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Preface

Nuances, nuances sans couleurs

Paul Valéry

Abstract.

The commonplace simplification of constructive logic as logic without the excluded
middle conceals a more authentic idea of constructivism - that proofs are constructive
functions, while quantifiers should be sums and products. An exact realisation of this
idea requires a very special mathematical setting. Expressed categorically, the idea is
that there is a small category (of "propositions" and "proofs"), with all small sums and
products (as "quantifiers”). In ordinary category theory - or in & Grothendieck topos -
such a category must be a preorder (and there can be at most one "proof” from one
"proposition" to another; so these "proofs” do not really look like functions). In
Hyland's effective topos, however, a nondegenerate small complete category has been
discovered recently. It can be regarded as the first mathematical model of logic with
constructive proofs. On the other hand, a significant impuilse to the formal development
of such a logic has been given by computer science (especially in the work of Coquand,
Huet and their collaborators).

In this thesis, we consider two mathematical formulations of constructive logic: a type
theoretical, and a category theoretical. In the end, the former is completely interpreted in
the latter. The purpose of such a connection is to yield a characterisation of type
theoretical structures by categorical properties.

In chapter I, we define the theory of predicates, a type theoretical generalisation of
higher order predicate logic with a type of truth values and the comprehension scheme.
Although presented rather differently, it is closely related to the theory of constructions
with 3 -operations (as in Hyland-Pitts 1987). It deviates from the theory of
constructions at two points: on one hand, a severe, but intuitively justified restriction is
imposed on the contexts in it; on the other hand, a new operation of extent is
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introduced, similar to the set theoretical operation ¢(X)—> {XI¢(X)}. In a sense, this
operation compensates for the imposed restriction. We show that the theory of
predicates is somewhat more general than the theory of constructions (which is, so far,
the strongest type theory known to be logically consistent). With an additional rule,
which forces some types to become isomorphic, the theory of predicates has exactly the
same expressive power as the theory of constructions (modulo a translation, of course).

The general background for our categorical interpretation of constructive logic is the
picture of a fibration as a variable category of predicates: its base is a category of "sets"
and "functions”, while the objects and arrows of a fibre are regarded as "predicates"
over a set, with "proofs” between them. Chapter II surveys the concepts of
propositional and predicate logic in this setting. The most important ideas are lifted from
the context of indexed categories, where Lawvere introduced them some twenty years
ago. Although many results in this chapter can be considered as basic, for very few of
them a reference can be found. Some of them, however, surely belong to the folklore.

Chapter III is concerned with some fundamental notions of set theory in the setting of
fibred categories. Having reviewed some basic ideas - mostly due to Bénabou this time,
we begin in section 2 a categorical analysis of the comprehension principle. The
property of fibrations, which is proposed as an interpretation of this principle, the
structures induced by it, and the resulting representation of a fibration in its base are
studied in detail in the next two sections. The induced structures include Lawvere's
comprehension scheme as a special case - despite the apparent conceptual differences.
Another special case are D-categories, used by Ehrhard in his interpretation of the
theory of constructions, though in no connection with the concept of comprehension.

Putting together all the described categorical notions, in section 1 of chapter IV we
define categories of predicates, small fibrations with small products and coproducts,
and some fibrewise structure. There are some well known special cases again. The
most prominent are, of course, elementary toposes: they can be presented as fibred
preorders of predicates, with equality. The categorical structure, introduced by Hyland
and Pitts in their study of the theory of constructions, can be regarded as a category of
predicates generated by 1 (in appropriate sense).

Two pictures of constructive logic, built in the preceding chapters, are superimposed in
chapter IV. In section 1, the interpretation of a theory of predicates in a category of
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predicates is defined; in section 2, a category of predicates is built up from a given
theory of predicates. This gives a relatively simple way to systematically obtain artificial
examples of small categories with small sums and products. Completeness of this
semantical construction is then proved, so that the two pictures conceptually coincide.
Technically, however, they are complementary: the theory of predicates is a
"programming language"; a category of predicates is its "computer”. Each of them

seems too complex to be developed alone.

An unusual phenomenon occurs in categories of predicates: the weak, i.e. nonunique
factorisations play a structural role. We discuss two examples: weakly cocartesian
liftings, and weak equalisers. The former are the "existential quantifiers” induced by
comprehension on "sets". (To express the Beck-Chevalley property in a form
appropriate for this situation, we characterized it in terms of inverse images only, in
section 3a of chapter I1.) These "quantifiers” are weak because logic is not extensional:
a predicate may contain more than its extent. The weak equalisers, on the other hand,
arise as extents of equality predicates. Multiple proofs of an equality predicate exactly
correspond to the multiple factorisations through the weak equaliser belonging to it.

The final section is mostly devoted to various aspects of the equality predicates. A topos
allows only one; but there can be a lot of them in a category of predicates. Despite their
wekness, all equality predicates support much of the usual set theoretical approach to
functions as graphs. (A connection between comprehension and the Cauchy

completeness seems plausible.)

At the end, we use an arbitrary equality predicate to formulate some internal category
theory (based on weak equalisers) under a category of predicates; then we construct
another category of predicates over the same base - as a category of "internal
presheaves” in the given one. Starting from any of the known mathematical models for
the theory of constructions, this construction yields plenty of proper categories of
predicates. (It thus multiplies the known examples of nondegenerate small categories

with small products and coproducts.)

vii
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To the reader.

Although it contains, I believe, no propositions which are not reused in the end, this
thesis grew uncomfortably long. But for a reader, I am afraid, it might be
uncomfortably short at some places. While trying to give a better oversight of a proof, I
frequently introduce notations, where a sentence or two would do as well. This is
perhaps wrong, perhaps a matter of taste. I like pictures rather than explanations.

Proofs, or outlines of proofs, are usually enclosed between thick points: ».... Routine
arguments are often omitted. The reader is assumed to understand category theory
sufficiently to be able to look up, say, Johnstone's Topos Theory (1977) without
difficulties. For the first and the last chapters, some acquaintance with type theory and
its semantics is probably necessary (e.g. Martin-Lof 1984, and Seely 1984). A reader
who wants to supply the inductive arguments omitted in section 1.2, will perhaps need a

bit more than that.

The list of references contains only those papers and books which are actually refered to
somewhere in the text. I do not see the theme of this thesis as ripe for an exhaustive list

of relevant literature,

Chapters are divided in sections, sections in subsections. A subsection is usually
organized by bold subtitles; when necessary, it is subdivided by decimal numbers. For
instance, paragraphs 3.12 and 3.111 are both in subsection 3.1, and 3.111 comes
before 3.12. "I1.3.12" denotes paragraph 2 in subsection 1, section 3 of chapter II;
within chapter I, this paragraph is called "3.12"; within section 3, it is just "12".
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Introduction

Question: What is a proof?

. Answer 1. Formal logic. Begin with obviously true propositions and derive the
conclusion by inference rules which preserve the truth, in the sense that the truth value
of the premises always remains less or equal than the truth value of the conclusion.

Truth values are the elements of a poset (Lindebaum algebra).

Answer 2. Type theory. A constructive proof is some kind of a function
(according to Brouwer, Heyting and Kolmogorov):

f proves Vxe A.@(x) means f:A—> Proofs

where for every a€ A f(a) proves ¢(a);

f proves Ixe A.@(x) means f=(a,f,)

where f; proves ¢(a),

etc.

The questions remain: Whart kind of a function is a proof? and: What kind of a set is a
proposition? To realizability and beyond, various answers have been proposed. In
general, they were some formal systems in which the terms had been recognized the
dignity of constructive functions. By considering proofs-as-terms and formulas-as-
types, the practice of constructive-logic-as-type-theory has been developed. - Not

without a gain of generality and a loss of intuition: Vxe A.@(x) has become H ¢(x),
xeA

and there can be many different proofs for the same formula now.

Truth values are now collected in a category.
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Answer 3. Semantics. A proof can be given by showing a model. "When the
Eleatics argued that the movement did not exist, Diogenes stood up and walked
around.” Another example, characteristic for the New Age is: "Cogito, ergo sum":
"The existence of this thought (or of this sentence, if you like) is a model of my
existence". Methodically, the answer is being produced from the material given in the
question itself; by its actions, the subject constitutes itself as an object.

In mathematics, any abstract group is concretized by its actions on its own underlying
set (Cayley); any category is concretized by its representable functors (Yoneda)!.

Upon this basic idea a sophisticated superstructure of spectral theories has been
developed. It started from the Dedekind-style completisation of a poset by embedding it
in the set of its own lower sets, and evolved through Stone's representation theorems to
the theory of Grothendieck toposes. In it, the dialectic of certain

theories - categorically presented in geometric logic,

their completions

their models - the points of these toposes
has been disclosed as the central issue.

- the classifying toposes, and

Theme. We shall be concerned with the constructive proofs - in the sense of answer 2.
We shall try to approach them semantically - in the sense of answer 3.

Constructive logic has at least three levels:
- intuitionism - i.e. Brouwer's ideology;
- formally constructive logic - i.e. formal logic without excluded middle;
- logic with constructive proofs - i.e. logic-as-type-theory.

IThe importance of the Yoneda lemma for category theory can hardly be overestimated.

It tells what it's all about. For instance, about the objects: In any category € the objects
?re determined (up to an iso0) by the arrows to (or from) them, i.e. by the representable
unctors:

€(A, B) = Nat (VA, VB)
(where VA: €o—> Set : X> €(X, A) is the functor represented by A, and Nat the
natural transformations) - just as the sets are uniquely determined by their elements:

A =B © Vx(xe A xeB).

Introduction

A universe of sets with formally constructive logic is investigated in topos theory.
Although this theory probably hasn't reached its maturity yet, computer science has
propelled the question of a universe of sets with constructive logic in the strongest

sense - i.e. with constructive proofs. This is our theme.

In chapter I a type theoretical generalisation of higher order predicate logic with a type
of truth values and a constructive extent operation is introduced: the theory of
predicates. In chapters II and III the corresponding categorical structures are
considered: those corresponding to logical operations in chapter 1I, those characteristic
for a universe of sets in chapter III. Putting them together, we define in chapter IV
categories of predicates. The correspondence between the introduced categorical and
type theotetical concepts is then spelled out. Some ways to produce categories of
predicates as models for the theory of predicates are studied.

Method. The central part of this thesis is a categorical interpretation of logic with
constructive proofs. To help us approach it, a type theoretical interpretation has been
introduced. An effort has been made to keep the latter simple; the syntactical machinery
has not been spelt out in detail. This is, of course, a subjective decision, and there is no
doubt that a different approach, concentrated on syntactical aspects, would be at least as

appropriate.

Conceived ninety years ago on the soil of creative subject, constructivism now surfaces
in computers and in some mathematical structures. One often cannot help to feel that
there is not enough intuition for constructive logic any more. Equality, structure,
complexity of proofs do not seem to be a part of our everyday logical experience. Proof
theory - direct syntactical study of formal systems - is probably one of the branches of
mathematics with the highest price per result.

In recent years, a development of a semantical approach to type theory has started. In a
very straightforward way, formal systems are interpreted in the metalanguage of
category theory, and then some models are constructed, as categories with appropriate
structure. The word "model" is in fact a bit stretched here: not the "meaning” - as in
model theory - but the structure of a system is being modelled. The formal type
theoretical expressions are actually just rewritten in terms of categorical operations. - So
what is the gain? A tactical gain is that one more easily finds examples of a given
structure, and perhaps "understands” it better (whatever that might mean!), since

3
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category theory is some kind of a natural language, rooted in mathematical practice. The
strategic gain from interpreting a type theory categorically is that given structures are
characterized as properties. Namely, while a type theoretical operation is decreed by
syntactical rules, a category theoretical operation (e.g. lim) in principle originates from a
property (cocompleteness). Connecting one with another creates a movement in both
directions: category theoretical considerations sometimes lead to meaningful syntactical
rules for constructive logic, when intuition does not help (e.g. the rule 3 in 1.1.2);
and type theory equips some complex categories (e.g. toposes) with an intuitive internal
language: approaching them without this language can be like programming a computer
using the machine code.

A similar interplay is going on between type theory and computer science. A system of
logic with constructive proofs might serve as a "natural programming language”, in
which programs could closely follow the given specifications. Conversely, the
complexity of such a system makes a computational approach to proof-checking in it
indispensable.

Presently, the most efficient approach to logic with constructive proofs seems to be the
combination of type theoretical and category theoretical formalisms and intuitions: type
theory gives a picture with sharp lines, while category theory adds a third dimension to
it. However, the inexorable difference between category theory and type theory - that
one is about properties, the other about structures - which makes their contact fruitful,
also makes a formal fusion impossible: cf. remark IV.1.1.

Context. The analogies shown in the rows of the following table (or two tables, glued
in the middle) might offer some readers a rough orientation. - Of course, the alignments
like this must be taken with a grain of salt!

Introduction

concrete abstract generalized
: Abelian
algebra ring category
Grothendieck
geometry space topos
propositional Heyting cartesian closed typed
logic algebra category dcalculus
hidglhert Ofde.rc i pL, le systéme
predicate logll pos -category
with truth object Fo
... and with elementary category of theolry of
comprehension topos predicates predicates
: Lindebaum categorical h
logic algebra structure type theory

Conceptually, categories of predicates should generalize elementary toposes! - This
certainly doesn't have to mean that their theory will be as rich. In the worst case, they
may turn out to be just another symptom of a "generalize!"-disease. I can only say that
they did not arise from a pretension to generalize: I was only trying to understand the
conception of constructive proofs at the confluence of three sources:

- theory of constructions (Coquand-Huet 1986, 1988, Hyland-Pitts 1987);

- hyperdoctrines (Lawvere 1970, Hyland-Johnstone-Pitts 1980, Seely 1987);

- fibred categories (Grothendieck 1959, Gray 1966, Bénabou 1975b, 1983,

1985).
The theory of predicates arose from the theory of constructions, and an observation
how the multiplicity of constructive proofs spoils the comprehension principle. (Cf.
1.1.54.) A lead towards a solution was found in Lawvere (1970), together with the
complete conceptual equipment for categorical interpretation of logic with constructive
proofs. The passage from Lawvere's indexed categories to fibrations is essential only

as much as it is the step from structure to properties.

In the introduction to his thesis (1988), T. Ehrhard claimed that already the theory of
constructions and a corresponding categorical structure - which he christened dictos -

5
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appropriately generalize the notion of topos. (In a subsequent article (Ehrhard 1989) he
went on to suggest that even Grothendieck toposes and geometric morphisms should be
generalized on the same drift!) My work evolved independently from Ehrhard's, but it
did start off from the conceptual basis of theory of constructions - which ultimately
remains a special case of the theory of predicates, namely that in which truth values can
be reduced to some sets. The relation between the two theories will be discussed in
section 2 of chapter I. We shall see in chapter IV that a category of predicates is a model
for the theory of constructions exactly when its category of propositions is fully
generated by 1 (in the sense of I11.4).

1. Theory of predicates

We are concerned with a type theoretical generalisation of (1) higher order (2) predicate
logic with (3) constructive proofs and (4) the comprehension principle. The
presentation which we are about to give reveals that these four components are just
echoes of the same basic structure between two sorts of types, Q and 6, which we'll
have all reasons to call propositions and sets respectively. This echoing may seem
amazing, amusing, dubious or disappointing - it certainly makes the presentation

shorter.

The idea for this presentation comes from H.P. Barendregt; it is simply to extend the
typing relation (_:_) by one more level. This allows for a many sorted type theory: an
expression p:S:A tells that p is a term of type S, and that type S is of sort A. The typing
relation can then receive different meanings for different sorts. For instance, while
p:S:Q means that p is a proof of a proposition S, p:S:@ tells that p is an element of a set
S.

The same homonymy is then extended on the operations: [T represents a product on one
side, a quantifier on the other. This is so because the rules, which define this product

and this quantifier, also appear to coincide.

In section 1 we present the theory of predicates and the theory of constructions. The
latter has recently been developed in computer science. It is the strongest type theory
known to be consistent. Following a "set theoretical” intuition, we drop a "quarter” of
the theory of constructions, and introduce a new, very simple operation - to define the
theory of predicates. In section 2 these two theories are compared. The theory of
constructions is not stronger: it can be translated as a special case of the theory of
predicates - namely the one in which logic is extensional in the sense that propositions

can be identified with a special class of sets.




I. Theory of predicates

1. Type theories

Warning: Formal systems do their best here to look simple and natural. Some subtle
structural questions, which, for instance, an implementation would have to answer
remain hidden behind the natural deduction notation.

1. Examples.

Conceptually, type theory stems from logic. Formally, it can be regarded as generalized
algebra. Algebra is about operations and equations on a set. Type theory is about partial
operations and equations on indexed families of sets (which are now called types; their
elements - terms). This point of view has been explained in detail by Cartmell (1986).

We just give some examples of variable types and operations on them.

A category A consists of:

a constant type: Obga

a variable type: X:0by Y:0Obp
Homa(X,Y)

terms: X:0by

id(X):Homa (X,X)

X:0Obgy Y:Obg Y:0Oby Z:Obga
f:Homa(X,Y) g:Homa(Y,Z)

o(f,g):Homap (X,Z)

satisfying X:0bas Y:Obgpy Y:Obp
f:Homa(X,Y) id:Homa(Y,Y)
o(f,id) = f

and two more equations.

A particular category A can be given by specifying its objects P,Q... as constant terms
of type Oby, and its arrows as constant terms of types Homa(P,Q). Alternatively, a

particular category can be regarded as a model of this type theory. Indeed, by the usual




1. Theory of predicates

categorical interpretation of indexed families as arrows (cf. Cartmell 1986, or Seely
1984), every model of the theory above in a (finitely complete) category € will be an
internal category in it.

To present large categories, we should introduce two sorts of types: Sets and Classes,
such that

P : Sets implies P : Classes
Then Homa(X,Y): Sets, while Oba : Classes. Enriched categories could be defined in
a similar fashion.

To perform in this type theory the categorical constructions involving the commutativity

conditions, we must express the equality of arrows as a type. Therefore a sort of
Propositions is needed, and an operation I:

f,g: P: Sets
I(f,g) : Propositions

where some additional rules give a term r:I(f,g) iff f=g.
If, furthermore, a category B and a functor F: A—> 1B are given:

X :0Obg : Classes
Fo(X) : Obg : Classes

X,Y : Oby : Classes
f: Homay(X,Y) : Sets

F1(f) : Homp(Fo(X),Fo(Y)) : Sets

(plus equations saying that Fy preserves id and o), then the operation I allows us, for
instance, to express the fact that F is faithful:

10
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X,Y : Oby : Classes
f,g : Homa(X,Y) : Sets

x : [(F1(f),F1(g)) : Propositions

p: I(f,g) : Propositions

The comprehension principle plays a fundamental role in the type theory of
Propositions and Sets. It can be expressed by the operation

[X:P : Sets]
@(X) :Propositions

{Xe Pl @(X)}: Sets

which binds its variable X - i.e. {Xe Pl ¢(X)} does not vary over X:P any more. This
binding is denoted by [_] around X:P.

In a type theory with the operation 3. representing disjoint union, it is better to use the
nonbinding operation 1 of extent which formalizes the notion "such that". The intended

meaning of

X:P: Sets
¢(X) : Propositions

() : Sets
is that W(@(X)) # @ iff e(X) is true. Instead of {Xe Pl ¢(X)} we now use LX:P.u(@).

Using the extent operation, we define, for instance, the slice category A/P for P:Oba:
Oba/p = 2. X:0by. Homa(X,P) : Classes,
Hompa/p(t,u) = Lf:Homa(rot,mou). L(I(mt, muOf)) : Sets,

where 1:0bg/p gives mot : Obg, and wit : Homa (rot,P).

11
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2. Basic concepts.

Now we shall sketch a picture of the formal type theory, touching up those nuances of
this variegated field which are important in the sequel, or which might cause some
confusion. By the way, the relevant keywords will be just mentioned; it is assumed that
the reader already has some idea of their meaning. A discussion of standard notions can
be found at the beginning of Martin-L&f 1984, and in Troelstra-van Dalen 1988, ch. 11.

Many-sorted algebra. To understand what kind of a formal system is a type theory,
let us first consider the simplest fragment. There are two levels of articulation:
- expressions (or words) are strings of operation symbols; there is a set of
distinguished letters A, A'..., which denote sorts;
- statements (i.e. formulas): besides equations P=Q, many sorted algebra admits
the sorting statements P:A.
Each operation @ is introduced by a formation rule
Po:Ag Pr:Ar . PuiiAg
DPy...Pyp: A

The set of premises I' = (Pi:A})ie n+1 describes the arity of ®. The statement
DPy...Py:A' is the conclusion of T in the above rule. The operations with empty arity
are constants. Generators (of an algebra) can be regarded as constants, and vice versa.
Starting from either of them, by iterated application of formation rules, the well-formed
expressions are obtained. Note that the class A of all the well-formed expressions of a
many-sorted algebra L comes equipped with the relation of derivability
(F)SA*XA,
the transitive reflexive closure of all the instances of formation rules given for L, where
A*:= |J Al . Assuming that there are no constants given (only generators), I't-y
1€ ®

means that I" is a bar in the parsing tree of y.

Of course, there is also equality

(=) € AXA,
the equivalence relation generated by all the instances of equations imposed on L. An
algebraic study of L is concerned with the equality. A grammatical study is concerned
with the derivability, parsing, and the structural recursion by which A is generated.
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A model for a many-sorted algebra is a system of sets LAT, LA'D... to represent sorts,
with some structure on them, to represent operations. If U is the union of all these sets
[LAT..., the model assignment will be a mapping

[ J:A—U
such that P:A implies [PI1e LAT, and P=Q implies [PTI=0QI. The relation () plays

no role here.

Type algebra is many-sorted algebra extended by one more level: besides sorted
types P:A, there are typed terms p:P. Thus,

- expressions can be terms p, q..., types P, Q..., or sorts A, A'...;

- each kind of statements can appear terms as well as for types: there are

equations p=q, and P=Q, typing statements p:P, and sorting statements P:A.
(These four kinds of statements correspond to Martin-Lof's judgements.) The well-
formed terms are obtained by iterated application of typing rules, in the form:

pe:Po:Ag p1ePiiAL . PotPniAn Prietidnel - PoimiBnim

@po...pn: PPo...Pnym : A’

Here p:P:A abbreviates p:P and P:A. Each typing rule must reduce to a formation rule,
when all the typing statements are omitted - i.e. when all the terms, outlined above,
are removed from it. Inductively, one easily shows that every well-formed term must
have a well-formed type, just as every well-formed type must be sorted. A well-formed
term/type always occurs in a typing/sorting statement. To recover the intuitive
difference between the subject "term f with type Q" and the statement "term f has type
Q", lost in the language of type theory, we shall sometimes write fQ in place of £:Q.

A model for a type algebra is again a system of sets LAT, EA'T...; their elements,
representing types, are to be some sets again, containing representants for terms. Of
course, it is now required that p:P implies [ple LPT.

Contexts. Type theory is built up around the relations () and (=) in a similar fashion
as type algebra. In fact, type algebras are missing only one dimension of type theory,
though probably the most important one: indexing, as exemplified above (in part 1). It
is represented formally by the device of contexts. The context of a type or term T is the

13
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set I' of the declared variables, on which T may depend. We write I'=>T. (Variables, of

course, constitute a distinguished class of terms.)

Each atomic type or term - i.e. a generator - must be given with a context. And the
derivation rules now interfere with the contexts: they impose conditions not only on the
expressions in premises, but also on the contexts; and they yield a conclusion with a
context. The contexts are derived together with the well-formed expressions; the
relations () and (=) are defined by simultaneous recursion. In this way, each well-
Jormed type and term comes with a unique context. The relation (=>) can thus be
regarded as a mapping DV which assigns to each type or term T a finite set of declared
variables DV(T). T is said to be closed when its context DV(T) is empty.

Each type or term thus presents itself by an expression - its name - and a context. The
name can be arbitrary - e.g. any letter will do for an atom - but the context an intrinsic
structure of a type or term. Generating type theory is a dynamic process, because an
atom may contain complex derived types in its context - and can be used in derivations
only when all these types have been formed. (Cf. "Derivations" below.) Moreover,
there are operations which act on the context of a type or term, without leaving any trace
on the expression which denotes this type/term. Therefore, the derivations in type
theory are not just the parsing trees of well-formed expressions. They are more like
logical derivations. In fact, every logician will recognize the simultaneous recursion of
(+) and (=) as a sequent calculus.

The logical aspect of type theory is reflected in (), the algebraic aspect - in (=). The
former was historically far more important: type theory was developed as logic with
constructive proofs, the algebraic side being just a study of the equivalence of proofs.
The equations imposed in a type theory are therefore usually called conversion rules,
while the relation (=) is called convertibility?. Generators are called atoms, and

constants — 0-ary operations - are axioms.

2Trqelstra~van Dalen (1988, 9.4.17) call conversion the relation which consists of all
the instances of conversion rules. For its transitive, reflexive and symmetric closure we
use the term convertibility following Barendregt (1981, 3.1.5.).
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To model type theory, discrete sets are not sufficient: they must be structured by some
arrows, to interprete the indexing. In chapter IV we shall see how categories can be

used for this.

Declared variables vs. free variables. A paradigmatic picture of contexts can be
acquired by considering the indexed families of eminently constructive sets: data types;
their elements are the functional programs. In this setting, a variable represents an input
gate; a context is a list of the declarations of input data. All the data used in a program
must be declared. Some declared data may not be used in the program. And yet, even if
the value of the output does not depend on the values of some of the declared input, the
existence of the output always depends on the existence of the input: if some of the
declared data do not exist, the program can never become executable. In other words,
the context of a type/term T may contain a dummy variable xP, i.e. one which is not
used in the calculation of T; nevertheless, T depends on xP, in the sense that it exists
only if the type P is inhabited, i.e. if there is a closed term P, to be substituted for xP.

Hence the difference between the context DV(T) and the set FV(T) of free variables of
T, namely those variables which determine the value of T. Clearly, there is an inclusion
FV(T)<DV(T), and it can be proper. We use the common convention in accounting for
the (relevant) elements of FV(T) in parentheses behind (the expression) T.

Structure of contexts. (Cf. Hyland-Pitts 1987, 1.3-4.) The type of a variable y can
be indexed by another variable z: in order to know where to choose a value for y, we
must be given a value of z. This provides a notion of natural partial order for each
context:
yQ<R (e Re DV(yQ).

(Note that DV(xP):=DV(P)u{xP}, so that zZRe DV(yQ) DV (zR) £ DV(yQ).) This
partial order can be seen as the relation of "being above" in the trees of variables in our
examples. For instance, the context of the term p:I(f,g) is

15
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~
f/ g
N S

We shall denote by MIN(T) the set of minima of DV(T). E.g., MIN(x)=({f,g}.

>

Although this may be syntactically nontrivial, contexts will often be collapsed, to allow
the sequent notation, e.g.

X,Y:0b, f,g:Hom(X,Y), x:I(F(D),F(g)) = p:I(f,g);
they will be truncated, or even omitted when no confusion seems likely.

Natural deduction. In concrete derivations, we shall expand contexts as trees of
variables, like in the examples above. This means that "being above” will denote both
(=») and (+). This is the basic idea of the natural deducrion. ("Being above" is
conventionally denoted by a separating line: premises are written on a horizontal line
above the conclusion, variables belonging to the context of a type or term are displayed
on a horizontal line above its name. A double line represents several steps in a
derivation.) A practical advantage of this notation is that the contexts need not be
rewritten in derivations: a variable which was above a premise is above the conclusion
too; the context of the conclusion can be made from the contexts of premises.
Moreover, the partial order of a context presents itself in this notation in such a way that
the permutations under which a context should be invariant are completely obvious,
while the structural rules governing the manipulation with contexts, come as "natural”, -
This convenience does cause certain formal disadvantages, but they seem less important
for our purposes.

Structural rules. When building derivations in natural deduction, one should
certainly keep in mind the difference between (=) and () - i.e. between open
assumptions under which a formula is valid, and premises from which it can be
derived. In this type theoretical natural deduction, the role of open assumptions is
played by variables. This refers to the "coincidence” that the Jree variables in a predicate
obey the same structural rules as the open assumptions in a derivation:
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they can be used in any order (provided they are independent of each other),

several times, or not at all.

(These structural rules will be derivable in the type theories which we are about to
introduce. Cf. "Substitution" below.) In fact, variables are just labels for assumptions.
If an ordinary assumption is in the form "Suppose that P is provable", assuming a
variable X:P in a context can be understood as saying "Suppose that X is a proof of P".

By nature, variables satisfy the requirement that there are always sufficiently many of
them: for every derivable type there must always exist a fresh variable. This can be
expressed by the following rule, which will be assumed in all our systems.

P:A
X:P:A

In other words, before we assume that P has a proof, we must know that it is well-

formed.

Derivations. We start a derivation from atoms, and build it by iterated application of
derivation rules. Whenever a type has been formed, its variables can be assumed. A
type/term can be introduced in a derivation only below its context, i.e. after all the types
which occur there have been formed. When introduced, it is again available as a

premise for a rule.

In these interactions between the rules and the introduced atoms, a derivation tree is
built. Both () and (=») are displayed in it. The context of every type or term must be
contained in each of its derivations. (The bottom is considered as a part of the derivation

too. A variable always occurs in its own context.)

Variations. This notion is specific for sorted type theories. Let A’ and A" be sorts of
types. If a variable X:P:A' occurs in the context of q:Q:A" (or of Q:A" alone), then the
term  (resp. the type Q) is said to have variation A'A". A theory has variation A'A" if
the types and terms in it are allowed to have this variation. If a variation is not allowed,

we assume that neither types nor terms may have it.
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A type with AA as its only variation is called dependent.

In type theories below, the rules will be parametrized by sorts: a A'A"-rule acts in
principle on the variation A'A", i.e. on A'-variables in the context of A"-types/terms,

3. Sums and products.

The essence of logic-as-type-theory is that the fundamental type theoretical operations
IT and ¥ satisfy similar introduction and elimination rules as V and 3. Namely, by
removing the terms - which we ouline for better visibility - from the typing
rules for [T and ¥, the usual logical rules for ¥V and 3 are obtained. (Recall: Every

yping rule reduces to a formation rule when stripped of rerms.)

Where V and 3 discharge an assumption in a derivation, [T and Y, bind a variable. As
usually, binding is denoted by [_].

(The "coincidence" of the declared variables and the open assumptions is thus extended
to the bound variables and the closed assumptions, used in derivations.)

18
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IHAIA”

EHA'A"

IZA'A"

EEA'A"

1. Type theories

[X:P:A']
q:Q:A"

AX.q:JIX:P.Q: A"

condition: Xe MIN(q:Q)

p:P:A r: JIX:P.Q(X):A"
rp ¢ Q[X:=pl:A"

[X:P:A"]
p:P:A’ Q:A" qQ:Q(p):A"

{(p.q): ZX:P.Q: A"
condition: Xe MIN(Q)

[X:P:A']
[Y:Q(X):A"]

r: 2X:P.Q: A" s(X,Y): S, YA

v{r, (X,Y).s) : S(z) : A
conditions: Ye MIN(s:S); Ae {A',A"}
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Conversion rules.

BITA'A" (AX.@)p =q[X:=p]

nlia'A" AX.(1X) =t condition: X¢ DV (1)
BXAA" v{X,Y), X,Y).s) =s

NXA'A" v(r, CLY).H(X, YY) = t(r) condition: X,Ye¢DV(t)

Equality. It is, of course, intended that the equals can replace each other. Hence the
equality rules, which tell for each operation that it is well defined with respect to the
relation of convertibility. We won't write them down.

Although no conversion rules have been given for types, the nontrivial convertibility is
induced on them by the equality rule (in a condensed notation)
P=q
R(p)=R(q)

Remark. The type theory of I and 3, is an algebra of constructive proofs. The typing
rules are easily recognized as well known logical rules, enriched with terms to encode
proofs3. The conversion rules then define an equivalence of proofs. But in formal logic
any two proofs of a formula are equivalent. So the logical experience doesn't help us to
choose the conversion rules. They are actually determined in the categorical
interpretation of type theory. In chapter IV we shall see that the conversion rules given
above just say that X and IT are respectively left and right adjoint to substitution. (Cf.
also 11.3.1.)

Substitution. Given X:P=q:Q, and p:P, we can define Q[X:=p] and q[X:=p] as the
type and term obtained by first applying ITT, and then EIT. (In the rule BIT, the left side
then defines the notation on the right side.) Otherwise, we could give a separate rule for

30nly EZA'A" deviates from the usual form of the J-elimination by the presence of

Z:2X:P.Q in the "formula” S. Lemmas 3 explain that this rule in fact presents the
disjoint union, rather than existential quantifier. Compare also proposition 52 and
remark 1V.1.4.
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substitution, which would consist in replacing a minimal variable X:P in the context of
q:Q, by a term p:P (under its context). (BI1 could then read: AX. )X =q.)

In our systems, substitution includes the structural operations on contexts: weakening
(i.e. adding a dummy) can be represented as a substitution (of two variables for one)
along a projection Tj (see below), while contraction (i.e. reusing a variable) can be

viexed as a substitution along a diagonal p (idem).

To provide a simplified notation and some bookkeeping of substitutions, we shall
sometimes refer to some declared (and not just to free) variables in parentheses after an
expression. When Z is clear from the context, we shall write T(r) for T{Z:=r]; and
T[X:=p}{Y:=q][Z:=r] will be abbreviated by T(p,q,r).

Notation. As usually, if X¢ DV(Q), then
[IX:P.Q will be written as P-Q, and
YX:P.Q as PxQ.

Furthermore, we abbreviate
idp := AXP. XP
fog := AX.f(gX) where f:Q-R, gP-Q
o = AZV(Z,(X,Y).X)
w1 = AZV(Z,(X,Y).Y)
p = AX (X, X).

Lemmas. 31. 7; {(Xg, X1) = Xj, i€ 2.
+ This is just 2.

32. (noZ, ®Z)y="7Z 1
o (noZ, Z) 2V(Z, (X0,X1){mo(X0,X1), ©1{X0,X1)) = V(Z, (X0,X1)-{X0,.X1)) = Z.»

33. s(moZ, m1Z) = V(Z, X0,X1).8)

34, sX,Y) =t((X,Y)) thens =t
5(2) 1v(Z, (X,Y).5((X,YY) = V(Z, YK, YY) 2 (Z).»
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4. Unit.

We shall assume that every sort in any type theory contains the unit type 1. It represents
the empty context. A closed type - containing no free variables - can be viewed as
varying over 1.

Rules.
1A B:1:A
BA p:Ll:A

p=0@

Notation. @p:1p will denote @(XP):1(XP) (i.e. @:1 with a dummy X:P.)

5. Predicates.

In our theory of sets and propositions, the following notational convention will be
respected whenever possible

Sorts Types Terms
0 propositions (truth values): proofs:
a, B...; & (variable) a, b f...; x... (variable)
e sets: elements (functions):
H, K, M..; Q h, k..., u, v; X... (variable)
both sorts:
A A A P,Q,R, S P, Q 1, 8; X... (variable)
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The axiom
Q0

("the collection of propositions is a set") entails that every proposition - a type in £ - is
also a term in ©. Hence propositional variables §,(... : Q among the variable

propositions?. In principle, there are two sorts of variables: for elements and for proofs.
€ is just a notation for XQ.If T is a type or term we denote by EV(T) the set of the

element variables in its context, while PV(T) is the set of its proof variables.

The symbols @:1 will be reserved for singleton @:1:@; truth, the unit in Q, will be
denoted by 9: T:Q.

Four variations (cf. part 1) are now possible and they correspond to the logical
components which we invoked at the beginning:

(1) ®O - higher order,

(2) ©Q - predicate logic,

(3) QK - propositional logic with constructive proofs,

(4) QO - comprehension principle.

51. (Ad 1) Orders are the sets generated by x and — from € alone. Polymorphic types

are the propositions generated only from order variables.

[10® and 3OO give products and sums of sets indexed by sets. Higher order is: being

able to quantify over them, over exponents, over orders in particular.

52. (Ad 2) A predicate is a proposition indexed only over sets - an assignment of truth

values to their elements.

In order to represent the quantifiers, [JOQ and X©Q must be restricted to predicates.
Furthermore, the rule EX.®Q must be restricted to A = Q: we cannot obtain an element

4In general, note the difference between the element variables XK and variable elements
-i.e. functions kK(ZM); and the difference between the proof variables xB and variable
proofs f3(X,y).
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k:K from the truth value T.X:K.ou(X). (Otherwise a paradox can be derived: cf.
Pavlovié 1989.) This Y-elimination rule can be further weakened: just as in the 3-
elimination in logic, forbid the dependency of the predicate S on the active variables X
and Y. However, this last restriction is inessential: the resulting operation isn't any

weaker.

Definition. Quantifiers V and 3 are respectively the operations [I®Q and 2.0Q
defined with the following additional conditions:

on ITIOQ and I3.0Q PV(gQ) =9
on E20Q X, YeDV(S), A:=Q.

The groups IIOQ and YOQ, restricted like this, will be denoted by V and 3
respectively; the rules in these groups are IV, NV, E3 etc.

Proposition. The rule EXY®Q, restricted to A=Q, is derivable by means of 3 and
TQQ. (The operation V', introduced in EX0Q, is defined in terms of v and L)
belonging to 3 and QQ; and the conversion rules are satisfied.)
. [X:K:8]

[y:0uQ]

s(X,y) : o({X,y) : Q

r:IX:Ko: Q {X,y), s(X,y):Tz:(EX:K.a).0(z) : Q

v(r, (X,9).(X,y), s(X,y)) : Tz:(3X:K.a).0(z) : Q

Denote the last term by n(r,s). The fact that mon(r,s) = r follows from lemma 34
(because mon({X,y),s) = (X,y)). It is routine to check that
V'(r, (X,y).s) := mn(r,s) : o) : Q

satisfies the conversion rules.s

53. (Ad 3) The variation QQ - propositions indexed by proofs of other propositions -
must be understood from the notion of constructive proof. If a constructive proof - an
inference of one proposition from another - is a function, then a proposition must be the
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set of proofs that it is true. If the constructions are (postulated to be) proofs, then the
sets (of constructively given elements) and the propositions (with constructive proofs)
boil down to the same thing. In that case, there is a higher order predicate logic already
within propositional logic: the type x:0=f(x) is a predicate, if ¢t is viewed as a set and
every B(x) as a truth value.

