moreimportantly, the logi
al insights about fusion and parametri
ity, gained by
hasing diagrams in
ategori
al proof theory [7℄, allow extending the methodsof fusion beyond their
urrent s
ope. Some eviden
e of this, severely limitedby the available spa
e, is o�ered in the �nal se
tion.2 Paranatural transformationsAs it has been well known at least sin
e Freyd's work on re
ursive types inalgebrai
ally
ompa
t
ategories [2℄, separating the
ovariant and the
on-travariant o

urren
es of X in a polytype T (X) yields a polynomial fun
torT : C op � C �! C . On the other hand, by simple stru
tural indu
tion, oneeasily proves thatProposition 2.1 For every polynomial fun
tor T : C op � C �! C over a
artesian
losed
ategory C , there are polynomial fun
tors W : C op�C �! Cand V : C �! C , unique up to isomorphism, su
h thatT �= W) VThis motivates the followingDe�nition 2.2 Let C be a
ategory andW : C op�C �! C and V : C �! Cfun
tors on it.A paranatural transformation # : W �! V is a family of C -arrows#X : WXX �! V X, su
h that for every arrow u : X �! Y in C , theexternal pentagon in the following diagramWXX #X //WXu
��

V XV u
��

Z z0 ;;xxxxxxxxx z1 ##FF
FF

FF
FF

F WXY �WY Y #Y //

WuYOO V Y
ommutes whenever the triangle on the left
ommutes, for all Z, z0 and z1in C . 7

The
lass of the paranatural transformations from W to V is writtenPara(W;V).Remark. When C supports
al
ulus of relations, the triangle and the quan-ti�er over Z, z0 and z1
an be omitted: the
ondition just means that therest if the diagram
ommutes up to �.Proposition 2.3 Let L be a polymorphi
 �-
al
ulus, and C L the
artesian
losed
ategory generated by its
losed types and terms. For every type
on-stru
tor T , de�nable in L, there is a bije
tive
orresponden
eC L (A; 8X:T (X)) �= Para(A�W;V)natural in A.3 Chara
terizing �xpointsProposition 3.1 Let C be a
artesian
losed
ategory, and F a strong endo-fun
tor on it. Whenever the initial F -algebraMF , resp. the �nal F -
oalgebraNF exist, then the following
orresponden
esC (A;MF) �= Para (A� (FX) X); X) (11)C (NF ; B) �= Para (X � (X) FX); B) (12)hold naturally in A, resp. B.In well-pointed
ategories and strongly extensional �-
al
uli, this propos-itoion boils down to the following \Yoneda" lemmas.Notation. Given h : A � B �! C and b : 1 �! B, we write h(b) for theresult of partially evaluating h on bA h(b)
''PPPPPPPPPPPPPP

hid;b!i //A� Bh
��Cwhere b! denotes the
omposite A !! 1 b! B.8

Lemma 3.2 For paranatural transformations'X : A� (FX) X) �! X Y : Y � (Y) FY) �! Bhold the equations 'X(pxq) = LxM � 'MF (�) (13) Y (pyq) = NF (�) � [(y)℄ (14)for all x : FX �! X and y : Y �! FY .While (13) follows from A� FMF)MF 'MF //A�FMF)LxM
��

MFLxM
��

A hid;p�q!i 88pppppppppppphid;pxq!i ''NNNNNNNNNNNN A� FMF) X �A� FX) X 'X //

A�F LxM)XOO X(14) is obtained by
hasing Y � Y) FY Y //[(y)℄�Y)F [(y)℄
��

Bid
��

Y hid;pyq!i 77oooooooooooooh[(y)℄;p�q!i ''OOOOOOOOOOOOO[(y)℄
��

NF � Y) FNF �NFhid;p�q!i//NF �NF) FNF NF //

NF�[(y)℄)FNFOO BIn well-pointed
ategories, 'X : A � (FX) X) �! X is
ompletelydetermined by its values 'X(pxq) : A �! C on all x : FX �! X. Similarly, Y : Y � (Y) FY) �! B is
ompletely determined by its values ony : Y �! FY .However, in order to show that 'MF (�) is generi
 for ' and NF (�) for without the well-pointedness assumption, one needs to set up slightly di�er-ent
onstru
tions. 9