Built upon this idea, the Martin-Lof type theory opens an almost royal road to
constructive logic. The constructive quantifiers are the products and sums, as intended

from the beginning. The matter seems closed.

Fortunately, we can still ask for more: Martin-Lof type theory doesn't allow a type of
truth values. Since all the types are truth values, it should have to be the type of all
types, and Girard has shown that this causes a paradox. (See Troelstra-van Dalen 1988,
11.7.4)

Therefore, the sets and propositions must remain in two separate sorts, each with its
own sums and products, and with a calculus of predicates between them.

54. (Ad 4) The variation Q® is needed to pass from a proposition describing a set to
the set itself. For instance - going back to examples 1 - if we define the equaliser
X,Y:0b:0, f,g:Hom(X,Y):© = &(f,g):Hom(E(f,g),X):©
the factorisation through it will be given by
a:Hom(A,X):0, p:I(foa, goa):Q =» 0(a,p):Hom(A,£):©
satisfying
O(a,p)ez(f,g) = a.

£
By — 08 | y————y
g
O(tl,k /
A
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However, at a closer look this is a bit "too constructive": the factorisation ¢(a,p) must
exist when the proof p exists, but it shouldn't really depend on the choice of p. This
dependency can be suppressed by a conversion rule.’

Whenever a set must be described uniformly by a proposition, we could first use QO,
and then suppress it. But we shall rather dump Q© completely, and let the
comprehension take care of itself.

Definition. The extent operation 1 is given by the following rules:

I aoufd

da:o:®

condition; PV(a:o) = @

Ev kaou®

oo
B 1(da) = a
m 8(tk) =k
It 1T =1

§5. Definition. A theory of predicates (TOP) is a type theory with
- sorts ® and Q;
- variations 80, QQ, and ©Q;
- operations [100, Y06, [1QQ, YQQ, V, 3,1.

The fragment without X, and 3 is the calculus of predicates (COP).

A strong theory of predicates (STOP) is a theory of predicates with an additional
operation, defined by:

5In fact, the premis I(foa, goa) can even be completely avoided in this case: cf.
Lambek-Scott 1986, 0.5.4.
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dab {a,b) 1 Tx:on B(x)
{8a,b) : AX:1o.B(TX)

Bo v({8a,b), (X,y).s(tX,y)) = s(a,b)
nd (8(1k),b) = (k,b).

Comment. The pairing notation for (8a,b) is a mnemotechnic device which allows us
to "derive" the conversion rules from those for 2 and 1. In fact, 9 tells that the term
(8(tk),b) obtained by ab for a:=tk is equal to the "honest” pair {8(tk),b), obtained by
[¥. But if the term a contains a proof variable, the term 8a cannot be formed and (8a,b)

is really not a pair.

6. Example.

In chapters II and III the means will be developed to assign a semantics to the theory of
predicates as a set theory with constructive proofs. Just for orientation, let us take a
quick look at a degenerate model: one for set theory with formally constructive logic®.

Let S be an elementary topos, €2 := (s 3 Q) the Heyting algebra of truth values in it.
K

(Every S(K,Q) with the induced pointwise partial order < is a Heyting algebra.)

Clearly, S will give the sets and functions, £ the propositions and proofs. The main

semantical framework is the category of predicates of S:
1S/8l = 1874,

S/Q (x, 1) = (ue SK,M): x Spou),

6Cf. the introduction for the meaning of this expression.
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where xe S (K,Q), pe S (M,Q). This category comes equipped with the obvious
projection functor VQ : S/Q~> S. Denote by K the full subcategory of S/Q2

spanned by S(K,Q) (ie. oK :=(VQ)1K.)

The interpretation is roughly as follows:
- The sets and functions (©®) are the objects and arrows in S. The sets

depending on a set K are the objects of S/K... (Standard interpretation of a Martin-Lf

type theory: Seely 1984.)
- The propositions and proofs (QQ) are the objects and arrows in S/Q. The

predicates over K are in @ K. (Since this is a Heyting algebra, there is at most one
proof from o to B.) The propositions depending on ae|@ K] are the objects of
@ K/o... (By the standard interpretation, a dependent proposition x:0=>f(x) must be
an "arrow" B < o [Tx:0.B(x) is then a— B, while Zx:o.p(x) is just B.)

- The quantifiers (BQ) are interpreted by the quantifiers from the topos.

- The extent (1) of ae | @ K| is interpreted by

= {XeK: a(X)} := &(a,Tg),
where Tg:=To@x: K—>1->Q, while &(f,g) denotes an equaliser of f and g.

M

10, e K - 1 -
T
da a
M

Given mM—>1ain S/K, tm: Ty —> o is teom (=M) in S/Q. Given a: T — o
(i.e. oca=Tp) in S/, da:M—> 1o (in S/K) is its unique factorisation through 10t

In a trivial way, this interpretation supports a strong theory of predicates: note that
2.X:u 1P has the same meaning as 1(Xx:0.B).
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7. Constructions.

In every topos there is a one-to-one correspondence between the predicates and their
extents (provided that some representants are chosen for the subobjects). These can be
identified: propositions can be regarded as a distinguished class of sets (namely, the
subobjects of 1). With such an extensional logic there is no reason to avoid Q@ any
more, hence no need for 1: the sets varying over propositions can be regarded as

indexed over extents. Toposes contain such a logic.

Definition. A theory of constructions (TOC) is a type theory with
- sorts © and Q;
- variations 006, QQ, 6Q, QO;
- operations I] and ¥ for each of these variations; EY®Q is restricted to A:=CQ.

The [T-fragment is called the calculus of constructions (COC).

Remark. The calculus of constructions was defined by Coquand and Huet (1986,
1988). The theory of constructions is due to Hyland and Pitts (1987). (The
presentations were different.) Both attracted much attention, from computer science as
well as logic. They appear to be the strongest consistent calculus/theory of types
presently available. Allowing all the complicated contexts they look much stronger than
the calculus/theory of predicates for one. In section 2 we shall see that this impression
is not quite true.

8. Isomorphisms.

But before we start relating theories, we must relate operations in each of them. Are all
these s and Xs really independent from each other?
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Definition. Types P and Q are isomorphic (P=Q) if there are terms (isos) fF(YQ) and
gQ(XP), such that f(g(X)) = X and g(f(Y)) = Y. (Using A, there are £:Q— P and

g':P—Q such that fog' = id and g'of' = id.)

Lemmas. The first two of the following lemmas are about the theory of constructions,
the remaining seven about the theory of predicates. However, to prove each particular
statement, only the rules for the operations mentioned in it are needed.

81.Px1= P

82. The statement:

if P~ P'and X:P = QX)= Q(X) then 0X:P. Q(X) = oX:P'. Q'(f(X))
where X:P' = f(X):P realizes P= P

holds for all the combinations of sorts for P, P', Q, Q', and for e {2,I1}, with one

exception:
M = i does not imply I X:KM = ¥X:K.u.

+ The exception will become clear in the semantics. The positive part is very easy for
P,P: A' and Q,Q" A". With terms kM(xH) and aH(XM) realizing M = p, the
following seven cases remain:

[IX:KM = [IX:K.p

Oox:e. M = Oxia i

ox:u. K(x) = 0X:M. K(a(X))

ox:p. ox) = oX:M. a(aX)).

We prove only 2x:l. o(x) = XX:M. a(a(X)). The terms
z: yxpox) = (kingz), t1z) : LX:M. a(a(X)) and
Z: YX:M. afaX)) = v(Z, (X,y).{a(X), y)) : Zx:p.oux)

should realize the isomorphism.

) v(k(roz), miz), (Xy)aX), y) & (alk(rgz)), mz) = (roz, mz) L2
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2) (k(mov( Z, (X, y)-a),y)), mv( Z, X, y{aX).y)) 2
V(20,9 (roviCU, ), (X, y).420),9)) T V(U 19, (X,3) (a0, 990 )

v(Z,(U,v).(k(np (a(U), v)), n1 (a(U), v))) =
v (Z, (Uwy). k(aU), v) =v (Z, Uy).U,v)) a Ze

83. 32X (X)) = (Ex:ap)
84. [IX: Kap = «(VXK.B)
85, 100 = W(laxT)

» The iso is realized by
Xao = O(X,8) : (i X T)
Wi x T) = dv(tW, (X,8).7X) : 1o
As usually, one identity is trivial, and the other requires nX.:
BOVAW, (X.8).1X), 0) 2 ov(TW, (X,8).(0v(X,8), (X,0).1X), o)) &
BV(’CW, (X,8).(31X, ;a)) =8TW = We

86. ITX:1o(BUX,0)) = 1([Tx:(laxT).B(x))

» We just give the isos.
ZIIX0(B(X,0)) = Saxv(x, (X,0).1(ZX)): WTx:(1axT).B(x))
W s (TTx:(oxT).B)) = AXS(@W)(X,0)) : TTX 101 (BUX,8Y))»

87. Assuming Sab:
o= xXT

» This is realized by
x:o = {0x,¢):1x T and
zZwoXxXT = v(z, (Z,;a).'cZ) HoR
Here is one of identities:
(8v(z, (Z,8).12), o) 2
vz, @.0)(8V(Z.0), Z.9)1Z), )
v(z, (Z,0).8(12), 8)) =v(z, (Z,8){Z, 8)) =2¢
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88. Assuming dab:
Tx:onp(x) = IXneBlrX).

« Consider
z: Ix:oLBx) = (dnpz, m1z) @ IXaoe. BrX) and
w: AXaa. BiX) = v(w, (X,y).(TX,y)) D YxioPx).
The identity on ¥x:0t.B(x) is easy; the one on 3X:1at. B(tX) is obtained similarly as the

one shown in 88.«

89. Combining the above results, we conclude that with dab
oxeB) = oXaep) = oXooaP
oxofp = X = OXneB)yx T
holds for ne {2.,I1}.

Remark. The rule 8ab is derivable in a theory of predicates iff Xx:a..p=3Xn0.p. The
rule 3ag, obtained by restricting dab to B=T, is derivable iff a=10xT.

The following chain of isomorphisms shows that 8ab is derivable from Sag:
rx:op 8’?’L(Ex:oc.B)XT 2 CXaaB)xT 4 IXaa.(pxT) 8§¢
= X
The step (#) is based on: IZ:(X.X:K.L).o=IX:KIY:L.¢o.
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1. Plan.

In this section the theories of predicates and of constructions will be compared. It will
turn out that the strong theory of predicates is equivalent with the theory of
constructions, and that the calculus of predicates is stronger than calculus of
constructions (in a sense defined below). This will mainly result from some
considerations about subtheories without variations over propositions.

Terminology. A system A is a triple

A = (Sortsy, Variationsp, Operations)
used to define a class of type theories. For instance, TOP, COC etc. are systems. A
particular A-theory A = A(E) is generated by the Operations 5 (defined by a set of rules)
from a given class E of atomic types and terms, which only have Sortsp and

Variationsa.

A subsystem BE A has Xp & X for Xe {Sorts, Variations, Operations}. (More
restrictions can be imposed on the typing rules in B. But B is assumed to contain the
whole group of rules by which any of its operations is defined in A; in particular all the
conversion rules.)

If A is an A-theory, a class of types and terms M€ A is its B-subtheory if it is a B-
theory, for B& A. (So M has Sortsg and Variationsg, and it is closed in A under

Operationsg.)

Systems. For every system A introduced in section 1, we define a system Ag = Al®
in which only the variations and operations over sets are allowed. Since QX is not
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allowed, there are no proof variables in these systems.” There are only sets and

predicates.

In addition to the operations for @@ and ©Q, we stipulate that TOPg and COPg contain
1, while TOCg and COCg have the Q®-operation (_)x1:

a:o:Q
{a,@):ax1:0

k:ox1:©
mok:o: Q2

Note that COCg 2 COC; all other Ag are proper restrictions, i.e. subsystems of A.

So we have the following systems:

TOC TOP

Variati
AANONS | o cop|

e | m > |n 3

iC)
eQ n z v 3
, (A=Q) L
(e > b
Qe I P

QQ I1 z n z

TLogically, this can be understood as scholastic rigidity: "Nothing can be predicated
about predicates."
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2. Definitions.

21. Let A and M be two arbitrary type theories. A translation F:A—> M is an algorithm
which prescribes how to transform every type from A into a type from M and every
term from A into a term from M, so that

variables go to variables, and

the relations (_:_), (=) and () are preserved.

Let A and B be two systems. A translation F:A-—> B is an algorithm which assigns to
every A-theory A a B-theory FA and a translation FA:A—>FA.

22. A (B-)subtheory M of (an A-theory) A is a retract of A if there is a translation
F:A—> M such that for every type P from A
F(P)=P.

A system A is conservative over a subsystem B if there is a translation F:A—> B such
that every FA is a retract of A by Fa.

23. The systems A and B are equivalent if there are translations F:A—> B and
G:B—> A, such that for every A-theory A and B-theory M
GFA € AandFGM € M,
and for all types P from A and Q from M
GF(P) = P and FG(Q) = Q
(with obvious subscripts).

Comments. The idea is that systems should be equivalent if and only if they have the
same class of models. For instance, group theory using (', (_)-1,1) is equivalent to the
one with (-, 0) (where — is the subtraction).

The theory of Boolean algebras with {v,A,—,-,0,1) is conservative over the one using
only {A,—,0); the sequent calculus with cut rule is conservative over the one without.
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Remark. To eliminate superfluous operations means to remove some synonyms from
a language. In principle, the language becomes harder to speak: e.g. the cut-elimination
yields somewhat unnatural proofs. But it becomes easier to understand: less

ambiguous, closer to semantics.

As far as type theories are concerned, we want to consider synonymous exactly those
isomorphic types that will be identified semantically. We shall be looking for
isomorphisms that will be interpreted as identities in the models.

3. Comparing theories.
Propositions.

31. TOC is conservative over TOCg.
32. STOP is conservative over STOPg.

33. STOP and TOC are equivalent.

Proof of 31. Given a TOC-theory A, we define a translation E:A—> A, such that

EP)=P
for every type P, while the image of E is a TOCg-subtheory Ag S A.

The idea is that E should translate every variation A'A" - where A',A"e {€2,0} - into
variation ®A" and all the A'A"-operations into the corresponding ®A"-operations.
Roughly speaking, E just replaces every proposition o, in a context by the set ax1. The
variables are substituted into an E-image along the terms d to keep the image isomorphic

with the original.

For an arbitrary type or term T we define
E(.XQ..=T(.XQ..) = .XPQ. . =I[TI(..dgXPQ..))

D(..XQ..=T(..XQ...)) = .XPQ..=[T] (..deXPQ...)
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where
rAl =A where A is a letter
[oX:P.QI =0X: [P]. [QT
IAX.q1 = AX. [q]
[pql = Lpl[q]
{p,q)1 :={[pl.LqI)

Lv(r, X, Y).$)1 = (D, (X,Y).[sD)

[a]  =Lalxl [K] :=IKI
[a] =(lal,®) [k] :=[k]

dq: DIQ)-Q
do  :=egomy dy  :=Ax(Exx,0)
dg =K dx =eK
e :E(Q)~Q
€A =ida €A =ida where A is a letter

COX:P.Q ‘= Vaow gDX:P_Q = \’;/’OVD

vo : (OX:EP).EQ) - (0X:P.Q)
vi] := AZ. eQoZoep
vy, = V(Z, (X,Y){epX, eQY))

vy = AZ. eQoZoep
vy = V(Z, (X,Y)(EpX, €QY))

w : (OX:D(P).EQ) - (0X:E(P).E(Q)) is an iso from lemma 1.82.

The substitution operation is translated
E(T[X:=f]) := E(T)[X:=D(f)]
D(T[X:=f]) := D(D)[X:=D()].

An inspection of the definition of E now shows that it preserves (_:_) and (=). An
inductive argument which follows the recursive definition of the iso €Q:E(Q)—Q shows
that I't- p implies E(I)+ E(p). So E is a translation. Its image Ag is obviously a TOCg-
subtheory (i.e. closed under the TOCg-operations).

So TOC is conservative over TOCg.*
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Proof of 32. The approach is completely the same: Given a STOP-theory M, we
define a translation H:M—> M, with H(P) =P for every P, and such that Mg := im(H)
is a STOPg-subtheory. H will translate the variation £ into ®Q by replacing every o
in a context by Q.

H is defined using algorithms L_T=[_Ty and [_]=[_]y for names, and some terms j

for the substitution of variables
H(..XQ..=T(..XQ..)) := . X/Q..=ITI(..joX Q...

7(L.XQ.=T(.XQ.)) =..XQ..= T (.jXxQ..)
for an arbitrary type or term T(...XQ...).

The definition of [_Tis the same as that of [__Jg, with

Tl =1lol
[3al :=08[al
Ltk = 1lk]

as additional items. But [_Jg is
fo]  =1lad [K] :=[IKI
[a] = dllal [kl = k1

The difference with the translation of the context is that there is no terms from
propositions to sets in STOP, hence no iso from H(a) to J(cr). However, lemma 1.87
tells that in a strong theory of predicates a can still be recovered from 1¢. - up to an iso.
The basic idea for the translations in this proposition is to extend LaxXT = to
J(a)xT = H(a) (= ). This way, H(P) and P can be kept isomorphic despite the fact

that their contexts cannot always be connected with each other by isos.

iQ: JQ~-Q
jau = hgot
jk =h
hQ:HQ-Q
ha = idg fia  =ida where A is a letter
ha = 8ohgot Hig = Sohgot
hox.p.Q:=voew  RoxpQ:=wovn
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Vi ! (DX:H(P).H(Q))—» (DX:P.Q) is defined exactly as above, everywhere with h in

place of e.

w ! (DX:J(P).H(Q))—»(DX:H(P).H(Q)) is an iso from lemma 1.89. (We need dab
when 00 =2, and P,Q:Q.)

The substitution is:
H(TX:=f]) := H(T)[X:=J(f)]
J(T[X:=f]) = J(D[X:=]D].

The preservation properties of H are checked in the same way as above, for E. And just
as above, the image Mg of H is clearly closed under STOPg-operations in M - i.e. it is
a STOPg-subtheory. Hence the result.

Proof of 33. (We use the notation from the preceding proofs.)

The translations Fg : TOCg—> STOPg and Gg : STOPe—> TOCg are easy to guess.
Feg just rewrites the expressions from a TOCg-theory Ag and replaces:

axl >

{(a,@) +> a

ok 1k,
while Gg goes in the opposite direction with the expressions from a STOPg-theory
Mg. The preservation properties are immediate: the rules which define each pair of
corresponding operations are completely analogous. (The restrictions which distinguish
V, 3 and 1 from respectively [10Q, Y0Q and (_)x1 are superfluous in the absence of
QQ.) We can say that TOCg and STOPg are isomorphic.

Given a TOC-theory A, define FA to be the smallest STOP-theory containing the
STOPg-theory FgAg (i.e. its closure under QQ-operations). Given a STOP-theory M,
let GM be the smallest TOC-theory which contains GgMeg (i.e. its closure under QQ-,
and Q2@-operations). Obviously, GFA€ A and FGM & M.

Further define for every A and M the translations F=Fp : A—> FA and
G=GmM:M— GM by
F :=FgoE, and
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G :=GgoH
(with E and H as in the proofs of the preceding propositions). Obviously, arbitrary
types P from A and Q from M are translated
GoF(P) = E(P) and FoG(Q) = H(Q).
The required isos
GoF(P) = Pand FoG(Q) = Q
are thus ep and hg constructed above.

So F and G realize an equivalence of TOC and STOP.

Remark. The danger of working modulo isos is that whole groups (of
automorphisms) can be swept away: reduced to an identity. This doesn't happen if the
types (i.e. the type schemes) are identified only along unique canonical isos.
"Canonical" here means: uniformly defined for all types, natural, "meta-polymorphic”.
The isos used in the previous propositions are obviously canonical. A curious reader
will perhaps want to check that they are unique. (The assertions are: For every canonical
iso fQ:E(Q)— Q, D(fg)=idp(q) implies fq=eq; for every canonical iso go:H(Q)—Q,
J(gQ)=idj(q) implies go=hq.) - Strictly speaking, the unique canonical isos should have
been demanded already by definitions 2. We refrained from this for the sake of
simplicity.

4, Comparing calculi.

The naive idea behind our manipulations with systems is: "Reduce everything to sets”.
However, if you simply "hit" every atomic proposition in TOC by (_)x1 and transform
all the TTs and Xs to [1®0 and 2O respectively, some types will become isomorphic
which previously weren't - due to the exception in lemma 1.82. It took the simultaneous
recursion of D and E in 31 above, using not only [10® and Y08, but [IOQ and 2.0Q
too, to circumvent this - as to obtain D(P)= D(Q) iff P= Q. A similar story can be told
with STOP, t, J and H instead of TOC, (_)x1, D and E. - The translations D and J
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"reduce everything to sets” in such a way that the images are isomorphic exactly when

the originals are.

However, propositions 3 actually required a bit more: an iso between each type and its
image (by a translation). It was convenient (even necessary in 32) that translations
preserve sorts. We therefore used E and H rather than D and J. Besides, E and H
helped us to define Ag and Mg neatly from A and M. Bur the factis that E:A—> Ag and
H:M—> Mg are rather poor as morphisms: there are no terms x:E(a)=>f:E(B), even if
o= P. - The translations E and H are not "functorial”, while D and J are.

Definition. Let A and M be two arbitrary type theories. A translation F:A— M is
sound if it also preserves the relation (=) (i.e. the contexts) and the substitution.

A sound translation F is full if for every term F(I')=>r:F(P) in M
there is I'=>p:P in A such that r=F(p),
where F(I') is obtained from I by translating each element. It is faithful if for every pair
I'=p,q:R
F(p)=F(q) implies p=q.
If a sound translation is both full and faithful, we say that it is complete.

Let A and B be two systems. A translation F:A—> B is sound/fulllfaithfull/complete if
all its components Fo:A—> FA are.

We say that a system B is stronger than A if there is a complete translation F:A—> B.8

Comments. A stronger system is meant to have a greater expressive power: every A-
theory must be completely interpreted in some B-theory if B is stronger. Ring theory is
stronger than group theory; predicate logic is stronger than propositional logic.

A complete translation F establishes for every type I'=>P a bijection between collections

of terms

8Note that the relation "stronger” is reflexive; it should perhaps be called "at least as
strong as". But as far as the following proposition is concerned, COP is strictly
stronger than COC, i.e. COC is not stronger than COP.
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Frp: {I'=p:P} = {(FD)=1:FP)}.
From the formulas-as-types point of view, this correspondence between the proofs in
the original and those in the image seems to generalize the usual notion of a complete
interpretation: "Exactly the images of provable formulas are provable”.

Remark. An inclusion BE A (with components M&~> MA, where MA is the closure
of M under the A-operations) is always a faithful translation, but it needn't be full. The
inclusions TOCg < TOC and STOPg < STOP are obviously not complete. On the other
hand, D:TOC—> TOCg and J:STOP—> STOPg are complete translations. The
semantics will later tell us that complete translations TOP—> TOPg and COP— COPg
do not exist: the operations in theory of predicates are too independent - TOP and COP

are essentially richer than their respective restrictions.
Proposition. COP is stronger than COC.

Proof. The idea is that D:TOC —> TOCg restricts to a complete translation
C:COC— COCeq.

Given a COC-theory A, define Aj to be its closure under the Q@-operation (_)x1. CA
is then the image by E of Aj in itself. The translation Cp : A—> CA is just a restriction
of the algorithm for D.

By the definiton (of D), C preserves the contexts and the substitution. The other

preservation properties follow similarly as for E.

For every type I'=>P in A there is a mapping

Crp: {I'=p:P} — (C)=1:C(P)} : pr> C(p).
The difference between I'=>p:P and C(I')=C(p):C(P) is that the latter eventually
contains ()x1, {_,@) and g, which C introduced. The algorithm Cr p := "remove
(%1, (@) and 1 from C(I)=1r:C(P)" is easily seen to define a mapping

Cr,p {C(D)=1:C(P)} —> (T'=p:P},

- inverse to Crp. - So Cis a complete translation.
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Since Fg and Gg restrict to isomorphisms of COCg and COPg, all this remains true for
1, 8, T in place of respectively (U)x1, {_.@) and mg. Hence there is a complete
translation

K:COC—> COP,
with KA defined to be the smallest COP-theory containing the COPg-theory FoCA and

Kp :=FgoCy.e
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This chapter is about fibrations as variable categories. The theory of fibrations, or
fibred categories, is just category theory relative to a base category. Ordinary categories
can be viewed as fibred over 1.

Fibred categories have been defined by Grothendieck (1959) for the purposes of
algebraic geometry. Accidentally or not, no appropriate introductory text on them is
available yet. The only general references (known to me) are: Grothendieck 1971, Gray
1966 and Bénabou 1983. The first two have been written more than 25 years ago, the
third one is unfinished and unpublished. So we have to start by working our own way
through, to the facts which are in part probably well known to some people, or used to

be well known some time ago.

The main definitions and basic facts about fibrations are surveyed in section 1. We
couldn't afford to give complete proofs, but an effort has been made to arrange this
folklore material in such a way that a dilligent reader could supply them using
elementary category theory. The fibrewise versions of some common categorical
notions are examined in section 2. Section 3, on the other hand, is devoted to some
concepts having no ancestors in the ordinary category theory: the left and right direct
images, and the Beck-Chevalley property. In subsection 3a a characterisation of the
Beck-Chevalley property is given in which the direct images are not mentioned. (It
becomes possible to extend this property from bifibrations to fibrations in general.)
Section 4 finally lists some facts about arrow fibrations, which are particularly

important for interpretation of type theories.

It should be stressed that this chapter is not intended as an introducion into fibred
category theory. It introduces only those aspects of fibrations which are really needed
for our interpretation of the theory of predicates in chapter IV. Nothing has been
included here that could be left out - without causing even more work. A reader with no
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patience for categorical abstraction should perhaps just skim through this chapter, and

come back later, when he needs to.
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1. Fibrations. A bref introduction

1. A motive.

If a family of sets indexed over a set B is a functor from (the discrete category) B to
Set, then a family of categories indexed over a category B can be viewed as a
(pseudo)functor from B to Cat. For every set B there is a trivial one-to-one

correspondence of the B-indexed sets and the functions to B:

[ :Set® —> SeyB : (vl xeB} —> Sy = B
B xeB

A similar correspondence J : CatB — Cat/B exists for indexed categories, but it is
B
not trivial, and not surjective. In the first approximation, fibrations over B are the

functors to B which lie in the image of J. , i.e. those which correspond to some
B

indexed categories. (Cf. 4 below.) In fact, the nuance neglected in this approximation

contains much of the conceptual power of fibrations. (Cf. Bénabou 1983, 1985.)

2. Cartesianness.

21. Conventions, notations. Categories will be denoted by script letters A, B,
€...; small categories by A, B, E... Small categories are objects of the (two-)category
Cat. We shall also use metacategories such as CAT, which contains Set, Cat, &, B,

€,... - but mostly for commodity and better view!.

IThis "commodity” relies upon the effectiveness: the functors on metacategories are
defined as procedures, i.e. receipes how to transform an input an output. One can
interprete the quantifiers in this way too, and define certain universal constructions in
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K EF:A — B and G:€ —> 8 are functors, we denote their comma category by F/G. The
category of arrows B/ B is comma category of two identity functors on B. The slice
category B/1 (over an object Ie |B1) is the comma category of the identity on B and the
constant functor " 17:1—> B. The functors

Cod: B/B—>B8: (v:J%I) > land

Dom: B/1—> 8 : (v:J—>I) =]

will be denoted by VB and VI respectively.

Some data will tacitly be carried over from statement 10 statement. In particular, we
shall mostly be concerned with a category €, fibred over a base B by a functor
E:€ —> B. The following convention on letters will be respected whenever possible:

Categories Objects Arrows
fibred: f.g st
£e.,F,E X,Y,Z A B,C cartesian: O, vertical: a, b, ¢
base: HILK M h K
B,S , B S B ] E] s K, m, u, v

Now we proceed to define whatis a fibred category, cartesian arrows, vertical arrows.

22. Terminology. Let E: €—> B be a functor, Ie |Bl. The fibre of E over 1is the
category €1:
e = ElD
£1(X,Y) := E-1(idpnEX.Y).
Furthermore, for every ue B(LJ), Xe € l€1l and Ze €], we denote
€4(X,Z) := E'luNE(X,2),
ie., the set of all arrows X —> Z over u. Hence functors
€4(Z): €1° —> Set.: X €4(X,Z)

23. Proposition. The following statements are equivalent:

some metacategories. (Comma categories, for instance.) - Metacategories are
considered as far as this can be done locally, and effectively.
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a) Every functor €4(_,Z) is representable.

b) Every arrow ue B(I,J) has a terminal lifting at every Ze |€;l. In other words, there is
an arrow ﬂ% overu (i.e. Eﬁ% =u) through which every other arrow f over u factorizes

by a unique arrow a over id.

X
| vf
Ila}
\ 7
Y z — 7
1 ° o ]

o If Y represents €y(_,Z), then 13%6 £.(Y,Z) corresponds to ide €1(Y,Y) by the

representation isomorphism £,(X,Z)= £1(X,Y) natural in X.»

24. Definitions. An arrow e €(Y,Z) is called (B-)cartesian if it is a terminal lifting
of B9 at Z. Y is then an inverse image of Z along E.

An arrow ae € is called (E-)vertical if Ea=id.

F: €'— € is a cartesian functor from E': €'—> B to E: € — B if EF=E' and F takes
the E'-cartesian arrows to the E-cartesian ones. A natural transformation ¢ :F' —>F
between F,F: €' — €, EF=EF, is (E-)cartesian if all its components are E-vertical.
An adjointness (F: € —> €, G: € —> €', : id—> GF, &: FG—> id) is cartesian with
respect to E': €' —> B and E: € —> B if all its components are cartesian.

25. Comment. The habit of calling all these notions cartesian stems presumably from
the fact that the Cod-cartesian arrows are the cartesian (i.e. pullback) squares.

26. Facts. Under the (equivalent) conditions from proposition 23, E is
full  iff  every hom-set of every fibre is inhabited (nonempty),
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faithful iff  every hom-set of every fibre has at most one element (i.e. the
fibres are preorders).

An adjointness (F, G, 1, €) is cartesian with respect to E' and E (all data as in 24) iff F
and G are cartesian and for all arrows fe €(FA,C) holds Ef = E'f, where
f‘e €'(A,GC) is the right transpose of f.

3. Fibrations.
31. Proposition. The statements below are related as follows:

(@) (b)e=(c)
i} Jac
(de(e)=@

("AC" means that the axiom of choice is needed for this implication.)

a) For every ue B(1,J), Ze | €l there is Ye |€1l, such that
Euov(L2) = Ev(Y)
is realized by composition with an arrow ﬁ%e Euw(Y,2).

b) Every arrow ue B(I,J) has at every Ze [€)] a lifting By such that for every ve B(K,)

and f over uv there is a unique g over v, f = 9jog.

1. Fibrations

K - > ]

¢) Every arrow ue B(I,J) has a cartesian lifting at every Ze |€]] and cartesian arrows are

closed under composition.

d) For every ue B(I,J) there is an inverse image functor u* and a natural transformation
H over u (i.e. E(ﬁ%) = u for all Ze €)):

u*
LS

o
-
€
Composing with 9% gives €4(_,Z) = V(u*Z).
Furthermore, the natural transformations
UV viu* — (uv)¥,

induced as unique factorisations by 13, are isomorphisms.

e) For every Xe €| the functor
Ex:€/X — B/EX:f+—> Ef
has a right adjoint right inverse @y.

f) The functor
Ec:€/€ — B/E :f > (Ef, Cod(f))

has a right adjoint right inverse Gg.
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e/€
\ E8 Cod

B/E

» €
pe\ |
E
> 8

8/38
Cod
+ (¢)=>(a): For arbitrary u,v and Z, (c) gives Y, W and cartesian liftings 93e €4(Y,Z)
and ﬁ;e €,(W,Y). The fact that 1‘)%‘06¥ is cartesian means that it induces
€uov(L,Z)= VW (by composition). But 8 induces €ALY)=VW,

(@ye>(e): 0y = ©z(u). The unit of the adjunction, ng:f —> OzEz(f), is the factorisation
of f through 9EL (€)= (f): Oz(u) = Og(u,Z).»

32. Definition. A fibration is a functor E: € —> B which satisfies (any of) the
conditions (a-c) from the preceding proposition; the category € is fibred over B. If E
satisfies conditions (d-f) too, it is a cloven fibration: the triple (()*, 9, ¢y is its
cleavage. A cleavage (and the fibration E to which it belongs) is normal if all id’f are
identity functors, Ie IBI; it is split if u*v* = (vu)* (i.e. cVu=id) for every composable
u,ve B. (Without loss of generality, it can usually be assumed that cleavages are

normal. But see example 51.)

The morphisms between fibrations are cartesian functors. The morphisms of cloven
fibrations must preserve cleavages. The category of cartesian functors E'—> E is
denoted by CARTg (E'.E) or FIB/B(E'E) (- if it exists); the category of cleavage
preserving functors will be CLEAV g (E'E). Fib/B is the (two-)category of small
fibred categories over B, with cartesian functors (and cartesian natural

transformations). Cleav/B is the analogous (two-)category of small cloven fibred

categories with cleavage preserving functors.
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33, Potential structure, subfibrations. Being a fibration is a property of a
functor (just as having products is a property of a category). By the axiom of choice,
this property can be fixed as a structure: a cleavage can be chosen. In practice, one
works with this potential structure of fibred categories, i.e. as if it were given. If a
fibration is not cloven, u*X denotes in it the domain of an arbitrary cartesian lifting 9y
(just as XXY denotes an arbitrary product when no particular choice of products is
given). Locally, we can work as if u* were a functor; given u*X, u*Y and fe €(X,Y),
the inverse image u*(f)e €(u*X, u*Y) is defined as the unique factorisation of fod}
through 9y . Then u*(id) = id and u*(f)ou*(g) = u*(fog) hold.

A subalgebra must be closed under all the operations from its signature. By analogy, a
subfibration E':€'—> B of E:€ —> B (given with a cartesian inclusion €'~ €) should
be closed under all the potential operations: with every object X, €' must contain a// the
E-cartesian arrows 9xe €(Y,X). (In other words, every €' must be closed under the
isomorphisms in €1. Without this requirement, the intersection €'NE" of fibred
categories E:€'—> B and E":€"—> B with cartesian inclusions €'~ € and €"—¢€
- may fail to be a fibred category. Cf. Bénabou 1983, 1.4.)

34. Closure properties. For every functor E the class of E-cartesian arrows is
closed under left division (i.e. if f and fog are cartesian then g is cartesian). When Eisa
fibration, this class is also closed (in €) under composition and stable under pullbacks
along vertical arrows (and vertical arrows are stable under pullbacks along cartesian
arrows), which allways exist.2

The class of fibrations is stable under all pullbacks, and closed under the composition.
Every fibration F:€'— € is a cartesian functor to the fibration E:€ —> 8 from E'":=EF.
The converse does not hold (i.e. not every cartesian functor is a fibration) and the class
of fibrations is not closed under left division. However, if E'=EF and F are fibrations,

2Given a partial binary operation @ on the arrows of B, we say that a class of arrows
A& B is closed under ¢ if a,a'e Q and ¢(a,a’) exists imply ¢(a,a)eq; and we say that
a is stable under ¢ if for every ue B, ac @ and ¢(u,a) exists imply ¢(u,a)e @. When
¢=pulling back, @(u,a)=u*a is the arrow obtained by pulling back a along u.

53




II. Variable categories

and if all the fibres of F are inhabited, then E must be a fibration too. (¢ An F-image of .

an E'-cartesian lifting of ue 8(I,J) at an object We |€'| such that FW=Z is an E-
cartesian lifting of u at Z.+)

Since small fibred categories are stable under pullbacks, the functor Cod: Fib—> Cat is
a fibration, with fibres Fib/B, and with cartesian liftings defined by pulling back.

4. The Grothendieck construction.

41. The correspondence j : Set B —> Set/B comes down to the fact that every set C
B

with a function ¢:C—> B can be recovered (up to a bijection) from the indexed set
v:B—>Set: x> ¢ l(x)
of its fibres. Given a category E with a functor E: E—> B, in order to define the arrow
part of the corresponding indexed category
T :BO—> Cat: I>E
in the first place, we need a representant u*Z for each of the functors
Ey(_,Z): Ef°— Set.
But each function
u* : Ejl —> 1Bl : ZH>u*Z,
obtained in this way, can be uniquely extended to a functor (+ fe Ey(Z,W) induces
¢: By(_,Z)—> Ey(_, W) by composition, and ¢ induces u*(f) by the Yoneda lemmae),
and we can define
T() :=u*:Ey— B

This is why we want the functor E:JE—> B to have cartesian liftings: by proposition
23, all functors By(_,Z) will then be representable, and E will correspond to an indexed
category I'. We see from proposition 31 that I'(uov)=T'(v)eI'(u) and I'(id) = id hold if
these cartesian liftings are closed under the composition. Hence the notion of a
fibration. And if E:BE—> B is a fibration, then it can be recovered from the

corresponding indexed category - i.e. pseudofunctor.
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42. Proposition. Let Cat B® be the category of pseudofunctors B®— Cat. There is
an isomorphism of categories

j : Cat B —> Cleay/B : T +> (E E— B),

B

where
B = Y,TI,
Ie Bl

EQLX), (3,Z) = 2, TI(X, Tu(Z)),
ueB(LJ)

{(u,ayo{v,b) := (uov, cWolv(a)ob).
(The canonical natural isomorphisms cv : T'vel'u —> I'(uov) are given with I'.) Split

fibrations correspond to strong functors from Cat B’

« Cf. Grothendieck 1971, 8., Gray 1966, 1.5., Gray 1974, 1,3.5, or Bénabou 1983,
1.2.¢

43. Some advantages of fibrations over pseudofunctors are:

i) by keeping the cleavage implicite (i.e. as a "possible structure”), considerable
complications with canonical isomorphisms are avoided;

ii) considering fibrations over a large category and/or with large fibres does not
involve the metacategory CAT;

iii) from every pseudofunctor I" a fibration jI’ can always be obtained.
B

(Conversely, as we saw in proposition 31, every fibration can be cloven - and

expressed as a pseudofunctor - only if the axiom of choice is assumed.)

Bénabou (1985) is a programmatic discussion on these matters.
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5. Examples.