Proof of 3.1. (11) We de�ne maps(�)0 : C (A;MF) �! Para (A� (FX) X); X)build : Para (A� (FX) X); X) �! C (A;MF)and show that they are inverse to ea
h other.Given f : A �!MF , the X-th
omponent of f 0 will bef 0X : A� (FX) X) f�k�! MF � (MF) X)"�! Xwhere k : (FX) X) �! (MF) X) maps the algebra stru
tures x :FX ! X to the
atamorphisms LxM : MF ! X. Formally, k is obtainedby transposing the
atamorphism L�M : MF �! (FX) X)) X for theF -algebra � on (FX) X)) X, obtained by transposing the
omposite(FX) X)� F ((FX) X)) X) �!(i)�! (FX) X)� (FX) X)� F ((FX) X)) X)(ii)�! (FX) X)� F ((FX) X)� (FX) X)) X)(iii)�! (FX) X)� FX(iv)�! Xwhere arrow (i) is derived from the diagonal on FX) X, (ii) from thestrength, while (iii) and (iv) are just evaluations.Towards the de�nition of build, for a paranatural ' : A � (FX)X) �! X take build(') : A A�p�q!// A� (FMF)MF)'MF // MFComposing the above two de�nitions, one gets the
ommutative squareAbuild(f 0)
��

A�p�q! //A� (FMF)MF)f 0MF
yysssssssssssssssssssss f�k

��MF MF � (MF)MF)"oo 10

Sin
e k � p�q = pidMq, the path around the square redu
es to f , and yieldsbuild(f 0) = f .The
onverse build(')0 = ' is the point-free version of lemma 3.2. Itamounts to proving that the paranaturality of ' implies (indeed, it is equiv-alent) to the
ommutativity ofAe'X
��

A�p�q! //A� (FMF)MF)'MF
��(FX) X)) X MFL�Moowhere e'X is the transpose of 'X. Showing this is an exer
ise in
artesian
losed stru
ture. On the other hand, the path around the square is easilyseen to be build(')0X .Towards a proof of (12), we internalize (14) similarly like we did (13)above. The natural
orresponden
es(�)0 : C (NF ; B) �! Para (X � (X) FX); B)pro
ess : Para (X � (X) FX); B) �! C (NF ; B)are de�ned g0X : X � (X) FX) X�`�! X � (X) NF)"�! NFg�! Band pro
ess() : NF NF�p�q!// NF � (NF) FNF) NF // Bfor g : NF �! B and : X � (X) FX) �! B. The arrow ` : (X)FX) �! (X) FX) maps the
oalgebra stru
tures x : X ! FX to theanamorphisms [(x)℄ : X ! NF . �11

4 Appli
ations4.1 ZipUsing
orresponden
e (11), i.e. the maps realizing it, we
an now, �rst of all,provide the rational re
onstru
tion of the simple fusion from the introdu
-tion. The abstra
t form of the fun
tion zipW, leaving the type parameter Ximpli
it, will bezipW' : ((1+Nat�Nat�X)->X) -> ([Nat℄�[Nat℄->X)zipW' [m,
℄ (x::xs,y::ys) =
(x, y, zipW' [m,
℄ (xs,ys))zipW' [m,
℄ (xs, ys) = mWhile zipW
an be re
overed as the instan
e zipW' [[℄,(::)℄, i.e. zipW =build(zipW'), the fusion is obtained assumzip = zipW' [0,z℄But what is zipW, if it is not a
atamorphism? How
ome that it still has are
ursive de�nition?It is in fa
t an anamorphism, and ssum � zipW
an be simpli�ed by pro
essfusion as well. The s
heme is this time1+Nat�Nat�[Nat℄�[Nat℄ //1+Nat�Nat�[Nat�Nat℄[Nat℄�[Nat℄zW OO zipW // [Nat�Nat℄OO [Nat�Nat℄ ssum // Nat[Nat℄�[Nat℄ ssum0 [Nat℄�[Nat℄ - zW
// Natwhere zW (x::xs,y::ys) = (x,y,xs,ys)zW (xs,ys) = One (the element of 1)indu
es zipW = [(zW)℄, whereas (leaving again the type parameter impli
it)12