51. Let P and M be categories with one object, i.e. monoids. A morphism P: P—> M
is a fibration if P decomposes on isomorphic right Ker(P)-cosets: for every me M there
is a ©M such that P-1(m) = 9™Ker(P) and for all a,be Ker(P) the equality ¥Ma=0Mb
implies a=b. If P is a group, this is the case whenever P is an epi.

If the axiom of choice is assumed, then we can choose a cleavage for P. When P is a
group, every element of P-1(m) will do as 9™. In that case, thus, cleavages are just the
splittings of P as a function, i.e the functions 0: M—> P, such that Pd=id. A cleavage
® will be normal if $1=1 ; it will be split if 9Md=0mY", The former can always be
achieved (for every fibration); the latter not: e.g.
P: &> £, x> x(mod n)

is a fibration which cannot be split. In fact, when P is an abelian group, then
P: P—> M is a split fibration iff it is the projection from direct product P = Ker(P)®M.
For groups in general, P: P—> M is a split fibration iff it is the projection from
semidirect product P = Ker(P) xp M. - Namely, when restricted to groups, the

Grothendieck construction produces the (right) semidirect product.

52. Let U, H be posets. A monotone map U : U—> H is a fibration iff for every k<isj
in H and every x<z in U, such that U(x)=k and U(z)=j, the set

{ye U-l(i): x<y<z}
has a supremum, It is easy to see that this supremum does not depend on k and x; it is
an inverse image of z above i. Since < is antisymmetrical, this inverse image is unique.
Hence, every fibration U from a poset U is canonically cloven, and also normal and

split.

53. Let aright action o of a monoid M on a set A be given, i.e. a function
o: AXM — A such that
Dakx,1) =xand
2) a(a(x,m), n) = ox, mn)
hold for every xe A, m,ne M., If we define the hom-sets by
Axy) = {{m,x,y): me M, a(y,m)=x},
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A becomes a category fibred over M by the obvious projection. All the fibres of this

fibration are discrete (as categories, i.e. they are sets). By the Grothendieck
construction it corresponds to a presheaf, an object of Set M’ je. a variable ser over M.

Conversely, every presheaf over M can be presented as a right action of Ml in a unique

way.

54. Let H be a complete Heyting algebra. Regarded as a category, it has at most one
arrow per hom-set (i.e. H(p,q)#@ :& p<q). The arrow part of a functor Ge SetH’ - an
H-presheaf - can be thought of as an operation of restriction, i.e.

G(p<q) : Gq—> Gp : x> xIq,

and G can be represented as an action of H on A := z G(p) by:
peH

[TAxXH-—>A: <(x,p),q>l—> {xTpAq, pAG).

For every &e A, p,qe H, this action satisfies:

1) EEE =g,

2) €Ip)lq =&l (prg),

3) E(&lp) = E&ap,
where

E:A—>H: xp+>p.
The Grothendieck construction now suggests a partial order on A:

xSy ¢ Ex<Ey and x=ylEx,
which extends E to a fibration. The operation I assigns to every pair (x,p) the inverse
image of x along the arrow ExAp<Ex by this fibration. (3) says that xIpsx is a lifting of
this arrow. It is cartesian by the definition of <in A. (2) says that these cartesian liftings
are closed under composition, (1) that the identities are lifted to identities.

6. Discrete fibrations.

61. Proposition. For every functor E:€ —> B the following statements are
equivalent:
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a) E is a fibration and all its fibres are discrete.

b) Every ue B(L,]) has at every Ze |€;] a unique lifting. (Every arrow in € is thus

cartesian.)

c) For every Xe [€] the functor
EX:S/X—> B/EX:f+> Ef

is an isomorphism.
d) The functor

Ec:€/€ — B/E :f > (Ef, Cod(f)
is an isomorphism, i.e. there is pullback

/¢ Cod

) l

B/8 >
Cod

62. Definition. A fibration which satisfies (any of) the conditions from the preceding
proposition is called discrete.

63. Given B, any discrete fibration E:€ —> B is uniquely determined by its object part,
[El:I€l—> |BI, and by
[Doml:l€/€1—> |€].

In view of the fact that [E/€] = |€] Igl B/ Bl (i.e. the diagram under (d) above

remains a pullback if just the object parts of functors are considered), |Doml is in fact an
action
rlel Igl [B/Bl—> (€l

In this way the discrete fibrations generalize examples 53 and 54. (See e.g. Johnstone
1987, 2.14-15.)
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64. The category Dfib/B of discrete fibrations over B is isomorphic with the topos
_S_g_gw. The category of internal categories in Set B’ (or in Dfib/B) is isomorphic with
the category of functors B®—> Cat. By the Grothendieck construction, this last
category is isomorphic with the category Sfib/B of split fibrations over B. So we have:

Sfib/B _ Dfib/B _ Set B’
Cat 7 Set ~ Set

65. The class of discrete fibrations is not only stable under all pullbacks and closed
under composition; it is closed under left division too. I.e.: For any discrete fibration
E:€—> 8B, a functor F:€'—> € (a fortiori cartesian) is a fibration iff E':=EF is. (+ An F-
cartesian lifting of fe € can be obtained as an E'-cartesian lifting of Ef.+) Fibrations E
and F are discrete iff EF is. Hence the isomorphisms

FIB/€ = (FIB/B)/E, and

DFIB/ € = (DFIB/B)/E
for every discrete E.

66. The notion of a fibration is not closed under equivalence of categories! Take two
groups P and M and a fibration P: P—> M. Let N be a groupoid (i.e. a category where
all the arrows are isomorphisms) consisting of several copies of M, each pair
connected by one isomorphism. Every inclusion U :M~> N is then an
equivalence of categories (i.e. full and faithful essentially surjective functor). But UP is
not a fibration. Considering Ue Cat/N(U,idy), we see that Fib/N is not closed under
the equivalences in Cat/N either, since idy is a fibration and U is not.

However, for functors E:€ — B and F:€'—> €, if F is full and faithful and each
Fr:€'1—> €1 is essentially surjective, then E is a fibration iff E'=EF is. (Here is
€'t:=(E")-1(I) and F1:=FI€'; for Ie[Bl.) Functors like F will be called fibrewise

equivalences.
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7. Lifting homotopies.

We finish this section by considering the topological origin of the notion of fibration. A
"topological" characterisation of cloven fibrations is given, with natural transformations
playing the role of homotopies. (This is a slight simplification of the story told in §2 of
Gray (1966).)

71. Definition. (Spanier 1966, chapter 2) Let E, B, J be topological spaces,
p:E—> B, ¢cJ—E, x:J x[0,1]-> B continuous maps. ¥ is called a homotopy. A
lifting of y along p at ¢ is a homotopy ©:J x [0,1] — E, such that

ped =%, and

d(x, 1) = ¢(x), for all xeJ.

p is a Hurewicz fibration if every homotopy ¥ has a lifting along p at every c.

72. Every topological space X gives rise to a category TX in a natural way: the objects
of ©X are the points of X, while the arrows are the homotopy classes of paths, ie.
continuous functions g:[0,1]— X taken modulo equivalence relation =, defined

go=g1 e 31:[0,1] x [0,1] > X. y(,0) = go A Y1) = &1
Clearly, all these arrows are isos. ©X is the fundamental groupoid X. By the same idea,
the whole category Esp of topological spaces and continuous maps is groupoid-
enriched. The arrows from ¢g to ¢1 in Esp(X,Y) are the homotopies ¢: X x [0,1] =Y,
9(_,0) = ¢, ¢(_,1) = c1, taken modulo = again:

oz &= Vxe X.0x) 2 y(x).
Noticing that ®X = Esp(1,X), we define a two-functor

7 :=Esp(1,_): Esp— Cat.

On fundamental groupoids the topological and categorical notions of fibration tend to

coincide:
73. Proposition. If p:E—> B is a Hurewicz fibration, then 7tp is a cloven fibration.

« This is a special case of proposition 77, in view of the fact that the functor 7 makes

every homotopy into a natural transformation.
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74. Notation. In a two-category, we reserve the symbol o for the composition
within a hom-category, while the "horizontal" composition is denoted either by * or by

juxtaposition. In the two-category of categories, we have thus

- - P
¢ .
A G¥P ~ B v e
H¥Y _ o -

(YoP)A = YA°PA : FA—> GA—>HA
(WA = (W*@)a 1= Yga°P(pa) : PFA— PGA— QGA
= Q(@A)°YFA : PFA—> QFA —> QGA.
The one-cells (functors) can be identified with the identity two-cells (natural
transformations); we shall rather write PF than P*F. (A standard reference for two-

categories is Kelly-Street 1974.)

75. Definition. Consider the diagram

€
C
[% E
¢
Hp
) ¥ B
H; -

A lifting along a functor E of a natural transformation  at a functor Cp such that
EC; = Hj consists of a functor Cg and a natural transformation 9, such that x = E*3
(which, of course, implies ECq = H).

A lifting 0 is called cartesian if for every K
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Ho
) ¥+ B
H,

such that E#x = y*J, there is an arrow 1) : K—> 0*J, consisting of unique vertical

arrows.
KX
I
n(kx) | Lx
Y
ColX w» C1]X
¥ x
HoJX = H;IX
XI1x

(Officially, 1 is an arrow between natural transformations: a modification. In fact, it can
be seen as an honest natural transformation T : «k» — «O*J» where the functors
«K», «O*]»: I —> €/€ are obtained by)

76. The couniversal property of comma categories. To every comma
category F/G belongs a pair of projections Pg and P1 and a natural transformation o
Po(X, uFX— GY, Y) = FX,
PiX, wFX—> GY, Y) :=GY
X, wFX—>GY, Y) =

For every (€, Rg, Ry and) p as below, there is a unique functor «p», such that

p= (x*«p».
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~ Rg 2 F
/ \‘ y
«p»(X) = (RoX, px, R1X),

«p»(f) = (Rof, Ryf).

77. Proposition, E is a cloven fibration iff every  has a cartesian lifting at every Cy
such that Hy = EC.

Proof. Then: The components of the lifting & of ) are the cartesian liftings of the
components of ¥.

ISY
CY = C.Y
o 1
7
Cotd), C0 €
’
’» Oy
CoX ~C,X
E
Xy -~
H,Y H,Y
Ho(D) H,® Y
B
XX
HyX ~H,X

Clearly, the unique factorisations constitute 1, which is required for ¥ to be a cartesian

lifting of .
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If: Consider the diagram

Dom _
€/€ dar €
Cod
E, P E
Po -
B/E YOl B
P, -

where Pp{w:I—> EX, X) := X. (The other arrows are as previously defined. The natural
transformation arry = f is the o belonging with €/€ as the comma category of two
identity functors. Dom and Cod are of course Po and P; of this comma.) Clearly,
EP;=P1 and P;E¢ = Cod.

Every lifting © of & at P induces a functor «0» : B/E—> €/€. Since
oxEgx«d» = Exarrs«t» = Ex¥ = @,
by (the uniqueness part of) the couniversal property of «, Eg#«0» = id holds.

If the lifting © is also cartesian, there is 1): «arr» —> «O»*Eg. Note that «arr» = idgse.
Now

Eg*n =id, since the components of 1 are vertical; while

MN*«d» =id  follows from the uniqueness of N«o»(u,X) a8 the arrow

Dy, xy=«arr»+* «®»(1,X) > «O»*Eg*«d»(u,X)=0y X)-

These two equalities mean that 1 is the unit of the adjunction E¢ — «%», while the
counit is identity. Hence Eg has a right adjoint right inverse functor, i.e. E is a fibration
by proposition 31.¢

78. Corollary. Given a cloven E : € —> B, functors H : €—Band S: €— € and
a natural transformation 7 : H—> ES, there is a functor T : € — €, such that H = ET
(and a natural transformation ¥ : T—> §, such thatx = E#D).

For instance, if a cloven fibration E has a left adjoint S, by lifting the unit of this
adjunction we get a left inverse T of E. If the left adjoint S is full and faithful, then T is
a left adjoint too.
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79. The last proposition can be used to abstractly define cloven fibrations in an
arbitrary bicategory with the comma construction.

To avoid cleavage means to lift only paths (single arrows), and not homotopies (natural
families of arrows); i.e., in an abstract bicategory, to lift only the two-cells

TR
1t B
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1. Basic notions, fibrewise.

Fibrewise structure/property is one which all the fibres possess, and all the inverse

images preserve.

Fibrewise versions of some standard categorical notions can be obtained in a completely
straightforward way. The only question in these cases remains to relate the so obtained
fibrewise notions with the old global ones, in the style: "Fibred category E:€ —> B has
fibrewise property P iff categories € and B, and functor E satisfy condition Q". On the
other hand, some constructions from ordinary category theory are not easily lifted in

fibred categories. We begin by such an example.

The functor op. (Bénabou 1983, 4.4.) The functor (_)°: CAT—> CAT formally
changes the direction of all the arrows in a category. The corresponding fibred
construction  (_)°P : FIB/B — FIB/B3 should change the direction of all the
vertical arrows in E: € —> B and leave the other arrows somehow unchanged. While
this is quite hopeless with functors in general, a fibration E induces for every fe € a
vertical-cartesian decomposition f=0a, unique up to a vertical isomorphism. Well, since
the arrows in €(X,Y) can thus be regarded as the equivalence classes (modulo vertical

isos) of the diagrams in the form

X Y
a V)

one is tempted to try to take the arrows in €0P(X,Y) to be the equivalence classes of the

diagrams

3We must denote it differently, because (_)° also acts on every small fibration as an
arrow in Cat.
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X Y

Remark. The axiom of choice is built in into the concept of limits and colimits as
functors. This can be avoided (by using universal constructions), but this leads in

by the equivalence relation fibred categories to much longer definitions.

(a1,01) ~ {az,02) :& I vertical (iso) b. aj=azeb A B1=020b. products and coproducts. Define the fibration 2 := pb(E,E): € x € = B, and let
And this works! If we use the fraction notation: B

Bofag = ((2,0)1 (a,0)~(20,50)},
the composition can be defined by:

BW/a o BY/b := BUoBY / bov*(a).

the cartesian diagonal functor be the factorisation A:=«idg,idg» : € —>€ X €.
8

If E is cloven, a canonical representant of each of these classes is given. Clearly, we ge

a cloven E°P.

Limits and colimits. Given a small category I, the diagrams of type I in a category
€ are the objects of the functor category €1, There is an obvious faithful functbj
AL: € —> €1 which sends every object of € to the corresponding constant diagram
Some representants of the limits and colimits of the diagrams of type I are given b

right resp. left adjoint functor of Al E > B

i

€ The binary fibrewise product X and the coproduct + are then respectively the right and
the left cartesian adjoint of A.
colim Al |lim
I I
—| - € X 2 g?
+ A X B
This conception of limits and colimits can directly be generalized from the constan — |
categories to the variable ones - from Cat to Fib/B - by simply putting the fibred E
€

adjointness in place of the constant one, i.e. by requiring the functors and natur
transformations to be cartesian over B. Of course, the question: What is a sma

Terminal and initial objects. The fibration id: is inal i
category I in Fib/B? - must first be answered. Leaving it aside for a while, let us look 2 . ¢ fibration id:8 — B is terminal in FIB/B. The

cartesian right adjoint T of Ee FIB/ B(E, id) chooses a terminal object in each E-fibre;

the simplest special cases. ..
p D the left adjoint L chooses fibrewise initial objects.
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Since all the triangles must commute, we have ET =El =id;i.e. T and L must be
cartesian sections (i.e. right inverses) of E. However, as soon as a full and faithful
cartesian right (resp. left) adjoint S:B — € of E is given, so that ES=id, a cartesian
section T (resp. L) can be obtained by corollary 1.78.

Exponents. In a category € the exponents by Xe €l are given by the functor
X— _:€~> € which is right adjoint to Xx_: € —> €. In other words, there is a

functor
—:8ox€—C
and an adjunction
1x€
W)
X7, eox e
_'
Ext (rX1,7t1>
@, x)
1x¢

for every Xel€l, i.e. for every constant functor " X ': 1—> € - which is also
1> €0,

For a fibred category €, the objects Xel€jl can be represented by "constant functors"
"X":=Dom*@x : B/T>E/X—>€E,

with ®x as in 1.31(e). "X is a cartesian functor VI—> E; and every cartesian functor

VI-->E can be obtained in the form "X for some Xe|€yl. (This correspondence is in
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fact the Yoneda lemma, II1.1.1.) The fibrewise exponents in a fibration E:€ —> B can
now be described as given by a cartesian functor

—: E0p g €E—¢€
(where £0P >§ € := pb(E°P, E)) with an adjunction
Tx 8
«71:0, -

f><€><€——“"““"'

«TH ,X\)\

ix €
B

wttg," X ,T»

for every "constant functor” "X : > €, where we write 1 for B/L It is not hard to
see that "X s also "X 7: §—> €0P (+ since "X is cartesian, all the arrows of 1 are
cartesian, and the cartesian arrows of € and of €9 coincides).

fece. Putting the finite products and the exponents together, we have the notion of the
fibrewise cartesian closed structure. This is what we shall really need in chapter IV,

2. Fibrewise vs. global limits,

Now we shall inquire into the connections between fibrewise limits in E: € — B and
(ordinary) global limits in €. We first consider the terminal objects, then the pullbacks,
and finally limits in general. (These propositions will be used many times later, and a
corollary reducing the fibrewise products to some ordinary pullbacks will be useful in
semantics, which is our main goal.)
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Fact. E:€ — B is a cloven fibration iff every functor Ex:€/X—> B/EX (from
proposition 1.3(e)) is a cloven fibration, Xe |€1. When this is the case, all Ex have

fibrewise terminal objects.

+ Then follows from the isomorphism (€/X)/y = €/Y for all y :Y—> X. If
follows from the fact that every Ex has a fibrewise terminal object whenever it is a

cloven fibration.«
Propositions.

21. E has fibrewise terminal objects and B has a global one iff € has a global terminal

object and E preserves it.

« Then: T¢ := T(Tp) is a terminal object of €, where T is a terminal object of 8, and
T:B - € afibrewise terminal object of E. If: T1:= @1*(T¢), where @1 B, T ). (f
we want T to be a functor, we need the axiom of choice here, to choose one inverse

image. But any inverse image @r*(T ¢) is terminal in €1.)

22, Let a commutative square Q in a fibred category € have two parallel sides
cartesian. Then Q is a pullback iff EQ is.

« Chase diagrams.¢

23. In a fibred category €, the diagram D:

D f

e ———ar

t
with t cartesian, has a limit which E preserves iff ED has a limit in B. When this is the
case, D is completed to a pullback square in which the arrow parallel to t is also
cartesian,

« If the square
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|

is a pullback in B, take

I R .

JEUS—

t

in € (where OY is a cartesian lifting and a is a unique factorisation over m of fo!

through t). By the preceding proposition, this must be a pullback square.e

24. Let D be a connected diagram in a fibre of €. Every fibrewise limit of D is also its
global limit. (A diagram is connected if it is connected as a nonoriented graph.)

» Since D is a connected diagram of vertical arrows, all the components of an arbitrary
cone o : A—> D in € must lie over the same arrow, say, ue B. o must factorize
uniquely through a cone of vertical arrows o' : A—> u*D. But the fibrewise limits are
by definition4 preserved by the inverse images, so that o' must factorize uniquely
through u*(A): w*L—>u*D, if A : L —>D is a limit cone in the fibre of D. Therefore o

factorizes uniquely through A.e

25, A fibration E has fibrewise pullbacks and B has global pullbacks of the arrows in
the image of E iff € has global pullbacks and E preserves them.

4in the first sentence of this section
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« Then: Let t = 9Btoa and f = HEfob be some vertical-cartesian factorisations.

- -

TP B

Since B has pullbacks, € has pullbacks II, IIl and IV by proposition 23. (If O¥ is
cartesian because of this proposition, 9™ is cartesian because the class of the cartesian
arrows is closed under the composition and left division). Clearly, a' and b' are vertical
because a and b are. By proposition 24, the pullback I of a' and b' in their fibre is their
pullback in €.

If: Given

v

in B, make in € a pullback of 19);’ and 19;((. Its E-image is a pullback because E

preserves them. This is, furthermore, the reason why every (global) pullback of vertical
arrows in € must remain within its fibre - i.e. why the global pullbacks of vertical

arrows in € are fibrewise.e

26. A fibration E has fibrewise limits and B has global ones iff € has and E preserves
the global ones.
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« Just put propositions 21 and 25 together, using the fact that all limits can be
constructed from (possibly infinite) pullbacks and terminal objects. (Note: When € has
a terminal object which is preserved by functor E, then E must be surjective.)e

Corollary. A fibration E has fibrewise products and B has global ones iff € hasand E
preserves global products, and pullbacks of the vertical arrows to the terminal object in
each fibre. (The products in this statement include the empty ones, i.e. the terminal

objects.)

Remark. By proposition 25, a fibrewise product, i.e. a pullback over the terminal
object in a fibre, is a global pullback: for X,Ye ey, X>1< Y = pb(nx,ny)in €, where

1 :id—> TE is the unit of the adjunction E—T.

3. Fibrewise fibrations

The formula

fibred structure := structure in fibres + preserved by inverse images
can also be applied on a potential structure, such as the notion of fibration itself (cf.
1.33). And again, the fibrewise notion can be characterized in global terms.

Definition. Let E: €—> 8 and E': €'—> B be fibrations, F: €'—> € a cartesian
functor and Fy: £'1—> €1, Ie | B, the restrictions of F. We say that F is a fibrewise
fibration over E if all the Fy are fibrations and if E'-inverse images preserve the Fi-
cartesian arrows. (Le. for every ue B(1,J) and every Fj-cartesian arrow f, every inverse
image u*(f) must be Fr-cartesian.) Given fibrewise fibrations Fe FIB/ B(E',E) and
Ge FIB/ B(E",E), a fibrewise cartesian functor H:FF— G is He FIB/ B(E'E™), such
that F=GH, and every Hje FIB/ €1(F1,Gy). Denote by FIBg/E the category of

fibrewise fibrations and fibrewise cartesian functors over E.

Proposition. FIBg/E = FIB/ €.
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31. We first show that
Fe FIB/ B(E'E) is a fibrewise fibration iff Fe |[FIB/€l.

Take fe £(X,Y), Ef =u, and Y'e €| such that FY' = Y.

[ e |
u
If © is an E'-cartesian lifting of u, then F®' is an E-cartesian lifting of u. Let ae €1l be
the unique factorisation of f through F', and ' its Fi-cartesian lifting. 9'ca’ is then an
F-cartesian lifting of f at Y'. Moreover, every F-cartesian arrow must be in this form:
Factorize it through an E'-cartesian and a vertical arrow; the vertical one must be Fi-

cartesian.

To show that the composition of two arrows in the form §'ca’ is still in this form use

the fact that the E'-inverse images preserve Fj-cartesian arrows.

If: Every Fy is a fibration because it is obtained by pulling back F along €1~ €. Every
E'-cartesian arrow 0} as well as every Fj-cartesian be €'1(X,Y) is also F-cartesian.
The arrow 9you*(b) = body; is therefore F-cartesian; thus u*(b) is. But then it must be

Fi-cartesian.e
32. He FIB/ E(F,G) iff He FIB/ €(F,G).

« Note that all the E'-cartesian arrows, as well as the Fi-cartesian arrows are F-cartesian
too; and that, conversely, every F-cartesian arrow decomposes on an Fy-cartesian and

an E'-cartesian.s
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4. A lemma about adjointness.

It is easy to see that functors Fe FIB/ B(E'E) and Ge FIB/B(E,E') are cartesian
adjoint (cf.1.24) iff their fibrewise parts Fi: £€1—> €1and G: €1—> €'1 are adjoint for
all Te |Bl. But we shall need a slightly stronger statement.

Lemma. Let E: €—> B, E': €' — B be fibrations, and F: €'—> €, G: €—> €'
functors such that E' = EF, E = E'G. Then
F— G and m, € cartesian & VIe {Bl. F| — Gy and G cartesian.

c= EFX, V)= | EuEXY) = U euxoy) =
ue BE'X,EY) ue BE'X,EY)
= €'(X, GY),
since

EWFXY) = E1(FX, u*Y) = €'1(X, Gu*Y) = £€'(X, u*GY) = €'«(X,GY).
=>: The nontrivial part is that G is a cartesian functor.

Take a cartesian arrow ¥ in € and consider the vertical-cartesian decomposition
GO =0'oa. Back in €, there is

FGX —-—-~—-——> FGY
\Fa
FY

/‘b
r
X Y

0

where ‘b is the unique vertical arrow by which eyoF{' factorizes through 9. Let b be
the right transpose of ‘b, Since Gtob is the right transpose of 0o ‘b, while ¥' is the
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right transpose of eyoF¥', from ¥o'b = gyoFd' follows GOob =9'. But from
B'oaoh = GYob =¥ follows acbh =id.

On the diagram we see that Go‘boFa = Yoex. Since €x, ‘b, Fa are vertical, ‘boFa = gx

must hold. Transposing both sides of this equality, we obtain bea = id.
So a is an iso and G4 is cartesian.e

Corollary. Consider a functor Fe FIB/ B(E'E). A functor Ge CAT/B(E,E") is its

cartesian adjoint iff it is cartesian and adjoint to it fibrewise.
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1. Hyperdoctrines.

The conceptual basis for the categorical interpretation of higher order logic is the notion
of hyperdoctrine, introduced by Lawvere (1969, 1970). It is basically a
(pseudo)functor

P :3S9—>Cat,
where

- the category S is cartesian closed, as well as every fibre pK, Ke|S|;

- for every ue 8 (J,K), there are functors uy — gpu — ux: pJ—> @K.

We shall be concerned with this structure, as translated (by the Grothendieck

construction) into fibred categories. The horizontal structure, which is dealt with in this
section, corresponds to the functors u; — @u — ux.

Logical motivation. S is meant to be a "category of sets and functions". The objects
of @K represent predicates ¢(yX) over a set K (i.e. families {¢(y)! ye K} of truth
values). An arrow fe K(p(yK), w(yK)) can be understood as a proof

90K - (YK,
The functor @ u, usually written u*, represents substitution along the function
ue S (J,K), i.e.

u¥: PK— pI: o(yK) > o (u(x)).
Note that substitution along a projection ne B(K x L, K) means adding a dummy
variable. Let us write ¢(yX, 2L) for n*(q)(yK)).

By adding dummies, it can be achieved that all the elements of a given finite set of
predicates have the same set of variables. This is tacitly supposed when the operations
of propositional logic are performed on predicates: a predicate ¥(x) A @(y), depending
on both x and y, is in fact (yAQ)(x, y) = ¥(x,.¥) A ©(X; y). In this sense, propositional

logic is done fibrewise: one first brings all the predicates in one common fibre by taking
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their inverse images along projections. The fibrewise product and coproduct thus

correspond to the conjunction and disjunction respectively, the fibrewise exponent to

the implication.

The crucial observation made by Lawvere is that the guantifiers are adjoint to the
substitution. Namely, they are characterized (or defined) by
o) F Vzy(z,y) @ OEy) - V(& Y,
Y@ Y F oY) € YY) - Xy,
Moreover, in logic with equality = holds
o) F Vxum)=y-1x) & o) - 1),
Ix.u(x) = yAY(x) - Oy) & yx) - o(u(x)).
The logical picture of adjoints is thus:
u(y(x)) =3Ixux)=y A ¥x), and
ux(Y(x)) = Vx.ux)=y-y(x),

i.e. they just slightly generalize the quantifiers.

In short, the logical meanings are:

X is As
+ is V,
Tk is ¥V, and
f19] is 3.

2. Co-, bi-, trifibrations.

Definitions. We say that a functor E:€ —> B is a cofibration if E0:€0-> BOis a
fibration. A functor F:E'—> E is cocartesian if F@E'©—> E° is cartesian. COFIB/ B is

the category of cofibrations over B, with cocartesian functors.

E is a bifibration if E and EO are fibrations - i.e. if E is a fibration and cofibration.
BIFIB/ B denotes the category of bifibrations over B, with cartesian and cocartesian

functors.
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E is a trifibration if E, E©, and (EOP)0 are fibrations - i.e. if B and EOP are bifibrations. A
functor Fe FIB/B(E'E) is opcartesian if its op-image op(F)e FIB/ B(E'0p,E0P) is
cocartesian. TRIFIB/ 8 is the category of trifibrations over B with cartesian,
cocartesian and opcartesian functors.

Remark. By the Grothendieck construction, the cofibrations correspond to the
covariant (pseudo)functors to Cat, i.e. there is

[:Cat®— cofityp.
B

Terminology, notation. Let foe £0(Y,X) denote the arrow fe £(X,Y) as seen in the
opposite category.

We say that o€ £(Y,Z) is E-cocartesian if 6° is EO-cartesian. o is thus an initial lifting
of u=Ec at Y. uyY=2Z1is a (left) direct image of Y along u.

The ESP-cocartesian arrows are called E-opcartesian. If ye €0P(Y, W) is an E-
opcartesian lifting of u, then usxY=W is a right direct image of Y along u.

We say that a co-/bi-/trifibration is cloven if all the fibrations involved in it are.

If (u©)*:£01—> €9y is an El-inverse image functor for ue B(L,J), the (lefy) direct image
functor is

uy = ((uo)*)O tE1—> €.
This functor is related to the inverse image functor by the adjointness:

uy — u*

because Ej(wX, Z) = €y(X, Z) = €1(X, v*Z) holds naturally in X and Z.

EP is, of course, a cloven fibration whenever E is. Clearly, its inverse image functors
(uoPy* will be

(uOP)* : (EP);—> (€P); = (u*)0: (E5)0—> (€.
Given the left direct image functors (uP);:(€1)°—> (€))° of EOP» we define the right
direct image functors of E

Usx :=((u0p)g)°: E1—> €.

The adjunction is now:
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u* — Usx.

A cocleavage of E is a triple {(_)1,0,¢") where (_)1=(_)°*°, 6=0° and ¢'=c® for some
cleavage ((_)*,8,c) of EO. An opcleavage of E is a triple ((L)+,W,c), ()+=()1°, y=0

for some cocleavage ((_)1,0,c) of E°P.

In brief, we systematically replace the prefix "co-" by "op-" when considering a
cofibration E9P. We sometimes say that E is a right bifibration when E°P is a

bifibration.

Opcartesian arrows. Translated from €9P to €, the statement that y = 0/¢ is E-

opcartesian reads:
Vae €1(u*Z,X) Ila‘e £3(Z,u,X). a = eou*(a’)

X—_Y..}.——,uﬁ}( X u‘*)(
N

| Fla u*uxX | .
v S Ya | Ala
| u*(a’)
Y ]
*7, ———e—b 7,
Z u 5

("Vfe E9Py(X,2)" is translated to "Vae E1(u*Z,X)", where f=1/a; and "a‘oy=f" in £OP

comes down in € to "a = gou*(a)".)

Note that the class of arrows e £°P satisfying this condition must automatically be

closed under the composition. This follows from the first proposition below. The
second one answers the question: When can we put an arrow (e €4(X,usX) in place of

an opcartesian arrow ye €9P(X,uxX), so that "the diagrams remain commutative"?

(The answer is: When ux is a full functor.)

Propositions.

21. Let E be a fibration. If every arrow ue B(L,J) has a cocartesian lifting at every

object Xe [€1), then E is a bifibration.
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+ We show that E satisfies the dual of condition 1.31(b). Given an arrow fe € ,4(X,Z)

there is unique vertical arrow 4, such that f=040%Voa,

’

‘l()v 15)u
v¥u*Z - ¥ w7,
v
Ve
7
/s
A4
‘ b 7 3Jg
7
7
X . - X
&)
v u
K w | - ]

Since oV is cocartesian, there is unique vertical arrow b, with bogV=0Voa, Taking
g:=0lob,
we have f=gool, and Eg=u, as required by the dual of 1.31(b).

To show the uniqueness of g, suppose that g satisfies the same pair of conditions.
From Eg'=u follows that there is a vertical arrow b, such that g'=9%ob'. From
f=g'ocl, we conclude that QUobogV=13uob'oGV. Since both booY and b'oaY are over v,
and OV satisfies condition 1.31(b), bosV=b'oG" must hold. But ¢V is cocartesian, and

therefore b=b' must be true. Hence g=g'.+

22. Let E be a right bifibration. Choose for ue B(1J) and Xe |€]] an E-opcartesian

lifting W = 6/e € €9P(X,uxX). Thus, for every E-cartesian Die £(u*Z,Z) a bijection
O e1u*Z,X) —> €3(ZuxX)

is given. Then holds
(e (B)

for

o) e y(X,uxX) Vi=0Wae E9P(X,Z). {foa =a‘o¥ and

B) VYel€ll Vbe€i(usX,uxY) Jac £1(X,Y). b=ux(a).
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« It is easy to see that
(@) & e Ey(XusX). Poe=

On the other hand,
(B) < Je. eoe=id (i.c. € is a split mono).

Namely, the functions
£1(X,Y)—> E1(u*usX,Y): a>aog

are surjective for every Y iff Je. eoe=id. Extending these functions along
€I(U*U*X,Y) = €J(U*X,U*Y)

we get
E1(X,Y) > Ey(usX,uxY): ak> ux(a).

So we need to prove
3. Poe=0 & Te. eoe=id.

=: The splitting e is the vertical factorisation of {;\/ through 6.
e {y = 0oe.s

3. Beck-Chevalley condition/property.

Motivation. If direct images are to represent quantifiers, they must be stable under
substitution. A logical picture of this is that the variables must be independent, in the
sense that y must be invariant under Jz. One way to express this is to require that

quantifying over z commutes with adding a dummy y.
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w(x Y 2)

V(. 3) \
\ Jz. \V(X

Jz. w<x z)

KxLxM
T

NN\

xM
\
K
For the quantifiers generalized by means of an equality predicate =, the independence
of variables can be expressed over an arbitrary square S.

Plux))

u* m |

B(Y) 3x m(x) wAB(ux))

\ Jy. k(y) v(w>AB<y)
Jy.k(y)= mﬁ(y)

/\‘«\
N
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A derivation Ix.m(x)= wABu(x)) - Jy.k(y)= v(w)AB(y) can be given if the

commutativity of S is provable, i.e.
+ k(ux)) = v(m(x)).

On the other hand, a proof Jy.k(y) = v(w)AR(y) - Ix.m(x) = wAB(u(x)) follows from
k(y)=v(z) - Ixux)=y A m(x) =z,

which tells that S is a (weak) pullback. In this way, logic suggests the requirement that
Ix.m(x) = wABU(x)) = Jy.k(y) = v(w)AB(y)

holds over the pullback squares S.

Definitions. A cloven bifibration E : € —> B is said to satisfy the Beck condition over
the square S (as above) in B if there is a cartesian natural isomorphism

myou* = v¥ok.
We say that E has the Beck property if it satisfies the Beck condition over all the
pullback squares.

A cloven trifibration has the Beck property if both E and E°P do.

The Chevalley condition on a commutative square

in a bifibred category € is:

O if s and t are cartesian and f is cocartesian, then g is cocartesian.

A bifibration E is said to satisfy the Chevalley condition over a square S if every
commutative square Q over S satisfies this condition. E has the Chevalley property if it

satisfies the Chevalley condition over all the pullback squares.

A trifibration has the Chevalley property if both E and E°P do.
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Lemma. A bifibration E satisfies the Chevalley condition over S iff every Q over S
satisfies:
C°)  iffand g are cocartesian and s is cartesian, then t is cartesian,
or equivalently
C9  if siscartesian and f cocartesian, then
tis cartesian iff g is cocartesian.

+ (C)=(C"): Take a cartesian t' over v.

By (C), the unique factorisation g' of fs through t' is cocartesian. Both g and g' are
cocartesian liftings of m; hence there is a vertical isomorphism p, such that g'=pg.
From tg=(fs=t'g'=)t'pg follows t=t'p by the cocartesianness of g. Thus t is cartesian.s

Remark. The Chevalley condition is the Beck condition expressed without cleavage.
« If the unique arrow g over m by which ¢kKoQU factorizes through 9V is cocartesian,
then the unique vertical arrow p induced by g

u

u*B ———» B

/y I
gl k

my u*B o
~N
P
V*k! B _—v_" k! B
V)

must be an iso. (Alternatively, p can be induced by t: mu*B — kB, the unique arrow
over v by which ckoU factorize through 6™.) Given any vertical iso mu*B =v*kB, g
must be cocartesian, and the canonical iso p is obtained.» Since we can, on the other
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hand, interprete the Beck condition as a statement about “all the possible inverse and
direct images” along the given arrows (i.e. cleavage-free), it makes sense to talk about a
Beck-Chevalley conditionlproperty - as everybody already does. We shall sometimes
abbreviate it to "BC-property". It is a standard notion in topos theory. However,
neither Beck nor Chevalley ever published anything on their condition(s). (Early
references are: Bénabou-Roubaud 1970, Lawvere 1970. A recent one: Hyland-

Moerdijk 1990.)

Fact. A trifibration E has the Beck-Chevalley property iff either E or E%P hasitas a

bifibration.

« €5(B,k*vsD) = €x(kiB,v«D) = €M(v¥kiB,D) = Epm(muu*B,D) = €k (u*B,m*D)
= €3(B,usm*D)e

A simple non-example. Let Pos be the category of posets and monotone maps and
|Pos/Ql = {(A, D: A aposet, I=TI€ A},
Pos/Q((A, 1), (B, 1)) := {fe Pos(A, B): f(D<ST},
where 11:={ye A: 3xe Lx<y}. Pos/C is bifibred over Pos by the obvious projection,
and
*(B,J) = (A, 1)),
f1 (A,I) = (B, T{(I)).

Consider the pullback square

V]
@ e |

_

v Lo

] -

L

in Pos, where 2 ={0<1}, 1 = {3}, k(@) = k. Then
vev¥(1,1y = (1, @) #(1, 1) = 1y*opK1, 1),
With the discrete "poset” 2 = {0,1} instead of 2, the Beck-Chevalley condition would

be satisfied.
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4. A characterisation of the Beck-Chevalley property.

Propositions 2.22 and 2.23 told us that in every fibred category € the class of the
cartesian arrows is stable under all pullbacks preserved by E; and that a square with two
cartesian sides is a pullback if it is over a pullback. If the square S in the definition of
the Chevalley condition is a pullback, then so is the square Q. In fact, the Chevalley
property can be reformulated by saying that the class of the cocartesian arrows in € is
stable under all the E-preserved pullbacks along cartesian arrows. These facts point
towards an abstract characterisation of the Beck-Chevalley property.

Lemma. Given a functor E:€ —> B, define E* by the pullback

gx——=€/¢

|

E* E/E

< = B/B

where B* &> B/ B is the category of arrows of B, with pullback squares as the
arrows between them; and
E/E:€/€—>8/B: f+> Ef.

Then E is a fibration iff E/E is iff E* is.

* An E/E-cartesian lifting is a pair of E-cartesian liftings. An E-cartesian lifting of
ue B(L)) at X is obtained from an E*-cartesian lifting of (u,u)e B*(idy, idj) at idx.«

Proposition. If E is a bifibration, let /€ <> £€/€ be the full subcategory spanned

by the cocartesian arrows. Define U and Ej by the following commutative diagram:
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6§ O/

U
gre—=E/¢E
E ‘_—J
E* E/E

g+ B/B

Then E has the Beck-Chevalley property iff Ei is a fibration and U a cartesian functor.

+ €1-arrows are the squares in € which lie over pullbacks in B and have two sides
cocartesian. That U is cartesian, means that the Ej-cartesian arrows are pairs of E-
cartesian arrows. The Chevalley property tells us that every object of €1 has an inverse
image in € along every arrow from B*.»

5. The Beck-Chevalley condition over all commutative squares.

Proposition. The statements below are related as follows:
(@)=(b)=(c);
(c)=(a) - if B has pullbacks.

a) E satisfies the Chevalley condition over every commutative square.
b) An arrow in € is cartesian iff it is cocartesian.
¢) E has the Chevalley property; and: if an arrow in E is cartesian then it is cocartesian.

* @)=(b):
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3. Horizontal structure

(b)=>(a): Take an arbitrary commutative square S, and let g be the unique factorisation
over m of o¥o®¥ through ©, as in remark 3. Using (b) and the closure properties of

cartesian arrows (1.34) we have:
o cocartesian then oX cartesian then oXo" = §Vog cartesian then g cartesian

then g cocartesian.

(c)=>(a): Since B has pullbacks, the square S factorizes through a pullback square P,

and then we lift:
\‘Gu‘
[ D e )

£ &
p o*
B

pod
a7

The factorisation q over z of 9% through Y is cartesian. By (c), it is then cocartesian.
The factorisation p over j of 6ko®W through ¥V is cocartesian by the Chevalley
property. Hence the factorisation g = poq over m of cKo®U through 8V must be

cocartesian.

Corollary. For a cloven fibration E, the conditions below are related:
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(@)=(b)=>(c);

A fibration with small products and coproducts is called hyperfibration. (Le.,it1s a
(c)=>(a) - if B has pullbacks.

grifibration with Beck-Chevalley property.) HYP/ B is the full subcategory of
‘ i sists of hyperfibrations.
a) E satisfies the Beck condition over every commutative square. TRIFIB /B which consists yp

Example. Every (ordinary) category € gives rise to a split family fibration
Ve : Set/€—> Set,
{n which the fibres

(Set/€)y:=€l '
¢ of the functors I-> €, i.e. the I-indexed families (Cx | xeI) of objects of €,

b) All the inverse and direct image functors are equivalences, i.e. for every ue B

utou* = id and u*ouy = id.

¢) E has the Beck property, and every inverse image functor is full and faithful, i.e.
ujou* = id. s ’

h -indexed families of €-arrows. The inverse image functor over wl—1Jis
u*(By I yel) = By F xe ). . ' )
The fibration V€ has small (co)products iff the category € has small (i.e. set indexed)

i i wit
* (©)=>(a) is now simply: [jou* = prozjoz*ow* = prow* = v*oky.e

Remark. The diagram "(a)=>(b)" above shows that in every bifibration E with th
(co)products in the usual sense. They are

ur (Ag I xeD) :=( Y Axlye J)
u(x)=y

ux (Ax | x€T) :=(HAX | yeJ}

u(x)=y

BC-property a lifting of a monic is cartesian iff it is cocartesian; i.e., every direct ang
every inverse image functor along a monic is an equivalence of categories in such E,

Proposition. (Bénabou 1975b) (AC) Let B be a category with pullbacks. A fibration

: as 11 coproducts iff the cartesian functor A:E—> Fam(E)
6. Hyperfibrations. E:€ —> B has small cop

€
N\ IdseE
\A
4
E/B = B/8

-

Terminology. In a bifibration with the Beck-Chevalley property, the direct images ar
called coproducts. The right direct images in a right bifibration with the BC-property are .

called products. (Le., Products and coproducts are direct images which are stable under

the inverse images.)
¢ id Cod| | 1ds
Definitions. A fibration E is said to have small coproducts if it is a bifibration with

the Beck-Chevalley property. The full subcategory of BIFIB/ B spanned by the Fam(E)

fibrations with small coproducts is denoted by FIBi/B.

> B
We say that E has small products if EOP has small coproducts. The corresponding E

subcategory is FIBx/B < BIFIB/ B. | -
has a cartesian left adjoint. (The functor Ids takes every object to its identity arrow.)
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« The BC-property boils down to the fact that the functor £ — A, ' 1f C preserves pullbacks and E has small (co)products, then C*E has small

IXWEX— Di=uX, o)products.

is cartesian.e ; ' '
We prove that C*E has the BC-property if E has it.

. C*E-cartesian lifting of pe €(U,V) is in the form {p,9°P); a C*E-cocartesian lifting
is in the form (p,0P). A square Q in €é€, over a pullback square S in €, and

7. Closure p ties fi bi-. tri d hyperfibratio qch that s and t are cartesian and f is cocartesian, is projected as follows:
. Closure properties for co-, bi-, tri-, and hyperfi ions. :

Cu Cu
The class of cocartesian arrows is closed under the right division and stable unde M——L - —-}?“""’
pushouts preserved by E - dually to the class of cartesian arrows (cf. 1.34 and 2.23), <m’y>l; Q l y : Q o
The class of cofibrations has, on the other hand, obviously the same closure properti — 8o
as the class of fibrations: it is stable under all pullbacks, and closed under compositio C*ET TE
Idem for the class of bifibrations, of course. As for trifibrations, it is routine to see th u Cu
they are stable under all pullbacks (¢ for every functor C:€ — B hol _ _
(C*E)oD= C*(EoP), where C*Ee IFIB/ €l is a pullback of E along C; hence if EOP i m g |k Cmj cg |Ck
bifibration then (C*E)°P is onee); but they don't seem to be closed under t " l_Ej> o

compositio Since CS is a pullback square, and E has the BC-property, the arrow  is cocartesian in

We shall now show that hyperfibrations are closed under the composition (74), and . The arrow g = (m,) is therefore cocartesian in €:>§€.~

stable under pullbacks along pullback-preserving functors (71).
72. If E and E have small coproducts, then F has them.

Terminology. A bifibration E:F —> € over a fibred category € has't
vertical(-cartesian) Beck-Chevalley property (abbreviated vBC and veBC) if it satisfies
the Chevalley condition over all the pullback squares in € in which two opposite sides

are vertical (while the other two are cartesian).

+ Again we know that F is a bifibration, and just prove its BC-property.

The formula is:
F-(co)cartesian arrows are E-(co)cartesian liftings of E-(co)cartesian arrows.
(Namely, if h is an E-cartesian lifting of u at £z, 5% is an F-cartesian lifting of u at Z.

Propositions. Consider a functor C:€ —> B and fibrations E:€ — B, E:¥ —
Every F-cartesian lifting t of u at Z is t:f‘)% for h:=Et.) The two F-cartesian sides of a

C*E: €>&§8 —> € and F:= EoF : F — B. (In the proofs, ¢ will denote the F-cartesi
: , ) ) ] ) ; square Q in F are thus E-cartesian too; its F-cocartesian side is E-cocartesian.
arrows in F and the E-cartesian arrows in €; generic notation for E-cartesian arrows in

F will be 8. Same for the cocartesian arrows. F1:=F1(1).)
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E 8 E
l el =
| Q |8 &| EQ |f m s |k

Since bifibration E is a cartesian and cocartesian functor, s and t are E-cartesian, fis B
cocartesian; because of the BC-property of E, g is E-cocartesian. By 2.22, EQ i
pullback square. Because of the BC-property of E, y is E-cocartesian. By the formils

vy must be F-cocartesian.e

73. If EoP and EoP are bifibrations, the latter with the veBC-property, then FOP ig
bifibration. f Eis a hyperfibration and E a trifibration, then is F a trifibration.

+ FOP is certainly a fibration, because F is. We show that FOP is a cofibration: give
ue B(L,)) and Ce|Fl, we define ‘
an F-opcartesian lifting \;/ =0k ofu at C, using
an E-opcartesian lifting = 6/g of u at EC, and
an E-opcartesian lifting | = 8/ of 8 at £*C (an E-inverse image)

as follows:
g :=0%o¢
6 :=0.

We show that \;l is indeed opcartesian. For an arbitrary ge ¥ 1(u*B,C), consider

Ege €1(u*Y,Z). Since V is opcartesian, there is a unique pe €5(Y,usZ) such that Eg

factorizes through € by u*p.
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.

*Y P
4 9

The square Q consists of two cartesian and two vertical arrows in €. By the hypothesis,
fop has the veBC-property. The unique factorisation pf :=pB/p€ over ¥ of YoOUP

through P must therefore be E-opcartesian.

agQ
H"m
1\
-

u*B B
w_ T
v =0
Let a be the unique B-vertical factorisation of g through §€oT5U*P. The cocartesianness
of py means that there is a unique E-vertical a* such that a = pE b, where b is an E-
inverse image of a‘ along 0¥ €(u*Y,Y). Now let
gt = DPoa’,

97




I1. Variable categories 3. Horizontal structure

i s E-vertical, g* is F-vertical. Since 8 is (by th 1 F- i . . . . :
Since p was E v?rtxcal g 1 ‘vertlcal S:nc*e ©is (by the formula) an F-cartesia ;FgTRIFIB/B(E',E) is a (fibrewise) trifibration in TRIFIB/ B if all F:€'1—> € are
lifting of u, the F-inverse image is u*(g) = 9", Pob. Hence | lea . . . .
ifibrations, E-inverse images preserve Fr-cartesian, Fj-cocartesian, and F-opcartesian

g =¢eou*(g'). 1 i : AN ar
AITOWS, and E'-direct images preserve Fi-cocartesian arrows.

The second assertion follows by just adding to this reasoning the fact that F isﬁi scts. Denote by op(Fe FIB/ B(E'°P,EP) the image of Fe FIB/ B(E'E) by the

bifibration if E and E are.s :
_arrow part of the functor op.

74. Hyperfibrations are closed under composition. 81. Fe FIB/B(E'E) is a fibrewise cofibration iff op(F)e FIB/B(E'0P,EP) is a

+ IfE and E are hyperfibrations, then F is a trifibration by 73. By 72, the bifibration fibrewise fibration.

has the BC-property. From fact 3 follows that FOP has this property too. (Otherwig

. ‘82- Fe BIFIB/ B(E'\E) is a fibrewise bifibration iff F, op(F) and FO are fibrewise
check directly that the BC-property holds for the arrow y defined in 73.)+

fibrations.
83, Fe TRIFIB/ B(E'E) is a fibrewise trifibration iff F, op(F), F© and op(FOP) are

fibrewise fibrations. (¢ The domain of op(F°P) is obtained by first making
Fop:£'0p—> €, and then op(FOP): (EFOP)oP—> EOP. The fibration (EFOP)OP has the same

8. Fibrewise co-, bi-, tri-, hyperfibrations. cartesian arrows as EFOP, thus the same as E'=EF.¢)

Remark. All the above definitions give rise to appropriate categories: for instance, the
‘ fibrewise cocartesian functors between fibrewise cofibrations Fe FIB/ B(E',E) and
GeFIB/ B(E",E) should be the functors He FIB/ B(E'E"), such that F=GH and
Hie COFIB/ €(Fy, G1). But we shall only need the following categories:

A category of predicates, structure on which we shall focus in chapter IV, will be
hyperfibration over a hyperfibration, i.e., a hyperfibration in which every fibre is aga
a hyperfibration, and the inverse images preserve this fibrewise structure. This m
sound complicated, but we shall show that it boils down to a bit less than two hone
hyperfibrations. So we first give some lengthy definitions in the by now comme

"fibrewise-structure-preserved-by-inverse-images" style, and then characterize IBIFIB/E| = the fibrewise bifibrations over E in _]3_1_1113/55,

defined notions globally. BIFIB/E(F,G) := {He (BIFIB/ B)/E | VLHie BIFIB/ € (F, GD}

Definitions. Fe FIB/B (E E) is a (fibrewise) cofibration in FIB/B if all i ITRIFIB/E| i= the fibrewise wifibrations over E in TRIFIB/S,
TRIFIB/E(F,G) := {He (TRIFIB/ B)/E | VL.Hie TRIFIB/ €1(Fy, G1)}

restrictions Fr:€'1—> €7 are cofibrations and if E'-inverse images preserve the F

cocartesian arrows. .
and the full subcategories

BIFIB;/E < BIFIB/E and

HYP/E < TRIFIB/E

spanned respectively by the fibrewise bifibrations and trifibrations F with the
components Fy which have the Beck-Chevalley property. (In other words, all the Fy
have small coproducts in the first case, and they are hyperfibrations in the second case.)

Fe BIFIB/ B(E'\E) is a (fibrewise) bifibration in BIFIB/® if all Fp€'1—> €12

bifibrations, E'-inverse images preserve Fj-cartesian as well as Fi-cocartesian arrow.

while E'-direct images preserve the F[-cocartesian arrows.

98 99




II. Variable categories

Moreover, we denote by
BIFIBy()/ € =BIFIB/€
TRIFIBy()/ € STRFIB/€
the categories of bifibrations resp. trifibrations with the v(c)BC-property.

Propositions.

84. i) BIFIB/E =BIFIB,/€.
ii) BIFIB,/E = BIFIB,/€.

* We only show the correspondence on objects. The correspondence on arrows follows

immediately from proposition 2.3.

«: If Fis a bifibration, then all the Fj are bifibrations, E'-inverse images preserve the

Fr-cartesian arrows, and E'-direct images preserve the Fi-cocartesian arrows - by

proposition 2.3.

(i) The Fr-cocartesian arrows are just the F-cocartesian liftings of arrows from €y; the

E'-cartesian arrows are the F-cartesian liftings of E-cartesian arrows. The preservation
of the Fr-cocartesian arrows under the E'-inverse images is just the veBC-property of
F.

(i1) If F has the vBC-property, then it also satisfies the BC-condition over all the
pullback squares which lie in €1. By proposition 2.24, the inclusion €1 € preserves
the pullbacks. Since every Fy is obtained from F by pulling back along €< €,
proposition 71 applies: all Fj have small coproducts.

->: If F is a fibrewise bifibration, both F and FO are fibrewise fibrations, and by 2.3

again, both F and FO are global fibrations. We now derive (ii) the vBC-property of
Fe BIFIB)/E. (The vcBC-property of Fe BIFIB/E is an obvious part of the same

argument.)

Take in €' a commutative square Q such that FQ is a pullback, t and s are F-cartesian,
and f is F-cocartesian, Let Ff and Fg be vertical; hence E't=E's =ue B(LJ). Consider

the E'-vertical-cartesian decompositions of s and t.
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/,,___S_.\\
d T -
g P uf) R f
b B

Since both t and 9} are F-cartesian, b must be Fi-cocartesian. Idem for d. Since E'-
inverse images preserve Fj-cocartesian arrows, u*(f) is Fi-cocartesian. The square P is
a pullback because both R, and Q=P+R are (by 2.22). Thus FiP is a pullback (2.22
again). The BC-property of Fy says that g is F-cocartesian, thus F-cocartesian too.

85. i) TRIFIB/E = TRIFIB,./€.
ii) HYP/E = TRIFIB,/ €.

« «: Given an Fe ITRIFIBy./ €l, E':=EF is a trifibration by 73; Fe TRIFIB/ B(E'\E) is
immediate. Fi°P is obtained from FOP by pulling back - so that the conclusion that Fy is

(i) a trifibration or (ii) a hyperfibration follows just as in the preceding proposition.

—: We know from the previous proposition that Fe [TRIFIB/El is a bifibration over €
with (i) the veBC-property; and if the components Fy have the BC-property, F has (ii)
the vBC-property . In view of fact 3, it is now sufficient to show that FOP is a

cofibration.

Given fe £(X,Z), Ef=ue B(1.)), with a decomposition f=0Y0a, and Ce |€'x| such that
FC=X, we define

an F-opcartesian lifting y =0/e of fat C, using

an Fr-opcartesian lifting y1 = Oy/e; of a at C, and

an E'-opcartesian lifting y'= 6'/¢' of u at axC.

Since F is a morphism of trifibrations, it preserves the E'-opcartesian arrows. Fy' is

thus E-opcartesian. So it forms in € the lower diagram on the following picture.
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coutse, 81 is B'-vertical, so by the assumption on ', there is a unique E'-vertical

wq such that

gr=e°p

s for the E'-inverse image p of q along u. Since F is a cartesian functor, Fp is an
rse image of Fq. Since F is opcartesian, FOYFe' is an E-opcartesian arrow. Putting
two facts together, we conclude that Fqe €3(Z, uxu*Z) corresponds to Fe'oFp =

g(u*Z, u*Z). By the uniqueness, Fq=n. Let g* be the unique arrow in €'z such
q =dMog*. Clearly

n*©) @y’

£.C p =010 (BU*(g").
g‘r ‘ -
the calculation: \ @
u_o® ~D sut(g) = g1o0d 2 eopo9d &
¥ =1 g o BUMo (BU)*(g") o VA=
g0 DM o bl o fr(g) ¢
*11 * \
U lgu Z 'ﬂFEO eo ﬁu’;’n ° ﬁ'il ° f*(gt) -
- oFe'o 13u*(*)'q ° ‘38 o b¥(e) o £ (g =
b Fe 01 0 b*(e) o f*(g")
un llows a*(gp) = b*(e) o *(g), and by (2) and the definition of €
wku*Z g=geo (g

X —U*7 i Asymmetries. Given fibrations E:€-—> B and F:€'—> €, the cartesian arrows of
a 9" z E'=EF are casily obtained: they are the F-cartesian liftings of E-cartesian liftings. Idem

_ for B-cocartesian arrows. But it wasn't so simple to get the E'-opcartesian arrows: this
For b := u*nea holds a = Fe'ob, because Fe'ou*n =id.

was the contents of proposition 73.
The upper diagram is in €'. The E'-vertical arrow €' decomposes
D eg=9Foe
with respect to F. 1*(8') is the unique factorisation over 9% of ©' through 9. Defin
= €[ © b*(e)
6 :=n*(0") o Vi,

_ Given fibrations E:€ — 8 and E:€' —> B, and a fibrewise fibration F:.E'—>E, it was
_easy to obtain the cartesian arrows of F:€'— € by composing E'-cartesian arrows and
 the Fy-cartesian arrows (proposition 2.3). Idem for F-cocartesian arrows. And again,
the F-opcartesian arrows demand more: the last proposition.

The preservation of the Fi-cocartesian arrows by the E'-inverse images takes globally
Given a ge €'x(f*D,C), by the assumption on yp there is a unique

gre G'U*z((ﬁ“)*D, a*C), such that
2)  g=gpa¥(g).

 the form of the vBC-property. The fact that the Fi-cartesian arrows are preserved by the
E-inverse images corresponds to the closure of the F-cartesian arrows under the
composition (2.31); the preservation of the Fj-cocartesian arrows under the left E'-
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direct images corresponds to the closure of the F-cocartesian arrows under th 3a. The Beck-Chevalley condition without direct images

composition. However, we could not requre that the Fr-opcartesian arrows ar
preserved under the right E'-direct images, because the right E'-direct images don'
preserve the FioP-arrows in the first place. Namely, they needn't preserve the cartesiy,

arrows.
1. Interpolation condition.

In the preceding section (part 3) the Beck-Chevalley condition was introduced as a
categorical expression of the logical concept of independence of variables - in the form:
*Byery variable is invariant under quantifying over other variables". There is, however,
another way to express the independence of variables:

a(x,y) = ¥(y,2) &

there is an interpolant P(y), such that a(x,y) - B(y) + ¥(v,2).

(Le.: "The different variables do not interfere with each other in a proof”. This means
that x cannot play any role in a proof of ¥(y,z); and z cannot play a role in a proof from

oc(X7Y)-)

At the first sight, this seems to be a different idea of independence of variables.
Surprisingly, it is not: in the logic with quantifiers, the two forms of the independence
of variables are equivalent. Lifting logic in category theory, we get a direct-image free
characterisation of the Beck-Chevalley condition. In other words, there is a property of
fibrations which a bifibration will have if and only if it has the Beck-Chevalley
property. (This characterisation will be applied in 111.4.2.)

Definitions. Let E : € — B be a fibration, and S a commutative square in 8. An
(S-dinterpolant of an arrow de E((u*A, m*C) is a triple (a, B, ¢), where Be |€xl,
ae £3(Ak*B), ce Epm(v*B,C), such that

d = m*(c)otou*(a).

(The unique factorisation T of B0, 5 through 9094 is a vertical iso because these

two arrows are cartesian liftings of ku = vm.)
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u*A "'——d"'" m*
m
9 | B
u*a I f m*c
|
A u*k*B ——:—» m*v*B C

RN
%
\M
/

K

An interpolant {ag, B, co) is initial if for any other interpolant (a, B, ¢) (of the sa
arrow, over the same square) there is a unique arrow be Ex(Bo, B), such that

a =k*(b)cag.
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3a. The BC-condition without direct images

An interpolant {ag, B, co) is strong if for any other interpolant {a, B, ¢) (of the same
arrow, over the same square)
a = ag implies ¢ = cp.

A fibration E satisfies the interpolation condition over the square S if there is an S-
interpolant for every de €1(u*A, m*C). It satisfies the strong interpolation condition if,

pesides, every initial interpolant is strong.
Propositions. Let a bifibration E and a square S (as above) be given.

11. E satisfies the interpolation condition over S iff the canonical vertical arrow
p=pA: mu*A—> v¥KiA (i.e. such that ﬂk!VAopoou,YA = (SKOﬁX) is a split mono for

every Ael€)l.

12. E satisfies the strong interpolation condition over S iff it satisfies the Beck-
Chevalley condition over S.

Proofs.
111. If: Suppose eop = id. Define an interpolant:
B :=kiA;

a:=1:A—> k*kiA is the unique vertical arrow by which ok: A— kA
factorizes through 0K : k¥kiA —> kiA;

¢ = ‘doe : v¥B—> C, where ‘d : mju*¥*A —> C is the unique vertical arrow by
which #Med : u*A —> m*C—> C factorizes through o™ : u*A — myu*A.,

(When E is cloven, a is a component of the unit of k; — k*, while ‘d is the left
transpose of d : u*A—> m*C. But even without a cleavage, all the usual adjunction
tricks go through: cf. lemmas 3 below.)
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s an initial interpolant. By assumption, it must be strong. From the =>-part of lemma

k u m
k A - A~ i u*A > m*C - C 34 it follows now that p is an epi.
| l A ~
i | d" T : ‘d gince p is an epi and a split mono, it must be iso.+
id a I u*a: m*cl my u*A Remark. In a bifibration, from any interpolant {a, B, ¢) of de £1(u*A, m*C) an initial
! | | interpolant of the same arrow can be obtained, namely (n, kiA, cov¥(*a)).
e ‘
) * ¥ I d
k! A ‘T k*k!A v u*k*B T m*v¥B e »v*B u*A =m*C
)
‘ 1% (2) m*(c)
To prove that d = m*(c)otou*(a), it is sufficient to show ¥Fod = Bfem*(c)otoy
But 9fed="doo 7, (by the definition of ‘d), and 9Fom*(c) = ‘doecd J; (by u*n) W*k*B - *v*B
definitions of ¢ and m*), so that it is enough to prove t
0.5, = eo9, ThoTou*(a). urkHCa) MV (‘a)
But this is follows from eop = id and lemma 31 below. u*k*k A = m*vEKA

T

112, Then: Let {(an, By, cy) be an interpolant of the "unit"
n:u*A— m*muu*A,

defined as above, and let ‘ap : k1A —> B be the "left transpose” of ay. The arrow
& 1= cnov¥(‘ap) : VKA —> v B > mutA

is then a left inverse of p by lemma 33. , Uniform interpolation.

121. If: Suppose that every p is an iso. As we saw in 111, logic with quantifiers, the interpolation condition can be expressed in the following

MA— KA, kA, doplivikiA—> C) vay:
is an interpolant of d. It is initial: if {a, B, c) is another interpolant of d, then a fact alx.y) - Y(y.z) &
through 1 by k*(“a). If (ag, Bo, co) is another initial interpolant of d, then ag = there is an interpolant B(y), such that Ix.ox,y) - By) - Vz.¥(y,2).

the uniqueness of their factorisations through each other). So it is sufficient to \nnitial interpolant 3x.0((x,y) is now given, as well as a terminal one, Vz.Y(y.z).

that {n, kiA, ‘dop-1) is a strong interpolant. But this follows from the <=-part of | s
34 md tti } P >_ " %m p' deed. an i P : efinitions. Let E be a trifibration, the other data as above. We say that the

»and the assumption that p is an epi (indeed, an is0). rpolants of d are uniform if for each two of them, say (a, B, ¢) and (a, B, ¢), holds
122. Then: We proved in 112 that every p is a split mono if there is an interpola clofa =coa.
each de Ef(u*A, m*C). On the other hand, every triple

M:A—= KA, kA, civikiA—> C)
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II. Variable categories 3a. The BC-condition without direct images

_JJf: The following diagram in €9P

C-—-—-—}—\;!—)V*C
\ J

O

v¥(‘a) a

V*k!A —+——ﬁ—> k|A

shows that in every trifibration
cov¥(‘a) =Cov*(‘d) &> clo'a =C'o'a.

1

But lemma 33 tells that
: covk(a) = EovH(T) © mH()otout(a) =m*E)etour(@)
hiolds whenever p is epi. Hence, when the Beck-Chevalley condition is satisfied, ie.

when p is an iso, the interpolants are uniform.

m
Then: Suppose cop = G op for some ¢ and ¢. By lemma 34, (n, kiA, ¢ and (0, kiA, ¢)
J 8 M are interpolants of the arrow m*(c)op‘ = m*(c)op*. Since ‘N = idg,A, from the
niformity follows ¢ = ¢*. Since ¢ and ¢ were arbitrary, this means that p is an epi.
But p is certainly a split mono by proposition 1. Hence p must be an iso, and the Beck-
v Chevalley condition is satisfied over S.
K

E satisfies the uniform interpolation condition over S if it satisfies the interpo

condition and the interpolants are uniform for every d. Lemmas. The following statements are true for any bifibration E.

Proposition. A trifibration E satisfies the uniform interpolation condition over 3. poo™ =9Motou*(n).

satisfies the Beck condition over this square.
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I1. Variable categories 3a. The BC-condition without direct images

« By the definition of p, the left side is the unique factorisation over m of 0'1{“9

13, Each of two squares below commutes iff the other one does.
through 9,),. But the right side is such a factorisation too, as the following diagr ‘

ukA - m*C

shows.
u* _@u.__._> A u*a m*c
u*(n) ‘d
M mu*tA———= C
utkrk A0 . WHHB s m*v*B
TJ \k*klA [0 0 c
mvik A 9"
Lgm

8" vk A WV*B

VHKGA e K A

« Clearly, each of the triangles in the following diagram commutes iff the other one
32. a = k*(‘a)on.

does.
A =k k‘.A u*A m*C
\(5‘ O (ym m\
k!A Y m*c
a ‘a k*(‘a) ‘d Tou*(a
mu*A C
' *ykR
/3' B ‘13\ m*v
K*B » k*B ¢
id ‘(Tou*(a)) om
v*B

s we are done if we prove v¥(*ajop = ‘(Tou*(a))

s for this equality, compare the following diagrams:
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11. Variable categories

m

u*A—————G——*—-‘"m
u*@)
u*k*k A R
u*k*(‘a)J
m

u*k*B m*v*k;A-—Q—*v*’k,A

Lm*v*(‘a)
6}1’1

u*A

v¥(‘a)

m*v*B - V¥B

The pentangle R commutes by lemma 31, the rest by definitions. From lemma 32,
follows that u*(a) = u*k*(‘a)ou*(n). Hence ‘(tou*(a)) and v*(‘a)ep are ver
factorizations of the same arrow 9Motou*(a) = BMogou*k*(‘a)ou*(n) through ol

the uniqueness, they must be equal.»

m, u*A

‘(Tou*(a))

!

m

2

V¥*B e m*v*B

34. cjop = cpop > m*(cr)oTou*(n) = m*(c)oTou*(n).

m

o
WA= mu*A
RN
p* urkrkA R p

Y

m*vk A = viA

m*(cy

e ]
m*C

ﬂm

Again, R commutes by lemma 31. Since the upper square commutes by the defi.

of p, we have tou*(n) = p‘. But

clop =coop & m*(c)op’ =m*(cplop’

114

m*(c)

€y Ca

u*A

u*(a)

u*k*B

3a. The BC-condition without direct images

holds by "adjunction": cjep is the unique vertical factorisation of 9Mom*(cy)op*
through ©™; m*(c1)op* is the factorisation of ¢jepog™ through H™.
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4. Families of arrows

1, Examples.

The simplest fibred category of arrows is VSet = Cod: Set/Set—> Set. Itis a

(Set/ Sevr =Set/1 as the category Set! of I-indexed sets (i.e. if we regard VSet as a
mily fibration), the horizontal structure over a function ue Set(1,J) will be

ur: St —> Setl: { oyl ye 1} {puw)l xe1}

ur: Setf—>Set : { vl xel}i-%{ vx | ye J}
xeul(y)

xeu(y)

he subfibration Mon & VSet spanned by the indexed sets {7yx} in which every vy has at
ost one element - is a hyperfibration too. The subfibration Epi < VSet, consisting of
Yz} where every Yx has at least one element - has small coproducts; it has small
roducts iff the axiom of choice is true. Without the axiom of choice, Epi has only the

ux : Sett—> Set! ¢ {yyl er}H{ vx | ye J}.

ucts along the elements of

Fset := {ue Set | Vye Cod(u). u-i(y) is finite}.

iis family of arrows also spans a full subcategory Fset/Set< Set/ Set, which is stable
nder all pullbacks, which means that VFset:=VSetlpget/set is a subfibration. This
ion has the products and coproducts only along the elements of the family Fset.
elements can be viewed as sets {'yx} where every  is finite.)

:shall say that categories of arrows Epi and Fset/ Set, fibred over Set, are relative
yperfibrations with respect to the family of arrows Fset & Set, or that they are Fset-

~> Cat and Fib~> Cat are also fibred categories of arrows, and subfibrations of a
fibration, namely VCat, They are both trifibrations, with the direct images given
the Kan extensions; neither of them has the Beck-Chevalley property, since they
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II. Variable categories 4. Families of arrows

contain the counterexample 3.3, Dfib is the full subcategory Dfib/ Cat spann

Cat/Cat by the class of arrows Dfib, while Fib is not full in Cat/Cat gemark. The relativized versions of many propositions from the preceding sections

are easily obtained - provided that Q satisfies appropriate closure conditions. For
VCat itself is, of course, a bifibration. It is, moreover, a Fib-trifibration: Vgﬂp instance:

the direct images along fibrations. (But the construction seems quite complicated.)
0 1.31(f). (AC) E is an a-fibration iff the functor A*(Eg), obtained by pulling back

"Ee along @/E<> B/E, has a right adjoint right inverse.

) 3.4. Pull back along a/B <> B/ B the whole diagram used in this proposition; keep
fie same names. B* becomes the category of G -arrows with pullbacks as arrows
2. Relativisation. etween them. The proposition now reads: An a-bifibration E has a-coproducts iff B

Notation. Let @ € B be a class of arrows, and C:€ — B a functor. The ¢ s afibration and U is a cartesian functor.

a/C is then defined to be the full subcategory of the comma category B/C; spa

)3.6. (Bénabou 1975b) Let A be a calibration. (The definition follows below.) Given
by the objects (a:I—> CX, X), where ae d. The definition of the category ‘

: ﬁbration E:€ — B, the fibration Famq(E):E/Q —> B and the cartesian functor
Aq:E—> Famq(E) are defined as in proposition 3.6, but with a/ B in place of 3/ B.
as a-coproducts iff Aq has a cartesian left adjoint.

analogous.

We shall mostly consider a/ 8 := a/idg, with the projection
Va:a/B—8:@l—=1, )1
The fibres will be all:=(a/B);. (When a is a category, there is also Va:a/a

with fibres a/J:=(a/a);.)

Definitions. A functor E: € — B is a fibration relative to a family Q of a Intrinsic structures and closure conditions for families.

an Q-fibration, if every qe B(I,))"a has at every Ze |€;] a cartesian lifting ;
finitions. A calibration (Bénabou 1975a) on a category B is a family of arrows

¢ 8, which satisfies the following conditions:
a is stable under the composition with all isomorphisms (i.e. feQ

that for every ve B(K,I) and every f over qv there is a unique gover v, f = o
1.31(b).)

E is an Q-bifibration if it is a fibration and a relative @ -cofibration (i.e. E9: implies iofoje a for all appropriately composable isos i,je B)

fibration). An Q-bifibration is said to have the Q-coproducts if it satisfies the Q contains all the isomorphisms of B;

Chevalley condition over the pullback squares with two opposite sides belonging the pullbacks of Q-arrows along arbitrary arrows exist, and Q is stable;

a is closed under composition, and

E is an Q-trifibration if E and EOP are Q-bifibrations. It is an A-hyperfibratio under left division.
a-products and Q-coproducts.

tﬁrated family of arrows A satisfies satisfies (C0) and (C1). A stable family
fies (C1) and (C2) (and (CO) a fortiori); a saturated subcategory satisfies (CQ),
and (C3).
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1I. Variable categories 4, Families of arrows

If B has a terminal object T, we say that @ is a display family if it satisfies the dj
condition (Taylor 1986):
D) a contains K—> T for every Ke|Bl.

Terminology. The arrow fibrations, cofibrations, etc. are generally considere Arrow cofibrations and factorisations,

ai . [ A:A—Bi tricti ”, s
form of codomain functors. A codomain functor is a restriction of Definition. (Relativisation of Freyd-Kelly 1972, 2.2.) Let d € B be a saturated

ily. A factorisation system relative to d, or a d-facrorisation system is a pair
m) of saturated families €,y =d such that the following conditions are satisfied:
: for every ued there are ae M, se €, such that u=aos;

functor

VB=Cod:B/B— B.
to a subcategory A <> B/ B. Thus, "arrow fibration A" always means that A
A (fibrewise or horizontal) structure in S is called intrinsic if it is preserve for all a,a'em, s,s'e€ (and u,v arbitrary), veaes = a'es’ou implies
that there is a unique arrow g which makes the following diagram
commutative:

inclusion in B/ 3. E.g., the intrinsic inverse images are given by pullba
intrinsic direct images by composition (i.e. ui(a)=uea), the intrinsic (fibrewise) {

objects are identities. VB itself is always a split cofibration with terminal object - | -

a fibration, it always has the small coproducts (i.e. the Beck-Chevalley property I

even if VB is not a fibration, we consider its subfibrations, just as we ¢ u I g v
subgroups of a monoid. An intrinsic (co-, bi-,...)fibration is a sub(co-,...)fibf g Y "

VB. Intrinsic structure is a partial structure in V8.

. lements of the class € are called epis of the factorisati
Facts. For a class of arrows Q & B, consider the functor ‘ pis of the factorisation, the elements of I are

A:=Va :a/B—> B, ; 1os.

the restriction of VB on the full subcategory a/B<8/8. elative factorisation system is stable if class € is stable under pullbacks.

31. a satisfies (C1) iff A has intrinsic terminal objects. mmas. Let (€,1m) be a d-factorisation system.

32. a satisfies (C2) (and (C0)) iff A is an intrinsic fibration. he assertions (x j) are all equivalent, for xe {a,b,c},je (e, m}.

33. a satisfies (C3) iff A is a split intrinsic < -cofibration. A is a split ]
cofibration iff a is a left ideal in B (i.e. for every appropriately composable ue
holds uofe Q).

is closed in d under composition: p,qe j and pqe d implies pge j.

e .. . . right f el "o ' i
*{m} is closed in d under the 1§ﬁ } division: p',p", { g'l')q } € j and qed

34. a is a stable subcategory iff A has terminal objects, inverse images .. . .
gory L J & f the condition (F2) is satisfied for some fe d in place of{ s€© }, then

,:{e } rem

coproducts, everything intrinsic. Iff, besides, @ /B=a/a, then Q is a calibrat
only calibration satisfying the display condition is a=8.
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II. Variable categories 4. Families of arrows

first equation induces a unique arrow r such that a=for=aosor, g=uor. ros=id is the
If any of the above conditions is satisfied, the closure properties of d (in 8

qnique factorisation of S through itself, while sor=id follows by another application of
reflected on € and M.

condition (F2).e

i) If d is closed under composition, then both € and I are. 44, Proposition. Let d be a stable family in B, a =d, and let d be closed under the

[eft division by @ (i.e. aqed and ac a implies qe d). Then the statements below are

i) If d is closed under {ﬁgh‘} division, then { © } is closed 100

left m lated as follows
© = @ )5 ©.

| these implications remain valid when all the outlined parts are omitted.

* (apn )=>(bm ): Suppose that dofem for some &N and fed. Let f=ap
factorisation of f given by (F1). Apply (F2) on a:=ag, si=sf, a':=def, s"=id, y
v:=4. So there is g such that gos=id, 8ofog=4oay. Since acare M, from doasossog: va :a/B—> B is a d-bifibration with intrinsic inverse images, intrinsic terminal

follows sfog=id, by the uniqueness of the factorisation. Since sf is an iso, and 2 bjects, and the BC-property.

saturated, feIn. u .
) is a family of monos of a stable d-factorisation system.