ssum' : X � (X -> 1+Nat�Nat�X) -> Natssum' x d =
ase d x ofOne -> 0(n,m,y) -> n + m + ssum' y dCal
ulating the
on
lusion this time yieldssumzip = ssum' _ zWFinally, lifting proposition 3.1 to the
ategory C C of endofun
tors, we
anderive the pro
ess fusion rule for nested data types [1℄. Consider, e.g., thetype
onstru
tor Nest, that
an be de�ned as a �xpoint of the fun
tor 	 :C C �! C C , mapping 	(F) = �X:1 +X � F (X �X).The elements of the data type Nest Nat are the lists where the i-th entryis an element of Nat2i. Abbreviating Nest Nat to fNatg, we
an now de�nezWN (x::xs,y::ys) = (x,y,fst xs,fst ys,snd xs,snd ys)zWN (xs,ys) = Onewhere fst and snd are the obvious proje
tions fX � Xg �! fXg, and andderive zipWN : fNatg�fNatg �! fNat� Natg as [(zWN)℄ again. On the otherhand, working out the paranaturality
ondition in C C allows liftingssumN : {Nat�Nat} -> NatssumN [℄ = 0ssumN (x,y)::zs = x + y + ssumN (fst zs)+ ssumN (snd zs)to ssumN' : F(Nat) �F(X) -> 1+X�X�F(X�X) -> NatssumN' F X f d =
ase d Nat f ofOne -> 0(n,m,g) -> m + n + ssumN' FF X g dd13

where FF and dd are the instan
es with X�X instead of X. (Here we madethe type parameters expli
it, to show how the fun
tor is transformed in there
ursion.) The fusionsumzipN = ssumN' Nest�Nest Nat _ zWNis this time sumzipN : {Nat}�{Nat} -> NatsumzipN (x::xs,y::ys) = x + y + sumzipN (fst xs,fst ys) +sumzipN (snd xs,snd ys)sumzipN (xs, ys) = 04.2 Pro
ess fusion on streamsWhenever we have two pro
esses, a Stream Produ
er (SP) and a StreamConsumer (SC), their
omposition
an be fused into a single pro
ess, doingaway with the intermediate stream.To apply this, there is basi
ally one requirement: the SP has to be ex-pressed in the form of an anamorphism. This is not so mu
h a restri
tion asa task to massage the expression denoting the SP into a suitable form.If the SC is itself an SP (SC/P), we see the following two spe
ial patternsof pro
ess fusion: SP �! SC/P ! = SP0 ! (15)! SC/P�! SC/P0 ! = ! SC/P00 ! (16)(The equality sign implies that, viewed as transformations, these steps arereversible, and in program derivation temporarily going the \wrong" waymay be
ru
ial to getting to the desired result.)In prin
iple, this
an be
as
aded, and in a pipeline of pro
esses likeSP �! SC/P �! SC/P0 �! � � � �! SC/P(n�1) �! SC14

any subsegment
ould be fused. (The result of fusion for patterns (15) and(16) may not produ
e its result immediately in the required anamorphi
 form;to what extent this is the
ase, and if so whether there is an automati
 te
h-nique for getting it there, requires further study.) Be
ause of the generi
ity,the method is not restri
ted to single streams, but applies equally to multiple(parallel) streams.It should be
lear how this applies to, for example, some issues in theevent-
hannel ar
hite
ture. In parti
ular, it makes pre
ise how
lient �lter-ing
an be moved to the (proxy) server side. Depending on the require-ments of the appli
ation, further forms of
lient pro
essing
ould be movedto the server, su
h as data smoothing or interpolation. Likewise, queuinghigh-priority events
an be by-passed if they would next immediately getdequeued.Given the ri
hness of the event
hannel model, pra
ti
al appli
ation willrequire a substantial amount of work. But note that the transformations
an be done already at the level of spe
i�
ations; it is not ne
essary to haveexe
utable sour
e
ode.We give a
on
rete example. We apologize for how trivial it is, but weneed a really simple example to avoid the exposition of the te
hnique gettingdrowned out by the details. We want to fuse a produ
er pro
essloopget xif x > 0 then put xend-loop(whi
h happens to be a stream �lter) with a
onsumer pro
essloopget xput x-1end-loop(whi
h happens to be a stream map).We do not bother to introdu
e the language, as it is meant to be intuitivelyobvious and introdu
ed for exposition purposes only, but it
an easily be15