(bpn )=>(cpn ): Putting in (F2) a:=ay, s:=sf, a":=f, and the remaining arrows iden ‘

L , i ble famil he i S i joi
we get g such that gosr=id and agosgog=ar. By the left division, the second ¢ ais a stable family and the inclusion a/8 > d/ B has a cartesian left adjoint.

gives spog=id. So sp s an isomorphism again. 1 ny of these conditions is fulfilled, the following is true:

: al,a2€ InN, sp, € arbitrary, u' ; s s T
(ern )= (arn ): Suppose that for ap.a1,a¢ 50,516 © and arbitrary, u',v is closed under the composition in d and under left division in 8. (Le., (2a), (ba)

v'oagosg=agoajesiou’. First apply (F2) to a:=ag, si=sg, a"=ay, s'=id, u:i=aj (cq) from 42 are all true)

vi=v), to get g' such that agog'=v'oag and glosp=agesiou’; then set a:=id
ai=aj, si=s1, w=u', vi=g'to get g such that g'=ajog and gesp=sjou’. This g s fd is a stable subcategory in B, A is a calibration.
the condition (F2) for a:=ag, s:=sg, a:=apoay, s"=s], us=u', vi=v'. By

ajoajem =s(b): The statement "{c,p)e a/ B(a,pi(a)) is Va-cocartesian" means:

"Va'ea Vq,re B. a'q=rpa then 3'g such that the diagram
(ae)=>(cpn): (Freyd-Kelly 1972, proposition 2.2.1.) Consider again this arro

which gosg=id and fog=ay. Since (ag)=>(be), the first equation implies ge €. B q _ P
sfoge €, and from fog=aposrog=ar (by the uniqueness of the factorisation -~ £
-
sfeg=id. So g is an iso. c
e ons pushouts | . el. .. a pi(a) a'
43. If d is stable under pullbacks} in B, then {m} is stable too.
+ Let S be a pullback of a'e 1 =d along v. Denote by u the arrow opposite P = T ~

let f be opposite to a'. Since fe d, there is a factorisation aos=f. Condition (

.. . , . R . ‘c mm "
s':=id) now gives an arrow g so that a'og=voa and u=ges. Since S is a pullb ommutes”.
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II. Variable categories

(Note that py(a)= (pa):(id), and oPz=cbd)

The pair (0,@) is a d-factorisation system, where

G = {oe Bl (o,p) is Va-cocartesian, ped }. @ - ‘ @)
L a !
(F1) follows from p=p;(id)oc®,. Since d is closed under the left division by vTa = |
implies 0 € d. (F2) is obtained if we take q:=s'u, ri=v. % S %
B el

It remains to derive the stability of G under pullbacks from the BC-proper v

a/B—> B. So consider a pullback square S with o€ G.

_
/id /id

nce the back, front and bottom squares on this diagram are pullbacks, the top square
ust be one. By the stability, s' must then be an epi of the factorisation. Since
fi(a)e d, the left hand square is cocartesian.

= (b): The pair {1),Q) is a d-factorisation system, where 1| is the (family of the

—l f
id ‘ id mponents of the) unit of the adjunction.
A ani|
)A S / y=(c): H— I: a/B <> B/B is defined by
S H(p) := pi(id).

; a)w(c) can also be obtained from proposition 3.6.)
Clearly, the right hand square is a cocartesian lifting of o, while the back and the -
squares are cartesian liftings of u and v. By the BC-property, the left hand square ote that for the d-factorisation system (G,a) the condition (c¢) from lemma 42 is
be cocartesian, i.e. ge C. But m=g. ‘ tisfied. The lemma now tells that (ag), (bq) and (cq) are true. For the left division,
q,aea implies ged by the assumption about d; but now (bq) says that from ag,aca

(b)=>(a): Suppose that {€,a) is a d-factorisation system. By (F1) there are 1 qed follows ged.

arrows, which we suggestively denote) pi(a)ea and ce € such that

pea = pi(a)°c
With v:=r, u:=q, s":=id, the condition (F2) tells that {o,p) is a cocartesian lifting 0

JI£d is closed under the composition in B, then & is closed too, by (i) and 42(i).»

5. Remark. When B has a terminal object 1, and d =8, the reflection in (¢) restricts
0 (full) reflection of & in B. It is the result of Cassidy-Hébert-Kelly (1985) that there
Galois connection between (full replete) reflective subcategories and B-factorisation

a, and that pi(a) is a direct image.

We further prove that the stability of the epis of the factorisation implies th
property of a/B—> B. So consider a pullback square S, with a cocartesian |

(=factorisation) of k, and with cartesian liftings of u and v.

ems: reflective subcategories of B correspond exactly to those factorisation systems
which epis are closed under the left division. Translating through the last
osition, we conclude:

- Reflective subcategories of B exactly correspond to the arrow bifibrations over
‘which the class of cocartesian arrows is closed under the left division.
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1I. Variable categories 4, Families of arrows

- A reflective subcategory of B is a localisation - i.e. its reflection preservé
finite limits - exactly when this corresponding arrow bifibration has the Beck-Chey

property.
46. Corollary. A finitely complete category B is regular iff the fibration

VMon : Mon/ 8 — B,

(where Mon< B is the family of the monomorphisms) has the small coprod

_Right arrow bifibrations.

[emma. Every (relative) right bifibration with intrinsic inverse images has the Beck-
(Regular categories are those in which every arrow factors as a mono followed Chevalley property.
regular epi - i.e. a coequalizer of some pair - and regular epis are stabl

pullbacks.) Consider a pullback square S in B, cartesian liftings {s,u), (t,v), and opcartesian

pf", k). Op-arrow (g/g", m) is induced as a unique factorisation of (f/f",k)o(s,u)
« Street 1984, theorem 3 (attributed to Joyal): The epis of a factorisation sy yy (tv): g by pulling m back, and g" as a factorisation through the pullback on the
(€, Mon) in a finitely complete category B are coequalisers of their kernel pairs.¢. ack side of the cube. On the following diagram everything commutes, and all the

kquarcs are pullbacks.
47. Lemma. (Probably Bénabou.) Let d be a stable subcategory, and A €d. Th

(aged and ac A implies qed) ¢ Vaed. pped,
where py:=(id,id) e d1J(a,a x a) is the diagonal arrow in the fibrewise ¢art

___________.E/",(

structure.
b
+ «=: Suppose aged and ae Q.

o

We must show that (g'/g", m) is opcartesian. (We use description I1.3.2.) An arbitrary
vertical arrow c:m*(x) —> u*(b) induces sc:k*(vx) — b, since k*(vx) =uom*(x). Since
f/f", k) is opcartesian, there is a unique arrow d:vx — kx(b) such that f"of*(d)=sc.

a

But the front square is cartesian, and there is unique arrow c¢‘ such that d=tc* and
x=v*kx(b)oc’. The equality g"eg"*{c‘)=c is now obtained by chasing the diagram.»

I+II pullback, aged = a'q'ed.
II, TI+111 puliback then I pullback.
III puliback, pae d then ded.

a'q, ded then g=a'q'ded.«
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11. Variable categories 4, Families of arrows

. ducts, Taylor moreover that Q satisfies the displa dition, i.e. i ins ¢
Proposition. (Streicher 1988, chapter 1) In every right bifibration Va:a/8- pro play condition, L. that it contains all

{he projections.
(relative to a stable family) the right direct images must be intrinsic if the inverse im

' The following characterisation itself is proposition 2.6 in Hyland-Pitts 1987. In fact, it
an be traced back to Freyd (1972, 1.34) and Day (1974, 4.1) (who both considered
only locally cartesian closed categories - but the proof is essentially the same). We

ote it for completeness.

and terminal objects are intrinsic.

« Let kx(b) be a right direct image with respect to a/B, and ve B(M,K) an ar
arrow. Let S be a pullback as before, i.e. ue B(LJ) is a pullback of v along k.
IB/K(V, k*(b)) = (B/M(id, v*k*(b)) =
alM(id, v*k*(b)) = alM(id, m*u*(b)) = all(id, u*() =

B/1(d, u*(b)) = B/I(u, b) = B/I(k*(v), b)

gl{oposition. B is a relative cartesian closed category with respect to a stable
subcategory @ iff Va :‘a/B~> B is an intrinsic G-trifibration with intrinsic terminal
jects. The cartesian closed structure is then intrinsic, and VQ is an Q-hyperfibration.
Corollary. Let d be a stable subcategory, and A & d a saturated fam
Va:a/B—> B is a d-trifibration, then it is a d-hyperfibration; the right dire
over d are intrinsic. If d is closed under left division by a (e.g. if d=B8), the :

t 1t is immediate to check that for every ae la ]l
ax_=aea*( ) :all—>all, and

o o . . a—_=axoa*( ) :rall—all
direct images over @ are intrinsic too; Va : a/a—>a is then a subhyperfibrati O
‘ fine the required vertical structure. It is preserved under the inverse images by the

property. The proof that ax (and therefore a— ) preserves the d-arrows can be
und in Hyland-Pitts (1987, 2.5.)

a locally cartesian closed category: see below).

» The first sentence follows from the preceding proposition and fact 3.3. The.

one from proposition 44.¢
n; We show that a right direct image of bela/I| along an d-arrow al—>7J is the

owing Vd-inverse image (i.e. pullback):
ax(b) == (i*)*(a-b),

i*ealJ(id,a—a) is the right transpose of i:=idje @$J(a,a), and
a—bea/J(a—ab,a~>a) is the image of be a/J(ab,a) by a—»_:a/T—a/l.

6. rcece

Definition. A category B is category:locally cartesian closed (or
VB:B/B—> B is a fibrewise cartesian closed category (cf. 2.1). B isr
cartesian closed with respect to a stable subcategory A € 8 (or: Bisand
va:a/B—> B is a fibrewise cartesian closed category and each exponentiatic
a—_:adJ—>all preserves the d-arrows (i.e. restricts to a— _:a/J—>all)

References. The last notion has been introduced in Taylor 1986, IV..
Hyland-Pitts 1987, definition 2.7. The original definitions are in term
characterisation which we formulate below. In fact, for type-theoretical Ie:
original definitions are slightly stronger: Hyland and Pitts require that- 8 |
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II. Variable categories

; Fibrewise rccc.

3 category of predicates the predicates will be fibred over sets. The quantification will
. interpreted by the horizontal structure: categories of predicates will be
yperfibrations. Within this framework - inside each fibre - constructive logic in the
,im of Martin-Lof type theory will be implemented. So each fibre will be a relatively
gmcsian closed category. (Cf. Seely 1984, Cartmell 1986, Hyland-Pitts 1987.)

iven a fibred category E:€ — B, we consider families I € € of vertical arrows.
ition 3 is adapted for this situation simply by putting "vertical isomorphisms" in
lace of "isomorphisms" in (C0) and (C1); and "vertical arrows X—> TEX" in place of

For arbitrary ke la J1, we calculate ATOWS K—> T" in condition (D).. Instead of a calibration, saturated family etc. on B,

all(a*k),b) = {ceall(axk,ab) lboc = m:axk—>a}= ;
{c*eallk, a>ab) | (a=b)oc® =%  k— (a—a)}
{c*eall(k, a—ab) | (a—b)oc® =i%ok} = ‘
=adi¥(k, a—b) =
= ali(l, (i*)*@-).
The step () follows from the fact that ke adJk,idy) is the terminal arTow, SC
¥ =% ok : k—>id—> (a—a). Adi*:= (a/B)j= denotes the set of arrows over i

e obtain a vertical calibration, vertical saturated family etc. on a fibred category €.

It

uivalently, we could have defined that a family I & € of vertical arrows is a vertical
bration (vertical saturated...) if it is stable under inverse images and every rp=rng

[}

!

calibration (...).

bred category € will be fibrewise relatively cartesian closed with respect to a vertical
fable subcategory I' (should we call it -frcee?) if every fibre €7 is relatively cartesian
losed with respect to 'y, and the inverse images of

E:=EoVr :r/€—>€—>8

Remark. f rs ax_:alJ—>alJ always preserve the A-arrows, and rests . .
ark. The functors ax_:aJ ySP d rest reserve the fibrewise cartesian closed structure of all Vry: ri/€—€5

ax_:a/J—> a/J. But lemma 47 implies that the a lJ-products axa' are prod
a/Jiff a is a calibration. (+ The projections from the @ {J-products are certainl
arrows. So it is necessary and sufficient that the diagonals pa to the adJ-prod

plying proposition 6, we conclude that € is an I'-frcee iff every Vrpis an I'y-
yperfibration with intrinsic terminal objects, and the E'-inverse images preserve the
a/J-arrows.+) We conclude that 4 is a sub-lcce of an Q-rece B iff @ is a cali esian, cocartesian and opcartesian arrows of all Vry.

(A statement to this effect appears in chapter 2 of Streicher 1988.) o _
ce Vry are split intrinsic cofibrations, their cocartesian arrows over u are in the form

d,u). Obviously these Vri-cocartesian arrows will be preserved by the E'-direct
mages, if they exist. Thus, when E:€ — B is a hyperfibration, Vr is a fibrewise

Note, moreover, that for a calibration @, B is an d-rcce iff va:a/B-—>8is a'k
(+since the functors a—>_ then certainly preserve the (-arrowss).
erfibration (definitions 3.8) relative to I'. The obvious relativized version of
position 3.85(ii) now implies that € is an I"-frcce ffVrir/e¢—>€isanr-
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hyperfibration with intrinsic terminal objects. But by proposition 6 again, this

I1. Variable categories

is equivalent with € being an honest I"-rccc. To resume,
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€ is r-frcee

N Vr are I'-hyperfibrations + ...
o Vrelr-HYP/E &Y
o Vrelr-HYP/El &

& £ isr-rece.

III. Notions of size

apter 11 we regarded fibrations as variable categories. Discrete fibrations were
ble sets; and the base category could be thought of as a category of truth values and
rructive proofs (in the style of Brouwer-Heyting-Kolmogorov), or of possible
ds and causal connections (in the style of Kripke). In the first case, for a variable
£ —> B, an object EX gives the truth value of the statement "Xe €"; in the second

fibre € represents the set € at the moment K of history.

rent conception is that the base stands for the category of sets and functions.
fibration is just a category, given with all the set-indexed families of its objects
ows. The family fibrations (11.3.6) are paradigmatic. Discrete fibrations now
classes. Such a class is small if it is representable in the base category.

ccond point of view, propagated principally by Bénabou (1985), leads us into a

hapter 11 chapter 11

variable categories ¢ fibrations - categories
ariable sets « discrete fibrations ~ — classes
ropositions “~ objects in base - sets

n'1 we consider small fibrations — those coming from internal categories in the
and the ways in which their functorial behaviour is represented in B. Internal
¢s and descent data appear as objects of Yoneda-type representations.

2 discusses the meaning of size for some important discrete fibrations as classes
:an be derived from fibrations as categories. In particular, the question of
hension for fibrations is considered. An idea of a constructive extent operation is
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given a categorical formulation. Comprehensive fibrations are introduc<.:d: they will
applied in the next chapter as a setting for the constructive comprehension p.rincip
presented in the theory of predicates. The underlying concept connects, in a gen
Bénabou's (1985) definability with Lawvere's (1970) comprehension scheme.

Several characterisations of comprehension are given in section 3. In section 4 we s . Representable fibrations.

the relation of a comprehensive fibration E:€ — B and the extent fibration \E:1€

associated to it. 1E is an arrow fibration which tells "how B sees €.

representable in Set.

 second approximation is:

called representable. The functor

the Yoneda embedding.

e functor
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1. Yoneda

The first category theoretical approximation of the slogan
All mathematics can be done in set theory,

Most of mathematics can be done over the category of sets.
Fvery category € appears as a family fibration V€ over Set (cf. I1.3.6); in particular,
every class C gives rise to a discrete fibration VC. Class € is small, i.e. a set, iff VC is

A bit of mathematics can be done over a category of sets.

n other words, we take an abstract base category B and think of its objects as sets.
ibrations over B are to be thought of as categories, discrete fibrations are classes. The
otion of size is determined by representability in B.

efinition. For Ie |B|, the discrete fibration
Vi:B/I— 8 :u+— Dom(u)

V:B—=FIB/B:1+>VI,u > ue( )

oneda lemma. (cf. Bénabou 1983, 2.8.3) For every fibration E:€ — B and Ie |8,

Yig : FIB/B(VLE)— €;: F => F(idy)
full and faithful. The family of functors Y is natural in I and E.

hen Eis cloven, Y1 g restricts to an isomorphism CLEAV g (VI,E) z€1.
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II1. Notions of size 1. Yoneda

Let a lax cocone ¢ : VE—> E' be given. We must define a cleavage preserving functor
r:E—> B, such that ¢x = FOx, and ¢g(u) = F(Bg(u)). Since Ox(idgx) = X, the first
equality holds iff

k FX = ¢px(idgx).

In a similar way, the equality 8¢(idpx) = T, together with the requirement that F

+ For every cartesian functor F:VI— E and every ue B/1(u,id]) the arr
F(u):u*F(idp) — F(idy) is cartesian. Every cartesian natural transformation @:F—¢G
uniquely determined by @jg:F(idp) — G(idy), since Oy=u*(pid):Fu) — G(u).

Using a cleavage or the axiom of choice, we can define

Y-IX): VIDE :u > u¥(X).. .
preserves cleavages, determines

o S Ef : .
The Yoneda embedding is full and faithful (i.e. an embedding). * Since FEi=Dgy o orlidex).

cloven, the Yoneda lemma gives FIB/ B (VI,VJ) =(B/D)y =B8]

Representables generate. For every cloven fibration E:€ — B holds

E =1axVE,
(whereVE : € —> B—> FIB/B is regarded as a strong diagram). E is discrete iff 7. Small fibrations.
E =HlmVE.

21, Notation, references. An internal category C consists in principle of an object

_of objects Cp, an object of arrows Cy, arrows dg,d1:C1—> Cg representing domain and
‘codomain, and N:Cyo—> C; representing identity arrows of C; and then there is an object

» (Some references on lax limits are listed in Gray 1980.) The X-component.g

colimit cocone 8:VE—> E will be the cartesian functor 8x:=Y-1(X) which correspor

by the Yoneda lemma to Xe |€gx|. We need a cleavage to choose such a functor: .
0x: VEX—E : u > u*X), (s:v—u) > By o(cusy-1,

(i.e. 0x = Domo®yx - where @ is from I1.1.31(e) - is a "constant functor”

_of composable pairs Ca,obtained as a pullback of dg and 01, and a composition
11:Cy—> Cy. The intended meanings of these data are expressed by a set of equations
imposed on them. Unless specified otherwise, po will denote the arrow obtained by
pulling back dg along 95; py is obtained by pulling back 91 along dg. Moreover, we
shall denote the arrows dg, di, {, N belonging to a category C alternatively by ¢, ¢1,

which we used in I1.2.1, to define exponents).

The f-component of  is obtained by the naturality part of the Yoneda lemma.
fe £(X,Y), we have VEf = Efe(_), and 0yoVEf(u) = (Efou)*(Y). ‘

5. 0 respectively. catg is the category of internal categories in B. An introduction to
internal categories can be found in chapter 2 of Johnstone 1977.

VEX _The notion of a small fibration is due to Bénabou (1975b). A recent reference is

Hyland-Robinson-Rossolini 1988,

22. Example. Small categories are just the internal categories in Set. A functor
VEY 6y “F:C—% I consists of an object part Fg:Co—> Ip, and an arrow part ¥1:Cy— I3, with
e obvious commutativity conditions.
Define

05 : Ox—> (BY)(VED : u > (cBLuou*(®) : 0x(u)—> Byo VEf(w)),
where T is the unique vertical factorisation of f (i.e. f = ﬁ%{fcf). (Checking that

natural transformation is an exercise using the properties of c.)
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2 . |
C;,—™ C1<—-——"0—-——— Co _1e|catp! and a fibration E:€ —> B, an I-presheaf in € is an internal category
__I ‘I(Q@.I&?)ll' (i.e. EC=I) in which the domain arrow dj is cartesian. (This implies that 1
F2 FlJ 1 Fo djare cartesian too, the latter because of the equation d11=d1py.) pshe (@) is the full
9 ig regory of (catg)y spanned by the presheaves.
_t e 10
R 5 seent data over I is an internal category Ce |(catg )il which consists of cartesian

By proposition I1.1.61(d), the functor F will be a discrete fibration iff the arrow 5. dese (D) is the full subcategory of (cate)t spanned by the descent data.
pullback of ij. If we regard the arrows Fo and Fj as objects of Set/ Set, the pr
diagram becomes an internal category F in Set/ Set. This category is projecte

fibration ¥V Set = Cod on the internal category I in Set. We can say that Fisa ¢

omments. Egg-cartesian liftings of ue catg(L,)) at Ce |(cate )il consist of E-
ian liftings of the components of u at the appropriate components of C.

over 1 with respect to the fibration ¥ Set. Discrete fibrations - or presheaves - o ty
exactly those categories F over I (with respect to V Set) in which the codomai D2\ Gy
f1:=(c1,i1):F1—> Fy is cartesian (i.e. a pullback). The categories F over I in wh &‘CI ty \Cl at
domain and codomain arrows are cartesian correspond to the discrete bifibrat dl\‘\\: \do C\l\\k) ¢
descent data) over L. They can be viewed as the functors I—> Bij, where B u*Cy ‘o Co
category of sets and bijections (i.e. the largest groupoid contained in Set): (s | I, Uj I, B
discrete bifibrations must satisfy the Beck-Chevalley condition over all the ¢omt U, \
squares. By I1.3.5, the inverse and direct image functors must be equivalences; W] caty
bijections, since fibres are sets.*) \}\ u, \\\\\

To Io

These notions can be generalized from the fibration ¥V Set to an arbitrary {i
E:€ —> B as soon as the categories € and B allow internal category theory, and efine tg and t1 to be cartesian liftings of ug and uj respectively ; do and d; are
E projects categories on categories. ed as factorisations. Dg can now be defined either as an inverse image of C; along
r as a pullback of dg and d1: lemma 25 says that both ways give the same result.

23. Definitions. Let LEX be the category of finitely complete categories ¢ get a category u*(C)

exact functors. Let LEXFIB/ B be the category of fibrations E:€ —>

€,BelLEX!, and Ec LEX(€,B); with the left exact cartesian functors as

between them. (Cf. 11.2.2). The functor
cat: LEX—LEX : B> catg

ly, pshe and dese are subfibrations of cate.

sheaf C over I is determined by an object C over Ip and an arrow y:i *C— ig*C

lifs to I1. C is the object of objects of C, i1*C is the object of arrows, ¥ is the vertical
f ¢o. There is an equivalence of categories

at : LEXFIB/ B —> LEXFIB/catg :
 pshe(—> pshOe (D),

(B:€ — B) > (Egy: cate —>catp ),
where Egy takes the categories in € into their E-images: since E is left exa

images are categories in B. lpshOe @l = {(C’WE D En A X.io*X)l i0%y=id, ig*y= PO*Y°C°P1*Y}

Xe |8]0|
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pshOeMUC, ), (D.8)) = { fe E1y(C,D) | ig*foy = Soir*f}.
(c is the canonical isomorphism pi*ig*y—> po*i1*y. In general, for arrows f and g,

“f= g" means "3 isos cg,c1. f=cpogocy”.)

For the sake of simplicity, we shall freely move between psh and psh®; but this could
be avoided, and no assertion will really depend on representation.

A presheaf (C,y) represents a descent data iff y is an isomorphism. If I is a groupoid,
then all the I-presheaves are descent data. (+ I is a groupoid iff there is an involution
T:I1—> 1y, ig=iyt, which takes each arrow of I to its inverse: ip«t,id»=i0ip and
ip«id,T»=1%; (where «id,t»:I{—> Iy is the factorisation induced by ig=iit, while
«t,id»:I1 —> I2 is induced by igt=i1). For arbitrary Ce pshe(ll), consider the unique
arrow V:Cq1—> Cyp over 1 such that co=cqv. This equality induces «id,v»:C1~—> Co,
which is cartesian since p1«id,u»=id, and the pullback pj of ¢1 along cg is cartesian.
Therefore, the equality cp«id,v»=cY%1a must hold for some vertical automorphism a,
since both sides are cartesian liftings of the same arrow at the same object. But now
c1uv=cgu=cgea«id,v»=coclcia=cia implies that bv=a. This means that v is an

isomorphism, and cg must be cartesian.)

25. Lemma. Consider the following commutative diagram in €

Dl\y_‘}’/__,
Sy A
o e
./
acav4

%

r

where arrows r and s are cartesian, while squares C in € and ED in B are pullbacks.
The following implications are true:

1) If ECis a pullback and tp is cartesian then D is a pullback.

ii)If D isapullback and tg is cartesian then tp is cartesian.
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. We use the name of each data to abbreviate the assumption about it: (r) stands for "r is
cartesian", (C) for "C is a pullback” and so on.

i) dpa=d1b = cora=c1sb (_% Hlx. ra=pox and sb=pix (o)
doa=d1b = EdgoEa=Ed;oEb € 3h. Ba=Eqoeh and Eb=Eqioh :(B)
(o) and (B) => EpooEx=EpgoEtzoh and EpjoEx=EpjcEtych

ED Ex=Etzoh 2 3ty Ey=h and x=ty @)
(o and (y) = ra=rqy and sb=sq1y "’ a=qoy and b=q1y.

i) Ex=Etz0h = E(pgx)=ErcEqgoh and E(p1x)=EscEqoh

(;’:S>) 3la,b. ra=pox and sb=p1x and (o)
Ea=Eqgeh and Eb=Eqjoh :(B)

Since (o) = todpa=tpd1b and (B) = E(dga)=E(d1b),
(@) and (B) Y doa=d1b B 3ty. a=qoy and b=qyy )

C
(o) and () = pox=potay and p1x=pitzy = x=toy o
(B) and (y) = EqooEy=Eqpoh and EqioBy=Eqioh ‘S’ Ey=h.

26. Definition. The externalisation of Ie catp is the split fibration
Vi:B/1—8

where
18711 := 1B/1l
B/I(k,m) := { (£,¢)e B(K,M)xB(K,I}) 1 dop=k, d1¢p=mof},
for ki K—> I, m:M —> . The externalisation functor is
V:catg—FIB/ B : 1> VI,

with the arrow part induced by the composition.

A fibration is small if it is fibrewise equivalent with one in the form VI.

27. Yoneda lemma. Given le |catgl denote by 19 the category obtained by
interchanging 9g and 9d1; consider VI0:=V(I0)= (VI)°P. For every fibration E:€ — B
and le |catpl, the following functor is full and faithful:

Yig ¢ FIB/B( VI, E) = pshe(® : F > (Fdiy), F)),
where v:=(id1, ,idy, )e B/1°(dg,01)=8/1(31,00). The family of functors Y is natural in I
and E.
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C
When E is cloven, YL restricts to an isomorphism CLEAV g VIO, E )= pshe@ 2
. pshe(@.
G

AN

Co
For Ce cate (D), this diagram induces in €1, the following one:

(Therefore, when the axiom of choice is assumed, Yr g is surjective on objects; hence

an equivalence of categories.)

+ We only prove the surjectivity of Yrg for a cloven E. Given (C,y)e pshe), the
Yoneda lemma for representable fibrations gives Fpe FIB/ B(VI(),E) such that

Fo(idig)=C. We now extend Fo to Fe FIB/B( VI, E) such that F(idiy)=C and
F(v)=Y.

The subcategory B/Ig of B/1° contains all the objects and canonical cartesian arrows
of the latter. We define Fe FIB/ B (V]IO, E) to restrict to Fp along 8/1g<> B/10
(i.e.FIVIg:=Fp). It is now sufficient to supply the definition of F on vertical arrows
(id,p), and then set

F(f,0) := Fo(f)oFid,9).

Every vertical arrow (id,¢@)e B/I(ko,k1) appears as ¢p=@o€ B /Ip(ko,00) and as
¢=¢1e B/Ip(k1,01). Since Fo(gpp) and Fo(@1) are cartesian arrows, F(id,¢) can be P**Co= 1**Co

defined by the following diagram. . . . .
where £’ denotes the vertical component of f (while p;:Ip — Iy is, as before, obtained by

F
Rk —--—O—(-(—Pi)—-— o pulling 0; back along 0j, j#ie 2). If Ce pshe(D), the short arrows in the first diagram are
l cartesian. As defined above, F determines a choice of cartesian liftings, so that the
Fid, @) := @*y | Fv) =7 second diagram reduces to
|
Y id
Fyko ————= Fdo
Fo(o) id

It remains to prove that F is a functor. We first show that its vertical components

, N
@ Fid—"" @ \d
Fd, .
> / Eid, p )

F(3po = F@ok) F(d1pg = F(dop1 ) F@ 1 =F@ p)

preserve the composition.

For every internal category C the following diagram commutes.

(because ¢1” and ¢y’ are identities, while y=cg’). Thus F(id,poyeF(id,p1)=Fid,u).

Every composable pair yo,y1:K—> Iy of K-indexed families of arrows in I induces in
B an arrow «yg,y1»:K—> I so that \i=pj«yo,\1», i€ 2. The proof that
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Fid yoyoF(id,y1)=F{d,l«yo,y1»)

follows directly from the preceding arguments. But L«yo,y1» is the internal

composition of W and 1. So F preserves the composition of vertical arrows.

F preserves the composition in general because for

f h

holds
F(h,x)oF(f,¢) = Fo(h)eFid,x)eFo(f)oF(id,@) =
= Fo(h)eFo(foF(id,xof) o F(id,g) =
= Fo(hof)oF(id, p«f*y, p») =
= Flhof, L«f*y,0»).

Fyk
)
F(id,@\ o) JO 1
Fo(f)
£ 0\'m
Rymf -y m Ed,
F(id,xf}L F(id,x)L A(th)
Fgnhf » I nh »Ifn

Fy(fun) Fy(h)

28. Yoneda embedding. Externalisation is full and faithful:
Cleavg (V1, V1) = catp(Ly).

« If we forget the (_)-busyness, then the preceding proposition gives an isomorphism
between Cleavg(VI, V) and an appropriate category of pairs

<ce I(B/D1gl, (id, e (B/J)Il(io*c,il*c)>.

Now ce B(Ig.Jo) will be the object part, and ye 8(I1,J1) the arrow part of a functor
1—>7, since (B/D)1,(ig*c.ir*c) = B/ JpxJo((cio,cin. Go.1))-*
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1. Examples.

11. Every category € carries some classes with it. For instance

1 a class of objects OBe (or [€]);

2) classes of arrows HOMe (X,Y) (or €(X,Y));

3) classes of isomorphisms ISO¢(X,Y) (S HOMe(X,Y));

4) classes of cones CONEe (X,A), where A:D —> € is a diagram.

In a similar fashion, from an aribtrary fibration E:€ — B we can derive some discrete
fibrations as fibred classes. (For simplicity, we present these discrete, hence split

fibrations as functors to the category SET of classes.)

Ad 1) "Morally", the fibred class OBg should have the class of |€1l as its fibre over
Ie |Bl. However, while the arrows of a category € can always be removed to uncover
the class OBe of its objects, removing the vertical arrows from a fibred category € will
result in a fibration only if E:€ —> B is a split fibration. There are two extremal ways to
“force" E to split: one is to replace each fibre £1 by its skeleton [€1] (i.e. a quotient of
€1, in which isomorphic objects are identified); the other way is to put FIB/ B(VLE) in
place of €1 (remembering the Yoneda lemma). Hence two fibred classes of objects
assigned to each fibration:

OBg : BOo—>SET : 1> |[€1], and

OB'g: Bo—> SET : I [FIB/ B(VLE)I.
The arrow part of OBE is determined by the unique object parts of inverse image
functors; the arrow part of OB'g is induced by composition. (OB'g appeared in
Bénabou 1983, exercise 11.)

Ad 2) The definition of fibred hom-classes goes easier. (It is due to Giraud 1971, 2.6.)

For Ie IB| and X,Ye €4l
HOME(X,Y) : (B/1)0—> SET : (VK-> T) > ER(VFX,v*Y).
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(It only remains to check that nothing depends on the choice of inverse images here.) If
B has binary products, a fibred class HOM'E can be defined also for objects which are
not in the same fibre. If X is over Jg and Y over Jj, then

HOM'e(X,Y):=HOMEg(ng*X, 11*Y) : (B/IpxJ1)0—> SET,
where ni:Jgx J1 —> Jj, i€ 2, are projections.

Ad 3) The obvious
ISOR(X,Y) : (B/1)0—> SET : (vK—>1)> {ae Ex(v¥X,v*Y)l a is is0)

can equivalently be defined to map
v {fe Ey(v*X,Y)! f is cartesian].

Ad 4) Let A:D—> € be a diagram.

CONEE(X,A) : (B/1)0—> SET : vi—> CONE(v¥X,A),
(where CONE(v*X,A) denotes, of course, the class of cones 6:v¥X —> A over v, i.e.
such that Ed=v).

12. Some predicates on a category €:

5) isoe(X,Y):= "there is an iso X —>Y";
6) isoe(f):="fis an iso"
7 conee (X,A):="there is a cone X —> A",

In an abstract category of sets - a topos - the truth values appear as subobjects of the
terminal object. In FIB/ B they are the subfibrations of the terminal fibration id:B —> B
- i.e. discrete fibrations which contain at most one object per fibre. They can be
presented as cribles, "downward” closed families of objects of B: Xe crible and
B(Y,X)=0 imply Yecrible. More generally, just as predicates are viewed as subobjects
of sets, fibred predicates are taken to be the subfibrations of representable fibrations
VI:B/1—> B. And they are just cribles in B/1.

Ad 5) The fibred predicate isog(X,Y) can be derived from ISOg(X,Y) by saying that its
fibre over v contains one element iff the fibre of ISOg(X,Y) is inhabited. As a crible, it
is

isop(X,Y):= {ve [B/1] | there is an iso v*X —> V*Y}

Ad 6) isop(D:= {ve IB/1 1 v*(f) is iso (i.e. fod}Y is cartesian)}.
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Ad7) coneg(X,A)= {ve|B/1l | there is a cone of cartesian arrows v¥X—> A }.

13. And now, the idea is to lift some set theoretical and logical concepts among
fibrations by postuéil:;;g that ol

a fibred { predicate } 18 { definable
Besides technical problems, like that of formulating OBg, some deeper conceptual
problems arise in the realisation of this idea. In the sequel, we first briefly survey a
development of category theory in FIB/ B, using fibred classes; and then we turn to the

concept of comprehension for fibrations, viewed, in particular, as categories of

} if it is representable.

predicates varying over a category of sets.

2. Locally and globally small.
Definitions. A fibration E:€ — B is globally small if the class OBg is representable.
E is locally small if all classes HOME(X,Y) are representable.

Examples. A family fibration V€ :Set/ € —> Set is locally small iff the category € is,
ie. if its hom-classes are small. V€ is globally small iff € is equivalent to a category

with small class of objects.

Every small fibration VC:B/C—> B is locally small: a representant of the discrete
fibration HOMyc(kq,k1) is an arrow CK(ko,kI):=Ké<OC1 —> K, obtained by pulling
back (9g,01) along (ko,k1):K—> CoxCp. If B is a topos, VC is globally small too: the
skeleton [C] can be constructed, and its object of objects [Clp is a representant of
OBye.

An arrow fibration Va:a/B—> B is locally small iff B is relatively cartesian closed
with respect to A: the exponent kg— ki€ lalK} represents HOMyq(ko.k1). The
statement that Va is globally small means that the class Q consists of the pullbacks of a
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generic arrow &ela LQ)l. This arrow can be regarded as an Q-indexed family of objects
of B: or as a small full subcategory of B spanned by these objects. (Cf. Johnstone
1977, 2.38; the idea attributed to Bénabou). A globally small arrow fibration over a
locally cartesian closed category must be small (assuming the axiom of choice: cf.
Hyland-Robinson-Rossolini 1990, lemma 3.2.). A basic fibration VB is both globally‘
and locally small iff B is equivalent with 1 (Pitts-Taylor 1989).

A simple non-example. Consider the category

Isetf 2| = ISet2l
Set/2(ctg-32.B—52) = {(u,fHe Set(LI)xSet(2,2)| fa=Pu)
fibred by

V2:Setf 2> Set : o> Dom(ey), {u,f)-> u.

Take o:2—> 2 to be the constant function "0, and B:2—> 2 the identity. For
ug: {0} <> 2, u1:{1) <> 2, the sets (_S_Q_t/Z)(;)(ui*a,ui*B) are both inhabited (for

i€2). If V2is locally small, then both sets Set/{i} (ui,t((x,B)) must be inhabited, i.e.

1(a,B) must be surjective. This contradicts the fact that §_@_t/2(id,1(a,[3)) must be

empty, since (Setf 2)5(ct,B) is empty.

Representants. For a globally small fibration E there is a representant Qe {Blanda

cartesian isomorphism
H:O0Bg—> VQ.
Since every qe (B/Q)1=B(1,Q) is q=q*idg, every object Qe |[€1]] must be the inverse
image of H-1(idp)e [€q] along q:=H(Q):
Q =H'(q) = Hl(g*ida) = ¢*(H-1ide).
Each element &e [€ql of the equivalence class H-1(idg) (of isomorphic objects from
£q) is a generic object for the fibred category €, in the sense that for every object
Ae €]l there is a unique arrow " A" :1—> Q such that
AzTATHE,
The mapping " _": |€]—>|B/Q is obtained by composing the isomorphism H with
the obvious surjection [€]—> [[€]].

The representants of HOME(X,Y) will be generically denoted 1(X,Y):D(X,Y)—> 1. For
any ve B(K,I), each ae Ex(v*¥X,v*Y) is an inverse image of a generic arrow
Y(X,Y)e Epex,y)(1*X, 1*Y) along a unique "a”: K—> D(X,Y).
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The arrows U(X,Y) display each fibre €1 of a locally small fibration E:€ — B as a B/1-
enriched category. (Standard reference for enriched category theory: Kelly 1982.) The
isomorphism t(v*X,v*Y):v*(t(X,Y)) means on one hand that the inverse image
functors appear as enriched fully faithful. On the other hand, this implies that if E is
locally small, the pullback of every representant 1X,Y) along any arrow in B must
exist. Bearing this in mind, we obtain the enriched structure as follows. For every X,
y, Ze €1l the transformation
B/I(v, UX,Y) x 1(Y,Z)) = ER(VFX,VFY) X ER(VFY,VAZ) =

5 exv*X, v¥Z) = B/1(v, UX,2)),

natural in ve B(K,I), induces by the Yoneda lemma a composition arrow in B/1
wX,Y,Z) : uX,Y) X wY,Z2)—>uX,Z)

such that for po: 1(X,Y) X WY,Z)—> 1(X,Y) and p1: UX,Y) X WY, 2)—> WY,Z)
pr*(¥(Y,2))otopo*(Y(X.Y)) = Top*(¥(X,2))ot",

where 1,T,t" are canonical vertical isos. On the other hand, the identities arrow
nX) : idi— X, X)

corresponds by the representation to ide £1(X,X), so that
n*(y(X,X)) = id.

The bulk of category theory over B can be expressed in terms of this structure.

Comments. The notion of a locally small fibration is due to Bénabou (1975b) again.
The corresponding pseudofunctors have been introduced by Penon (1974), under the
name "locally internal categories”; see also Appendix of Johnstone 1977. Recently,
locally small fibrations have been studied as spang-enriched categories (namely, the
representants of HOM'g are spans in B) in a series of papers by Betti and Walters
(1987, 1989) and by Betti alone (1989).

And while locally small fibrations reappear so often, the notion of a globally small
fibration may seem a bit dubious. Why did we choose to require the representability of
OBg, and not OB'E? To produce an essentially surjective cartesian functor OBE—E
(for the role of OBe “> €), one needs the axiom of choice, while the cartesian functor
OB'g —> E: F>F(id) is canonical and surjective on objects.
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Well, the point is that OB'g tends to be very large. For instance, if G is a groupoid with
two objects and one arrow in each hom-set, the class OB'yg(D) of cartesian functors
V1> VG is proper for every inhabited set L (The fibre (Set/ @)y, on the other hand;

has just 2! objects!)

Moreover, if the goal of constructing a fibred class of objects is to realize a
representation of Ae €1 by "A" e B(LQ), so that A= "A™*E, then it is reasonable to

identify in this fibred class the isomorphic objects of fibres - as we did in OBE - since
they cannot be distinguished as inverse images of £ anyway (unless a cleavage is

given).

The unpleasant fact remains that some cocompleteness of B is needed to make a small
fibration VC globally small. The definition of globally small should perhaps be relaxed

to the requirement that OBE is just weakly representable, i.e. that there is a weak
representant Qe |Bl, equipped with a natural surjectionVQy —> OBE. (A weak
representant for OBy is the object of objects Cp.) With this weaker notion of globally
small, the following proposition would extend to "globally-+locally small <> small".

However, we shall need the stronger notion in chapter IV.

Proposition. Let B be a finitely complete category. If a cloven fibration E:€—> B is
globally and locally small then it must be small: there is an internal category Qin B and

a fibrewise equivalence V@ —> E.

«» With generic data of E denoted as above, we shall also write
Ei=n;*(E) for m: Q2 —> Q, i€ 2;
Ei=ni*(§) for Q23— Q, i€ 3;
Tije=(m;,mj): Q3 —> Q2,i,je3.

Of course, Q2 := OxQ, Q3 1= QOxQxQ.

The hypothesis that E is globally and locally small means for every X, Yel€i
E10%, V) =E1(" X+, TY ) = B/Q2 ("X, 7Y ), 1o, B).

The internal category & is defined as follows:
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Qo=
Qp:=D(&p, &1
(90,01):=1(&0, §1):Q21 — Q0x€);

n:Q0—> Q is the element of 8/QoxQo((id,id), 1€o, &1)) = Eqg(&,E) which

corresponds to idg;

Q9, a pullback of dg and 91, is also (isomorphic with and can be chosen to be
equal to) the domain of

BB x W(E1LED = (@), x  (@x@0.00);
and then

piQp—> Qp will be pozou(gg,g 1,E2), where
H(&()’&l’g?.):l(&()’g 1) Xl(& 1’€2)—91(é0’g2)

is as defined above, while

po2: m20W(& 0, §2) > 1G0.61)
is obtained by pulling back mg2 along w€o.81)-

It is obvious from the definitions that (9¢,d1)n=(id,id) and {90,91)4=(90p0,01P1):
where po is still the pullback of dg along 01, p1 of 01 along dg.

Let us check one of the nontrivial commutativity conditons required from the internal
category . Consider the arrow «id,ndp»Qy— Qo, induced by dgondi=djeid. It

should satisfy
no«id,ndy»=idg,
(which means "foid=f" in £2). First note that we actually have
andre8/03(@0.01.00, 180 E 1 x (€1, ED).
This arrow clearly comes from
((id,d1),(30md1))e 8/93((20,01,01), nor*(1E0.&1))
x 8/03((0.91.01), m2*(150.60) ) =
€0,(00*E,01*E) x €0, (01%E,01*E).
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In €0,(d0*E,01*E) the same arrow corresponds to (id,91)e B/ Q3 and to
ide B/ 92(@0,81), L(&o,él)); to the latter corresponds Y(€g,&1) by definition.

In €q,(91*£,01*&), the same arrow corresponds to (dg,Mn91)e B/ Q3 and to
naleB/QZ(<a,_,a1>,1(z§0,§1)); by the definition of m, this arrow must be
ide €0, (01*€,01*8).

So when we compose these arrows in €, the result will be Y(€o,61).

The mapping

8/03(@0.91,01), 1€ 0, E a(E 1,E2) — 8/03((@0,01,01), 1E 0,8 )
induced by the composition in €, is represented in B by composing with
u(&0, & 1,&2). (Such is the definition of p(X,Y,Z).) This means that we have above
actually concluded that the arrow

w(Eo,E1,E oidndire 8/23(@0.01.00. 1E0.E2)
corresponds to Y(§o.51)e €q,. If we transpose u(Eo,E 1,Ez)o«id,nal» along the
adjunction ‘

%

8/03((0,01.01), ro2*(1(0.&1)) ) = B/Q2(02(30,91,91), UE0.ED))

by postcomposing po2:To2ot(§ 0, & 2) — 1(€p.E1), the resulting arrow in B/Q2? will
still correspond to ¥(€0,E1)e €q,. Hence
po«idnoa»=idg,.

So we defined Qe catp. The cleavage preserving functor
F:VQ—E
will be the one represented by <{;, y(a()*&,al*&))e pshe(@2). Using the cleavage, we

first define
Fo:VQ—> E: u—=> u*g;

and then proceed as in 1.27. It remains to prove that F is a fibrewise equivalence.

F is fibrewise essentially surjective because & is a generic object: every Ae €kl is
A=F("A™),
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The vertical parts Fi:(B/Q)g —> €x are full and faithful because the natural
isomorphism

B/8(ko, k1) = B/QxQ((ko.k1), (90,01))  Ex(ko*E, ki*E) =

= Ex(Fk(ko), Fx(k1))

is realized by

o> (o*(@0*ED1*0) : ko*e = k1%,
which is just

(o) > (Fr(id, ) : Fielko) = Fr(kn).

But a cartesian functor is full and faithfull iff its vertical components are.

3. Definability.

Motivation. As everybody knows, comprehension is the assignment

AX) > {(xl AXK)],
where A is any given description. In set theory, descriptions are just the definable
classes, i.e. those given by a formula. The comprehension principle says that for every

set X the class
ANX = {xe XI Ax))}

must be a set. Every definable subclass of a set must be a set.

The question is: Which fibred classes should be considered as definable, so that the
comprehension principle is satisfied in FIB/B? Certainly not all of them: e.g., the
crible R:={fe [Set/2]; im(f< {0} or im(H) & {1} } is a nonrepresentable subfibration
of a representable fibration. Bénabou (1985) offered an answer again. (But he avoided
technicalities very consequently, and gave just a six lines long definition, in the
glossary to his article. The explanations which follow here are completely apocryphal.)

For every object X of a fibred category € define £nX to be the full subcategory of

€/X spanned by the cartesian arrows to X. The functor
€NX—> B/EX : ft=>Ef
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is an equivalence of categories. Being thus essentially representable, the fibred category
ENX— B
can be thought of as a "subset”, a "small part” of €. As we saw in 1.1, € is a lax
colimit - "union" - of such small parts. The faithful cartesian functor
Bx: ENX—E/X—E

can be taken as a "canonical inclusion”.

The discrete subfibrations of € are, of course, its subclasses. For every subclass
A: £ €, the pullback along 8 gives the subcategory LnX e EnX, consisting of the

cartesian arrows to X with the domain in C.

CrX T ™ ENX

N

Dom B €/X

N

A

Since £ —> B is a discrete fibration, the fibration

LAX—>L—>B
must be discrete too. The mapping LnX > €ENX—> B/EX is therefore an injection,
and we may assume (for simplicity) that X is a subfibration of B/EX, and not of

€nX, as above.

Definition. A discrete subfibration £ of a fibred category € is definable if for every
object Xe |€], the crible

£nX = {ve|B/EX| I v¥Xe lcl}.
is representable. (Or in terms of 13: A fibred subclass C of € is definable if all the
fibred predicates £LX are.)

Examples. Let H be a complete Heyting algebra and E:A—> H an H-set (example
11.1.54). An H-subset is a subset LS A such that xe L implies xIpe L for all pe H.
Such a subset L is definable iff every H-subset Lne={xe Ll x=clEx} contains a join,

i.e. an element xc such that Lmc={ze Al z=x¢[Ez}.
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A discrete subfibration £ of a family fibration V€ is a class of set-indexed families of
objects of €, closed under reindexing (i.e. with every (Cjl jeJ), the reindexing
(Cy() i€ D) must be in £ to0, for all functions u:I—> J). £ is definable iff for every
object X = (Cjl jeJ) there is a set 1¢(X) €J such that exactly those reindexings of X are
in £ which consist of Cj, ie1(X).

Fact. If € is a cloven globally small fibration (with a generic object §), its discrete
subfibration € is definable iff LME is representable. If Q represents OBg and if
1:D>> Q represents £E, then a definable subclass £ must consist exactly of the
inverse images of 1*(§), with the cartesian arrows between them.

4. Constructive comprehension.

Motivation. The extent {xe Kl ¢(x)) of a predicate ¢ over a set K collects the
elements of K on which ¢ is satisfied. The idea for a constructive extent is that it should
collect the pairs (x,p(x)}, where p(x) is a proof of @(x), i.e.

{(xeKI @(x)} := 2, 19(x), where

xeK
19(x) := the set of proofs of ¢(x).
This extent is equipped with a canonical projection
1 : (xeK o(x)} > K : x,p(x)—=>x.
If there is at most one proof for every ¢(x), the projection t¢ is reduced to the inclusion
{xe Kl ¢(x)} = K. Otherwise, it can be regarded as representing a K-indexed set
{1o(x)i xe K}.

In order to find a categorical presentation for the notion of a constructive extent, let us
take up the paradigm of a variable category of predicates again: imagine that the fibre
€k consists of predicates over the "set" Ke|Bl, with proofs as arrows between them.
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Observe first that the notion of definability has still a natural interpretation. A class-as-
discrete-subfibration can be understood as a class of predicates. Discrete fibrations
£nX (for Xe I€k]) could now better be written as

. (v L if Vy:LA(vA9(v(y))
ArQ: (B/K)o—>2: (v.I%K)P%{ 0 inccwise

This logical picture seems open to various generalisations. But to make a link between
the definability and the constructive extent, we shall make a detour from both.

If logic is to be fully constructive, the notion of a description cannot be reduced to
definable classes any more: a description must take the constructive proofs into account.
We shall look for descriptions not just among discrete subfibrations AL €, but

among more general diagrams A:G —€.

For a diagram/description A:G —> € and a predicate @& [€xl, the derivations of ¢ from
A are contained in the comma category A/ .

e €/ @)

\/
/\

A logical picture of a fibration "measuring” the A-part of {xe Kl ¢(x)} will be

A-¢: (B/K)O—>SET : (viI—=K) > { proofs of Vye LA(V(y)) - ¢(v(y)) }
The idea is that a "proof of Vye LANV(Y))— @(v(y))" should be a cocone: a derivation
of ¢ from A should respect the proofs contained in the description A (i.e. commute with

Dom

the arrows of the diagram A).

This idea suggests which diagrams could be considered as descriptions on a category of

predicates.

Definitions. Let E:€ —> B and G:G —> B be fibrations. A description (on E) is a
cartesian functor A:G —> €, satisfying the following conditions:
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i) for every Ae G| and every E-cartesian arrow 9e |€/AA| there must be a G-
cartesian arrow ¥'e |G /Al such that § = AY
ii) for every ve B(L,K) and every cocone B:Ag — X in €k there is a unique
cocone 6 :A1—> X over v, such that for every G-cartesian arrow
W'e G y(v¥A, A) holds
Byra = BacAD.
(As before, A1:G 1—> €1 denote restrictions of A on fibres.)

A description A is comprehensible if for every object Xe |€x/ the discrete fibration
A-X: (B/K)0—> SET: (v:I—> K) > COCONE, (A}, X)
(= COCONE((A], v#X))

is representable. (To define the arrow part of A— X, use condition (ii).)
Fibration E is comprehensive if the functor id:€ — € is a comprehensible description.

Comments. It follows from (i) that the diagram v¥*Ag: G g—> €1 is contained in the
diagram Ap:G 1—> €. Condition (ii) tells that the cocone B': v¥Ag — X, obtained from
B, has a unique extension B : A;— X.

What do these conditions mean in the logical perspective of a fibration-as-category-of-
predicates? Condition (i) just demands that a description should be stable under
substitution. This condition generalizes to arbitrary cartesian functors A:G — € the
requirement that a subfibration £ < € should be stable under inverse images. Another
way to express (i) is to say that A must be a ¥-fibration over €. Condition (ii), on the
other hand, tries to capture the idea that a description should be uniformly applicable to
the elements of all sets; e.g., A(x):="x is a red apple" should allow x to be anything,
and pick the red apples absolutely everywhere. This is at least in part conveyed by
demanding that the derivations/cocones from fibrewise parts of A are invariant under
inverse images - that nothing from A is lost when substitutions are performed.

(Some people will undoubtedly prefer to forget this "explanation”, and regard condition
(i1) just as necessary to define the arrow part of A—X.)
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Notation, terminology. Generic letters for representants are again 1 and D: a
representant of A— X will be 1oX : DaAX —> EX. For A=id we omit the subscript and
write 1X:DX —> EX. The arrows 1X are extents of X.

CFIB/ B will be the category of comprehensive fibrations with the extent preserving
cartesian functors (i.e. F:E'—> E must satisfy 1E(FX) =1E'X).

Facts. If a locally small fibration E:€ —> B has fibrewise terminal objects T:B— €,
then it is comprehensive, with the extents 1Z:=(TEZ, 7).

A fibrewise cartesian closed fibration (I1.2.1) is locally small iff it is comprehensive: a
representant of the fibred class HOM(X,Y) is (X, Y):=u(X~Y).

Examples. A diagram A G —> a1 over a fibre of an arrow fibration a/3 — 8
(cf. IL.4) can be regarded as a cocone 8: Dom{Ap) — L. If a description A: G —>a/8
is such that each 8j is a colimit cocone in B, then A is comprehensible, and each aca
represents A—a. « Namely, the cocones y: A;—> a over ve B(L,K) in a/ B are in one-
to-one correspondence with the cocones y': Dom(Ap) — Dom(a) in 8 such that
a oy'L = uody, for every Le Dom(A).
Dom(A}) . Dom(a)
7/
81 E a

7/
/

I ——K

But if 81 is a colimit of Dom(A7) in B, the cocones y' are in one-to-one correspondence
with the arrows g:1—> Dom(a). Since a colimit cocone is jointly epi, if acgodrr =
aoy'L = vedy 1, holds for all Le Dom(Aj) then acg=v. So we have a correspondence
COCONE(A,a)= B/K(v,a).s

In particular, every arrow fibration with intrinsic terminal objects is comprehensive.

The empty class @%> € is comprehensible for every €: the representants are
1pX:=idy, for Xe €], » because COCONE(J,X)=1+. On the other hand, @ can never
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be definable, « since a crible @BX=@ cannot be representable: it should contain at least

a representants.

If E is a discrete fibration, COCONE(E1,X)#@ iff €1 has at most one object. The
representable fibrations VI:Set/J—> Set are comprehensive: the extents are

1\1:@ —> Dom(u).

Let G be a fibred category over Set, and consider a diagram A: G —> Set/ €. Its vertical
part A Gr—> €lisa family (Ari: G1—> €lie]) of diagrams in €. The isomorphisms
ALi(v*A)= Ax v(iy(A) (forall viI— K, iel, AelGkl) tell that A is cartesian. Condition
(i) now requires that (the image of) each Ay is closed under isos. Condition (ii) tells

that every AK v():G x —> € must have a unique extension to AjiG1—> €.

The most "uniform” instance of a description on Set/ € is the cartesian functor
@: FxSet—> Set/ € consisting of

Op:= (F:F > Cliel),
for some category F and a functor F, (the image of) which is closed under isos. If the
classes

Qc := COCONE(,C)
are small for all Ce |€[, @ is comprehensible, with representants

10X : Z Qcy—K

keK

for X = (Cl ke K). If A:=limF exists in €, then Qc= € (A,C), and 1pX is just a
representant of the fibred class HOM've(A,X).

Just apparently different is the description ¥' : Set/F —> Set/€, where

¥ = (Fop FI—= €lie).
It is comprehensible under the same condition and with the same representants as . If
we take F :=€, and ¥ :=id, we see that V€ is a comprehensive fibration iff the
classes

Qc := COCONE(E,C)
are small for all Ce|€|. If € has a terminal object T, then of course Q¢ = €(T,0). A
locally small category € with a terminal object induces a comprehensive family
fibration. The extent of a family of objects X = (Cil ke K) will be
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X = 2E(T,Co—K.
ke K

5. Associated arrow fibrations.

Fact. For every definable subclass £ <> € and every comprehensible description
A:G —> €, the classes of representants 1o & B, Oe {A,L}, are stable under pullbacks.

« 8/K(w,v*10X)) = B/1(vw,10X) =
. {COCONEVW(AM,X) = COCONEW(AM,V*X)}~
LnX(vw) = Cnv*X(w)
= B/K(w,15(v¥X))
implies that v*(15X) = 1o(v¥X) holds for De {A,C}.e

Consequence. Given a fibration E, to each comprehensible description A and each
definable class C arrow fibrations Vig:1g/ 8 —> B, 0e {A,L}, are naturally
associated. An associated arrow fibration is like a shadow which a subclass or diagram
casts on the base category: Vig tells how B sees 0.

The fibration VU :1/8 —> B spanned in 8/ 8 by the extents of a comprehensive
fibration E:€ — B is called the extent of E, and denoted 1E : 1€ —> B. It is, in a sense,
the best approximation of E by an arrow fibration: each predicate @e |€] is
approximated by the set 1@ of its proofs. How accurate is this approximation? Which
parts of the structure of E are preserved in it? When is the logic carried by a category of
predicates E extensional, in the sense that every predicate in it is completely determined
by the set of its proofs? - We shall answer these questions in section 4.
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1. Homogenous descriptions.

We begin by considering descriptions which satisfy a bit more than required by
condition (ii) (from definition 2.4).

Definition. A description A:G —> € is homogenous if for every Xe |€x| and
ve B(LK), every cocone B : v¥Ag —> X over v can be extended in a unique way to a

cocone B :A;—> X over v.

Proposition. Let A:G — € be a description on a locally small fibration E:€ — B. If
B is complete (to the maximal size of fibres G 1, Ie|BI), A is comprehensible.

« For every Xe €k, the diagram Ax:G g — €x induces diagram

w(GgO—B/K: A —uldX),

(tA—B) 1, x)e B/1(uB,X),1A4,X))

where R:=A1(x). The arrow 1(%,X) is defined to correspond by the representation of the
fibred class HOME(R,X) to

1B, X0 (B, 30) () € Epg o (WB.X)A, (1(B,X))*X).
Using the correspondence Ey(v*A,X)=8/ K(V,L(A,X)) for ve B(L,K), it is routine to
check that the cocones v¥Ag —> X over v in € bijectively correspond to the cones
v—>W¥ in B/K. It follows that

COCONE(v*A[, X) = B/K(v, lim ¥)
holds naturally in v. But the hypothesis that A is homogenous means that the

transformation

COCONE,(A, X) —> COCONE(v*Ag, X) : B> BIv¥Ag,
natural in v, is an isomorphism. Hence a natural iso

COCONE(A], X) = B/I(v, 11(31 ¥),

which means that we can take
A X :=lim ..
(_..
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2. Descriptions with colimits.

Consider a fixed diagram A:G — € on a fibred category E:€ —> B. Suppose that € has

the fibrewise colimits to the maximal size of all G, Ie {B| (regarded as diagram

schemes). (In other words, for every J,Ke [B], every diagram F:Gj—> €x has a 1~

colimit y: F—>limF in €, and for every ve B(LK), the cocone v*y: v¥F —> v*(limF)
is a colimit in €. Cf. 11.2.) If A now satisfies condition (i) (from definition 2.4), then
condition (ii) is eguivalent with the existence of a cartesian section
ImA:B—>¢€ 1> lim A1

Of course, the axiom of choice is necessary for the then-direction. If we want to avoid
the axiom of choice, we can consider the subcategory £ €, consisting of all the
colimits lim-Ay and all cartesian arrows between them. The diagram A (with colimits as
above) is now a description iff it satisfies condition (i) and LA € is a subfibration.
(L4 is a description on € as soon as it is its subfibration. £ is then equivalent with
B8.)

A diagram A, characterized in any of these ways will be called description with

colimits.

A description with colimits A:G —> € is comprehensible iff the corresponding
description £o<> € is (*since there is one-to-one correspondence between the
cocones over some v from A and those from £4¢). In particular, if the category € has
fibrewise terminal objects, then it is comprehensive iff the subfibration T €,
spanned by the terminal objects, is comprehensible (+ because the terminal objects are

just the colimits of whole fibress).

Applying the axiom of choice, for a description with colimits A, the discrete fibrations
A—X can equivalently be defined
A—>X : (B/EX)0—> SET : (vI—EX) > €,(limAy, X)

(independently of the choice of representants lim Ay), or
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A-X:lim A/X—> B/EX : f—> Ef.

A will be comprehensible iff every A-> X is isomorphic with a discrete fibration
«1pX» : B/DpX— B/EX : v 1pXov,

Putting all the A— X together, discrete fibration

A/€ :lim A/€—>B/E: (1, f: lim A;—> Xy <Ef: I—> EX, x)
is obtained, which must be isomorphic to
«p»: B/Dpy—> B/E: <v: I—> DaX, X)t—é <LAXov: 1— EX, X).

Proposition, Consider a description with colimits A:G — €, given together with a
cartesian functor limA : B~ €. The following statements are equivalent.

a) A is comprehensible.

b) There is a right adjoint Da:€ —> B of lim A and a natural transformation 14:DA—> E

such that
aXof'=Ef
holds for every fe €(lim Ay, X) and its transpose f'e B(I, DaX).

c) There is a right adjoint R to the functor
L:B/B—E/B: (viI—=K)—>({limAp, v).

This adjointness is cartesian with respect to the functors VB and Fam(E).

«@=0) ElimALX) = | J evlimAL X) =
ve B(LEX)
J B/EX(v,1aX) = B(, DaX).
ve B(LEX)
The statement "tpaXof‘=Ef" just means that the adjointness isomorphism
limA/ € =~ B/Da commutes with the functors A/€ and «ip» defined above.

b)=(c): R(X, w:EX— K) 1= woipaX.
The transpose of

(,uye E/B(Lv, (X,w)) (.e. fe €(lim Ar, X), such that woEf=uov)
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is
{f,u)e B/ B(v, R(X,w)).

©=(@): Elim A, X) = B/B((lim Apidp), (X.idgx))=B8/8(idy, 14X).
Since the adjointness is cartesian, every two transposes must be projected to the same

arrow. The correspondence above restricts to
€y(lim A, X)= (B/8),(id], 14X )=B/K(v, 1nX).*

3. Comprehension structures.

Let A:G — € be a description. Assuming the axiom of choice, the property that A is
comprehensible can be expressed as a structure. As one might have noticed in the
preceding proposition, whenever we choose for each Xe |€] one representant
1AX :DaAX —> EX of A—= X, the construct Da: € — B becomes functorial, and 1
appears as a natural transformation Dp—> E.1 « The Da-image of fe £(X,Y), is the
arrow Dafe B/EY(EfotX,1Y) which corresponds to foexe COCONEEfoix(Ap,x,Y);
the generic arrow £exe COCONE x(Ap,x, X) is the one that corresponds to
ide B/EX(1X1X).

A comprehension transformation of a comprehensive fibration E is a natural
transformation

1:D—>E:€—>8B
which consists of extents 1X : DX— EX.

On the other hand, by the couniversal property of comma categories (I1.1.76), each
natural transformation ¢:G—> H: A —> € corresponds to a unique functor
«p» A —> €/€, such that arr+«@»=¢, where

arr: Dom—> Cod : €/€ €

}'Thi's is not true for the representants induced by a definable class. Analogous
definability structures” cannot be obtained in this way.
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has the components arrg:=f. Hence another presentation of the comprehension structure:

A comprehension functor of a comprehensive fibration E is
«»: €—>B/B: XX, (£X—>Y)—>(Df, Ef).

It follows from fact 2.5 that «1» is a cartesian functor. The extent fibration 1Ea€—> B
is (the subfibration of B/ B equivalent to) the image of «1».

The morphisms in the category of fibrations over B equipped with comprehension
transformations would be, of course, the cartesian functors preserving 1 (i.e. F:E' —E
such that 1E#F=(E"). If VB is a fibration, it is the terminal object in this category. (Its
comprehension transformation is arr: Dom—> Cod : B/B— B.) The comprehension

functors are the terminal arrows.

The question now arises: Which transformations F—> E, which functors €—>B8/8
represent comprehension on a fibration E? When E has some additional
structure/properties, there are intrinsic characterisations of its comprehension
structure(s) - by simple adjunctions. In terms of these characterisations - in special
situations which they cover - both kinds of comprehension structure have actually been
considered before. In his seminal paper about hyperdoctrines (1970), Lawvere
introduced comprehension functors using coproducts and terminal objects. By means of
terminal objects only, Ehrhard (1988, 1989) described comprehension transformations,
and used them in his interpretation of the theory of constructions - although without any
connection with the concept of comprehension, and under a different name. The
following characterisations show that our notion of comprehension restricts to these

two.

4, Ehrhard's comprehension.

Proposition. For a fibration E:€ — B the statements below are related as follows:

© =@ B0 B =0
a) E has fibrewise terminal objects and it is comprehensive.
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T-1(q) forqTI—>TIJ
¢T3oC(Q) forq: Y—>TJ

Cl@e(prp ! for q: TI—> X
C(q) forq: X—> Y.

b) There are functors S and C such that
E-HS—C:£—>8,
and S is full and faithful.

D(q):=

¢) There are functors T and D such that easy to see from the constructions that E— T - D, and that €€ and nD are
E-4T—D:€—>38,

eE:ET —>id and nP:id—> DT are identities (ET =DT =id), and
1 =D#nE = ExeD.

(Remember that * denotes the horizontal composition of 2-cells: 11.1.74.)

entities. The equation D*nE = ExeD then follows from lemma 43¢

emark. Perhaps the simplest view of a comprehensive fibration E with terminal
bjects is that it is a triple E— S— C as in (b) above. This is the structure used by
hrhard. In this form it is obvious that comprehensive fibrations are closed under the
* (c)=(a): (1) The right transpose of fe €(TLX) is always f':=D(f)on] e B¢ }nposition; that Fe FIB/E is comprehensive iff it is comprehensive as Fe FIB/€ and
since Ny=idy, £'=D(f). gicxtents are E-vertical; and so on. (+ Use lemma I1.2.4 for the if-direction.s) For

. E B mprehensive fibrations as defined in 2.4, these and similar facts require much longer
(2) Since eE = id, certainly NE«T =1id, and therefore Nyef = TEMon; =TE(

It follows that o
Xof* = DMEof* £ DMEeD® =Dnfon) € DTED =E(D.

Applying proposition 2, we conclude that E is comprehensive.

mples. Let C be a small category with a terminal object 1 and an initial object 0.
ien there is a comprehensive fibration A— A— T : Set ! c - Set defined
A F = F(@),

oy ‘ AA> (A:CO = Set: X = A, fH> idp),
(b)=>(c): T 1is obtained from S using corollary I11.1.78, by lifting the na ( S A)

id—> ES. D is obtained from C using the following diagram: I':F = F(),
WF :=F(0—>1).
Cf Cg Ch
- ~ CY —c “
ct X ¢ e n the other hand, for a set C there are 2— A— IT: Set © —> Set:
_ Z:EP> Y F(x),
Prij= Px|= Pyl Qryl= ors
A:AE> (A:C = Set:x > A),
DTI - DX =DY =DTJ :F— []Fx).
= 1 Df Dg Dh =7 < C

is a discrete fibration, and a comprehensive one, as we mentioned in examples 2.4:
 extents are 1F: > YF. But A is not full, not a terminal objects functor, and the
ple X— A— IT has nothing to do with the comprehension.

where isomorphism @1: CTI—> CSI—> 1 is obtained by composing the invel
unit n?;l% CSI and the C-image of the iso x1: TI—> SI, obtained by lifting i
Hence, for X,Y¢ Im(T), we have
ght be helpful to mention the trivial but paradigmatic example of comprehensive
fibrations once again. The comprehension structre on them now becomes

Cod— Ids— Dom:a/8—> B
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(where Ids: X+ idx).

Lemmas. Consider functors E — T — D; denote the data of the first adjointness by

NE, €k, the data of the second one by )P, €D,
41. id=DT iff T is full and faithful iff ET~id2.

42. D is full and faithful iff TD ~id iff id = TE iff E is full and faithful.

43. If T is full and faithful, then D*nE ~ E#*eD. More precisely, there is a natural

transformation t : D—> E, such that
DnE = (nD+E)ot,
E#eD = 10(eE+D).

» Define 1x : DX —> EX by the requirement that T(1x) = nyogy . The equalities then
follow by chasing the diagram:

E D
ETD e *D - D n D - DID
ExeP ) De”
id
1 |
E Y D
id
E
E*n E Dxn)
Y \ !
ETE = E » DTE
"B nP+E .

ZX =Y means "3f : X= Y". Lemma 1.3. in Johnstone-Moerdijk 1989 tells that any

natural isomorphism id= DT forces the unit of the adjunction T— D to be an
isomorphism.
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5, Lawvere's comprehension.

Hyperdoctrines bis. Each topos S gives rise to two hyperdoctrines:
VS:80— CAT: K— 8/K, and
@ 30— CAT: K> pK:=S(K,Q).
The logic is implemented in S along the lines of the so called doctrinal diagram:
Ju
M l* oK

—LVu

hv | im hg + | ik

(Cf. 11.3.1, 1.1.6.) Comprehension is here represented by the functors
ik: pK—> S/K : oty > ({yX au(y¥)} > K),
which are right adjoint to
hi:S/K— pK : (wM—K) > 3xMyxM)=yK
Lawvere (1970) used this adjunction to define comprehension abstractly, in
hyperdoctrines. We translate his definition into fibred categories.

Definition. Let E:€ — B be a cloven bifibration with chosen terminal objects, We say

that E is Lawvere comprehensive if the functor
h: B/B— € : k—>k (TDom(k))

has a right adjoint i, so that Cod(iX)=EX and the unit and counit of this adjunction are

cartesian natural transformations.

Remarks. If (u,v)e B/ B(mk) (ie. ku=vm),

h{u,v) : mg(TI)—-—)kg(TJ)
is defined to be the unique arrow over v such that h(u,v)ooﬂ=c¥JoTu, where
I:=Dom(m), J:=Dom(k). The functor h is cartesian if E has the Beck-Chevalley
property.
By lemma 1.2.4, the functor i must be cartesian if VB is a fibration. In that case, the

above definition can (+ by the same lemma +) equivalently be expressed by demanding
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that i is cartesian and fibrewise right adjoint to h. (This is perhaps closer to the spirit of
Lawvere's original definition in terms of indexed functors.)

Thus, when B has pullbacks, and E the Beck-Chevalley property, the definition just

asks for a cartesian adjointness h—i.

Proposition. A cloven bifibration with chosen terminal objects is comprehensive iff it

is Lawvere comprehensive. The functor i is a comprehension functor.

« If E is Lawvere comprehensive, then it is comprehensive by proposition 4, and
D :=Dom#i — h*Ids =~ T.
(If i* T=Ids, then NP: id—> DT is identity.)

It remains to prove that iX : DX—> EX is indeed an extent. First note that every
fe €(h(m),X) is projected to the same arrow as its transpose f*=i(f)ony, since

VB(f*) = Cod(i(fony,) = Cod(i(f)) = Ef.
Therefore, for me B(I,M) the correspondence

LJ vy, X) = €(am), X) = B/B(m, iX) =
ve B(M,EX)
= U B/v (m, iX)
ve B(M,EX)

restricts over each v separately:

ex(TK, (vk)*X) = €y(my(TD), X) = B/v (m, iX)) =

= B/EX (vm, iX).

Then: By reversing the last step - making the unions, instead of partitioning them - we
see that the comprehension functor «u» is a right adjoint of h.e

4. About extent fibrations

1. What do they inherit?

In this section we shall study comprehension functors as essentially surjective functors
«»€—>1€. € is a comprehensive fibred category with terminal objects.

We shall first formulate some propositions in the form:
"If € has a property/structure P then 1€ has and «1» preserves P."

In 2.5 we saw that this holds for P = "inverse images". It obviously holds for P =

"terminal objects". And more?

Propositions. Let E be a comprehensive fibration with terminal objects. Let d € B be
a stable family (I1.4.3).

11. 1€ has and «1»:€ —> 1€ preserves all kinds of fibrewise limits which existin €.

* Since

n:€k— Ex/TK: X (nx:X—> TK)
is an isomorphism of categories, A:L—> A is a limit cone in Eg ff n(A)ML—nAisa
limit cone in €/ TK. But the image of A by «1» is the image of 1j(A) by D, and D

preserves limits, because it has a left adjoint T.e

12. If € has d-products, then 1€ has and «1» preserves them.

. LSJ(IY, 1(U*X)) = B/J(LY, 1(U*X)) = Epy(T, 1Y*usX) g
€Dy(T, (Dﬂ“)*l(u*Y)*X) =

€D(u*Y)((D1‘>”)*T , l(u*Y)*X) ~
€D(u*Y)(T, 1(U*Y)*X) = B/1(1(u*Y), 1X) =
B/IsY, 1X) = t€1(u1Y, 1X)

1

[}

1

[}

in
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The step (#) follows from the Beck-Chevalley property of €, and the fact that the
square

u
DY) —2% py

|

u*Y) 1Y

[ ————]
u

is a pullback (since «1» is a cartesian functor).s

13, If € is globally small, 1€ is. « If E&|€¢)| is the generic object of €, 1Ee hEg! is the
generic object of 1€+ (If, moreover, B is lcce, then 1€ is small. « See the last example
in 2.2.¢)

14. Corollary. If E is a globally small cloven fibration with d-products and finite
fibrewise products, E is equivalent to a small arrow fibration with fibrewise cartesian
closed structure, and with d-products.

» The cartesian closed structure is
1Y X1Z:=1(Y X Z);
LY =1Z = 1Y Y*(Z).

Using the diagram from 12, we derive
B8/3(u, 1YsaY*2)) = € * x2)) 2
, WYl Y*(Z) T, unY«Y*2) ) =
= e, 1(u*Y)*(DﬁU)*LY*(Z)) =

z €D(u*y)(T, (LYODl‘)“)*Z) =
= B/I(uou*(1Y), 12).
Now put u:=1X, and note that 1X x 1Y = 1XaX*Q1Y).

By facts 2.4,1€ is locally small. By propositions 13 and 2.2, it is then equivalent to &
small fibration.s
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2. Weak coproducts.

In general, the coproducts in € don't seem to induce coproducts in 1€. Let us see what

they do induce.

Definitions. An arrow se £(X,Y) is weakly cocartesian with respect to a functor
E:€ —> B if for every fe €£(X,Z) such that Ef=roEs (for some 1), there is an arrow g

(not necessarily unique) such that Eg=r and ges=f.

E is a weak d-cofibration if every d-arrow has a weakly cocartesian lifting. B is a

weak A-bifibration if it is a fibration and a weak d-cofibration.

We say that E has weak d-coproducts if it is a weak d-bifibration with the strong
interpolation property (relative to d).

Remark. Wouldn't it be simpler to say that a weak d-bifibration E has weak
coproducts if it has the weak Chevalley property? Let us first spell out what would a
weak Chevalley property be.

Consider a commutative square Q=(f,g,s,t) over S=(k,m,u,v) as in 1L3.3; suppose

k,med. The weak Chevalley condition onQ is:

Cw) if s and t are cartesian and f is weakly cocartesian, then g is weakly
cocartesian.

A weak d-bifibration E has the weak Chevalley property if it satisfies the weak

Chevalley condition over all pullback squares S (with k,med).

If we denote by kiA and mA some weak direct images, and if g: u*A —> v*kjA is the
unique arrow over m such that tg=fs3, and 6™ : u*A—> mu*A is a weakly cocartesian

lifting of m, the weak Chevalley condition just says that there must be vertical arrows

3Look at the picture with remark 11.3.3.
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mgurA —> v v *A such that g=poo™ and o™= ‘ .
p : mu*A —> v¥kiA and e:v¥kiA — myu*A such that g=poc™ and c"=eog, N 1fue BALNNA and Xe |€1], and if ce E(TDX,Y) is an E-cocartesian lifting of uetX,

more. This would be the corresponding weak Beck condition. en (DG, We1E(X,1Y) is a weakly 1E-cocartesian lifting of u at 1X. {Dg,u) is indeed
1 &ITOW from 1X to 1Y, since

Clearly, when restricted to strong d-bifibrations, the weak Beck-Chevalley p
1YeDg = D(nyeg) = D(Tuenxoex) = uotX.

doesn't imply the strong one. In fact, on weak d-bifibrations, the weak

Chevalley condition is gquivalent with the interpolation condition. snsider arbitrary re B(LK) and (q,ru)e 1€ 1X,12). If ‘qe £(TDX, Z) is the left

anspose of ¢, then

+ To prove this, first notice that lemmas 31 and 32 in II.3a go through with‘
‘ E(‘q) = E(gze Tq) = 1Zoq = rouoiX implies A!g. Eg=r and g¢=‘q

cocartesian arrows instead of cocartesian arrows. The same weakening of the re

1D
two lemmas in I1.3a gives: + Z
33,,. cov¥(‘a)opoo=‘dec™ &> m*(c)otou*(a)=d Thg
TDX "=~ TDY &
344. c1opocM=coopoc™ e m*(cq)oTou*(n)=m*(ca)oTou*(n). L \ L
/
Given g and o' as above, the existence of a vertical arrow p : mu*A—> vEKy/ Y — —§ e 7,
that g=poc™, is an immediate consequence of the fact that 6™ is weakly cocarte n XL L n,
J
- DZ
If the weak BC-condition is satisfied - i.e. if there is e:v*kiA— muu*A T Tu — T Tr K
g=poc™ and oM=¢og - an interpolant can be defined as in 11.3a.111. The 9
oM=eopog™ is sufficient to let the argument given there go through. Dg
DX ——-——»Dg DY /4
Conversely, if the interpolation condition is satisfied, an arrow e : v¥kiA —> myu X Y
be defined as in I1.3a.112: 1
I > ] = K

e:= cnov*(‘an),
where (an, By, c) is an interpolant of 1 : u*A —> m*myu*A. 33w just says ow (Dg,r)e 1€ (1Y,1Z) is a factorisation over r of {q,ru) through (Dg,u). {Dg,r) is an
oM=gog, since ‘N=id.e ow in 1€ from 1Y to 1Z because
1ZoDg = D(Mzog) = DTroDny =rolY.
d (Dg,r)o(Dg,u) = {q,ru) because

DgoD¢=D(‘q)=q

The strong interpolation condition just means that for arrows p and e given by th

Beck-Chevalley property holds poe =

+ From oM=gopoc™ follows $VopocM=0Yopoeopoom, and then pecM=poesp
. . . . 2. 1f € has the d-coproducts, then 1€ has the weak d-coproducts.
34, now tells that the interpolation is strong iff poe=id.

et us first introduce some notation (for the weak cocartesian liftings constructed

Propositions. Let d be a stable subcategory of 8, such that 1= d. ve)
e):

21, If € is a d-bifibration, 1€ is a weak d-bifibration. pi(X) = l((pO‘X)!TDX)’
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o} i=DoPoHX,
for arbitrary ped.
Consider a commutative square S=(k,m,u,v) in B, with k,med. The following
diagram shows how we construct an interpolant <n,kg(1A),c> for an arbitrary arrow

de1€1(u*(tA), m*(iC)). (In fact, we should write "(d,id)" instead of "d".)