extended with guards and lo
al state. As a side remark, it is easy to see howthe data passing by the put statement of the produ
er may be modeled at alow level as an invo
ation of a
onsumer method.First we express the produ
er pro
ess as a stream fun
tion:f (x::rest) = (x::f rest) if x > 0= f xs otherwiseIntrodu
ing the auxilary fun
tion ff byff (x::rest) = (x, rest) if x > 0= ff rest otherwisewe
an transform the produ
er pro
ess into the
oindu
tive pattern of ananamorphism for the stream data type (the
oindu
tive data type NF
orre-sponding to the fun
tor FX = Message �X):f xs = (y::f ys)where (y, ys) = ff xsor, using the anamorphism
ombinator:f = [(ff)℄The
onsumer pro
ess, expressed as a stream fun
tion, is:g (x::rest) = (x-1::g rest)To make the
onsumption expli
it, we use the fun
tion nu (i.e., the �nal
oalgebra morphism � : NF ! FNF), fun
tionally de�ned by:nu (x::rest) = (x, rest)Using this, we rewrite the de�nition of g into:g z = (x-1::g rest)where (x, rest) = nu z16

Generalizing this with an embedding transformation abstra
ting from nu intoa g' that is parametri
 as in (8) (the type parameter X is left impli
it asbefore), g = g' nuwhere g' n z = (x-1::g' n rest)where (x, rest) = n zPro
ess fusion (10) tells us now thatg � [(ff)℄ = g' ffGiving the fusion result a name, say h, we haveh = g' ffwhere g' n z = (x-1::g' n rest)where (x, rest) = n zBy spe
ialization we remove the use of g' { the
onverse of the generalizationstep above:h z = (x-1::h rest)where (x, rest) = ff zWe now remove the use of ff { the
onverse of the step that introdu
ed it:h (x::rest) = (x-1::h rest) if x > 0= h xs otherwiseCompiling this into our simple pro
ess language results in:loopget xif x > 0 then put x-1end-loopAnalogously, we
an fuse the produ
er pro
ess17

loopget xput x-1end-loopwith the
onsumer pro
essloopget xif x > -1 then put xend-loopFor brevity the details are omitted, but this happens to give the identi
al re-sult as before. Sin
e the transformations are \reversible" (forms are repla
edby equivalent forms), we have also shown shown that the �lter in the pro
ess
omposition�! loopget xput x-1end-loop �! loopget xif x > -1 then put xend-loop �!may leap-frog to the left position in modi�ed form:�! loopget xif x > 0 then put xend-loop �! loopget xput x-1end-loop �!
5 Future workFurther work will explore me
hanization of the te
hnique and its appli
ationto realisti
 problems. As the simple examples above have shown, manualappli
ation will be quite laborious for non-trivial
ases. Parti
ular ques-tions to be investigated are the automation of the transformations leading toanamorphi
 forms. 18

A
knowledgementsI am indebted to Lambert Meertens for helping me
arry out the detailedtransformations of Se
tion 4.2.Referen
es[1℄ R. Bird and L. Meertens. Nested datatypes. In Pro
eedings MFPS'98, volume 1422 of Le
ture Notes in Computer S
ien
e, pages 52{67.Springer, 1998.[2℄ P. J. Freyd. Algebrai
ally
omplete
ategories. In A. Carboni, editor,Pro
eedings of the 1990 Como Category Theory Conferen
e, volume 1488of Le
ture Notes in Mathemati
s, pages 95{104. Springer, 1991.[3℄ P. J. Freyd. Stru
tural polymorphism. Theoreti
al Computer S
ien
e,115(1):107{129, 1993.[4℄ P. J. Freyd, J.-Y. Girard, A. S
edrov, and P. J. S
ott. Semanti
 para-metri
ity in polymorphi
 lambda
al
ulus. In Pro
eedings Third AnnualSymposium on Logi
 in Computer S
ien
e, pages 274{279. IEEE Com-puter So
iety Press, July 1988.[5℄ A. Gill, J. Laun
hbury, and S. Peyton-Jones. A short
ut to deforestation.In Pro
eedings of FPCA '93. ACM, 1993.[6℄ J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CambridgeTra
ts in Theoreti
al Computer S
ien
e. Cambridge University Press,1989.[7℄ D. Pavlovi
. Maps II: Chasing diagrams in
ategori
al proof theory. Jour-nal of the IGPL, 4(2):1{36, 1996.[8℄ P. Wadler. Theorems for free! In Pro
eedings of FPCA '89. ACM, 1989.
19