Since e
v¥ki(1A) = v*t((kOLA)gT) = t(v*kglAgT) = 1(mgu*tAgT>

(m (s ) = mi(uwea)) =

mu*(A),

BC

R

[}
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we can choose the pullback v¥*kj(1A) so that the equality v¥ki(1A)=mju*(1A) holds. The
arrow

ce1€p(v*ki(1A), 1C)
is now induced as a factorisation of {(D¥fod,m) € 1€ (u*(tA), LC) through the weakly

cocartesian arrow (6,1, ,m) € 1€ (u*(1A), mu*(tA)).
It remains to prove that every initial interpolant is strong.

It is easy to see that <T],kg(LA),C> is an initial interpolant iff (o¥,k)e 1€ (1A ki(1A)) is

(strongly) initial, i.e. a cocartesian lifting. If this is the case, then there must be an iso
ap=" for any other initial interpolant {ag,Bo,cp). To prove that the interpolation in 1€ is
strong, it is sufficient to show that ¢, determined as above, is unique (up to
isomorphism) if (o¥ k) is (strongly) cocartesian.

By the lemma below, (le,k) is tE-cocartesian iff eye €x,0A)(TDY,Y) is E-
cocartesian, for Y:=(kotA); TDA.

But if £y is a cocartesian lifting of kj(1A), then gyxy = v¥ey € E(TDv*Y,v*Y) must be

a cocartesian lifting of v*k (1A)=mu*(1A). Applying the lemma again, we conclude that
the arrow (G, ,m) is 1E-cocartesian, i.e. strongly initial. Therefore, the factorisation

ce 1€M(m1u*(LA), 1C) through it must be unique.e

Lemma. The lifting {D¢,u) constructed in proprosition 21 is strongly initial - i.e. a 1E-
cocartesian arrow - iff the counit eye €,v(TDY,Y) is E-cocartesian.

+ To every (h,r)e 1€(1Y,1Z) corresponds a unique ‘he ELTDY,Z). If ey is cocartesian,
then ‘h=gogy; thus h=Dg.

Conversely, if for every {q,ru)e 1€ 01X ,1Z), {(q,ru)=(h,r)o(D¢,u) implies h=Dg, then
‘h=goey holds for every arrow ‘he £(TDY,Z). This g is unique as a factorisation of ‘h
through ey, because it is also the factorisation of ‘q=‘ho TDg through cocartesian
¢=eyoTDC.

A final remark. The weak coproducts are to be used for an interpretation of the type
theoretical weak Y. (Cf. IV.1.2.) And nothing less than the full Beck-Chevalley
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property can allow a sound interpretation of variables (in view of the explanations iy
11.3.3). This is why we had to use the strong interpolation condition in the definition of ¢) € is fully generated by its terminal objects.
coproducts. (And this is why we went out of our way in I1.3a, to characterize the Beck. d) «t» prescrves the fibrewise exponents.
Chevalley condition without direct images.)
e) € has fibrewise exponents
X-Y =1XxX*(Y).
(If it has fibrewise binary products, they are
X x Y =z1XnX*(Y).)

« (2)=>(b): If € is (equivalent to) and arrow fibration with terminal objects, then
3. Which comprehensive fibrations are arrow fibrations? gy = (id,u) € €(Ids*Dom(u), u)

is clearly cocartesian.

In other words, when is the comprehension functor «1»:€ —> 1€ an equivalence of Z
categories? - Exactly when € has and «1» preserves the 1-coproducts of terminal q P ”
objects! -~ g q
] - [
id z

Definition. Let E:€ — B be a fibration with terminal objects. For every X,Ye €},
each arrow fe £1(X,Y) induces the functions Ids*Dom(u) g u

Qv Ey(TX)—> EW(T,Y) : q->foq 1‘<
naturally in ve |B/I}. Hence the mapping I u d r

Gxy: €1(X,Y) — Nat (HOMg(T.X), HOMg(T,Y))

We say that € is generated by its terminal objects if all G xy are injections. It is fully (b)=>(a): If exe €(TDX,X) is cocartesian then every (u,v)e 1€ (1X,1Y) induces a

unique arrow ge £(X,Y), over v such that eyoTu = gogx.

generated by its terminal objects if all G xy are bijections.

TDY —&— Y

v

Proposition. For every comprehensive fibration E with fibrewise terminal objects the

conditions listed below are related:

(@)= (b)e(c). TDX —&——e-X
If E has fibrewise cartesian closed structure, then py—Y o EY
@y (d) u g

holds too. If E has t-products, then DX—X . EX

(a)e=(e). .
From the last equality follows that Dg = u (since D*e=id); thus (u,v) = «i»(g).

a) «»:€ —>1€ is an equivalence of categories.

(a)=(c): 1X is a representant of HOMg(T ,X). By the Yoneda lemma
b) The counits exe €(TDX,X) of the adjunction T~ D are cocartesian. Nat (HOME(T,X), HOMEg(T ,Y)) = B/10XY).
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This correspondence is realized by the mapping
¢ > @x(ex)e Ex(TDX,Y) = B/IAX,1Y).
(exe €,x(TDX,X) is here the generic arrow, i.e. the one which corresponds to id,x.j

Postcomposing on G xy, we get
€1(X,Y)—> Nat (HOMEg(T ,X),HOME(T,Y) ) = € x(TDX,Y) = B/I(1X 1Y)

f = G xy() > foex > Df

(Dfe B/IX,1Y) was defined to be the arrow corresponding to fogx. Cf. 3.3.) Since

«»(f)=Df, we see that
«» is full and faithful iff G xy are bijections for all X,Ye |€j].
But «u» is full and faithful iff all «i» are.

(d)=>(a): «i»1: €;—>1€1 s full and faithful because the correspondence
E10LY) = €T, X~Y) = B/I(d, UX-Y) = 1€131d, 1X—-1Y) =
= 110X ,1Y)
is again realized by f—>Df.

(@)=(a): £1(X,Y)

R

E(T,X>Y) = 81(T, 1X*LX*(Y)) =
Epx(1X* T, 1X*Y) = €x (T,Y) = B/IaX,1Y) =
=1E1X,1Y).

[

(a)=>(e): A fibrewise equivalence preserves and reflects fibrewise cartesian closed

structure and horizontal structure. Thus
€ has l-products = 1€ has L-products 4 xov= X1 X*(Y)in & =
= X->Y21XsuX*(Y)in €.

The step (#) is sound because axa*(b) is the exponent a— b in every arrow fibration

a/ B with terminal objects and Q-products (all intrinsic):
all@ab) = alK(d, a*(b)) = alK(a*(d), a*(b)) = all(id, axa*(b)).»
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In this chapter we should capitalize the investments in "abstract nonsense", and
interprete the theory of predicates. In section 1, all the previously described concepts
are put together, and a categorical meaning is formally assigned to each operation of the
theory of predicates. The notion of a caregory of predicates is introduced: it is a small
hyperfibration, with the rcce structure in the base as well as in the fibres. The theory of
predicates is the natural logical syntax for categories of predicates.

In section 2 we show how a given theory of predicates generates a category of
predicates. This semantical construction is then proved to be complete. The proof has
been built according to a standard scheme (cf. Lambek-Scott 1986, 1.11, 11.13-16), and
upon the standard completeness result for the Martin-Lof type theory (Seely 1984).

In the last section, a first effort has been made to put the syntax and semantic together at
work - to speak a natural language of predicates. At the end of this section, we show
how to produce "mathematical" examples of proper categories of predicates. A category
of constructive internal presheaves is constructed in an arbitrary category of predicates.
(In particular, this can be done in each of the well known "mathematical” models for the

theory of constructions.)
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1. Interpretation

1. Conceptual elements of the interpretation.

Sorts, types and terms. The idea for a categorical interpretation of type theories
was conceived in late sixties, in Lambek's papers on deductive systems (cf.
bibliography in Lambek-Scott 1986). It points out the basic analogy:

types >  objects,

terms > arrows,

substitution >  composition.
Of course, this works only for simple type theories, with no variable types. A model
assignment of such a type theory A in a cartesian category € is a mapping

[.1:A—¢€,
which respects the basic analogy, and satisfies the conditions:

[X:P=q(X):Ql e €(LPT, [QI),

[q[X:=p]l = [qleLpI.
The central result at this level is the correspondence of simple typed A-calculi and
cartesian closed categories (Lambek-Scott 1986, chapter I).

The base, and most of the superstructure needed for the categorical interpretation of
variable types, was contained in Lawvere's articles on hyperdoctrines (1969, 1970). In
principle, variable types are interpreted as objects of variable categories. The basic
analogy is now extended:

sorts >  categories

variations > fibrations

types varying objects (and arrows)
over a type P >

(and their terms) of the fibre over [PI

substitution in
st —

a variable type inverse images

183
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To produce a model for a type theory A, one first chooses a category LAT for each of
its sorts A. For every A, the class A of A-types and terms, will be interpreted
according to the basic analogy by a model assignment
[..Jp:Ap—> [AL
A variation A'A" of types, which is allowed in A, will be represented by a variation of
categories: a fibration
TA'A™] : LA"T—> LA
must be chosen. The model assignments must now satisfy the conditions:
[X:P:A'=Q(X):A"T e [TA"Igp1l,
[X:P:A'x:Qp:A"=5q(x):Q:A"T e LA Irp1([QoT, [Q;1),
Substitution is interpreted by inverse images: for
[pI=LY:R:A'=p(Y):P:A'T e [A'I(IRT, [PT),
[Y:R:A=Q[X:=p(Y)]:A"T = [pI*L[ QI e [[A" IRl

(N.B. To add a dummy variable Y in Q, means to substitute Q[X:=no{X,Y)] (also
written Q(YYJ), i.e. to take an inverse image along a projection. In semantics, this is
done all the time: types and terms must be brought under the same context - in the same
fibre. It is therefore helpful to regard a type Q together with all its instances with
dummies, i.e. to think of LQI rogether with all its inverse images along projections.)

The inheritance of variation is interpreted by composing fibrations: the contexts with
more than one layer are represented using towers of fibrations. For instance, if besides
variation A"A’, theory A allows a variation A"A™, a fibration LA"A"1: LA™ 1 — [A"]
will be used to assign

[X:P:A", Y:IQX)A"=S(X,Y):A"T e [[A" Irqil.

A particular case are variations AA. Each of them is interpreted using an (intrinsic)
arrow fibration [AAJ over category LAT. This is the well known representation of
dependent types by display arrows - the well ploughed ground of categorical semantics
for Martin-Lof type theories. The main sources are: Seely 1984, Cartmell 1986,
Hyland-Pitts 1987; the literature is quite extensive.
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The complex contexts of dependent types of sort A can now be interpreted within the

category LAT, as trees built of arrows (since a fibrewise arrow fibration over an arrow

fibration is just another arrow fibration).

To resume - for a categorical interpretation of the theory of predicates, we shall need

two categories:
8 = [O1 for sets, and
€ =L Q7J for propositions.
The three variations which this theory allows will demand three fibrations:
E =[LOQ] : € —> B for predicates,
Va =[6061:a/B-—> B fordependent sets, and
Vr  =LQQT:r/€-> € for dependent propositions.

Sums and products. Type theoretical operations are, of course, interpreted by some

adjunctions.

It is implicite in the basic analogy that the type theoretical machinery of variables must
use finite products:

[X:P,Y:R=q(X,Y):Ql € €(IPIxIRT, [QT).
A-abstraction is then interpreted by the exponents - right adjoints of the product
functors:

[Y:R=AX.q(X,Y):P>Ql := [ql‘e €(IRT, [PI-LQI),
(As always, f* is the right transpose of f.)

Just a step further is Lawvere's observation (1969) that the universal quantifier is the
right adjoint to the substitution, while the existential quantifier is its left adjoint. See
11.3.1. The quantifiers, as presented in our type theory, will thus be interpreted by the
horizontal structure of hyperfibration E = [@Q].

With the restrictions from definition 1.1.5, the quantifier rules just express an
adjointness (see below). The X-rules for ®® and QQ, on the other hand, are

essentially stronger, and their interpretations demand more than just adjunctions.
Namely, they allow a first projection no:=AZ.v(Z,(X,Y).X) to be formed; for every
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IV. Semantics

type P there is a bijective correspondence between the types depending on P and the
projections g on P:

(x:P=Q) > (Y:IX:P.Q=ngY:P).
On the side of semantics, a dependent type becomes synonymous with a particular term
- the projection from its sum: this type and this term are interpreted by the same arrow!,
(The basic analogy "types+> objects” is preserved by changing the point of view: while
q=LY:ZX:P.Q=mpY1 is regarded as an arrow, g = [X:P=>Q1I is an object of arrow
category.) This determines the interpretation of YAA:

I[EX:P.QY =DomlY: 2 X:P.Q=nyY:PT = DomlX:P=>Q1.
Moreover, since a composition of two first projections is (isomorphic to) a first

projection,

[2Z:(3X:P.Q).R]1 = [¥X:P.YY:QR]

Ery1
[Z:3X:P.Q=R]1 o
[[ﬂ()]]

[¥x:p.Ql [X:P=XY:QRI1
[rol
[X:P=Q] -
[Pl

the distinguished class of arrows which interprete the projections and the dependent
types must be closed under the composition. Hence, XAA will be interpreted by
composition. - Recalling I1.4, the sums and products of sets and of propositions will be
interpreted by the intrinsic horizontal structures of arrow hyperfibrations Va and Vr

respectively.

Polymorphism is type-theoretically expressed by the axiom :@, i.e. by the fact that
every proposition is a type (of the sort Q) and a term (of the type Q) at the same time. A

category theoretical expression of this "impredicativity" seems to be the requirement that

n terms of II.1.1, the indexed set {yx| xe B} is identified with the projection

D> Bix,c)d x.

x€B
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the fibred category E of propositions over sets ig
o(XK) as a type is interpreted by an object A=[ ]
category €, the corresponding arrow "A e 8B ( [K

globallyfsm
€ [€rxql of
1. Q) appears

the same proposition as a rerm. (The object Qe | B which repre;
’ I€presen

OBE, is assigned to the type Q:0.) e fied olass

Extent operation of the theory of predicates wil] be int

: erpreted e
fibred category E=L®Q1. So E will have to be compr P by the ex

. = chensive. Since it is fibrewise
cartesian closed, it will be locally small (fact L2.4).

Remark. This parallelism of type theory and category theory suggests that they are like

' : things. The point s, as we explained in the
introduction, that they approach these things differently: ¢

two languages which refer to the same
’ ‘ ’ ype theory studies some
operations as structure, while they arise in category theory from some properties, This
difference is, of course, the reason why it is worth-while to speak both

o ) languages. But
itis also the source of various problems.

For instance, the mapping " _": |€{|—> B(1,Q), which Tepresents objects of a globally
small fibration by arrows (as defined in 111.2.2), is generally not injective, This means
that two propositions could be interpreted differently "as types", but equally "as terms"!
The solution of this problem comes from an unexpected direction. The requrements that
a fibred category of predicates is globally and locally small, add up (by proposition
111.2.2) to tell that it must be small, i.e. equivalent to one in the form VQ: B/Q—> B.
Moving along this equivalence solves the problem: the objects of (B/Q)] are the
arrows from B(I,Qq), and " _" can now be taken to be identity, Moral: For the
interpretation of type theory, it is not inessential which of the equivalent "copies” of a
category is taken.

This is emphasised even stron ger by the fact that rype theory demands split fibrations.
Namely, one of the basic principles of substitution is that that PIX:=u()][Y:=v(Z)] is
identical with P{X:=u[Y:=v(Z)]]. Interpreting substitution by inverse images, this
means that v*u*P=(uv)*P must hold.

Taken in the form V&, the fibration E=[OQI is, of course, split. On the other hand,
the splittings of the arrow fibrations Va=[®®7 and Vr=[QQ1 should have to be
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1V. Semantics 1. Interpretation

explicite: in fact, they should be contextual categories (Cartmell 1986, 14, Stre
1988, 1.1). It has, however, become a tradition in interpreting Martin-Lof type:t
to neglect this splitting requirement, and to consider stable families instead of conte
categories. The interpretants of PIX:=u(Y)][Y:=v(Z)] and P[X:=u[Y:=v(Z)]} m

where D:€ —> B is any extent functor of €. Moreover, when € is an arrow fibration,
lemma implies that 1=, The definitions can now be resumed:

category of predicates :=

be identical, but just isomorphic. Quietly, the semantics seems to have .re| a-recc B +
syntactical principle in our minds. r-rece € +
small Q-hyperfibration E:€ — B, such that
E@) cid,
Dr)=a;

category of constructions ;= €A £ B, such that
2. Categories of predicates. B is Q-rece +

Definitions. Let a category B with a terminal object be relatively cartesian clos r-reee +

respect to a display family a. A category of predicates over (a category of set.s’ji
small a-hyperfibration E:€ —> B with terminal objects, such that its class of ex

Vr is a small A-hyperfibration.

, is an elementary topos iff it constitutes a category of constructions with A=38 and
contained in 4. Moreover, the category € must be relatively cartesian close
respect to a vertical display family T".
me characterisations of categories of constructions among categories of predicates

A category of predicates which is equivalent to an arrow fibration is called a care 1 be found in I11.4.3.
constructions.
om II1.4.1 and 111.4.2, it follows that the extent fibration 1E of an arbitrary category

Remarks. Since a is a display family, B must be cartesian closed. Since predicates E misses being a category of constructions by very little: it has all the

vertical display family, € is fibrewise cartesian closed (+ using IL.4.7+). iicture as it should, excepr that its coproducts may be weak. In terms of the

Corollary TIL4.14 tells that the extent 1€ of a category of predicates £ | terpretation which we are about to give, this means that 1E will support the theory of

equivalent to a small fibrewise cartesian closed category too. The same corollary
says that 1€ has a-products. Proposition 111.4.22 tells that it has weak A-cop

nstructions, with the exception of the rule NX.OL; or the strong theory of predicates
ithout n3.

ources. The structure of a category of constructions has been described in detail by

From the lemma below, it follows that the requirement ' . e
ca ; yland and Pitts (1987); they only did not give it a name. Ehrhard's (1989) dictos is
- . E ‘uiva]ent to a category of constructions with Q=8. Streicher's (1988, 1.16) doctrine
imposed upon the class 1 of extents by the definition of a category of predicate; . )
_constructions, on the other hand, conceptually corresponds to a category of

equivalently be expressed by demanding
Dredaq,

onstructions without any left direct images (i.e., replace the words "rcec” and
perfibration" in the definition by "right bifibration"). However, this correspondence

Ot precise, since Streicher is working with contextual categories, which carry more
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structure. (A contextual category is a split arrow fibration Va:d /B—> B, such that
the mapping Dom:|a/B|—> |Bl| has an inverse p, and the endomorphism
f:=Codop: |Bl—> |B] induces a tree structure on B, with the terminal object 1 as root -
i.e. for every Ie |Bl, the orbit {I, f(I), f2(I), £3(I)...} is finite and contains 1=f(1).)

3. Simplifying contexts.

One of the crucial philosophical problems in the categorical semantics of type theories is
“explaining away the variables" (cf. Lambek 1980, section 1). Variables are an
eminently syntactical part of logic ("universalia"); an honest category doesn't seem to be
Lemma. Let E:€ — B be a comprehensive fibration with terminal objects. (U is the a natural environment for them.

class of its extents, and D(—T— E) is an extent functor.)

However, if a type theory is strong enough, the variables which occur in a type or term
i) D(r) 1 holds for every stable family r €. can be bound, and then unbound without any loss. In the meantime, an interpretation
can be defined, not having to cope with them. For instance, every extensional typed A-
i) If T is a display family, Uis the smallest saturated family containing D("). calculus A can be recovered from its class Ag of closed terms, and a notion of

+ 1) Consider Be £1(B,A)r-. Lot TA:TDA —> LA*(A) be the vertical factorisation o ¢ application on them. A model assignment [_1:A—> € is thus uniquely determined by

gac £, A(TDALA), and define B by the pullback of 1A*(() along TA,
A
)

RSN, " S——— © {

AT
A*(B)
91",

B —
/A
€a
T DA

This pullback must exist in €pa because 1A*(B)eI"pa, and I'pa=EDANT is a stable
family. From DO = Dea = idpa, follows D9 =idpp, because a square with t
vertical and two cartesian arrows (at the opposite sides) must be a pullback:(

11.2.22), and D preserves pullbacks. Hence
1B; = Dnips = D(Nproea) = D(Bod'feq) = DP.

its restriction to Ag, assuming that the interpretation of the application is known.

By another sort of binding, using the surjective pairing, any context can be reduced to
one variable in a simple single-sorted type theory (with no dependent types):

Xo:Po,...Xpn-1:Pn-1 = f(Xp,....Xn-1) : Q

l
Z:xPj = f(rgZ,....,nn12) : Q.

€n
Assuming that the pairing and projections are interpreted in a cartesian category € by
the appropriate cartesian operations, a model assignment will be determined by its
restriction to the class of terms with a single variable. Since [ x PjI:= x LP;1l, from

€n 1En
[fle e(r[,x P;1, [QI
€n

we get e.g.
[AXofI:=LfI‘c € (.x [P;l, [Pol— l[Q]]);
0
and for [s1e E(I[S]l,l[P()]]), there is

i) If I contains all the fibrewise terminal arrows 1xe Egx(X, TEX), then D(") spars lIf[Xo:--s]]]:=l[f]10(Es].;<O[[PiII)e e (Eslifo[“’i]” I[Q]l).
1 1

1, because X =Dnx.»

By the lemmas 1.1.31-2, all this can immediately be extended to dependent types:
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a packing of a function I'g, Wg = m:M] in two parts will be
XK, Z:Mp = m:Mjy,

a packing of a proposition I'g,I"q = 1 will be

XK, xiot =vy;

XO:P():XI:PI(XO),'“’XH:PH(XH-l) = f(X(),--an) : Q(XO?'“9XH)
\!
Z:3X0:Po.(EX1...(EXn-1:Py-1.Pn)) = £(0Z, . nZ) : QUNOZ...nZ).

and a packing in two parts of a proof I'g,I'q,Wq = ¢:y; will be

. sum in this last context is isomorphic with
Note that the su p XK, 0t 2 = iy,

ZZn_1:(ZZn_2(‘..(EZl:(ZXO:Po.P1).P2)...Pn_2)‘Pn.1).Pn.

Top-down, bottom-up, and all the mixed applications of 2, on a sequential single-sor Unpacking. A set

context lead to isomorphic results. XK Y:LX)=>MX,Y)
) will be packed to
Terminology. To bind a context T means to apply the operation SAA somewhcxj Z:SXK LX) =M(mZ,m1Z)

it. We say that a context is bound when this cannot be done (any more). A bo

and then interpreted by an Q-arrow
context obtained from I" will be denoted by (.

IMIelallTX:K.LX)I.
Before this, an interpretation of X:K=L(X)
[LIelallKI|

must have been known, since [ X X:K.L(X)1 has been derived from it.

We say that a type or term is packed when it is presented with a bound context. To
with the terms more naturally, we shall sometimes pack them in two parts. Given ;
I' = R:A, and
T¥ = r:RIA,

To unpack M means to look at it as depending on L and K, and not on YX:K.L. To
where all the elements of ¥ are in the sort A, the termris packed in two parts when

unpack [MT means to view it as an arrow to [LT, and not to I3 X:K.LJ.
IX7:(3X:K.L)yMI

M1

presented in the form
(), T(¥) = rR:A.
(3(¥) is of course the result of applying XAA in P as long as possible.)

[L1
Packed types and terms. Clearly, every context can be bound. Different approach I[¥X:K1LI— [KI

to the sequentialisation and binding produce isomorphic results. Le.,

IMIe {alIXKIILT,
where (@lIKI)JILLT is the [LI-fibre of the full subfibration
a/(allKI)—> (@lIKI) of V(alLKI) spanned by a. (Remember that a L IKT is

the LK -fibre of the full subfibration a/B—> B of VB, spanned by Q: in other
words, of a/(al1)— (al1), since Bzall)

A sequentialized context in a theory of predicates must be in the form
I'=Te, I'a
where
Te := Xo:Ko, X1:K1,.., Xm:Km),
T = x0:00, X101, Xn:0n),
m,ne 0. Clearly X(['g) is in the form (X:K); () is (XK, x:01). Remark. Packing makes no sense in the theory of constructions, since a packed
context can still be arbitrarily long there. A formal interpretation of the theory of

constructions and a description of its term models tend to be quite a bit more
complicated.

A packing of a set 'g = M will be in the form
X:K = My;
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411. Constants.

[1:01:=1e|B|
[X:K=@:11 := @pkye B(IKI,1)
4. Definition of the interpretation. [T:Q1:=Tel€l
[X:K, x:0=>¢:T1 := gpg1e €rxy (Lo, TIKID)
The essence of the interpretation is the fixed correspondence between the operation [Q:01 := Qc|B|

the theory of predicates, and those which constitute the structure of a category
412, Variables.
[X:PI :=idrp
[E:Ql :=EeclEql

predicates. Every model assignment
[_I:A—E

of a category of predicates E to a theory of predicates A is defined by a strucktur‘

recursion which follows this correspondence of operations. The ground case of

. . : . . Generator ms).
recursion - the interpretation of the generators of A - must be chosen, respecting som 413 s (atoms)

I[X:K = Ml e lallKI|

[X:K, Z:Mg = m:M;1 e alLKI (IMol, EM;1)
[XK, x:a=y]e [rrgpdlall

[X:K, x:t, zyg = byiJ e rexdlod (Dyol, [yi1)

conditions (413 below).

Note, however, that the generators are added dynamically in type theory: a basic typ
term may vary over derived types. Of course, a generator can be assigned a meanin

model only when all the elements of its context have been interpreted. But clearly, o
a Y 42. Substitution. If I'=r:R, and XPe T, the substitution of p(ZQ):P for XP

produces T'=mR[XP:=p], with ZQ replacing XP in [". It is routine to show that p
induces a unique term from Z(f") to Z(I"). Just as in 2 above, it is sufficient to take into

is a well founded process.

In order to simplify the assignment of an interpretation to a generator, we shall alwa

pack it. If the interpretation of a context I' is known, the interpretation of X(I) can account the substitution in packed types and terms. We now suppose that they are

readily obtained. And when the interpretation of a packed type or term is known, it ¢z packed in one part.

easily be unpacked in the model.
421. A function

u:=[Z:H=uwKIe B(HK),

is substituted for the element variable XX in [IX:K = m:M1 by the Va-inverse
images, i.e. pullbacks:

IM[XK:=uZH)]1  :=u*IMIe lalHl,

[mXK:=u@ZH)]1 = uw*Iml e alH(id, u*IM1).

Let us now fix a theory of predicates A, and a category of predicates E, and list {

items of the interpretation.

41. Types and terms. To simplify notation, we shall often use the same name for

type/term and its interpretant:
[KI =K,
[X:K=0ol =q,

422, Before u is substituted for XK in [X:K,x:a0 = ¢zyle IrgdLall, it must be
LXK x:o=>f(X x):BX)1 = £, etc.

substituted in Eale [€k[. The E-inverse images do this,
Co[XKi=u(ZH)T =u*Cad e l€yl,
[y XK;:=u(zH)]1 = uwrlyl e [rglu*al,
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[XKmu@yl = wlel e rygbuta (id, u*IyD). f:=Ifl e €3y, L*g),

g:=[gle Ex(Lyy, ).

{

= cht,i I&r)z?K YLzy=fole €Ly L*0), The quantification will be interpreted by:
be given, where

L:=IX:K=LI e lalKl

SL = [3X:K.LT = Dom(L),

yi=[yle l€xl ' N
To substitute f for x® in [X:K,x:a0 = eyl we first add dummy variable Y in c?
ie. take the E-inverse image of Lczyl along L. When all the types and terms are in {|

same fibre €y, vertical pullbacks, i.e. Vryp-inverse images are used to interpre

431. the right bifibration structure of E:
IVY: Lyl :=Lsye l€kl,

IAY.cl =cfe Ex(B, Lxy),
[dyl =‘de Ex (L*B, V);

432, the left bifibration structure of E:

I3v.Lyl  :=Lyye l€x,
substitution. Lv(w,(Y,z).fI:= ‘f e Ex(Lry, ¢)
[y[x%:=f(z¥)] 1 = f*(L*lI“{Il) e Irzpdwl I{Y,z)1 =1e €xr(y, L*Lyy).
Lol o= 0(LALel) e rady (id, £07D).

To check the soundness, note that

BY: (AY.)Y=c¢ means ‘(c‘) =c, and

nv: AY.[dY)=d is (‘'d) =d;

Ba: v(Y.,2).(Y,2).0) =f is translated in L*(‘f)on = f, and
nE vw,(Y,2).8(Y.2)) = g(w) in  “(L¥g)en)=g.

(By 11.2.25, inverse image along L + €xr-pullback along f = €-pullback a
Blofe €10y, 00).)

43. Quantifiers. A variable which is to be bound must be unpacked. We shall n
consider a partially unpacked proposition
XKY LX) =7,
with an interpretant
yi=[IX:K L=yl e |€3Ll,

44, Sums and products. The Martin-Lof theories of sets and of propositions,
ntained in the theory of predicates - its ©@@- and QQ-fragments - are interpreted by
e relatively cartesian closed structures in the base B, and in the fibres €x respectively
n the standard way, exhaustively treated in the literature (referred to in part 1 above).
opositions must be brought in the same fibre (under the same context of sets) using
t ¢ E-inverse images (i.e. adding dummy variables).

Furthermore, we shall need
X:K,Y:L,y:BCY) = ¢,
X:K,y:p = &:VY:Ly
XK, Y:L,zy= f:(p(X/,/z/),
XK w:AY:Ly = go(w) N

(YLe DV(B) means that the condition Yle MIN(cy) is still satisfied, although ther

yBe DV(c). YL,2Y%e DV(9) is the familiar condition on E3.) Given B, pel€kl, th

{45. Extents. For o = [X:K = alelfkl and a = [IX:K,Y:L = a:ale Ex.(T,L*)
define

[X:K = 101 = w e ladkl,
[X:K,Y:L= da:t0l D(®Lea) e adK(L10).
r arbitrary u = [X:K,Y:L = unole alK(L o),
IXXKYL = tuol := u¥(tade €y (T, L*q),

]

restrictions just mean
c:=Lcl e ExL(L*B, V),
d:=0dl e €x(B, L+
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i L
where Tt € € DQ(TDOL, L(l*(OL)) is the vertical component of the counj ) o Ly
]
Eq€ ELQ(TD(X,“). l
| ]
The arrow [8al isindeed an element of adK(L,1x) because £ ok | Lv'(w, (Y,2).0)]
wLoD(ﬁI&oa) = D(naoﬁl&oa) = D(TE(’SJ&)OT\L*an) =DTL=L. / '
L*¢'
To check the interpretation of the conversion rules, note that the adjunction T=4 )
4 E 3 L ]
induces o'(Y,2) Ly 5 ¢
£(TIL, 0) 30kea > D@Lea)  €B(ZL, Da) Loy,
B(ZL, Doy > u > olouk(tw) e&(TIL, ). N . ~ Ly

4}
The rule

B O(tu) = u' Loz - u. which just says that ()" = while Is this interpretation well-defined? It has been given by an induction along the
is translated to the equation D(¥-ou*(ta)) = u, derivability relation (+); while only a type or a term (with its context) is actually being
n:  wda)=a

L , interpreted. Different derivations might result in different interpretants. To prove that
; irement that (D ﬁLoa))*Ta = a, which is true, because the | p P
boils down to the requirement that ( ( , {

_this will not be the case, one should show that any two operations which commute in

side is the vertical component of ‘((ﬁLW)‘) = 9hoa. the theory (so that they could be applied in various orders and produce different
lated to the notation from 432, proposition 1.1.52 tells that a theory erivations of a type or term) are interpreted by operations which commute in all

Remark. Translated o ) if the restriction wg DV(@) is dropped. This me odels. For instance, the Beck-Chevalley condition interpretes the commutativity of the
predicates does not become stronger I fhe T uantifiers with substitution (as we explained in I1.3.3). The fact that the extents are
_stable under the inverse images (II1.2.5) reflects the commutation of the extent
operation and substitution in the theory. And it follows from the propositions ITL.4.1-2

_that the relation of the extents and quantifiers, sums and products is the same as in the
_theory, as described in 1.1.8.

that our categorical interpretation must remain sound if we consider
XK, w:AY:Ly = ¢'(w), and
X:K,Y:L,zy= £(X,Y,2):0'((Y,2)),
i.e. the interpretants
¢' e gLl
¢ (Y2 =n*(L*¢) e IrzLiy, and
f e rody (d, 9'(Y.20)-
The term
X:K,w:3aAY:Ly= Vviw,(Y,2).f) : ¢, :’
constructed in 1.1.52 will be interpreted by the vertical factorisation shown at

ut a detailed proof of this waits to be written down.

following diagram. . Internal language of a category of predicates.

y this interpretation, to every category of predicates E corresponds a theory of
tedicates A(E) in a natural way:

- the packed sets and functions of A(E) are the objects and arrows of a/B;

1
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1V. Semantics

) . 2. Term models
- the packed propositions and proofs of A(E) are the objects and arrows of p

- the operations of A(E) are defined by the structure of E, as indicated m

interpretation.
Using projections, the variable types and terms are unpacked. They could have b

defined directly too, as appropriate well-founded diagrams inQ and inT. 1. From a theory to a category of predicates.

The canonical model assignment [_T1:A(E)—> E is the identical mapping: to. In the preceding section we saw how to produce a theory of predicates, given a
packed type/term, it assigns that same type/term, regarded as object/arrow. For e aregory of predicates. Now we go the other way round.

theory of predicates A' and each model assignment [_1"A"—> E, there is a uni
translation ®:A'—> A, which preserves all the operations of the theory of predic:

et A be a theory of predicates. The "free" category of predicates E(A):€ — B
enerated by A consists of the following data.
and such that
.0 =L To®.
To interprete a theory of predicates in E means to translate it into AE).

1. Base category B:

Bl  :=closed sets K,

‘ B(1,)) :=closed functions w:I-1J.
In this sense, A(E) is the internal language of category of predicates E. Of course, the functions are taken modulo conversion (=). Identities, composition, and
the canonical cartesian closed structure of B are recognized by the notation in the theory

f predicates. (Cf. 1.1.2)

12. The class a < B of display maps consists of all the terms (modulo conversion)
somorphic to some first projection mpe B(XZX:K.L, K):
a = {w:I-7T13 sets K, L(XK) T isos ::I-» I XKL, K- J. u=jomgoi}

4 is a stable display subcategory (cf. 11.4.3). It is saturated, and satisfies the display
ondition because the identities and the terminal arrows are special projections. It is

table because projections are.
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2. Term models

N . o2)
N <3:mn> l &(2)
EY:M.LE\_/_(]Y)) <WZX:K.L(X) oAvZ) oX)
Lf(vZ) l £(X)
- o Blu(vZ)) BuX) B(Y)
v v u

¢ is fibred over B by the obvious projection

E:€ > B: o(XK) K, (u,f)—> u.

Since the substitution induces its inverse images and cartesian arrows:
w(BY)) o= px) |
ﬂ[lsl = (u, idg),

The diagram showing that the projections are closed under composition has been dra

in 1.1. Putting all this together, the functor
Va:a/8—8
is an intrinsic left a-bifibration. It is easy to check that it is a right Q-bifibratio

o L . B(EXK.L, K) is fibration is split (and normal). Each fibre €x has a canonical cartesian closed
=mp € DXL, tructure, preserved by the inverse images.
M =mpe B(ZZ:(EXKL)M, TX:K.L),
the right direct image is 4, The class 'k € €k of display maps will be

LM =mpe B(ZXKITYLM, K). rg:= kidK, f:Y(XK)—><P(XK)> [ 3 isos iiy— Zx®.B, jra— o, f=j°750°i}

K is an I'g-rcce by the same argument as in 12. Since substitution commutes with all

e operations which constitute the rcce structure of €k, the category € is fibrewise I'-
cc, for

= U rkg
KelB|
y I1.4.7, € is an I"-rece.

So B is an @-rcce (by proposition 114.6).

13. The fibred category of predicates € consists of
14 = the predicates ¢(XX), K closed

1 X! th
e(axh), pY)) = {<u;1—> I, foXD- Baxh) 1 'or 1(y’sve§’iab1e of

(The pairing operation in this definition comes, of course, from the metalanguage.)
composition in € is (just like in the Grothendieck construction):

(u,f)o(v,g) = oy, v¥(D)og).

5. E is an A-hyperfibration. Consider a projection L=nge B(ZX:K.L,K), and an
bject e |€3x:k Ll. The predicate Z:3X:K.L=Y(Z) can be unpacked as ,

X:K, Y:LX)=Y7(X,Y)).

¢ direct images are now

Ly =3Y:Ly(X)Y)), and
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2. Term models

Ly = VYLK Y.

= }\,W.<(UOVORO)W, (Sof((vonO)W)OTOSOg(nOW)O‘ConI)W> -
The canonical cocartesian and opcartesian liftings are:

7Y = AW.((uovorg)W, (8of((vomp)W)o gROW)otom )W) =
o%( = <L, Ax{T1Z, x): ¥(Z) - 3Y:Ly(noZ, >, o
vy =0/ ek, where

heck T C.

- /i VY :LyY(moZ, Y )= YD) Now we ¢

eI}: = <1d, Ay.y(r1Z) Yo > nKi= AXK (XK, g) e B(K, CTK),

eo(x¥) = (n0:Co—~K, (mZCP):¢) e E(TCo, ¢).
eTKoTNK = (m: ZX:K. T - K, 13: TY)o(AXK (XK, @), id) =

= <1dK, 1dT> ldTK

An inverse image functor along an isomorphism i must always be a strong equiy
of categories: the functor (i-1)* is left and right adjoint to i*; in the case of a split no
1= (-y*
fibration, i* is an isomorphism of categories, with (i*)'1=(@-1)*. Thus, for an arblt
display map a = joLei € Q, where i,j are isos and L is a projection, the direct im:
will be
amy = (TD¥oLge(h*, oefl, ¥}

Cegoncy =AZCTCO(mgomp)Z, Bot((n1°m0)Z)oTon)ZYoAXCO(X,B) =
= xwazCTCw.((noono)z, @Get((r1omp)Z)eTom)ZYX,B) =
=AXCe.(noX, Sot(miX)or(@)) =

. . - i obiect Ec |
16. E is globally small. Each propositional variable £:Q is a generic objec E;e] ol A, (k. ) con.

predicate a(XK)e |€x! is classified by the function
7= AXK a(XEK)K - Q

Note that the extent of @(XK) is
(i.e. o is an inverse image of & along o™ of TIL2.2)

1 = E(gg) = np:Co—K,
so that the requirement

17. E is comprehensive. This follows by proposition I11.3.4 from the fact that

full and faithful right adjoint . i
T:B—E: K (XK=T), (-0 (u, idr), ;

which has a right adjoint
C:€>B: oXK)y = XXKuig,

((u,f}:a(XI)—% B(YJ)) = lZ.<(u01r0)Z, (50f(noZ)01:on1)Z>,
(where f(n:oZ):=f[XI:=1toZ] is an instance of fX):a(X)— BX)).

18. Since E is fibrewise cartesian closed and comprehensive, it is locally small, by fact
;1124 Since it is globally small too, E is a small fibration. This follows from
roposition II1.2.2, with the following two adjustments. For a split locally and globally
mall fibration E, this proposition gives not just a fibrewise equivalence, but an

SOmorpmsm V&> E (as we already noticed at the end of 1.1). On the other hand, it
« Is C a functor? C(id,id) = id, follows from the rule Pt. For arrows as abovel

'ﬁoes through with a weaker assumption than that of finite completeness of B: it is

hold ficient that the representants 1(X,Y) used in the construction belong to a stable -
olds
. lay subcategory @ < B - and this is the case here
Clu,f)oClv,g) = ,
=AZ{(omg)Z, (Bef(roZ)orornZ) AW ((vor)W, (BogmoW)orem Q=0
og(moW)oton)W.

= AWZ((@or0Z, (DT Z){(vomoW, GeglroWyorem)y Q1 = Sok 1 10~ E1)
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[_1:A—EWN),
_ which Gustas [_T : A(R)— E in the preceding section) does not move the "material”

Q) = TEp& 182160~ &) x &1~ E2)

0 1= AZ.TZ : Q- Qp, ie2;  but changes the point of view: every type and term is interpreted by itself.

i

_IfE"€'—> B' is another category of predicates, every model assignment
[_IT:A—E

_ induces functors

Fg:B—>B": K> IKT, (w:I-J)> LuX!l, and
Fo:€—=€": XKy oI,

<u:I~> I, £30):0(X) - B(uX))H BLUXI[ fxo:B(ux)1,

N = AL, §, 8(ide)) : Qo— Q5

=
i

kz.(::oz, oz, 6((’c(n4Z))(r(n32)))> 0y Q.

The isomorphism is
FLUESVR: XK Mo K- Q,
<u:1—> 1, £X0)0(X) - B(uX)>}-> <u:I-a I, Tf :I——»Ql>,‘ _ which preserve the rcce-structure of their respective domains, and the horizontal
tructure of E:€ — B:
Fa(Lgy) = (FeL)n(Fqy), for e {x,!}.

: So F = (Fg,Fq) preserves all the structure of categories of predicates; it can be

where
o™ =AXK XK

T = xxl.<a(x1), BuXD), B(f(XI))>.

egarded as a morphism F:E— E' of categories of predicates. As such, F is the unique
_ morphism E—> E' by which the model assi gnment [__T' factorizes:
[_1'g=Fgol_lg,
[_.T'q =Fgpol_1q.
is factorisation will be written:
[-T'=Foll_T.

The inverse functor is obtained using
¢="0"*E,
f= TfTHy,

where generic arrow Ye €q,(90*&, 01*§) is the term
Z:Q1 = t(mZ)npZ - mZ.

19. If A is a strong theory of predicates, i.e. if it obeys the rule ab, then E:€ — 8

category of constructions. « Using the rule dab, lemma 1.1.87 gives an isomorphisn
a: o = 1oxT :b. ;

It is easy to see that for the E-cocartesian arrow 65 and counit £ of T— C -

defined above - holds

2. Semantical completeness.
()-Lg« =a0gqy € E1o T, 10XT) ‘

A semantical construction E() is said to be complete if every theory A can be recovered
:ﬁom its model E(A). For logical theories, a completeness theorem has traditionally been
in the form

VP. AFP ¢ E(A)EP,
?Vhere "AFP" means " the formula P is provable in A" and "E(A)kFP" asserts that "P is
it\rue in E(A)", i.e. an element [Ple E(A), assigned to P, has some property which we

Eq = bOCl&x € €L(X(Ta (X);
£q, is thus cocartesian. By proposition 111.4.3, the fibred category € must be equ
with 1€«

(N.B. This is the semantical version of proposition .2.33.)
The term model is a model. There is an obvious model assignment
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1V. Sematics

call truth in E(A). When A is a type theory - regarded as a logical theory With‘
constructive proofs - while E(A) is a category E - with terms-as-arrows < th

correspondence should be refined to a bijection between proofs and their semanti

Functors. A definition of the arrow part of the functor

E:TOP—>CAP: AF>E(A)

ollows from the observation that E(A) is universal among the models of A. An
interpretation ®e TOP(A,A") induces a model assignment

[_D°:=0_T0o®: A—>A—>E),

nd this assignment induces, as we have seen above, a unique morphism
E(®)e CAP(E(A), E(A")), such that

E(@)oll_ T =T_T0d,

realizations
VPVQ. {X:Q=p:P} = E([QL,IPI)
(as we already remarked in 1.2.4). The constructive completeness of E() thus mea;
that the model assignment
[_1:A—EWN
is "full and faithful" for every A.
The arrow part of
A:CAP—TOP: E-> A(E)
as been implicitely defined in the remark about the internal language, at the end of the
receding section. Every morphism Fe CAT(E,E') induces a model assignment
[_I°:=Foll_I: A—>E(A)—EA"),
nd this assignment induces a unique translation A(F)e TOP(A,A"), such that
Foll L1 =0_T'A(F).

To express this precisely, we shall now describe the connection of theories and mod
realized by model assignments, as an adjointness between a semantical functor E an

syntactical functor A.

Terminology. Let E:€ —> B and E:€'— B' be fibrations. We say that a pair of
functors

E = (F:B—> 8', F1:€ — €'), such that E'F; = FoE,
preserves a property P if Fy preserves this property. (Thus, F is a hyperfibratio

“omment, The equations we used here are equations of model assignments. A model
functor if the arrow Fi(f) is (co-, op-)cartesian whenever fis.)

ssignment is just a mapping from a theory to its model (or from two sorts to two

o .1 . . . " "
Categories. By definition, the category TOP consists of theories of predicates, wif ategories); it does not live in any of our categories, but "in between".

the translations which preserve all the structure (defined in L1). jointness. The unit and counit of E— A are induced a5 follows:

Objects of the category CAP are the categories of predicates. A morphis!
Fe CAP(E,E) is a pair of functors
F = (Fg:B—> B', Fg:€ —> €"), such that
Fel@)sa', so that Fq : a/B->a'/B' : u> Fe(u) is induced
Fo@r)cr', hence Fr: r/e—r'/€' : f>Folf)

F =(F@,FQ)| must be hyperfibration functors
Fg = {Fa.Fe) preserving terminal objects

and extents.
Fe¢ = (Fr,Fq)

N : A—> AE(A) is the unique translation by which [_1": A —> E(A) factorizes
through [_1: AE(A)— E(A);

€ : EA(E)—> E is the unique CAP-morphism by which L1 A(E)— E
factorizes through L_1: A(E)—> EA(E).

is injective; hence E is a faithful functor. € is a split mono; A is thus a full functor.

fact, € is an equivalence of categories. It is not an isomorphism only because the
ternal language has made Va and Vr cloven. On the other hand, each term

Since E = VO and E' = V&, it is not hard to see that Fg is completely determined omorphic in A to a first projection has became in AE(A) a type. 1 is not an

an internal functor fo: FeQ—> &' in B’ (cf. 111.1.28).
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= Y injectivi )) 1 ans the ‘
i is s 5. a a the 1n ectivit S
isom()rphlsm be(»(luse ()f thlS SUIPIUS2 But dl[e d h 1 \ ()( me. ’

completeness of the construct EC).

i i lose to a ha :
At this point, our story about constructive logic may seem to be clo Py

ding: the marriage of TOP and ( AP looks stable and it can be expected that it will
1 : . . . - .

61:n d ti love some day. It may be so, but it is dubious if this will help predicates to
ea .

i i S ot i 1cover some of
surmount the difficulties of a constructive life. The last section will unc

these difficulties.

jecti i i inAreg
21t does not occur if the class of first projections 18 closed under isos already :

in the presence of equality types.
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3. First steps

1. Generating small complete categories.

In order to really do mathematics in type theory, one needs to represent equality in.it.
Externally, of course, equality has been there all the time - generated by the conversion
relation. In the Martin-Lof type theory, this relation can be immediately internalized, by
introducing for every pair of terms p(XP), (YQ):R an equalizy type I(p,q), so that
3t I(p,q) 1< p=q.

But which conversion rules should be imposed on the terms of an equality type?
Translating this question into: "Which proofs of the statement p=q are equivalent?" does
not seem to help much.

Martin-Lof (1984, "Propositional equality") has stipulated that there is at most one term
of a type I(p,q). Since it fails to reflect even the constructive contents of various
derivations of p=q (cf. Troelstra-van Dalen 1988, 11.1.7.), such an equality type I(p,q)
could better be thought of as the set { (X, Y)e PxQI p(X)=q(Y) }, than as a
constructive predicate. Interpreted categorically, I(p,q) becomes the pullback of p and q
- and the unique term of this type corresponds to the unique factorisation through this
pullback. - Martin-L&f type theories with equality types correspond exactly to locally
cartesian closed categories. (+ Without equality types, they correspond to relatively
cartesian closed categories. But if the display family A € B of an recc B must contain
the arrows LI(XR,YR)I =pb(idg,idr) = p:R —> RxR for all Re |8, then lemma IL.4.6
and fact 11.4.34 imply a=8.+) Seely (1984) has given a detailed account of this
correspondence.

The idea of the theory of predicates with equality types (in both sorts) seems rather
appealing. A term model of such a theory is a small Iccc with small products and
coproducts - over an lcce. In particular, this small category is small complete, since it is
fibrewise finitely complete, and has small products. An argument of Peter Freyd
(MacLane 1971, proposition V.2.3) shows that such a category in the setting of
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classical sets must be a preorder (with small meets). With constructive sets from Facts. For every equality predicate = holds

EX=Y & Y=X,
EX=YAY=Z - X=2Z,
EX=zY - VK- QoX) - ¢Y).

categories of predicates, this clearly need not be the case.

One concrete example of such a small complete category of predicates (indeed, of
constructions) is the category of modest sets fibred over the category of separa k
objects of the effective topos (as described in Hyland 1988, Hyland-Robinson.
Rossolini 1988, Longo-Moggi 1988 etc.). This example shows that adding equal
types to the theory of predicates does not lead to paradoxes. Small complete catégo
obtained as term models of theories of predicates are thus not degenerate.

Examples. It follows from the last fact that the Leibniz equality, defined for arbitrary
terms u(XD), v(XD) : K (i.e. for arrows u,v: I—>K)
uZ v = VK- Qo) o),

is weakly terminal among all the equality predicates over a set K.

If the equality type Z(XK,YK) is given on K, then there is a weakly initial equality
predicate too, namely the Lawvere equality:

u0v:=3Z:Fuv).T.
In categorical notation, this is uBv := & T, where &:£>> 1 is an equaliser of u and v.
Lawvere (1970, p.6) has shown that 0 is an equality predicate. To show that it is

2. Equality predicates.

Notation. For an arbitrary predicate o€ 1€x] (i.e. a(XK)), we write
Fo  when Ife €x(T,0) (ie Ifioud);

and say that o is provable. We shall also use
okp for Foa-B.

weakly initial, consider an arbitrary equality predicate = over the same set. Since
ue=ve, the reflexivity of = implies that there is a proof of uz=ve, i.e. a vertical
arrow T —> &*(u,v)*(=). Hence

ubv =& 7T ~>{u,vV)*(=) =u=v.
In other words, writing

2(u,v) = g DX LAEUX),v(X) -1,

By Z(u,v) will be denoted the equality type which can be formed only it u and v hav
the same context (and not just the same type). The operations I and /& are obviou
derivable from each other (+ by adding dummies, and by substituting along
diagonal +). Interpreted in a category, I(p,q) is a pullback of IpJ and Lql, whil

from
Fu(e(Y))=v(z(Y))
we obtain
3Z:£(u,v). T FuX)=v(X).

Z(u,v) is an equaliser of [ul and Lv.

Note that we sometimes combine categorical and type theoretical notation, forgettin
. (The idea behind the Lawvere equality becomes perhaps clearer if we consider X0Y

written categorically ngOny = pi(T) (where p:=(id,id): K—> KxK is an equaliser of
7p,71: KXK—> K). If wi(y) can be thought of as 3Z.w(Z)=XAy (I1.3.1), then X0Y is
just AZLZ,2)=(X,YYA T.)

[__1, and confuse
{u,v)*o and  a(u,v), or
oaX,Y) and  {(mg,mp*o.

Definition. An equality predicate (XK, YX) must satisfy:

E o(XK,XK) and

k (XK YK)AQ(XK, Zg.. Zn) = O(YK Zg,...Zn), for every §.
Generically, such a predicate a(XK,YK) will be written XK=YK,

In a topos - which is a category of constructions by 1.1.6 - the Leibniz equality and the
Lawvere equality coincide: cf. Lambek-Scott 1986, I1.2. This means that every topos
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has a unique equality predicate,

can exist theres.

Propositions. Le

i t
21. For every equality predicate =€ |€gxk| with an ex

following arrows exist:

- reflexivity me B
- symmelry a€ iB(D(E ), D(=)

- transitivity ce iB(

pie (P, D(=)

« A reflexivity arrow m
B8/K2((id,id),

1V. Semantics

{ E:€ —> B be a category of predicates, KelBla

exists because the set

w(=)) =€k (T, (d,idy*(=))

must be inhabited, since (ididyx(=) = [X= X3.

A symme

to a proof of e1=¢€0 derived using F
(i.e. the one which corresponds to ide B/K

A transitivity arrow is

22. For every equali

try arrow a corresponds by the isomorphism
B/K2({e1.¢0)s (eg,e1) = Ep(=)(T,€1=¢€0)

X=Y-Y=X fro

constructed in a similar way.*

ty pr

Wu=v) is a weak equaliser of u and v. Hence

u=v & Fu=Ev.

« Given an arrow h such that uoh=voh, consider
reflexivity map. Then {eg.e1)°t = (u,v)

(u,v)*(eo.e1)-

&=: A proof of u=v
arrow s, such that 1(

u=v.*

214

ti=

gives by the correspondence €1

u= v)os=id. From Eu=zvand uot

«since at most one proof from a predicate to another

(K, D(=)), such that {eg,e1)om = (id.idY;

), such that {eg,e1)°8 = {e1.€0% .
P, D(E)), such that {eg.e1)e¢c = (eoo.p(?, e1op1), where
) is obtained by pulling back ei along e; for i#je 2.

2(1(=)(=)))-

edicate =€ |Ekxk|, and arbitrary u,ve B(K),

oh, and h must factorize through 1(u= )‘

set in it.

ent 1(=) =(ep.e1), the

m the generic proof of €g E

the €

mouch=movoh, where m

(Tousv)=B8 /I(id,t(uzv))
(usv) = vol(us v) thus fo lljg‘ WS

3. First steps

23. Suppose that pxe B(K, KxK) is a display arrow in 8, so that the Lawvere
equality 6 can be defined on K. For all functions u,ve B(I,K), the extent 1(ufv) is an
equaliser of u and v. Moreover,

u=v < ubv=TL

* The <=-direction of the last assertion follows from 22; and = directly from the

definitiion, * because the equaliser &=id if u=vs.

Since ubv = vBu, the identity on D8 is a symmetry arrow for the Lawvere equality and
18 must be in the form {e,e). But now

€= (1d,id)*(e,e) = 1(1d91d) = 1(TK) = ldK‘

Comment. The Lawvere equality predicate inherits from the equality types their
nonconstructive strength: unique proofs. Consequently, any other equality seems to be
a better choice for constructive logic.

For every arrow he B (H,I) such that uh=vh, the factorisations of h through 1(u=v)
exactly correspond to proofs of uh =vh. The constructive contents of predicate u=v are
reflected precisely in the weakness of 1(u=v) as equaliser. Remarkably, the nonunique
factorisations through 1(u=v) do not appear as a point of disorder (as it is usually the
case with weak universal constructions): they are positively structured by internal
constructive logic. Informally, an element of a weak equaliser of u and v can be thought
of as a pair (X, p(X)), such that u(X)=v(X) is true, and p(X) proves this fact. Using
the constructive extent operation, this set can be presented as Y X:L.yuX = vX). (Cf.
111.2.4.)

3. Describing functions.

But will a constructive equality predicate - the Leibniz equality in particular - not be too
weak to carry mathematics? For instance, is it strong enough to allow the usual
description of functions, characterization of monics, epis and so on? How much of the
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power, with which "the internal language at work" governs a topos (cf. Lambek~ScOtg
1986, I1.5-6.), subsists in our more general case of categories of predicates?

31. Notation. {X:K | a(X)} := Da = TX:K.1a.
=7 (XK Ta(X)} - K.
anpi=oxp.
PY:K.o(Y) = IY:Ko(Y) AVYY KoaWA(Y)» Y=Y,

32. Definition. Let E:€ —> B be a category of predicates, ae |€1xxl, (q0.q1):=10.
We say that the predicate o is functional if the following two conditions are satisfied:
3) qo is a retraction and
1) qoh=qok implies qih=q1k, for each pair of functions h,k.

Propositions. Consider a category of predicates E, with equality predicates on sets K
and L ;

331. For every function ue B(L,K), the predicate uX =Y is functional.

« Consider {ug,uy) := 1(uX = Y). The equation
1 ueup =g

follows from proposition 22, since u(ugZ)=ujZ = {up,u1)*(uX=Y) is a provable
proposition (as every 1o*(ct) is: its proof 1Z:0(Z) is the generic one). Further define an.

arrow n by the following pullback

I ~ mou
Q\ __I w D(=)
{d, u)
Qg )= (e &) =
WwX=Y) =)

[x K ———— KXK

(where me iB(K, D(= )) is a reflexivity map, from 21). We have
2) ugen = id, and

216

3. First steps

3) ujon = u,
The equation (2) just says that the predicate uX =Y satisfies condition (3). It satisfies
condition (!) because

up = @ uyg = & unug.
332. If ae |€1xk! is a functional predicate, then there is a unique function ue B(IK)
such that ((uX =) is a retract of 1 (in B/IxK). In particular, every function u can be
recovered from 1(uX=Y).

* Given a functional predicate o, with {qo,q1):=1c and a section p of g, take

u = q1p.
Condition (!) implies that u does not depend on the choice of p; and that uqg=q;. The
retraction r: 1 —> 1(uX = Y) is obtained as a factorisation on the following diagram:

D(uX Y) "mou ™
@ q;) wouy) = e =
uX=Y) =)

IXK e K XK
u xid

(because (u x id)e{qo, q1) = (uqo, q1) ={q1, q1) = {e0, e1)omoqy). Df is the image of a
proof f: uX=Y-a(X,Y). To construct this proof, use
uX=YE qpX=XaqpX=Y,
and the fact that
qopX, q1pX) = {(qop, q1p)*(0) = p*ra*(r)
is a provable predicate.

Suppose, finally, that there is another function ue B(LK) such that (iip,u1) :=1(aX=Y)
is a retract of 10u: there is a retraction T ;10— (UX=Y), with a splitting i (so that
Ti=id, and {qo,q1)ei = (o,u1)). If il is a section of g, then

qoeien = tgen = idf = qoep implies gjeion = qjop.
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But then
G = Gloﬂ' = qloio’ﬁ' = qlop = {1.*
333, Consider a predicate Q& [€1xk! in a category of predicates €. There is a (unique)

function ue B(1,K), such that
EuX=Y o oXY) (and 1uX=Y) is a retract of 1)

iff o satisfies the following conditions:

D) EVXI IY:KoX,Y),
ii) there exists s : HFY KX, VAKX, Y)) = YY:K(oX, )roX,Y)).

« Then: We only show that condition (ii) is satisfie
uX=Y, ue B(LK).

Using aproof c: Y'= Y'-EAY:KY'=YAY = Y™), observe that

(po,pl):=t(3Y:K.uX =YAYE uX‘)
y

(Y'=Y")

is a weak kernel of u.

_

(po» P10 = @Y. Y'=YAY=Y")
1Y uX=YAY= uX) ’

Ix] ————— KXK
uXu

Namely, if uotg=uoty,
22. Hence, {to,t1) must factorize through {po,p1)-

The required arrow s is now obtained as on the following diagram:
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d. We first prove it for a(X,Y) := .

the arrow {uto, uty) factorizes through W(Y'= Y™, by propositi:on‘ ~

3. First steps

DEAY.uX=YAY=uX")

|
po | p)
I I

|

D@uX=YAY=uX")

n n
/\/\
Ig rl

D(UXEY) D(Y EUX’)
1 K I

(because ujonopg = uopg = uopq = ujonepy). Since
ZY:K.t(uXE YAY = uX') = {ugerg, ugery),
we have
1(3Y:K.uXE YAY= uX’) ={po,p1) = {ugnpo,upnp1) = {Ugros,ugrys) =
= XY:K(uX=YAY=uX') o s.

I

For an arbitrary predicate o such that FuX=Y o aX,Y) holds for some function u, it
is not hard to construct the arrows

UFYK.o(X, V)Ao(X,Y)) = 1(FY:K.uX = YAY =uX') and

YK A(uX=YAY 2uX') = YK (aX, Y)Aa(X,Y)).
Using them, the arrow s, required for o by condition (ii), is obtained from the one for
uX=Y.

If: From a proof of VX:I 31Y:K.a(X,Y), we can derive proofs
1 X=X'-3IY:K.oX,Y)AoX',Y), and
£ IXLaX, Y)AuX,Y)->Y=Y"

(To derive 1, define B(X,X"):=3Y:K.o(X,Y)Ac(X",Y), and use
IYV:K.aX,Y) B B(X,X), and
X=XABXKX) B B(X,X).)

219




IV. Semantics

Consider the following arrows:
D1 : (X =X) > IV K.aX, Y)AaX,Y)),
s (B K.aX, V)raX,Y)) = TY:K(aX, Y)aaX',Y)),
10 : o (X, )aaX,Y)) — {a(X, ).

DX=X")

|on
DAY (X, V)X, Y))
S

D(ou(X, Y)AO!(X' Y))

AN

Da(X,Y) Da(X',Y)

I

Note that the arrow ZY K. x(a(X Y)ao(X', Y)) D—> IxI is obtained just by i i ;
projecting away the middle component from L(OL(X Y)no(X', Y)) D—> IxKxI,
Taking again {qg, q1) := L, both TY:K.1(a(X, Y)ra(X,Y)) and 1{a(X, )aa(X',Y))

have the arrow qgorg as the first component. Hence
goerpoeseDn = eg,

where UX=X'") ={eg, e1). If mis a reflexivity arrow (i.e. a section of ep), then
p = rgesoDnom

is a section of qg. Hence, o satisfies condition (3) for a functional predicate.

To prove that o satisfies condition (1), we use the fact that

Eo(u,v) < there is an arrow h, such that {u, v) ={qo, q1)°h.
For any pair of arrows h,k : L— D(X=X'") holds

E a(qoeh.qioh)aalgoek.qok).

If ggoh = qgok then
E 3X:1oX,qreh)aa(X,qok).

Using €, we now derive
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F qreh=qiek;
and therefore ¢joh = qjok must be true, by proposition 22.

o is thus a functional predicate, and we define u as in proposition 332. A proof
fiuX=Y-oX,Y)
is constructed same as there. A converse proof
g: X Y)»uX=Y
is derived from &, i.e. from a proof of (X, uX)Aa(X,Y)—»uX =Y. (Once again, note
that ou(X,uX) = a(qopX,q1pX).)*

34. u is a split monic 8 LyxYLuX=uy-X=Y Q u is monic.

« a) Since uX=uY F e(X)=e(uY) always holds, ecu=id implies uX=uY k X=Y.
b) ug=up D u(pX)=u{gX) = kFpX=gX @ p=q.
351, BEVX:I3Z:{Y:Kl a(Y)}.uX=10Z < u factorizes through 1c.

« =: For clarity, we write out explicitly the dummies which must be added in u and 10
when they are substituted in =. Obviously, we have
WX, Zi=1(XZ) B "o ou(X, 2z "o o (XZ).
But "o o1a classifies (and is identical with) the provable proposition 1o*(cr). Using
"B="y" F Bey,
we derive
uX,Zj=1((X,2) E a(uX,z)
(since "o ou(X,Z§ classifies o(uX,Z5). Hence
AZuX,Zi=10(X2Z) F auX).
From the given hypothesis it thus follows that an arrow ke B/ I(id, l(a(uX))) must

exist.
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(T X)) — e (YK 0Y ) e

. -

k tu*o) gted i

T |

Now
g = hke B/K(u, 100).

352, Every function u factorizes through a display arrow
im(u) =13X:LuX=Y).

» This follows from 351, using the fact that the proposition
VX1 3Z:{Y:K13X: LuX) = Y}.uX=im(u)Z

is provable.e
36. u is a split epi 9 EVY:KIX:Lu(X)=Y B s epi.

« a) Notice that FVY:K3X:Lu(X)=Y means exactly that im(u)is a split epi.
22
b) ku=hu B EkWX)=hux) = EkY=hY B k=h.

37. Remark. Why are propositions 34 and 36 so poor; why can I not prove that
monics are monics and epics are epics? There is perhaps a deeper reason for this than
my own incapability. Examples show that the base category of a category of predicates
need not be balanced: an arrow can be epi and mono without being iso. (E.g. modest
sets: Hyland 1988.) It can even be provably epi and mono (i.e. FVY:K3!X:LuX=Y)
and still lack a splitting. (Only im(u) must be iso then.) Perhaps something like
condition (i) from proposition 333 is needed to characterize epi, mono, iso functions.
Or it might be that the theory shoud be improved at this point. Some additional
requirements imposed on the class of extents (and expressed in the theory of predicaTes
by some additional rules) could be useful. Perhaps there is some particular equality

predicate which is better than others.
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But let us not confuse the imperfections of the theory with the points at which only the
nonconstructive simplicity is lost. For instance, the fact that each function has an image,
but that this image is not a subset of its range may seem odd for a while, but it is
certainly not a deficiency! According to the constructive conception of the extent
operation, the image of a function u:I—> K should consist of some points Y of the
range K, equipped with proofs that 3X:LuX = Y. If these proofs are constructive, there
can be several of them for each Y. It is the constructiveness of proofs that spoils the
inclusion of the image {Y:KI 3X:L.uX=Y} into the range K.

4. Procreation of models.

Finally, we are in a position to show how the examples of categories of predicates come
about in the "real world" - how some other models for the theory of predicates can be
produced, besides term models. Starting from any category of predicates E and an
internal category Ie catg in it, we construct the category of presheaves over I, which is
a new category of predicates. In particular, each category of constructions gives in this
way numerous categories of predicates. Since they are clearly not generated by terminal
objects, these categories are (+by 111.4.3+) not categories of constructions themselves.
The well known mathematical models for the theory of constructions (modest sets:
Hyland 1988, Hyland-Robinson-Rossolini 1988, Longo-Moggi 1988; algebraic
toposes: Hyland-Pitts 1987; Girard-style domains: Coquand-Gunther-Winskel 1989)
thus offer a source of relevant examples for the theory of predicates too.

It seems that not every category of predicates can arise in this way, i.e. over a category
of constructions. » Namely, the extent fibration of each of those which do must be a
category of constructions. As we remarked in 1.2, this is almost the case except that the
induced coproducts may (it seems) remain weak.» But appropriate examples still wait to
be found.
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The theory of internal categories formulated in the internal language of a category of
predicates - using some constructive equality - differs from the usual theory of internal
by the fact that the commutativity conditions are

categories (e.g. in Johnstone 1977) .
v), and the used limits are weak. However, in the

imposed by means of extents w(u=
spirit of comment 2, a weak equalizer gives in this context not less than the stron.g one,
but more: u=v) not only equalizes u and v, but also issues some proofs that it does

so. In this theory of internal categories, each performed construction carries a
constructive proof of its own soundness. Quite involved already, the in.temal
formulations of category theory become even more complicated. Our arguments in this

part had to be severely truncated: completely written down, the constructed terms tend

to be completely unreadable.?

Terminology. An internal category I in the category of sets B underlying a category
of predicates E will now be described in the internal language by the following types
and terms:

- set of objects Io,

- hom-sets X,Y:Ig = 11(X,Y),

- “identity arrows" function X:1g = nX:11(X.X),

- "composition" function X,Y,Z:1, g:11(X,Y), £:11(Y,2) = w(f,g)» (X, Z).
The following equations must be satisfied:

um@), H =1

u(f, n(Y) =1

L(R(Eg), b) = p(f, uig.h)-

We say that all the arrows inlare retractions (split epis) if there is a
- "splitting” function £:11(X,Y) = (£):11(Y,X),

such that
p(f, ) = ny).

30f course, I did perform the proofchecking here omitted. But the fact is that such
things should be done by a computer.
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Remarks. A category Ie catg, described in this way is distinguished only by the fact
that its domain and codomain arrows constitute a display map: {dg,01)e Q. This
assumption is, however, not necessary for the propositions below. All our
constructions could be performed with arbitrary e catg - but the descriptions would
then resemble a bit less to what one does in ordinary category theory. Furthermore, if B
is finitely complete, Lawvere's equality can be used for =, and then everything really
boils down to the usual internal category theory.

As for the equations imposed on an internal category, it would perhaps look more
constructive if we demanded an explicite proof for VE.u(n(Z), f)=id, etc. to be given.

But lemma 25 gives a canonical proof of this proposition whenever the equation
Lm(@),h) = fis true.

Propositions. Let E be a category of predicates.

41. For arbitrary internal categories I and D, there is an internal category [I, D] (the

"functor category") such that [I x L, D]={L, [I, D]] holds vor every internal category
L.

. I, DJg := {F: $Z:1g-Dg TXY:Io. [1(X,Y)— D1(ZX,ZY)|
functor(Fo,F1) = VX:Ip. F1(X,X)en(X) =n(Fo(X))
A VXYZ:IVg: L1 (X, Y)VEL(Y,Z). F1(X,Z)u(,g) = uF1 K YE, F1(Y,Z)g)

functor(mgF,x1F) }

[1, DI1(F,G) := {\y:HX:IO.Dl(FoX,GoX) | natural(w,F,G)}
natural(y,F,G) := functor(noF,n1F) A functor(ngG,t1G) A
A VXY:IpVELXY). iy Y, F1X, ) = W(G1 (X, Vf,yX)

F:[I,D]o => n(F) : [I, D]1(F.F) is defined:
() := AXn(FoX), 3a)

¢:[L,D]1(G,H), y:[LD}1(F,G) = p(e,y) : [I, DI1(F.H) is:
1@,y = AX.W(eX,yX), 8b)

(The task of deriving proofs

a : natural(AX.n(FoX), F, F) and
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b : patural(AX WX, yX), F, H)
from the proofs that I is a category is still an easy exercise.)

Let us now sketch the defionition of the component

j:[Ix1,Dlo—> [L, [I, Dllp
of the isomorphism [I x L, D= [L, [, D]]. Given a functor F:I x L, D], from:its
object part

Fo:=ngF : [gxLo~Dg
we derive

(iF)g = MXFy(X,A) : Lg— (Ip— D).
The arrow part Fy:=niF, i.e.

X, Y:1Ip, A,B:Lo =

F1((X,A),(Y,B)): 11(X,Y)xL1(A,B) » D1 (Fo(X,A),Fo(Y  B)),
gives

ABiLy = (jF)10: L1(A,B) - ITX:Io.D1 (Fo(X,A),Fo(X,B)) as

(10 = WX (F1((X,A) (X B)MCO,H).

For every given h:L1(A,B), the term (jF)10h is a natural transformation between the
functors AX.F(X,A) and AX.F(X,B). Namely, for arbitrary f:1;(X,Y), a proof of

R(FL(CY AV Y BT h), 1 (G, AN(Y AENA) )2

= F1((X.A)(Y B)ER) £
= (P (X B. (Y BYKEN(B)), Fi((X,A)(X.BMEO,)

is obtained from proof that F is a functor. (The step (#) is just composition with
identities, using associativity.) Encoding this proof, we get

h:L1(A,B) = (jF)11h : wnatural((GF)1oh)
and define:

AB:Lo = (jF)1: L1(A,B)~ [LD]1(GF)0A, (F)oB) as

(1 :={({B10, (H11)-

Having encoded a proof that (jF); is a functor, we use the corresponding element

(iF)pafunctor((GH)1) to define
jF = (jFo, jF1, jFp).*

42.1f VD : B/D—> B is an A-hyperfibration, then V[L,D] is an a-hyperfibration t00.
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+ The idea for a proof comes from the fact that the fibration
Vpshe @) : P — B, with fibres
Px = pshe(IxK)
is an Q-hyperfibration for every I, whenever E:€ — B is. Namely, for arbitrary
ue B(K,))mQ, and de {!,*}, the direct images are:
ug : psh(IXK) —> psh(IxJ) : (F, v) F>{Tpxu)F, Tixu)gy).
The fact that ug preserves the presheaves and their morphisms, and that it gives the

(co)products in P follows readily from the BC-property of E.

The propositions 111.1.27-8 and proposition 1 above, imply that every fibre
(B/[L,D]k is isomorphic with a category consisting of
- objects (C, v, p), where (C,y)e pshp(I°xK), and p:functor(C,y);
- arrows (v, @) : {C, v, py— (C', ¥, p'), where  is a presheaf morphism
{C,v)—> (C, ¥) (cf.1I.1.24), and g:natural(y).
Thus, to construct the direct images of V[I,2], one needs to encode proofs

ig: functor(C,y)-»functor((loxu)DC, (leu)Dy> and

ﬁ[] : natgral(\y)—enatural((loxu)g\y),
for every ue B(K,J)a, e {!,*}, and to append them in the above construction of the

direct images for P.s

43. If VD is a fibrewise cartesian category, then V[I,D] is. If each map of [ is a
retraction, and if VD has exponents, then V[L,D] has them. - If each map of I is a
retraction, the fcce structure (I1.2.1) on VD induces the feee structure on V([I,D].

» A product of two functors is constructed pointwise:
(C, v, p)y x(C, ¥, P :=(CXC, ¥, "),
just like in ordinary category theory. An exponent of functors will be pointwise t0o, if
every arrow of the source category is a retraction®, By an argument as in II1.1.24, the
splitting T of the arrows in I is lifted in every presheaf C over I°: there is a splitting
g:C1XY) = v(g):Ci(Y,X),

4What is really needed here is that every arrow in the image of the functor splits. One
way to ensure this is to demand that every arrow in the source category splits.
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with

H(g,u(g)) =n(Y).
Passing on the representation of presheaves as pairs (C, 7 (described in I11.1.24), we
conclude that for every presheaf over I, its component 'y must split: there is V() such
that you(y)=id. Hence the definition of an exponent:

(C.v, p)=(C. ¥, p):XC—C v, p),
with

AFC x J*C—g-C' —Emm J*C'

V() X 9F(C-C) Y

AHCXIF(Cr ) F°C
v-: = ('oee (0(xAg*(C~ C)) )2 AH(C— C)—> 9 +(C— C),

p~ : functor{C—C', y~).¢

44. If each map of I is a retraction, and if VDD is a category of predicates, then V[I,D]

is a category of predicates.

* We already saw in 42 how the horizontal structure on VI induces one on V[I,D].
Now we extend 43 and consider how the rcee-structure passes from VD on V[I,D].

A vertical display family r € B/D induces another such family

n = {(y,q)e B/[1,D] | yer }
(with all the possible proofs q). B/{I,D] is an n-rcce if B/ D is an r'-rece. The
fibrewise exponents are constructed using the same idea as in 43. This time we must
find an exponent of N-arrows

W, @) : (A, YA, pA)— (X, ¥x, px) and

W'’ 1 (A" yaLpA) — (X 1x.pX)-
The definition will be

W)= v = (y-y'q") - (A" ¥ampam) = (X, vx.px).
Y-V is the exponent of I"-arrows, and we denote its domain by A". To obtain the
arrow

YA" : QX (Y- ) > 01* (Y- ),
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put y in place of C everywhere in diagram 43. (ya',vx): do*y'—> d1*y’ will now
replace v', and (L(YA),0(yx)): o1*y —> dp*y will serve as V(Y.

(Finding proofs
pa™: functor (A",ya") and
q" : natural (Y-

is a considerable exercise in encoding ordinary category theory in the theory of

predicates.)e
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